JP2021138566A - Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide - Google Patents

Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide Download PDF

Info

Publication number
JP2021138566A
JP2021138566A JP2020036311A JP2020036311A JP2021138566A JP 2021138566 A JP2021138566 A JP 2021138566A JP 2020036311 A JP2020036311 A JP 2020036311A JP 2020036311 A JP2020036311 A JP 2020036311A JP 2021138566 A JP2021138566 A JP 2021138566A
Authority
JP
Japan
Prior art keywords
graphene
metal
graphenes
metal compound
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020036311A
Other languages
Japanese (ja)
Inventor
博 小林
Hiroshi Kobayashi
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020036311A priority Critical patent/JP2021138566A/en
Publication of JP2021138566A publication Critical patent/JP2021138566A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a method for producing a graphene aggregate in which graphenes are superposed and joined to each other from a collection of graphenes produced by an inexpensive method.SOLUTION: A production method involving the joining of graphenes to each other through a collection of nano-level size metals or metal oxides comprises the steps of: depositing a collection of graphenes by a parallel plate electrode in a methanol dispersion of a metal compound and separating the graphenes into individual sheets of graphene by a homogenizer device; transferring a part of the collection of graphenes to a new container having a bottom surface whose share is a shape of a graphene aggregate and forming the collection of graphenes, in which graphenes are superposed with each other through a methanol dispersion of a metal compound, on the bottom surface of the new container; vaporizing methanol and depositing fine crystals of the metal compound in gaps between the graphenes, and then compressing the collection of graphenes to crush the fine crystals of the metal compound; and thermally decomposing the fine crystals of the metal compound and then compressing the collection of graphenes.SELECTED DRAWING: Figure 1

Description

本発明は、2枚の平行平板電極の間隙に黒鉛粒子の集まりを引き詰め、熱分解で金属ないしは金属酸化物を析出する金属化合物を、1重量%以下の量としてメタノールに分散した分散液に、平行平板電極対を浸漬し、該平行平板電極対に直流の電位差を加え、黒鉛粒子の基底面の層間結合を同時に破壊し、基底面からなるグラフェンの集まりを分散液中に析出させる。次に、分散液中でグラフェン同士を重ね合わせ、さらに、金属化合物を熱分解し、グラフェン同士の間隙に、ナノレベルの大きさの金属ないしは金属酸化物の微粒子の集まりを析出させる。この後、グラフェンの集まりの表面を均等に圧縮し、微粒子の集まりをグラフェンに摩擦熱で接合させるとともに、隣接する微粒子同士が摩擦熱で接合する。この結果、グラフェン同士が微粒子の集まりを介して接合され、グラフェン同士が重なり合って接合したグラフェン接合体が製造される。なお、グラフェンは、炭素原子が六角形からなる網目構造を二次元的に形成する炭素原子の集まりからなる平面状の単結晶材料で、厚みが0.332nmからなり、殆ど質量を持たない極めて軽量な素材である。また、本発明では、グラフェン同士を重ね合わせて接合した厚みが極薄いフィルム状のグラフェンの集まりを、グラフェン接合体と呼ぶ。なお、黒鉛粒子は、黒鉛の単結晶のみからなり、黒鉛の結晶化が100%進んだ最も安価な炭素材料である。 In the present invention, a dispersion liquid in which a collection of graphite particles is packed in a gap between two parallel plate electrodes and a metal compound that precipitates a metal or a metal oxide by thermal decomposition is dispersed in methanol in an amount of 1% by weight or less is prepared. , The parallel plate electrode pair is immersed, a DC potential difference is applied to the parallel plate electrode pair, the interlayer bond of the basal plane of the graphite particles is simultaneously broken, and a collection of graphene composed of the basal plane is precipitated in the dispersion liquid. Next, the graphenes are superposed on each other in the dispersion liquid, and the metal compound is thermally decomposed to precipitate a collection of fine particles of a metal or a metal oxide having a nano-level size in the gaps between the graphenes. After that, the surface of the graphene aggregate is evenly compressed, and the aggregate of fine particles is bonded to graphene by frictional heat, and adjacent fine particles are bonded to each other by frictional heat. As a result, graphenes are bonded to each other via a collection of fine particles, and a graphene junction in which graphenes are overlapped and bonded is produced. Graphene is a planar single crystal material composed of a collection of carbon atoms that two-dimensionally forms a network structure in which carbon atoms are hexagonal. It has a thickness of 0.332 nm and is extremely lightweight with almost no mass. Material. Further, in the present invention, a group of film-like graphenes having an extremely thin thickness obtained by superimposing and joining graphenes with each other is referred to as a graphene bonded body. The graphite particles are the cheapest carbon materials composed of only single crystals of graphite and 100% crystallization of graphite.

2004年に英国マンチェスター大学の物理学者が、セロファンテープを使用して、グラファイトから1枚の結晶子、すなわち、炭素原子が六角形からなる網目構造を二次元的に形成する基底面を引きはがし、炭素原子の大きさが厚みとなる平面状の物質を取り出すことに初めて成功した。この新たな物質をグラフェンと呼んだ。この研究成果に対して、2010年のノーベル物理学書が授与されている。 In 2004, a physicist at the University of Manchester in the United Kingdom used cellophane tape to tear off a single crystallite from graphite, the basal plane, which two-dimensionally forms a network of hexagonal carbon atoms. For the first time, we succeeded in extracting a planar substance whose thickness is the size of a carbon atom. This new substance was called graphene. The 2010 Nobel Prize in Physics has been awarded for this research result.

グラフェンは、厚みが炭素原子の大きさに相当する極めて薄い物質で、かつ、質量をほとんど持たない全く新しい炭素材料である。このため、従来の物質とは大きくかけ離れた物性を持ち、幅広い用途に応用できる材料として注目されている。
例えば、厚みが0.332nmからなる最も薄い材料である。また、単位質量当たりの表面積が3000m/gである最も広い表面積を持つ。さらに、ヤング率が1020GPaと大きな値を持ち、最も伸長ができ、折り曲げができる材料である。また、せん断弾性率が440GPaという大きな数値を持つ最も強靭な物質である。さらに、熱伝導率は19.5W/Cmで、金属の中で最も熱伝導率が高い銀の熱伝導率の4.5倍の熱伝導率を持つ。また、電流密度は銅の1000倍を超える。さらに、銅の比抵抗の23倍に過ぎない電気導電性を持つ。また、電子移動度が15000cm/ボルト・秒であり、シリコーンの移動度の1400cm/ボルト・秒より一桁高い値を持つ。さらに、融点が3000℃を超える単結晶材料で、耐熱性が極めて高い材料である。
Graphene is an extremely thin substance whose thickness corresponds to the size of a carbon atom, and is a completely new carbon material having almost no mass. For this reason, it has physical characteristics that are far from those of conventional substances, and is attracting attention as a material that can be applied to a wide range of applications.
For example, it is the thinnest material with a thickness of 0.332 nm. It also has the widest surface area, with a surface area of 3000 m 2 / g per unit mass. Further, it has a Young's modulus as large as 1020 GPa, and is the most stretchable and bendable material. Moreover, it is the toughest substance having a large shear modulus of 440 GPa. Further, the thermal conductivity is 19.5 W / Cm, which is 4.5 times the thermal conductivity of silver, which has the highest thermal conductivity among metals. Moreover, the current density exceeds 1000 times that of copper. Furthermore, it has electrical conductivity that is only 23 times the specific resistance of copper. Further, the electron mobility is 15000 cm 2 / volt / sec, which is an order of magnitude higher than the mobility of silicone of 1400 cm 2 / volt / sec. Further, it is a single crystal material having a melting point of more than 3000 ° C. and has extremely high heat resistance.

いっぽう、グラフェンは様々な方法で製造される。例えば、前記したマンチェンスター大学の教授は、人の手でグラファイトからグラフェンを物理的に引きはがした。この方法は、大量のグラフェンを短時間に引き剥がすことは困難で、また、剥がされたものが黒鉛結晶の単一層、つまり、グラフェンになるとは限らない。
また、特許文献1に、炭化ケイ素の単結晶を熱分解することでグラフェンを製造する方法が記載されている。つまり、炭化ケイ素を不活性雰囲気で加熱し、表面を熱分解させる。この際、昇華温度が相対的に低いケイ素が優先的に昇華し、残存した炭素によってグラフェンが生成される。しかし、炭化ケイ素の単結晶が高価な材料である。さらに、面積が大きいグラフェンを製造するには、炭化ケイ素の単結晶を成長させなければならず、炭化ケイ素の単結晶がさらに高価になる。また、1600℃を超える高温で、かつ、真空度が高い雰囲気でケイ素を昇華させるが、ケイ素が僅かでも残存した場合は、熱分解後の残渣物としてグラフェンが生成されない。このため、炭化ケイの単結晶の生成と、単結晶の熱分解処理に係わる費用は非常に高価になる。また、大量のグラフェンを製造するには、さらに高価な費用が掛かる。
さらに、特許文献2に、シート状の単結晶のグラファイト化金属触媒に、炭素系物質を接触させ、還元性雰囲気で熱処理することで、グラフェンを製造する方法が記載されている。しかしながら、この製造方法も、安価な製造方法ではなく、かつ、量産性に優れた製造方法ではない。第一に、単結晶のグラファイト化金属触媒を製造する製造コストは、炭化ケイ素の単結晶よりさらに高い。第二に、単結晶のグラファイト化金属触媒を炭素系物質に接触させる方法は量産性に劣る。第三に、水素ガスを含む窒素ガスがリッチな雰囲気で、1000℃を超える高温度で、グラファイト化金属触媒を還元処理する方法は高価になる。従って、大量のグラフェンを製造するには、さらに高価な費用が掛かる。
Graphene, on the other hand, is produced in a variety of ways. For example, the aforementioned professor at Manchenster University physically peeled graphene from graphite by hand. In this method, it is difficult to peel off a large amount of graphene in a short time, and the peeled material is not always a single layer of graphite crystals, that is, graphene.
Further, Patent Document 1 describes a method for producing graphene by thermally decomposing a single crystal of silicon carbide. That is, the silicon carbide is heated in an inert atmosphere to thermally decompose the surface. At this time, silicon having a relatively low sublimation temperature is preferentially sublimated, and graphene is produced by the remaining carbon. However, a single crystal of silicon carbide is an expensive material. Furthermore, in order to produce graphene having a large area, a single crystal of silicon carbide must be grown, which makes the single crystal of silicon carbide even more expensive. Further, silicon is sublimated at a high temperature exceeding 1600 ° C. and in an atmosphere having a high degree of vacuum, but if even a small amount of silicon remains, graphene is not produced as a residue after thermal decomposition. Therefore, the cost of producing a single crystal of silicon carbide and the thermal decomposition treatment of the single crystal becomes very expensive. In addition, producing a large amount of graphene is more expensive.
Further, Patent Document 2 describes a method for producing graphene by bringing a carbon-based substance into contact with a sheet-shaped single crystal graphitized metal catalyst and heat-treating it in a reducing atmosphere. However, this manufacturing method is also not an inexpensive manufacturing method and is not a manufacturing method having excellent mass productivity. First, the production cost of producing a single crystal graphitized metal catalyst is even higher than that of a single crystal of silicon carbide. Second, the method of contacting a single crystal graphitized metal catalyst with a carbon-based substance is inferior in mass productivity. Third, the method of reducing the graphitized metal catalyst in an atmosphere rich in nitrogen gas containing hydrogen gas at a high temperature exceeding 1000 ° C. becomes expensive. Therefore, producing a large amount of graphene is more expensive.

しかしながら、現在までのグラフェンの製造方法はいずれも、第一に、安価な製造方法で大量のグラフェンを同時に製造する方法ではない。第二に、製造したグラフェンが必ずしもグラフェンでない。つまり、グラフェンは、炭素原子が六角形からなる網目構造を二次元的に形成する炭素原子の集まりからなる単結晶材料であり、不純物が全くない雰囲気で、炭素原子の結晶成長ができなければ、グラフェンが生成されない。さらに、生成したグラフェンの厚みが極薄く、極軽量であるため、取り扱いが難しい。また、グラフェンであることを確認する方法は、電子顕微鏡に依る観察と分析とに依るため、作成した試料の1枚1枚がグラフェンであることを確認することが極めて面倒である。
このため、本発明者は、製造したグラフェンが完全なグラフェンで、かつ、極めて簡単な方法で大量のグラフェンを瞬時に製造する方法を見出した(特許文献3)。すなわち、黒鉛の単結晶のみからなり、黒鉛の結晶化が100%進み、さらに、最も安価な炭素材料である、天然の黒鉛結晶の塊を粉砕し、該粉砕した黒鉛結晶から鱗片状黒鉛粒子ないしは塊状黒鉛粒子の集まりを選別した黒鉛粒子の集まりを、2枚の平行平板電極の間隙に引き詰め、該2枚の平行平板電極に電界を印加し、該電界の印加によって黒鉛粒子を形成する全ての黒鉛結晶の基底面の層間結合を同時に破壊し、基底面からなるグラフェンを大量に製造する方法である。この製造方法に依れば、鱗片状黒鉛粒子ないしは塊状黒鉛粒子の僅か1gから、1.62×1013個に及ぶグラフェンの集まりが瞬時に得られる。
However, none of the graphene production methods to date have been, first of all, a method of simultaneously producing a large amount of graphene by an inexpensive production method. Second, the graphene produced is not necessarily graphene. In other words, graphene is a single crystal material consisting of a collection of carbon atoms that two-dimensionally forms a network structure consisting of hexagons of carbon atoms. Graphene is not produced. Furthermore, the graphene produced is extremely thin and extremely lightweight, making it difficult to handle. Further, since the method for confirming graphene depends on observation and analysis by an electron microscope, it is extremely troublesome to confirm that each of the prepared samples is graphene.
Therefore, the present inventor has found a method in which the produced graphene is a complete graphene and a large amount of graphene is instantly produced by an extremely simple method (Patent Document 3). That is, it consists of only a single crystal of graphite, the crystallization of graphite progresses 100%, and a mass of natural graphite crystal, which is the cheapest carbon material, is crushed, and scaly graphite particles or scaly graphite particles or scaly graphite crystals are crushed from the crushed graphite crystal. A collection of aggregated graphite particles is selected. The collection of graphite particles is narrowed into the gap between the two parallel plate electrodes, an electric field is applied to the two parallel plate electrodes, and the application of the electric field forms graphite particles. This is a method for producing a large amount of graphene composed of the basal plane by simultaneously breaking the interlayer bond of the basal plane of the graphite crystal. According to this production method, a collection of 1.62 × 10 13 graphenes can be instantly obtained from only 1 g of scaly graphite particles or massive graphite particles.

特開2015−110485号公報JP-A-2015-110485 特開2009−143799号公報JP-A-2009-143799 特許第6166860号Patent No. 6166860

3段落で説明したように、グラフェンが従来の素材とは全くかけ離れた驚異的な物性を持つため、グラフェンを用いた様々な部品やデバイの研究開発が行われている。いっぽう、安価な製造方法で製造したグラフェンの集まりから、グラフェン同士が重なり合って接合したグラフェン接合体を製造する方法が見出されれば、グラフェンの性質に近いグラフェン接合体を用いた安価な部品やデバイスの実用化が進む。さらに、グラフェン接合体の厚みと表面積と形状との各々を自在に変えられる安価な製造方法が見出せられれば、用途に応じて、グラフェン接合体の厚みと表面積と形状との各々が変えられる。また、グラフェン接合体を基材や部品に接合できれば、様々な形状を持つ基材や部品に、グラフェン接合体の性質が付与できる。
いっぽう、特許文献3による製造方法で大量のグラフェンを瞬時に製造できるが、このグラフェンの集まりから、グラフェン接合体を製造する方法は見出されていない。また、グラフェンは、極めて厚みが薄い物質で、極めて軽量で、殆ど質量を持たない。さらに、黒鉛粒子から製造したグラフェンの面積は小さく、取り扱いが厄介である。また、特許文献3における電界の印加によって、黒鉛粒子における黒鉛結晶の基底面の層間結合を同時に破壊して製造したグラフェンは、製造時と製造後において、容易に飛散する。さらに、グラフェンは厚みが極めて薄いため、厚みに対する結晶面の大きさの比率であるアスペクト比が極めて大きい扁平粉である。また、黒鉛粒子が一定の形状を持ち、黒鉛粒子の形状は同一でないため、黒鉛粒子における黒鉛結晶の基底面の層間結合を破壊して製造したグラフェンのアスペクト比は、個々のグラフェンで異なる。従って、特許文献3における製造方法では、グラフェンの製造時に容易にグラフェンン同士が重なり合う。さらに、重なり合ったグラフェンの枚数は一定でない。また、グラフェン同士が重なり合ったか否かを識別するには、電子顕微鏡の観察で、重なり合った部位の存在を識別する方法が簡便であるが、全てのグラフェンを観察するには多大な労力がいる。さらに、重なり合ったグラフェンは、グラフェン同士の接合力が極めて微弱であるため、容易に分離する。このため、重なり合ったグラフェン同士を強固に接合しなければ、グラフェン接合体にならない。
いっぽう、グラフェン接合体の製造において、グラフェン同士を、金属ないしは金属酸化物の微粒子の集まりを介して接合する際に、微粒子の大きさが小さければ小さいほど、相対的に熱伝導率が高い、つまり、熱が伝わりやすいグラフェンに優先して熱が伝達し、相対的に導電率が高い、つまり、電流が流れやすいグラフェン同士を接合する金属微粒子の集まりに優先して電流が流れる。従って、グラフェン同士を、導電性と熱伝導性との双方に優れるナノレベルの大きさからなる金属微粒子の集まりを介して接合すれば、グラフェン接合体は、金属に近い導電性とグラフェンに近い熱伝導性を持つ。あるいは、グラフェン同士を、絶縁性と熱伝導性の双方に優れるナノレベルの大きさからなる金属酸化物の微粒子の集まりを介して接合すれば、グラフェン接合体は、グラフェンに近い熱伝導性を持ち、表面が絶縁化される。
従って、次の3つの特徴を持つグラフェン接合体が製造できれば、グラフェンの性質に近いグラフェン接合体が製造でき、基材や部品にグラフェンに近い性質が付与できる。
第一に、グラフェン同士を、極めて小さい金属ないしは金属酸化物の微粒子の集まりを介して、重なり合って接合し、グラフェン接合体を製造する。
第二に、グラフェン接合体が基材や部品に圧着できれば、基材や部品にグラフェン接合体の性質が付与できる。
第三に、グラフェン接合体の厚みと表面積と形状とが自在に変えられれば、様々な形状からなる基材や部品に、用途に応じたグラフェン接合体の性質が付与できる。
しかしながら、上記3つの特徴を兼備するグラフェン接合体を製造するには、以下に説明する様々な解決すべき課題がある。
第一の課題に、大量のグラフェンを同時に製造する際に、グラフェンが飛散する。このため、粘度が低い液体が充填された容器内で、グラフェンの集まりを製造する。これによって、グラフェンの集まりが液体中に析出し、グラフェンの製造時と製造後において、液体中に析出したグラフェンは飛散しない。
第二の課題に、大量のグラフェンを液体中で製造しても、大量のグラフェンが同時に析出する際に、グラフェン同士が重なり合い、また、重なり合うグラフェンの枚数が一定でない。このため、液体中に析出した大量のグラフェンを、液体中で一枚一枚のグラフェンに分離させる。これによって、グラフェンが液体で囲まれ、再びグラフェン同士が直接重なり合わない。
第三の課題に、製造するグラフェン接合体の厚みと表面積と形状とを自在に変える。このため、容器の底面に該底面の形状として、液体を介してグラフェン同士を重ね合わせれば、グラフェン接合体の表面積と形状とが自在に変えられる。なお、グラフェン接合体を構成するグラフェンの厚みは、使用するグラフェンの量と、容器の面積とによって、自在に変えられる。
第四の課題に、グラフェン同士を、金属ないしは金属酸化物の微粒子の集まりを介して重なり合って接合する。つまり、グラフェンが、炭素原子の大きさを厚みとする平面状の単結晶材料であり、完全な平坦面と完全な鏡面からなり、厚みが僅かに0.332nmである。このグラフェンの性質が利用できれば、重なり合ったグラフェン同士の間隙に、数ナノの大きさからなる微粒子の原料が介在できる。従って、金属ないしは金属酸化物の微粒子の原料を液相化する。
第五の課題に、ナノレベルの大きさからなる金属ないしは金属酸化物の微粒子の集まりによって、グラフェン同士を接合する。このため、金属ないしは金属酸化物の微粒子の原料を、低濃度の液体として液相化し、さらに、容器の底面に、グラフェン同士を、低濃度の液体を介して重なり合わせたグラフェンの集まりを形成する。これによって、液体が低粘度の液体になり、前記した第一から第三の課題が同時に解決する。
第六の課題に、重なり合ったグラフェン同士の間隙に、ナノレベルの大きさからなる金属ないしは金属酸化物の微粒子の集まりを析出させる。
第七の課題に、重なり合ったグラフェン同士の間隙に析出した、ナノレベルの大きさからなる金属ないしは金属酸化物の微粒子の集まりで、グラフェン同士を接合させる。
第八の課題に、グラフェン接合体を製造する工程における全ての処理が極めて簡単で、また、用いる材料が汎用的な安価な材料である。これによって、安価な黒鉛粒子の集まりを用いて、安価な方法でグラフェンの集まりを製造し、安価な方法でグラフェン接合体が製造できる。この結果、グラフェンの性質に近いグラフェン接合体が安価に製造できる。
グラフェン接合体を製造する上で、解決する課題は上記の8つの課題がある。
さらに、グラフェン接合体を基材ないしは部品に圧着させるには、ナノレベルの大きさより1桁大きい金属ないしは金属酸化物の微粒子の集まりで、グラフェン接合体を覆う。この際、解決すべき課題として次の3つの課題がある。
第一の課題に、容器の底面に該底面の形状からなるグラフェン接合体を形成し、この後、金属ないしは金属酸化物からなる微粒子の原料を液相化し、該液体によってグラフェン接合体を覆う。この後、グラフェン接合体を、金属ないしは金属酸化物からなる微粒子の集まりで覆う。
第二の課題に、金属ないしは金属酸化物の微粒子の集まりで覆われたグラフェン接合体を、容器から取り出す。この後、グラフェン接合体を基材や部品に圧着する。
第三の課題に、グラフェン接合体を金属ないしは金属酸化物の微粒子の集まりで覆う処理が極めて簡単で、用いる材料が汎用的な安価な材料である。これによって、安価なグラフェン接合体を、安価な方法で基材や部品に圧着することができる。
従って、本発明が解決しようとする課題は、合計11の課題がある。
As explained in paragraph 3, graphene has amazing physical properties that are completely different from conventional materials, so research and development of various parts and devices using graphene are being carried out. On the other hand, if a method of manufacturing a graphene junction in which graphenes are overlapped and bonded from a collection of graphene manufactured by an inexpensive manufacturing method is found, an inexpensive part or device using a graphene conjugate close to the properties of graphene can be found. Practical use progresses. Furthermore, if an inexpensive manufacturing method that can freely change each of the thickness, surface area, and shape of the graphene joint is found, each of the thickness, surface area, and shape of the graphene joint can be changed according to the application. Further, if the graphene junction can be bonded to the base material or component, the properties of the graphene junction can be imparted to the substrate or component having various shapes.
On the other hand, a large amount of graphene can be instantly produced by the production method according to Patent Document 3, but a method for producing a graphene conjugate has not been found from this collection of graphene. Graphene is an extremely thin substance, extremely lightweight, and has almost no mass. In addition, graphene made from graphite particles has a small area and is cumbersome to handle. Further, graphene produced by simultaneously breaking the interlayer bond between the basal planes of graphite crystals in graphite particles by applying an electric field in Patent Document 3 is easily scattered during and after production. Further, since graphene is extremely thin, it is a flat powder having an extremely large aspect ratio, which is the ratio of the size of the crystal plane to the thickness. Further, since the graphite particles have a constant shape and the shapes of the graphite particles are not the same, the aspect ratio of the graphene produced by breaking the interlayer bond between the basal planes of the graphite crystals in the graphite particles is different for each graphene. Therefore, in the production method in Patent Document 3, graphenes easily overlap each other during the production of graphene. Moreover, the number of overlapping graphenes is not constant. Further, in order to identify whether or not the graphenes overlap each other, it is convenient to identify the existence of the overlapping parts by observing with an electron microscope, but it takes a lot of labor to observe all the graphenes. Further, the overlapping graphenes are easily separated because the bonding force between the graphenes is extremely weak. Therefore, unless the overlapping graphenes are firmly bonded to each other, the graphene bonded body cannot be formed.
On the other hand, in the production of graphene conjugates, when graphenes are bonded to each other via a collection of fine particles of metal or metal oxide, the smaller the size of the fine particles, the higher the thermal conductivity, that is, Heat is transferred preferentially to graphene, which easily conducts heat, and current flows in preference to a collection of metal fine particles that join graphenes, which have relatively high conductivity, that is, graphenes to which current easily flows. Therefore, if graphenes are bonded to each other via a collection of metal fine particles having a nano-level size that is excellent in both conductivity and thermal conductivity, the graphene junction will have conductivity close to that of metal and heat close to that of graphene. Has conductivity. Alternatively, if graphenes are bonded to each other via a collection of fine particles of metal oxide having a nano-level size that are excellent in both insulation and thermal conductivity, the graphene junction has thermal conductivity close to that of graphene. , The surface is insulated.
Therefore, if a graphene junction having the following three characteristics can be produced, a graphene conjugate close to the properties of graphene can be produced, and the base material and parts can be imparted with properties similar to graphene.
First, graphenes are bonded to each other by overlapping with each other via a collection of extremely small metal or metal oxide fine particles to produce a graphene bonded body.
Second, if the graphene joint can be pressure-bonded to the base material or component, the properties of the graphene joint can be imparted to the base material or component.
Thirdly, if the thickness, surface area, and shape of the graphene joint can be freely changed, the properties of the graphene joint can be imparted to the base materials and parts having various shapes according to the application.
However, in order to produce a graphene conjugate having the above three characteristics, there are various problems to be solved described below.
The first issue is that graphene is scattered when a large amount of graphene is produced at the same time. Therefore, a collection of graphene is produced in a container filled with a liquid having a low viscosity. As a result, a collection of graphene is deposited in the liquid, and the graphene deposited in the liquid does not scatter during and after the production of graphene.
The second problem is that even if a large amount of graphene is produced in a liquid, when a large amount of graphene is deposited at the same time, the graphenes overlap each other, and the number of overlapping graphenes is not constant. Therefore, a large amount of graphene precipitated in the liquid is separated into individual graphenes in the liquid. As a result, the graphene is surrounded by the liquid, and the graphenes do not directly overlap each other again.
The third issue is to freely change the thickness, surface area, and shape of the graphene joint to be manufactured. Therefore, the surface area and shape of the graphene junction can be freely changed by superimposing graphenes on the bottom surface of the container via a liquid as the shape of the bottom surface. The thickness of graphene constituting the graphene junction can be freely changed depending on the amount of graphene used and the area of the container.
The fourth task is to bond graphenes to each other by overlapping them via a collection of fine particles of metal or metal oxide. That is, graphene is a planar single crystal material having the size of a carbon atom as a thickness, which is composed of a completely flat surface and a completely mirror surface, and has a thickness of only 0.332 nm. If this property of graphene can be utilized, a raw material of fine particles having a size of several nanometers can intervene in the gaps between overlapping graphenes. Therefore, the raw material of the fine particles of metal or metal oxide is liquid-phased.
The fifth task is to join graphene to each other by a collection of fine particles of metal or metal oxide having a nano-level size. For this reason, the raw material of the fine particles of metal or metal oxide is liquid-phased as a low-concentration liquid, and graphene is formed on the bottom surface of the container by superimposing graphene on top of each other via the low-concentration liquid. .. As a result, the liquid becomes a low-viscosity liquid, and the above-mentioned first to third problems are solved at the same time.
The sixth task is to deposit a collection of fine particles of metal or metal oxide having a nano-level size in the gaps between overlapping graphenes.
The seventh task is to bond graphenes to each other with a collection of nano-sized metal or metal oxide fine particles deposited in the gaps between overlapping graphenes.
The eighth problem is that all the processes in the process of manufacturing the graphene conjugate are extremely simple, and the material used is a general-purpose and inexpensive material. Thereby, a graphene aggregate can be produced by an inexpensive method using an inexpensive graphite particle aggregate, and a graphene conjugate can be produced by an inexpensive method. As a result, a graphene conjugate having properties similar to those of graphene can be produced at low cost.
In manufacturing the graphene conjugate, there are the above eight problems to be solved.
Further, in order to crimp the graphene junction to the base material or the component, the graphene junction is covered with a collection of fine particles of metal or metal oxide which are an order of magnitude larger than the nano-level size. At this time, there are the following three problems to be solved.
The first task is to form a graphene conjugate having the shape of the bottom surface on the bottom surface of the container, and then liquid phase the raw material of fine particles made of metal or metal oxide, and cover the graphene conjugate with the liquid. After this, the graphene conjugate is covered with a collection of fine particles of metal or metal oxide.
The second task is to remove the graphene conjugate covered with a collection of fine particles of metal or metal oxide from the container. After that, the graphene joint is crimped to the base material or parts.
The third problem is that it is extremely easy to cover the graphene conjugate with a collection of fine particles of metal or metal oxide, and the material used is a general-purpose and inexpensive material. As a result, an inexpensive graphene joint can be pressure-bonded to a base material or a component by an inexpensive method.
Therefore, there are a total of 11 problems to be solved by the present invention.

グラフェン同士が金属ないしは金属酸化物の微粒子の集まりを介して重なり合って接合したグラフェン接合体を製造する製造方法は、
熱分解で金属ないしは金属酸化物を析出する第一の性質と、メタノールに分散するがメタノールに溶解しない第二の性質を兼備する金属化合物を、メタノールに分散する重量割合が1%以下になるようにメタノールに分散し、該金属化合物のメタノール分散液を容器に充填する第一の工程と、
2枚の平行平板電極からなる平行平板電極対を構成する一方の平行平板電極の表面に、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを平坦に引き詰め、該一方の平行平板電極を、前記容器に充填された前記金属化合物のメタノール分散液中に浸漬させる、さらに、前記平行平板電極対を構成する他方の平行平板電極を前記一方の平行平板電極の上に重ね合わせ、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを介して、前記2枚の平行平板電極が離間した平行平板電極対を構成し、該平行平板電極対を前記金属化合物のメタノール分散液中に浸漬させる、この後、該平行平板電極対の間隙に直流の電位差を印加し、該電位差の大きさを前記平行平板電極対の間隙の大きさで割った値に相当する電界が、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりに印加され、該電界の印加によって、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する基底面の層間結合の全てが同時に破壊され、前記平行平板電極対の間隙に、前記基底面に相当するグラフェンの集まりが析出する工程からなる第二の工程と、
前記平行平板電極対の間隙を拡大し、さらに、該平行平板電極対を前記金属化合物のメタノール分散液中で傾斜させ、この後、前記容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェンの集まりを、前記平行平板電極対の間隙から前記金属化合物のメタノール分散液中に移動させる、この後、前記容器から前記2枚の平行平板電極を取り出す工程からなる第三の工程と、
前記容器内の金属化合物のメタノール分散液中にホモジナイザー装置を配置させ、該ホモジナイザー装置を前記金属化合物のメタノール分散液中で稼働させ、該金属化合物のメタノール分散液を介して前記グラフェンの集まりに衝撃を繰り返し加え、該グラフェンの集まりを、前記金属化合物のメタノール分散液中で1枚1枚のグラフェンに分離させる、この後、前記ホモジナイザー装置を前記容器から取り出す工程からなる第四の工程と、
前記容器内のグラフェンの集まりの一部を、製造するグラフェン接合体に必要なグラフェンンの量として、前記製造するグラフェン接合体の形状を底面の形状として持つ新たな容器に移し、さらに、該新たな容器に前後、左右、上下の3方向の振動を繰り返し加え、前記グラフェン同士が前記金属化合物のメタノール分散液を介して重なり合った該グラフェンの集まりを、前記新たな容器の底面に該底面の形状として形成する工程からなる第五の工程と、
前記新たな容器を昇温して前記金属化合物のメタノール分散液を構成するメタノールを気化させ、前記グラフェン同士が重なり合った該グラフェン同士の間隙と、前記グラフェン同士が重なり合った該グラフェンの集まりの表面とに、前記金属化合物の微細結晶の集まりを析出させる第六の工程と、
前記グラフェン同士が重なり合った該グラフェンの集まりの上方の平面を均等に圧縮する圧縮応力を、該グラフェンの集まりの上方の平面に加え、前記グラフェン同士が重なり合った該グラフェン同士の間隙と、前記グラフェン同士が重なり合った該グラフェンの集まりの表面とに析出した前記金属化合物の微細結晶を、さらに微細な結晶に粉砕する第七の工程と、
前記グラフェンの集まりの上方の平面に圧縮応力を加えながら、前記新たな容器を前記金属化合物が熱分解する温度に昇温し、前記粉砕した金属化合物の微細な結晶を熱分解させ、前記グラフェン同士が重なり合った該グラフェン同士の間隙と、前記グラフェン同士が重なり合った該グラフェンの集まりの表面とに、前記粉砕した金属化合物の微細な結晶の大きさに応じた金属ないしは金属酸化物の微粒子の集まりを析出させる第八の工程と、
前記金属化合物の微細結晶をさらに微細な結晶に粉砕する際に加えた圧縮応力より大きな圧縮応力を、前記グラフェン同士が重なり合った該グラフェンの集まりの上方の平面に均等に加え、前記グラフェンと接触する前記金属ないしは前記金属酸化物の微粒子の集まりが、該グラフェンに摩擦熱で接合するとともに、隣接する前記金属ないしは前記金属酸化物の微粒子同士が摩擦熱で接合する、これによって、前記摩擦熱で接合した前記金属ないしは前記金属酸化物の微粒子の集まりを介して、前記グラフェン同士が接合され、該グラフェン同士が重なり合って接合したグラフェン接合体が、前記新たな容器の底面に該底面の形状として形成される第九の工程と、
前記新たな容器に衝撃力を加え、前記グラフェン接合体を前記新たな容器から引き剥がし、該グラフェン接合体を前記新たな容器から取り出す第十の工程とからなり、
これら10の工程からなる全ての工程を連続して実施することで、グラフェン同士が金属ないしは金属酸化物の微粒子の集まりを介して重なり合って接合したグラフェン接合体を製造するグラフェン接合体の製造方法。
A manufacturing method for producing a graphene conjugate in which graphenes are bonded to each other by overlapping through a collection of fine particles of metal or metal oxide is
A metal compound having both the first property of precipitating a metal or metal oxide by thermal decomposition and the second property of being dispersed in methanol but not being dissolved in methanol is dispersed in methanol so that the weight ratio is 1% or less. In the first step of dispersing in methanol and filling a container with a methanol dispersion of the metal compound,
A collection of scaly graphite particles or a collection of massive graphite particles is flatly attracted to the surface of one parallel plate electrode forming a parallel plate electrode pair consisting of two parallel plate electrodes, and the one parallel plate electrode is attached. Immersed in a methanol dispersion of the metal compound filled in the container, and further superimposing the other parallel plate electrode constituting the parallel plate electrode pair on the one parallel plate electrode, the scaly graphite A parallel plate electrode pair is formed by separating the two parallel plate electrodes through a collection of particles or a collection of the massive graphite particles, and the parallel plate electrode pair is immersed in a methanol dispersion of the metal compound. After that, a DC potential difference is applied to the gap between the parallel plate electrode pairs, and an electric field corresponding to the value obtained by dividing the magnitude of the potential difference by the size of the gap between the parallel plate electrode pairs is generated by the scaly graphite particles. It is applied to the aggregate or the aggregate of the massive graphite particles, and by applying the electric field, all the interlayer bonds of the basal plane forming the scaly graphite particles or the massive graphite particles are simultaneously destroyed, and the gap between the parallel plate electrode pairs. In addition, a second step consisting of a step of precipitating a collection of graphenes corresponding to the base surface, and
The gap between the parallel plate electrode pairs is expanded, the parallel plate electrode pairs are further tilted in the methanol dispersion of the metal compound, and then vibrations in three directions of left and right, front and back, and up and down are repeatedly applied to the container. A third step consisting of moving the aggregate of graphene from the gap between the pair of parallel plate electrodes into the methanol dispersion of the metal compound, and then taking out the two parallel plate electrodes from the container. ,
A homogenizer device is placed in the methanol dispersion of the metal compound in the container, the homogenizer device is operated in the methanol dispersion of the metal compound, and the aggregate of graphene is impacted via the methanol dispersion of the metal compound. Is repeatedly added to separate the aggregate of graphene into individual graphenes in a methanol dispersion of the metal compound, followed by a fourth step consisting of a step of removing the homogenizer device from the container.
A part of the graphene aggregate in the container is transferred to a new container having the shape of the graphene joint to be manufactured as the shape of the bottom surface as the amount of graphene required for the graphene joint to be manufactured, and further, the new container is used. The graphene is repeatedly vibrated in three directions of front-back, left-right, and up-down to the container, and a collection of graphene in which the graphenes are overlapped with each other via a methanol dispersion of the metal compound is formed on the bottom surface of the new container. The fifth step, which consists of the steps of forming as
The temperature of the new container is raised to vaporize the methanol constituting the methanol dispersion of the metal compound, and the gaps between the graphenes on which the graphenes overlap and the surface of the aggregate of graphenes on which the graphenes overlap each other are formed. In addition, the sixth step of precipitating a collection of fine crystals of the metal compound and
A compressive stress that evenly compresses the plane above the graphene clusters on which the graphenes overlap is applied to the plane above the graphene clusters, and the gaps between the graphenes on which the graphenes overlap and the graphenes overlap. A seventh step of pulverizing the fine crystals of the metal compound deposited on the surface of the aggregate of graphene on which the graphenes are overlapped into finer crystals.
While applying compressive stress to the plane above the aggregate of graphenes, the new container is heated to a temperature at which the metal compounds are thermally decomposed, and the fine crystals of the crushed metal compounds are thermally decomposed to each other. On the gaps between the graphenes on which the graphenes overlap and on the surface of the aggregates of the graphenes on which the graphenes overlap, a collection of fine particles of metal or metal oxide according to the size of fine crystals of the crushed metal compound is formed. Eighth step of precipitation and
A compressive stress larger than the compressive stress applied when crushing the fine crystals of the metal compound into finer crystals is evenly applied to the plane above the group of graphenes on which the graphenes overlap, and comes into contact with the graphenes. A collection of fine particles of the metal or the metal oxide is bonded to the graphene by frictional heat, and adjacent fine particles of the metal or the metal oxide are bonded to each other by frictional heat, whereby the metal or metal oxide fine particles are bonded by the frictional heat. The graphenes are bonded to each other through a collection of fine particles of the metal or the metal oxide, and a graphene bonded body in which the graphenes are overlapped and bonded is formed on the bottom surface of the new container as the shape of the bottom surface. Ninth step and
It comprises a tenth step of applying an impact force to the new container, peeling the graphene junction from the new container, and removing the graphene junction from the new container.
A method for producing a graphene junction, which comprises continuously carrying out all the steps including these 10 steps to produce a graphene conjugate in which graphenes are bonded to each other by being overlapped with each other via a collection of fine particles of metal or metal oxide.

グラフェン同士が金属ないしは金属酸化物の微粒子の集まりを介して重なり合って接合したグラフェン接合体を製造する方法は、次の10の工程からなる。
第一に、熱分解で金属ないしは金属酸化物を析出する金属化合物を、メタノールに分散する重量割合が1%以下になるようにメタノールに分散し、該金属化合物のメタノール分散液を容器に充填する。メタノール分散液における金属化合物の分散濃度が、1重量%以下であるため、メタノール分散液の粘度は、メタノールの粘度に近い。なお、金属化合物がメタノールに溶解すると、金属化合物を構成する金属が金属イオンとなってメタノール中に溶出するため、金属化合物を構成する多くの金属が金属微粒子の析出に参加できない。また、金属化合物の溶解濃度に応じて、金属化合物のメタノール溶解液は導電性を持つ。いっぽう、金属化合物がメタノールに分散すると、金属化合物が分子状態でメタノール中に均一に分散する。このメタノール分散液からメタノールを気化させると、金属化合物の微細結晶が析出する。この微細結晶の集まりの総重量は、メタノールに分散した金属化合物の重量に相当する。さらに、金属化合物の微細結晶を、金属化合物の熱分解が完了する温度に昇温すると、微細結晶の大きさに応じた金属の微粒子が析出する。従って、メタノールに分散した金属化合物を構成する全ての金属が、金属微粒子の析出に参加する。また、金属化合物のメタノール分散液は絶縁性である。このため、メタノールに分散するがメタノールに溶解しない性質を持つ金属化合物を用いる。また、熱分解で金属酸化物を析出する金属化合物についても、同様に、メタノールに分散するがメタノールに溶解しない性質を持つ金属化合物を用いる。
第二に、金属化合物のメタノール分散液中で、黒鉛粒子の集まりから、グラフェンの集まりを製造する。すなわち、2枚の平行平板電極の間隙に引き詰められた鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを、絶縁体である金属化合物のメタノール分散液中に浸漬させ、2枚の平行平板電極間に直流の電位差を印加させる。これによって、電位差を2枚の平行平板電極の間隙の大きさで割った値に相当する電界が、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりが存在する電極間隙に発生する。この電界は、前記した黒鉛粒子の全てに対し、黒鉛結晶からなる基底面の層間結合を破壊させるのに十分なクーロン力を、基底面の層間結合の担い手である全てのπ電子に同時に与える。これによって、π電子はπ軌道上の拘束から解放され、全てのπ電子がπ軌道から離れて自由電子となる。つまり、π電子に作用するクーロン力が、π軌道の相互作用より大きな力としてπ電子に与えられると、π電子はπ軌道の拘束から解放されて自由電子になる。この結果、基底面の層間結合の担い手である全てのπ電子が、π軌道上に存在しなくなり、全ての黒鉛粒子について、黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが同時に破壊される。この結果、2枚の平行平板電極の間隙に、基底面の集まり、すなわち、グラフェンの集まりが瞬時に製造される。製造されたグラフェンは、不純物がなく、黒鉛結晶のみからなる真性な物質である。なお、2枚の平行平板電極が、金属化合物のメタノール分散液中に浸漬しているため、2枚の平行平板電極の間隙に析出したグラフェンは飛散しない。これによって、7段落に記載したグラフェン接合体を製造する8つの課題のうち第1の課題が解決された。
つまり、絶縁体である金属化合物のメタノール分散液中に浸漬した2枚の平行平板電極間に、電位差を印加させると、2枚の平行平板電極の間隙に電界が発生する。すなわち、メタノールは比抵抗が3MΩ・cm以上で、誘電率が33の絶縁体である。また、エタノールも誘電率が24からなる絶縁体である。なお、エタノールの電気導電率は7.5×10−6S/mで、鱗片状黒鉛粒子の電気伝導度が43.9S/mである。従って、エタノールは、導電体である鱗片状黒鉛粒子に比べ、電気導電度が1.7×10倍低い絶縁体である。さらに、金属化合物がメタノールに溶解しないため、金属化合物のメタノール分散液は、メタノールに近い絶縁体である。
第三に、グラフェンの集まりを、2枚の平行平板電極の間隙から、金属化合物のメタノール分散液中に移動させる。このため、2枚の平行平板電極の間隙を、金属化合物のメタノール分散液中で拡大させ、さらに、金属化合物のメタノール分散液中で傾斜させ、この後、金属化合物のメタノール分散液が充填された容器に3方向の振動を加える。この結果、グラフェンの集まりが、2枚の平行平板電極の間隙から、金属化合物のメタノール分散液中に移動する。この後、2枚の平行平板電極を容器から取り出す。
第四に、グラフェンの集まりを、金属化合物のメタノール分散液中で1枚1枚のグラフェンに分離する。このため、ホモジナイザー装置を、金属化合物のメタノール分散液中に配置させ、該ホモジナイザー装置を、金属化合物のメタノール分散液中で稼働させ、金属化合物のメタノール分散液を介してグラフェンの集まりに衝撃を繰り返し加える。いっぽう、グラフェン同士の接合は、単純にグラフェン同士が重なり合っているだけで、グラフェン同士の接合力は極めて小さい。さらに、金属化合物のメタノール分散液がメタノールに近い粘度であり、メタノールの分子量が小さく、金属化合物の質量が少ないため、金属化合物のメタノール分散液に加えられた衝撃は、メタノールと金属化合物との分子振動に僅かに消費され、衝撃エネルギーの多くが吸収されずに、グラフェンの集まりに加わる。この衝撃が、グラフェン同士が重なり合った部位に加わると、重なり合ったグラフェンが容易に分離し、分離したグラフェンに金属化合物のメタノール分散液が入り込み、グラフェンは金属化合物のメタノール分散液で囲まれる。従って、グラフェンの集まりに衝撃を繰り返し加えると、金属化合物のメタノール分散液中で、1枚1枚のグラフェンに分離され、分離されたグラフェンは、金属化合物のメタノール分散液で囲まれ、再びグラフェン同士が直接重ならない。なお、超音波方式のホモジナイザー装置を用いると、グラフェンよりさらに1桁以上小さい極微細で莫大な数からなる気泡の発生と該気泡の消滅とが、超音波の振動周波数の振動周期に応じて、金属化合物のメタノール分散液中で連続的に繰り返され(この現象をキャビテーションという)、莫大な数からなる気泡がはじける際の衝撃波が、金属化合物のメタノール分散液を介して、グラフェンの集まりの全体に連続的に繰り返し加わる。グラフェン同士が重なり合った部位に衝撃波が加わると、重なり合ったグラフェンが分離し、短時間で1枚1枚のグラフェンに分離される。なお、黒鉛粒子の基底面の層間結合を破壊して製造したグラフェンは、不純物がなく、黒鉛結晶のみからなる真性な物質である。また、1枚1枚のグラフェンに分離したグラフェンは、グラフェンがメタノール分散液で囲まれるため、再度、グラフェン同士が直接重ならず、また、グラフェンは不純物がなく、黒鉛結晶のみからなる真性な物質を維持する。
これによって、7段落に記載した8つの課題のうち第2の課題が解決された。なお、ホモジナイザー装置の稼働によって、1枚1枚のグラフェンに分離できたか否かは、金属化合物のメタノール分散液中から複数の試料を取り出し、電子顕微鏡で複数の試料を観察し、グラフェン同士が重なり合った部位の存在の有無を識別し、1枚1枚のグラフェンに分離できたか否かを判断する。この結果から、ホモジナイザー装置の稼働条件と稼働時間とを予め求める。
第五に、グラフェンの集まりを新たな容器に移し、容器の底面に、グラフェン接合体の形状からなるグラフェンの集まりを、金属化合物のメタノール分散液を介して重ね合わせる。つまり、容器内のグラフェンの集まりの一部を、グラフェン接合体を製造する際に必要な量として、製造するグラフェン接合体の形状を底面の形状として持つ新たな容器に移す。さらに、新たな容器に前後、左右、上下の3方向の振動を繰り返し加え、グラフェン同士が、金属化合物のメタノール分散液メタノール分散液を介して重なり合った該グラフェンの集まりを、新たな容器の底面に該底面の形状として形成する。つまり、グラフェンのアスペクト比が極めて大きく、また、1枚1枚に分離されたグラフェンが金属化合物のメタノール分散液と接している。従って、新たな容器に3方向の振動を加えると、グラフェンが質量を殆ど持たないため、金属化合物のメタノール分散液に振動が加わる。分散液の振動に伴い、グラフェンが平面を上にして金属化合物のメタノール分散液中を移動し、新たな容器の底面全体にグラフェンが拡散するとともに、グラフェン同士が金属化合物のメタノール分散液を介して重なり合う。最後に上下方向の振動を加えた後に、新たな容器への加振を停止すると、グラフェン同士が金属化合物のメタノール分散液を介して重なり合った該グラフェンの集まりが、新たな容器の底面に該底面の形状として形成される。これによって、7段落に記載した8つの課題のうち第3−第5の課題が解決された。なお、金属化合物のメタノール分散液の粘度がメタノールに近く、グラフェンが殆ど質量を持たないため、容器に加える振動加速度は0.2G程度である。
第六に、グラフェン同士の間隙に、金属化合物の微細結晶の集まりを析出させる。このため、新たな容器を昇温し、金属化合物のメタノール分散液を構成するメタノールを気化させる。これによって、グラフェン同士が重なり合った該グラフェン同士の間隙と、グラフェン同士が重なり合った該グラフェンの集まりの表面とに、金属化合物の微細結晶の集まりが析出する。つまり、メタノール中に分子状態で分散した金属化合物のメタノール分散液から、メタノールを気化させると、40−60nmの大きさからなる金属化合物の微細結晶の集まりが析出する。従って、グラフェン同士が重なり合った該グラフェン同士の間隙に存在していた金属化合物のメタノール分散液から、メタノールが気化すると、グラフェン同士で挟まれた間隙に、40−60nmの大きさからなる金属化合物の微細結晶の集まりが析出する。この微細結晶の数は、金属化合物の分散濃度に応じて析出する。また、グラフェンの集まりの表面も、40−60nmの大きさからなる金属化合物の微細結晶の集まりで覆われる。
第七に、グラフェン同士が重なり合った該グラフェン同士の間隙を、数ナノの大きさからなる金属化合物の微細結晶で埋める。このため、新たな容器の底面に形成されたグラフェンの集まりの上方の平面を均等に圧縮する。例えば、製造するグラフェン接合体の表面積が大きい場合は、グラフェンの集まりの形状からなる金属板を、グラフェンの集まりの上に載せ、さらに、金属板の上に重りを載せ、グラフェンの集まりの上方の平面を均等に圧縮する。また、製造するグラフェン接合体の表面積が小さい場合は、グラフェンの集まりの形状からなる治具を、グラフェンの集まりの上に載せ、治具に圧縮荷重を加える。この際、金属化合物の微細結晶の移動が、圧縮応力によって制約され、グラフェン同士が重なり合った該グラフェン同士の間隙と、グラフェンの集まりの表面とに存在する、金属化合物の微細結晶が圧縮され、40−60nmの大きさよりさらに小さい結晶になる。つまり、グラフェンが完全な平坦面と完全な鏡面を持ち、厚みが僅かに0.332nmである。このため、グラフェンの集まりの上方の平面を均等に圧縮すると、全てのグラフェンに圧縮応力が加わり、グラフェン同士で挟まれた金属化合物の微細結晶は、グラフェン同士の間隙から移動できず、圧縮応力を増やすと、数ナノの大きさの微細結晶まで粉砕が進む。従って、金属化合物のメタノール分散液における金属化合物の重量割合が1%以下であっても、グラフェン同士の間隙は、数ナノの大きさの微細結晶で埋まる。なお、圧縮応力を増やすと、金属化合物の結晶の微細化が進むが、グラフェン同士の間隙が微細結晶で埋まると、微細結晶同士が互いに接触し、微細結晶の破壊が抑制され、オングストロームのレベルの大きさに破壊するのは難しい。また、グラフェンの集まりの表面も、数ナノの大きさの微細結晶で覆われる。いっぽう、グラフェンは、破断強度が42N/mであり、鋼の100倍を超える強度を持つため、金属化合物の結晶の微細化が優先的に進み、グラフェンは圧縮応力で破断しない。
第八に、グラフェン同士の間隙を、数ナノの大きさからなる金属ないしは金属酸化物の微粒子の集まりで埋める。このため、グラフェンの集まりに、前記した圧縮応力より小さい圧縮応力を加えながら、容器を昇温し、粉砕した金属化合物の微細結晶を熱分解させ、グラフェン同士が重なり合った該グラフェン同士の間隙と、グラフェンの集まりの表面とに、微細結晶の大きさに応じた金属ないしは金属酸化物の微粒子の集まりを析出させる。この結果、グラフェン同士の間隙は、数ナノの大きさの金属ないしは金属酸化物の微粒子の集まりで埋まる。これによって、7段落に記載した8つの課題のうち第6の課題が解決された。なお、金属化合物の熱分解は、最初に、金属化合物が、無機物ないしは有機物と、金属ないしは金属酸化物とに分解し、無機物ないしは有機物が気化した後に、金属ないしは金属酸化物が析出する。グラフェンの集まりに圧縮応力が加わっているため、グラフェン同士の間隙に存在する微細結晶は移動が制約され、金属化合物が熱分解することで、グラフェン同士の間隙は、数ナノの大きさからなる金属ないしは金属酸化物の微粒子の集まりで埋まる。また、グラフェンの集まりの表面も、数ナノの大きさからなる金属ないしは金属酸化物の微粒子の集まりで覆われる。なお、析出した金属ないしは金属酸化物には不純物が含まれず、真性な金属ないしは真性な金属酸化物として析出する。
第九に、金属ないしは金属酸化物の微粒子の集まりを介して、グラフェン同士が接合したグラフェン接合体を製造する。このため、グラフェンの集まりの上方の平面に、前記した圧縮力より大きな圧縮力を均等に加える。この際、微粒子の移動が制約されるため、最初に、微粒子同士が接触し、また、微粒子がグラフェンの表面に接触する。さらに、微粒子同士の接触部位に摩擦熱が発生し、また、微粒子とグラフェンとの接触部位に摩擦熱が発する。この後、隣接する微粒子同士が摩擦熱で接合し、また、微粒子の集まりがグラフェンに摩擦熱で接合する。これによって、接合した微粒子の集まりを介して、グラフェン同士が接合され、グラフェン同士が重なり合って接合したグラフェン接合体が、容器の底面に該底面の形状として形成される。つまり、グラフェンが完全な平坦面と完全な鏡面を持ち、厚みが僅かに0.332nmであるため、グラフェンの集まりの上方の平面を均等に圧縮すると、全てのグラフェンに圧縮応力が加わり、圧縮応力に依る微粒子の移動が制約されるため、グラフェンと接触する金属ないしは金属酸化物の微粒子は、摩擦熱でグラフェンに接合する。この際、グラフェンの破断強度が極めて大きいため、グラフェンは破断しない。これによって、7段落に記載した8つの課題のうち第7の課題が解決された。なお、前記したように、グラフェンは、不純物がなく、黒鉛結晶のみからなる真性な物質である。また、金属ないしは金属酸化物からなる微粒子も、不純物を含まず、真性な金属ないしは真性な金属酸化物からなる微粒子である。このため、微粒子の集まりがグラフェンに摩擦熱で強固に接合する。なお、グラフェンの集まりの表面に接合した微微粒子は、40−60nmの大きさより小さく、基材や部品の表面粗さに比べ1−2桁小さいため、グラフェンの集まりの表面の微粒子の集まりを利用して、グラフェン接合体を基材や部品に圧着しても、必要な圧着強度が得られない。
第十に、新たな容器に衝撃力を加え、グラフェン接合体を新たな容器から引き剥がし、グラフェン接合体を新たな容器から取り出す。
上記した10からなる処理はいずれも極めて簡単な処理である。また、用いた材料は何れも汎用的な工業用材料である。これによって、7段落に記載した8つの課題のうち第8の課題が解決され、8つの全ての課題が解決された。
以上に説明した製造方法で製造したグラフェン接合体は、次の作用効果をもたらす。
第一に、グラフェンは、厚みが炭素原子の大きさに相当する0.332nmで、極めて軽量で、ほとんど質量を持たない。また、厚みが極めて薄く、グラフェンの存在は、目視では確認できない。さらに、黒鉛粒子から製造したグラフェンの面積は互いに異なる。このため、1枚1枚のグラフェンを取り扱うことは困難であり、グラフェン同士を重ね合って接合することは、さらに困難である。これに対し、本発明における製造方法で製造したグラフェン同士を接合したグラフェン接合体は、厚みは薄いが、容器の底面からなる一定の面積を持つため、1枚1枚のグラフェン接合体を取り扱うことができる。このグラフェン接合体は、数ナノの大きさからなる金属ないしは金属酸化物の微粒子の集まりによって接合されるため、グラフェンの性質に近い。さらに、グラフェン接合体は、安価な材料を用い、安価な方法で製造できる。従って、グラフェン接合体は、様々な工業製品への応用が可能になる。
第二に、容器の底面に該底面の形状からなるグラフェン接合体が製造される。また、グラフェン接合体を製造する際に使用するグラフェンの量と、容器の面積の大きさとに応じて、数枚から数千枚のグラフェンが重なり合ったグラフェン接合体が製造できる。また、容器の底面の形状に応じて、グラフェン接合体の形状と表面積とが変えられる。このため、グラフェン接合体は、面積が小さい電極や接点、細長い配線パターン、面積が広い熱伝導シートに至るまで、任意の大きさと形状と厚みを持ち、グラフェンの性質に近いグラフェン接合体として、自在に製造することができる。
第三に、グラフェン接合体においては、相対的に熱伝導率が高い、つまり、熱が伝わりやすいグラフェンに優先して熱が伝達し、相対的に導電率が高い、つまり、電流が流れやすいグラフェン同士を接合する金属微粒子の集まりに優先して電流が流れる。この結果、グラフェン接合体は、銀より優れた熱伝導性をもち、金属に近い導電性を持つ。すなわち、グラフェンは、前記したように、銀の熱伝導率の4.5倍に相当する熱伝導性と、銅の比抵抗の23倍に過ぎない導電性とを兼備する。従って、グラフェン同士が、熱伝導性と導電性との双方に優れる金属からなり、かつ、数ナノの大きさからなる金属の微粒子の集まりで接合されたグラフェン接合体は、熱伝導性と導電性とに優れるシートとして用いることができる。また、グラフェン接合体の表面に接合した金属微粒子の集まりは、グラフェン接合体に帯電防止機能と電磁波遮蔽機能と放熱機能とを付与するため、これらの機能を兼備するシートとして用いることができる。いっぽう、絶縁性と熱伝導性とに優れた金属酸化物の微粒子の集まりで接合されたグラフェン接合体は、グラフェンに近い性質をもち、表面が絶縁化された熱伝導シートとして用いることができる。
第四に、グラフェン接合体は、不純物がなく、黒鉛結晶のみからなる真性な物質であるグラフェンと、不純物を含まず、真性な金属ないしは真性な金属酸化物からなる微粒子とを、摩擦熱で接合するため、グラフェン同士が強固に接合される。また、グラフェン同士が接合される間隙は、数ナノの大きさと狭い。このため、グラフェン同士の間隙に物質が侵入できない。さらに、グラフェンは、融点が3000℃を超える耐熱性を持つ。また、グラフェンは、酸やアルカリにも侵食されない極めて安定した物質である。従って、グラフェン接合体の表面の金属微粒子が経時変化しても、グラフェン接合体は、どのような環境で使用されても経時変化しない。このため、グラフェンの性質からなるグラフェン接合体は、様々な分野の工業用素材として用いられる。
第五に、グラフェン接合体の表面の凹凸は、数ナノの大きさであり、完全な鏡面に近い。このため、グラフェン接合体の表面は、接触角が180度に近い超撥水性を示し、表面に撥水性と撥油性と防汚性とがもたらされる。
A method for producing a graphene conjugate in which graphenes are bonded to each other by overlapping with each other via a collection of fine particles of a metal or a metal oxide comprises the following ten steps.
First, a metal compound that precipitates a metal or a metal oxide by thermal decomposition is dispersed in methanol so that the weight ratio of the metal compound dispersed in methanol is 1% or less, and a methanol dispersion of the metal compound is filled in a container. .. Since the dispersion concentration of the metal compound in the methanol dispersion is 1% by weight or less, the viscosity of the methanol dispersion is close to the viscosity of methanol. When the metal compound is dissolved in methanol, the metal constituting the metal compound becomes a metal ion and elutes into the methanol, so that many metals constituting the metal compound cannot participate in the precipitation of the metal fine particles. Further, the methanol solution of the metal compound has conductivity depending on the dissolution concentration of the metal compound. On the other hand, when the metal compound is dispersed in methanol, the metal compound is uniformly dispersed in methanol in a molecular state. When methanol is vaporized from this methanol dispersion, fine crystals of the metal compound are precipitated. The total weight of this collection of fine crystals corresponds to the weight of the metal compound dispersed in methanol. Further, when the temperature of the fine crystals of the metal compound is raised to a temperature at which the thermal decomposition of the metal compound is completed, fine metal particles corresponding to the size of the fine crystals are precipitated. Therefore, all the metals constituting the metal compound dispersed in methanol participate in the precipitation of the metal fine particles. Further, the methanol dispersion of the metal compound is insulating. Therefore, a metal compound having a property of being dispersed in methanol but not being dissolved in methanol is used. Similarly, as a metal compound that precipitates a metal oxide by thermal decomposition, a metal compound having a property of being dispersed in methanol but not being dissolved in methanol is used.
Second, an aggregate of graphene is produced from an aggregate of graphite particles in a methanol dispersion of a metal compound. That is, a collection of scaly graphite particles or a collection of massive graphite particles narrowed in the gap between the two parallel plate electrodes is immersed in a methanol dispersion of a metal compound as an insulator, and the two parallel plate electrodes are used. A DC potential difference is applied between them. As a result, an electric field corresponding to the value obtained by dividing the potential difference by the size of the gap between the two parallel plate electrodes is generated in the electrode gap where a collection of scaly graphite particles or a collection of massive graphite particles exists. This electric field simultaneously applies a Coulomb force sufficient for breaking the interlayer bond of the basal plane made of graphite crystals to all the above-mentioned graphite particles to all the π electrons that are responsible for the interlayer bond of the basal plane. As a result, the π electron is released from the constraint on the π orbit, and all the π electrons are separated from the π orbit and become free electrons. That is, when the Coulomb force acting on the π electron is given to the π electron as a force larger than the interaction of the π orbitals, the π electron is released from the constraint of the π orbital and becomes a free electron. As a result, all π electrons, which are responsible for the interlayer bonding of the basal plane, do not exist in the π orbital, and for all the graphite particles, all the interlayer bonding of the basal plane made of graphite crystals forming the graphite particles is performed at the same time. It will be destroyed. As a result, a collection of basal planes, that is, a collection of graphene, is instantly produced in the gap between the two parallel plate electrodes. The graphene produced is an intrinsic substance consisting only of graphite crystals without impurities. Since the two parallel plate electrodes are immersed in the methanol dispersion of the metal compound, the graphene deposited in the gap between the two parallel plate electrodes does not scatter. As a result, the first problem out of the eight problems for producing the graphene conjugate described in paragraph 7 was solved.
That is, when a potential difference is applied between two parallel plate electrodes immersed in a methanol dispersion of a metal compound as an insulator, an electric field is generated in the gap between the two parallel plate electrodes. That is, methanol is an insulator having a specific resistance of 3 MΩ · cm or more and a dielectric constant of 33. Ethanol is also an insulator having a dielectric constant of 24. The electric conductivity of ethanol is 7.5 × 10-6 S / m, and the electric conductivity of scaly graphite particles is 43.9 S / m. Thus, ethanol, compared to the scaly graphite particles is a conductor, the electric conductivity is 1.7 × 10 7 times lower insulator. Furthermore, since the metal compound is insoluble in methanol, the methanol dispersion of the metal compound is an insulator close to methanol.
Third, the graphene aggregate is moved from the gap between the two parallel plate electrodes into the methanol dispersion of the metal compound. Therefore, the gap between the two parallel plate electrodes was expanded in the methanol dispersion of the metal compound, further inclined in the methanol dispersion of the metal compound, and then filled with the methanol dispersion of the metal compound. Apply vibration in three directions to the container. As a result, the graphene aggregate moves from the gap between the two parallel plate electrodes into the methanol dispersion of the metal compound. After that, the two parallel plate electrodes are taken out from the container.
Fourth, the graphene aggregate is separated into individual graphenes in a methanol dispersion of a metal compound. Therefore, the homogenizer device is placed in the methanol dispersion of the metal compound, the homogenizer device is operated in the methanol dispersion of the metal compound, and the impact is repeated on the aggregate of graphene via the methanol dispersion of the metal compound. Add. On the other hand, the bonding between graphenes is simply that the graphenes overlap each other, and the bonding force between the graphenes is extremely small. Further, since the methanol dispersion of the metal compound has a viscosity close to that of methanol, the molecular weight of methanol is small, and the mass of the metal compound is small, the impact applied to the methanol dispersion of the metal compound is the molecule of methanol and the metal compound. Slightly consumed by the vibration, much of the impact energy is not absorbed and joins the graphene cluster. When this impact is applied to the site where the graphenes overlap, the overlapping graphenes are easily separated, the methanol dispersion of the metal compound enters the separated graphene, and the graphene is surrounded by the methanol dispersion of the metal compound. Therefore, when an impact is repeatedly applied to a collection of graphene, the graphene is separated into individual graphenes in the methanol dispersion of the metal compound, and the separated graphene is surrounded by the methanol dispersion of the metal compound, and the graphenes are separated from each other again. Do not directly overlap. When an ultrasonic homogenizer device is used, the generation of bubbles consisting of an enormous number of ultrafine bubbles, which are one digit or more smaller than graphene, and the disappearance of the bubbles are determined according to the vibration cycle of the ultrasonic vibration frequency. A shock wave that is continuously repeated in a methanol dispersion of a metal compound (this phenomenon is called cavitation) and bursts of a huge number of bubbles is transmitted to the entire collection of graphenes via the methanol dispersion of the metal compound. Add continuously and repeatedly. When a shock wave is applied to the portion where the graphenes overlap each other, the overlapping graphenes are separated and separated into individual graphenes in a short time. Graphene produced by breaking the interlayer bond between the basal planes of graphite particles is a genuine substance having no impurities and consisting only of graphite crystals. Further, in the graphene separated into individual graphenes, since the graphenes are surrounded by the methanol dispersion, the graphenes do not directly overlap each other again, and the graphenes are genuine substances consisting only of graphite crystals without impurities. To maintain.
As a result, the second problem out of the eight problems described in paragraph 7 was solved. Whether or not the graphene could be separated into individual graphenes by operating the homogenizer device is determined by taking out a plurality of samples from the methanol dispersion of the metal compound, observing the plurality of samples with an electron microscope, and the graphenes overlap each other. The presence or absence of the present part is identified, and it is determined whether or not the graphene can be separated into individual graphenes. From this result, the operating conditions and operating time of the homogenizer device are obtained in advance.
Fifth, the graphene aggregate is transferred to a new container, and the graphene aggregate in the shape of a graphene conjugate is superposed on the bottom surface of the container via a methanol dispersion of a metal compound. That is, a part of the graphene aggregate in the container is transferred to a new container having the shape of the graphene joint to be manufactured as the shape of the bottom surface as the amount required for manufacturing the graphene joint. Further, the graphenes are repeatedly vibrated in three directions of front-back, left-right, and up-down to the new container, and the graphene aggregates in which the graphenes are overlapped with each other via the methanol dispersion of the metal compound are placed on the bottom surface of the new container. It is formed as the shape of the bottom surface. That is, the aspect ratio of graphene is extremely large, and the graphene separated into individual graphenes is in contact with the methanol dispersion of the metal compound. Therefore, when the new container is vibrated in three directions, the graphene has almost no mass, so that the vibration is applied to the methanol dispersion of the metal compound. With the vibration of the dispersion, graphene moves in the methanol dispersion of the metal compound with the plane facing up, the graphene diffuses over the entire bottom surface of the new container, and the graphenes move through the methanol dispersion of the metal compound. overlap. When the vibration to the new container is stopped after the last vertical vibration is applied, the graphenes in which the graphenes are overlapped with each other via the methanol dispersion of the metal compound are formed on the bottom surface of the new container. Formed as the shape of. As a result, the third to fifth problems out of the eight problems described in paragraph 7 were solved. Since the viscosity of the methanol dispersion of the metal compound is close to that of methanol and graphene has almost no mass, the vibration acceleration applied to the container is about 0.2 G.
Sixth, a collection of fine crystals of the metal compound is deposited in the gaps between the graphenes. Therefore, the temperature of the new container is raised to vaporize the methanol constituting the methanol dispersion of the metal compound. As a result, a collection of fine crystals of the metal compound is deposited on the gap between the graphenes on which the graphenes overlap each other and on the surface of the collection of graphenes on which the graphenes overlap each other. That is, when methanol is vaporized from a methanol dispersion of a metal compound dispersed in methanol in a molecular state, a collection of fine crystals of the metal compound having a size of 40-60 nm is precipitated. Therefore, when methanol is vaporized from the methanol dispersion of the metal compound existing in the gap between the graphenes on which the graphenes overlap, the metal compound having a size of 40-60 nm is formed in the gap between the graphenes. A collection of fine crystals precipitates. The number of these fine crystals precipitates according to the dispersion concentration of the metal compound. The surface of the graphene aggregate is also covered with an aggregate of fine crystals of a metal compound having a size of 40-60 nm.
Seventh, the gap between the graphenes on which the graphenes overlap is filled with fine crystals of a metal compound having a size of several nanometers. Therefore, the plane above the graphene cluster formed on the bottom surface of the new container is evenly compressed. For example, when the surface area of the graphene joint to be manufactured is large, a metal plate having the shape of a graphene assembly is placed on the graphene assembly, and a weight is placed on the metal plate to be above the graphene assembly. Compress the plane evenly. When the surface area of the graphene joint to be manufactured is small, a jig having the shape of a graphene group is placed on the graphene group, and a compressive load is applied to the jig. At this time, the movement of the fine crystals of the metal compound is restricted by the compressive stress, and the fine crystals of the metal compound existing in the gap between the graphenes on which the graphenes overlap and the surface of the graphene aggregate are compressed, and 40 The crystal becomes even smaller than the size of -60 nm. That is, graphene has a perfectly flat surface and a perfectly mirrored surface, with a thickness of only 0.332 nm. Therefore, when the plane above the graphene cluster is evenly compressed, compressive stress is applied to all graphenes, and the fine crystals of the metal compound sandwiched between the graphenes cannot move from the gaps between the graphenes, causing compressive stress. When increased, crushing proceeds to fine crystals with a size of several nanometers. Therefore, even if the weight ratio of the metal compound in the methanol dispersion of the metal compound is 1% or less, the gaps between the graphenes are filled with fine crystals having a size of several nanometers. When the compressive stress is increased, the crystals of the metal compound become finer, but when the gaps between the graphenes are filled with the fine crystals, the fine crystals come into contact with each other, the destruction of the fine crystals is suppressed, and the level of angstrom is suppressed. Difficult to break to size. The surface of the graphene cluster is also covered with fine crystals with a size of several nanometers. On the other hand, graphene has a breaking strength of 42 N / m, which is more than 100 times stronger than that of steel. Therefore, the refinement of crystals of metal compounds progresses preferentially, and graphene does not break due to compressive stress.
Eighth, the gap between graphenes is filled with a collection of fine particles of metal or metal oxide having a size of several nanometers. Therefore, while applying a compressive stress smaller than the above-mentioned compressive stress to the graphene aggregate, the temperature of the container is raised to thermally decompose the fine crystals of the crushed metal compound, and the gap between the graphenes on which the graphenes overlap each other and the gap between the graphenes are formed. A collection of fine particles of metal or metal oxide according to the size of fine crystals is deposited on the surface of a collection of graphene. As a result, the gap between graphenes is filled with a collection of fine particles of metal or metal oxide having a size of several nanometers. As a result, the sixth problem out of the eight problems described in paragraph 7 was solved. In the thermal decomposition of the metal compound, the metal compound is first decomposed into an inorganic substance or an organic substance and a metal or a metal oxide, and after the inorganic substance or the organic substance is vaporized, the metal or the metal oxide is precipitated. Since compressive stress is applied to the aggregate of graphene, the movement of fine crystals existing in the gap between graphene is restricted, and the metal compound is thermally decomposed, so that the gap between graphene is a metal having a size of several nanometers. Or it is filled with a collection of fine particles of metal oxide. The surface of the graphene cluster is also covered with a cluster of fine particles of metal or metal oxide having a size of several nanometers. The precipitated metal or metal oxide does not contain impurities and is precipitated as a genuine metal or a genuine metal oxide.
Ninth, a graphene conjugate in which graphenes are bonded to each other is produced through a collection of fine particles of a metal or a metal oxide. Therefore, a compressive force larger than the above-mentioned compressive force is evenly applied to the plane above the graphene cluster. At this time, since the movement of the fine particles is restricted, the fine particles first come into contact with each other, and the fine particles come into contact with the surface of graphene. Further, frictional heat is generated at the contact portion between the fine particles, and frictional heat is generated at the contact portion between the fine particles and graphene. After that, adjacent fine particles are bonded to each other by frictional heat, and a collection of fine particles is bonded to graphene by frictional heat. As a result, graphenes are bonded to each other through a collection of bonded fine particles, and a graphene bonded body in which graphenes are overlapped and bonded is formed on the bottom surface of the container as the shape of the bottom surface. That is, since graphene has a perfectly flat surface and a perfectly mirrored surface and is only 0.332 nm thick, evenly compressing the plane above the graphene aggregate applies compressive stress to all graphene, resulting in compressive stress. Since the movement of fine particles is restricted by the above, the fine particles of the metal or metal oxide that come into contact with graphene are bonded to graphene by frictional heat. At this time, the graphene does not break because the breaking strength of graphene is extremely high. As a result, the seventh problem out of the eight problems described in paragraph 7 was solved. As described above, graphene is a genuine substance having no impurities and consisting only of graphite crystals. Further, the fine particles made of a metal or a metal oxide are also fine particles made of a genuine metal or a genuine metal oxide without containing impurities. Therefore, a collection of fine particles is firmly bonded to graphene by frictional heat. Since the fine particles bonded to the surface of the graphene aggregate are smaller than the size of 40-60 nm and 1-2 orders of magnitude smaller than the surface roughness of the base material and parts, the aggregate of fine particles on the surface of the graphene aggregate is used. Therefore, even if the graphene joint is crimped to the base material or parts, the required crimping strength cannot be obtained.
Tenth, an impact force is applied to the new container, the graphene joint is peeled off from the new container, and the graphene joint is taken out from the new container.
All of the above-mentioned processes consisting of 10 are extremely simple processes. Moreover, all the materials used are general-purpose industrial materials. As a result, the eighth problem out of the eight problems described in paragraph 7 was solved, and all eight problems were solved.
The graphene conjugate produced by the production method described above brings about the following effects.
First, graphene has a thickness of 0.332 nm, which corresponds to the size of a carbon atom, is extremely lightweight, and has almost no mass. Moreover, the thickness is extremely thin, and the presence of graphene cannot be visually confirmed. Moreover, the areas of graphene produced from graphite particles are different from each other. For this reason, it is difficult to handle individual graphenes, and it is even more difficult to superimpose and join graphenes to each other. On the other hand, the graphene joint produced by the production method of the present invention is thin, but has a certain area consisting of the bottom surface of the container. Therefore, each graphene joint should be handled one by one. Can be done. This graphene conjugate is close to the properties of graphene because it is bonded by a collection of fine particles of metal or metal oxide having a size of several nanometers. Further, the graphene conjugate can be manufactured by an inexpensive method using an inexpensive material. Therefore, the graphene conjugate can be applied to various industrial products.
Secondly, a graphene joint having the shape of the bottom surface is manufactured on the bottom surface of the container. Further, depending on the amount of graphene used in producing the graphene junction and the size of the area of the container, it is possible to produce a graphene conjugate in which several to several thousand graphenes are overlapped. Further, the shape and surface area of the graphene joint can be changed according to the shape of the bottom surface of the container. For this reason, the graphene junction can have any size, shape, and thickness, including electrodes and contacts with a small area, elongated wiring patterns, and a heat conductive sheet with a large area, and can be freely used as a graphene junction that is close to the properties of graphene. Can be manufactured in.
Thirdly, in the graphene conjugate, the graphene having a relatively high thermal conductivity, that is, the graphene having a relatively high thermal conductivity, that is, the graphene having a relatively high thermal conductivity, that is, the graphene having a relatively high thermal conductivity, that is, the graphene having a relatively high thermal conductivity, that is, the graphene having a relatively high thermal conductivity, that is, the graphene in which heat is easily transferred is given priority. An electric current flows in preference to a collection of metal fine particles that join each other. As a result, the graphene conjugate has better thermal conductivity than silver and has conductivity close to that of metal. That is, as described above, graphene has both thermal conductivity equivalent to 4.5 times the thermal conductivity of silver and conductivity corresponding to only 23 times the specific resistance of copper. Therefore, a graphene conjugate in which graphenes are made of a metal having both excellent thermal conductivity and conductivity and are joined by a collection of metal fine particles having a size of several nanometers is thermally conductive and conductive. It can be used as an excellent sheet. Further, since the collection of metal fine particles bonded to the surface of the graphene bonded body imparts an antistatic function, an electromagnetic wave shielding function and a heat dissipation function to the graphene bonded body, it can be used as a sheet having these functions. On the other hand, a graphene conjugate bonded by a collection of fine particles of metal oxide having excellent insulation and thermal conductivity has properties similar to graphene and can be used as a heat conductive sheet having an insulated surface.
Fourth, the graphene conjugate is a frictional heat bond between graphene, which is an intrinsic substance consisting only of graphite crystals without impurities, and fine particles made of an intrinsic metal or an intrinsic metal oxide, which does not contain impurities. Therefore, the graphenes are firmly bonded to each other. In addition, the gap between graphenes is as narrow as several nanometers. Therefore, the substance cannot enter the gap between graphenes. Further, graphene has heat resistance having a melting point of more than 3000 ° C. Graphene is an extremely stable substance that is not eroded by acids or alkalis. Therefore, even if the metal fine particles on the surface of the graphene junction change with time, the graphene conjugate does not change with time regardless of the environment in which it is used. Therefore, graphene conjugates having graphene properties are used as industrial materials in various fields.
Fifth, the surface irregularities of the graphene conjugate are several nanometers in size, close to a perfect mirror surface. Therefore, the surface of the graphene bonded body exhibits superhydrophobicity with a contact angle close to 180 degrees, and the surface is provided with water repellency, oil repellency, and antifouling property.

ここで、前記した第二の処理において、2枚の平行平板電極の間隙に印加した電界によって、2枚の平行平板電極の間隙に引き詰められた黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合が、同時に破壊される現象を説明する。
黒鉛粒子における黒鉛結晶を形成する炭素原子は4つの価電子を持つ。このうちの3つの価電子は、基底面、すなわち、グラフェンを形成するσ電子である。このσ電子は、基底面上で隣り合う3つの炭素原子が持つσ電子と互いに120度の角度をなして共有結合し、六角形の強固な網目構造を2次元的に形成する。残り一つの価電子はπ電子であり、基底面に垂直な方向に伸びるπ軌道上に存在する。このπ電子は、基底面に垂直な上下方向で隣り合う炭素原子が持つπ電子と弱い結合力で結合し、この弱い結合力に基づいて基底面が層状に積層される。つまり基底面、すなわちグラフェンは、弱い結合力であるπ軌道の相互作用によって互いに層状に結合されている。このため、黒鉛粒子は、黒鉛結晶からなる基底面で剥がれ易い性質、すなわち、機械的な異方性を持つ。この機械的な異方性は、黒鉛粒子の潤滑性として良く知られている。つまり、黒鉛結晶に係る電子軌道の相互作用がσ軌道とπ軌道とによって異なるため、黒鉛粒子は機械的な異方性を持つ。
こうした黒鉛粒子に電界を印加させると、全てのπ電子に電界によるクーロン力が作用する。π電子に作用するクーロン力が、π電子に作用しているπ軌道の相互作用より大きな力としてπ電子に作用すると、π電子はπ軌道上の拘束から解放される。この結果、全てのπ電子がπ軌道から離れて自由電子となる。これによって、基底面の層間結合の担い手である全てのπ電子がπ軌道上にいなくなるため、基底面の層間結合の全てが同時に破壊される。すなわち、π電子がクーロン力Fによって基底面の層間距離bの距離を動く際に、π電子は仕事W(W=b・F)を行う。この仕事Wが、π電子に作用する1原子当たりのπ軌道の相互作用の大きさである35ミリエレクトロンボルト (エレクトロンボルトは電子が持つエネルギーの大きさを表す単位で、1エレクトロンボルトは1.62×10−19ジュールに相当する)を超えると、π電子はπ軌道の相互作用の拘束から解放されて自由電子になる。例えば、2枚の平行平板電極の間隙を100μmで離間させ、この電極の間隙に10.6キロボルト以上の直流の電位差を印加させると、基底面の層間結合が瞬時に破壊される。このように、安価な黒鉛粒子の集まりに電界を印加するという極めて簡単な手段によって、大量のグラフェンが安価に製造できる。また、基底面の層間結合の全てが同時に破壊するため、得られる微細な物質は、確実に黒鉛結晶からなる基底面であるグラフェンである。
なお、ここで言う黒鉛粒子の集まりとは、1gから100g程度の比較的少量の黒鉛粒子の集まりを言う。つまり、鱗片状黒鉛粒子ないしは塊状黒鉛粒子は、嵩密度が0.2−0.5g/cmで、粒子の大きさが1−300ミクロンの分布を持つ微細な粒子である。従って、黒鉛粒子の集まりを2枚の平行平板電極の間隙に引き詰めることは容易で、2枚の平行平板電極に電位差を印加することも容易である。2枚の平行平板電極の間隙に電位差を印加すると、黒鉛粒子が引きつめられた全ての領域に電界が発生する。この電界が、π軌道の相互作用より大きなクーロン力としてπ電子に作用し、π電子はπ軌道上の拘束から解放され、自由電子になる。この結果、黒鉛粒子における基底面の層間結合の全てが同時に破壊され、2枚の平行平板電極の間隙に、グラフェンの集まりが製造される。
ここで、懸濁体中に分散されるグラフェンの数を算術で求める。ここでは、全ての黒鉛粒子が、直径が25ミクロンの球から構成されると仮定し、黒鉛の真密度が2.25×10kg/mであるから、黒鉛粒子の1個の重さは僅かに1.84×10−8gになる。また、黒鉛粒子の厚みの平均値が10ミクロンと仮定すると、層間距離が3.354オングストロームであるので、10ミクロンの厚みを持つ鱗片状黒鉛粒子には297,265個のグラフェンが積層されている。従って、基底面の層間結合を全て破壊することで、僅か1個の球状の黒鉛粒子から297,265個のグラフェンの集まりが得られる。このため、球状の黒鉛粒子の僅か1gの集まりについて、基底面の層間結合の全てを破壊した際に、1.62×1013個からなるグラフェンの集まりが得られる。従って、本製造方法によって、僅かな量の黒鉛粒子の集まりから、莫大な数からなるグラフェンの集まりが得られる。
Here, in the second process described above, the basal plane made of graphite crystals forming graphite particles narrowed in the gaps between the two parallel plate electrodes by the electric field applied to the gaps between the two parallel plate electrodes. The phenomenon that the interlayer bond is broken at the same time will be described.
The carbon atoms that form graphite crystals in graphite particles have four valence electrons. Three of these valence electrons are the basal plane, that is, the σ electrons that form graphene. These σ electrons covalently bond with the σ electrons of three adjacent carbon atoms on the basal plane at an angle of 120 degrees to form a strong hexagonal network structure two-dimensionally. The remaining one valence electron is a π electron, which exists in a π orbit extending in a direction perpendicular to the basal plane. These π electrons are bonded to the π electrons of adjacent carbon atoms in the vertical direction perpendicular to the basal plane with a weak bonding force, and the basal plane is laminated in layers based on this weak bonding force. That is, the basal plane, that is, graphene, is bonded to each other in layers by the interaction of π orbitals, which is a weak bonding force. Therefore, the graphite particles have a property of being easily peeled off at the basal plane made of graphite crystals, that is, having mechanical anisotropy. This mechanical anisotropy is well known as the lubricity of graphite particles. That is, since the interaction of the electron orbits related to the graphite crystal differs depending on the σ orbit and the π orbit, the graphite particles have mechanical anisotropy.
When an electric field is applied to these graphite particles, a Coulomb force due to the electric field acts on all π electrons. When the Coulomb force acting on the π electron acts on the π electron as a force larger than the interaction of the π orbit acting on the π electron, the π electron is released from the constraint on the π orbit. As a result, all π electrons move away from the π orbit and become free electrons. As a result, all the π electrons that are responsible for the interlayer bonding of the basal plane disappear from the π orbital, so that all the interlayer bonding of the basal plane is destroyed at the same time. That is, when the π electron moves a distance of the interlayer distance b of the basal plane by the Coulomb force F, the π electron performs work W (W = b · F). This work W is 35 millielectronvolts, which is the magnitude of the interaction of π orbitals per atom acting on π electrons (electronbolts are units that express the magnitude of energy possessed by electrons, and 1 electronvolt is 1. Beyond (corresponding to 62 × 10-19 joules), the π electron is released from the constraint of the interaction of the π orbit and becomes a free electron. For example, if the gap between the two parallel plate electrodes is separated by 100 μm and a DC potential difference of 10.6 kilovolt or more is applied to the gap between the electrodes, the interlayer bond on the basal plane is instantly broken. As described above, a large amount of graphene can be inexpensively produced by an extremely simple means of applying an electric field to a collection of inexpensive graphite particles. Further, since all the interlayer bonds of the basal plane are broken at the same time, the obtained fine substance is graphene, which is the basal plane made of graphite crystals.
The group of graphite particles referred to here means a group of relatively small amounts of graphite particles of about 1 g to 100 g. That is, the scaly graphite particles or the massive graphite particles are fine particles having a bulk density of 0.2-0.5 g / cm 3 and a particle size of 1-300 microns. Therefore, it is easy to pull the aggregate of graphite particles into the gap between the two parallel plate electrodes, and it is also easy to apply a potential difference to the two parallel plate electrodes. When a potential difference is applied to the gap between the two parallel plate electrodes, an electric field is generated in all the regions where the graphite particles are attracted. This electric field acts on the π electron as a Coulomb force larger than the interaction of the π orbit, and the π electron is released from the constraint on the π orbit and becomes a free electron. As a result, all the interlayer bonds of the basal plane in the graphite particles are simultaneously broken, and a graphene aggregate is produced in the gap between the two parallel plate electrodes.
Here, the number of graphene dispersed in the suspension is calculated by arithmetic. Here, it is assumed that all graphite particles are composed of spheres having a diameter of 25 microns, and since the true density of graphite is 2.25 × 10 3 kg / m 3 , the weight of one graphite particle is high. Is only 1.84 x 10-8 g. Assuming that the average thickness of the graphite particles is 10 microns, the interlayer distance is 3.354 angstroms. Therefore, 297,265 graphenes are laminated on the scaly graphite particles having a thickness of 10 microns. .. Therefore, by breaking all the interlayer bonds on the basal plane, a collection of 297,265 graphenes can be obtained from only one spherical graphite particle. Therefore, for an aggregate of only 1 g of spherical graphite particles, an aggregate of 1.62 × 10 13 graphenes can be obtained when all the interlayer bonds on the basal plane are broken. Therefore, according to this production method, an enormous number of graphene aggregates can be obtained from a small amount of graphite particles.

8段落に記載した方法に従って製造したグラフェン接合体を基材ないしは部品に圧着する方法は、
8段落に記載した方法に従って容器内にグラフェン接合体を形成し、該容器に衝撃力を加え、前記グラフェン接合体を前記容器から引き剥がす第一の工程と、
8段落に記載した金属化合物を、メタノール中に分散する重量割合が10%より少ない量としてメタノールに分散し、該金属化合物のメタノール分散液を前記容器に充填する第二の工程と、
前記容器に前後、左右、上下の3方向の振動を繰り返し加え、前記グラフェン接合体の表面を前記メタノール分散液で覆う第三の工程と、
前記容器を前記金属化合物が熱分解する温度に昇温し、金属ないしは金属酸化物からなる40−60nmの大きさからなる粒状の微粒子の集まりを析出させ、該微粒子の集まりで前記グラフェン接合体の表面を覆う第四の工程と、
前記容器内の前記グラフェン接合体の上方の平面を均等に圧縮し、隣接する前記金属ないしは前記金属酸化物からなる微粒子同士が摩擦熱で接合するとともに、前記グラフェン接合体と接触する前記金属ないしは前記金属酸化物からなる微粒子が、該グラフェン接合体に摩擦熱で接合し、前記金属ないしは前記金属酸化物からなる微粒子同士が接合した該微粒子の集まりが、前記グラフェン接合体に接合した新たなグラフェン接合体を前記容器内に製造する第五の工程と、
前記容器に衝撃力を加え、前記新たなグラフェン接合体を前記容器から引き剥がし、該新たなグラフェン接合体を前記容器から取り出し、該新たなグラフェン接合体を基材ないしは部品の表面に配置させる第六の工程と、
前記新たなグラフェン接合体の上方の表面を均等に圧縮し、該新たなグラフェン接合体を前記基材ないしは前記部品に圧着させる第七の工程とからなり、
これら7つの工程を連続して実施することで、基材ないしは部品の表面にグラフェン接合体が圧着する、8段落に記載した方法に従って製造したグラフェン接合体を基材ないしは部品に圧着する方法。
The method of crimping the graphene joint produced according to the method described in paragraph 8 to the base material or the part is as follows.
The first step of forming a graphene joint in a container according to the method described in paragraph 8 and applying an impact force to the container to peel the graphene joint from the container.
A second step of dispersing the metal compound described in paragraph 8 in methanol with a weight ratio of less than 10% dispersed in methanol, and filling the container with a methanol dispersion of the metal compound.
A third step of repeatedly applying vibrations in three directions of front-back, left-right, and up-down to the container to cover the surface of the graphene conjugate with the methanol dispersion liquid.
The temperature of the container is raised to a temperature at which the metal compound is thermally decomposed, and a collection of granular fine particles having a size of 40-60 nm made of a metal or a metal oxide is precipitated. The fourth step of covering the surface and
The plane above the graphene junction in the container is evenly compressed, and the adjacent fine particles of the metal or the metal oxide are bonded to each other by frictional heat, and the metal or the metal in contact with the graphene junction is said. Fine particles made of a metal oxide are bonded to the graphene junction by frictional heat, and a group of the fine particles bonded to the metal or the fine particles made of the metal oxide are bonded to the graphene junction in a new graphene junction. The fifth step of manufacturing the body in the container,
An impact force is applied to the container, the new graphene joint is peeled off from the container, the new graphene joint is taken out from the container, and the new graphene joint is placed on the surface of a base material or a component. Six steps and
It comprises a seventh step of evenly compressing the upper surface of the new graphene junction and crimping the new graphene junction to the substrate or component.
A method of crimping a graphene joint manufactured according to the method described in paragraph 8 to a base material or a part by continuously carrying out these seven steps.

8段落に記載した方法に従って製造したグラフェン接合体を基材ないしは部品に圧着させる方法は、次の7つの工程からなる。
第一に、8段落に記載した方法に従って容器内にグラフェン接合体を形成する。この後、容器に衝撃力を加え、グラフェン接合体を容器から引き剥がす。
第二に、8段落に記載した熱分解で金属ないしは金属酸化物を析出する金属化合物を、メタノールに分散する重量割合が10%より少ない量をメタノールに分散し、メタノール分散液を前記容器に充填する。
第三に、グラフェン接合体をメタノール分散液で覆う。このため、容器に前後、左右、上下の3方向の振動を繰り返し加え、容器から引き剥がされたグラフェン接合体を、容器内で前後、左右、上下の3方向に移動させ、グラフェン接合体と容器との間隙に、メタノール分散液を進入させる。この結果、グラフェン接合体がメタノール分散液で覆われる。
第四に、金属ないしは金属酸化物からなる微粒子の集まりで、グラフェン接合体を覆う。このため、容器を金属化合物が熱分解する温度に昇温し、金属化合物を熱分解し、金属ないしは金属酸化物からなる40−60nmの大きさからなる粒状の微粒子の集まりを、グラフェン接合体の表面に析出させる。つまり、金属化合物の熱分解は、最初に、金属化合物が無機物ないしは有機物と金属とに分解し、無機物ないしは有機物が気化した後に、金属ないしは金属酸化物が析出する。このため、析出した金属ないしは金属酸化物からなる微粒子には不純物が含まれず、真性な金属ないしは真性な金属酸化物からなる微粒子として析出する。この結果、真性な金属ないしは真性な金属酸化物からなる微粒子の集まりが、グラフェン接合体を覆う。なお、真性な金属からなる微粒子同士が接触する場合は、金属の微粒子同士が接触部位で金属結合する。また、グラフェン接合体に付着した不純物は、金属化合物が熱分解する際に気化し、グラフェン接合体は再び真性な状態になる。
第五に、金属ないしは金属酸化物からなる微粒子同士を強固に接合するとともに、微粒子をグラフェン接合体の表面に接合させる。このため、グラフェン接合体の上方の平面を均等に圧縮する。これによって、グラフェン接合体の上下面のみならず側面についても、隣接する微粒子同士が摩擦熱で接合するとともに、グラフェン接合体と接触する微粒子が、該グラフェン接合体に摩擦熱で接合する。この結果、摩擦熱で接合した微粒子の集まりで覆われた新たなグラフェン接合体が容器内に製造される。つまり、グラフェン接合体の上方の平面を均等に圧縮すると、グラフェン接合体の上下面のみならず側面の微粒子についても、微粒子の移動が新たな容器の側面で制約されるため、微粒子同士が接触し、さらに、微粒子同士の接触部位に過大な摩擦熱が発生する。この結果、真性な金属ないしは真性な金属酸化物からなる微粒子同士が強固に接合する。また、真性なグラフェン接合体の表面に接触していた真性な微粒子は、グラフェン接合体に強固に接合する。この結果、7段落に記載したグラフェン接合体を基材ないしは部品に圧着させる3つの課題のうち第1の課題が解決する。
第六に、容器に衝撃力を加え、新たなグラフェン接合体を容器から引き剥がし、該新たなグラフェン接合体を容器から取り出す。この結果、7段落に記載したグラフェン接合体を基材ないしは部品に圧着させる3つの課題のうち第2の課題が解決する。
第七に、新たなグラフェン接合体を基材ないしは部品に圧着させる。このため、新たなグラフェン接合体を基材ないしは部品の表面に配置させ、該新たなグラフェン接合体の上方の表面を均等に圧縮し、該新たなグラフェン接合体を基材ないしは部品に圧着させる。つまり、新たなグラフェン接合体の上方の表面を均等に圧縮すると、最初に、基材ないしは部品と接触する新たなグラフェン接合体の表面の金属ないしは金属化合物からなる微粒子が、基材ないしは部品と接触する。さらに、基材ないしは部品と接触する微粒子に圧縮応力が加わり、微粒子同士の接触と、基材ないしは部品の接触とによって、微粒子が移動できないため、微粒子が基材ないしは部品と接触する部位に摩擦熱が発生し、新たなグラフェン接合体が基材ないしは部品に熱圧着する。また、隣接する微粒子同士の接触部に摩擦熱が発生し、微粒子同士が接合する。なお、微粒子の硬度が、基材ないしは部品の表面の硬度より高い場合は、基材ないしは部品の表面と接触する部位を微粒子がえぐって入り込み、微粒子が基材ないしは部品の表面に熱圧着する。いっぽう、微粒子の硬度が、基材ないしは部品の表面の硬度より低い場合は、微粒子が弾性変形ないしは塑性変形した後に、微粒子が基材ないしは部品の表面に熱圧着する。このため、新たなグラフェン接合体を圧着させる基材ないしは部品の材質上の制約がない。
上記した7つの処理はいずれも極めて簡単な処理である。また、金属化合物は汎用的な工業用材料である。これによって、7段落に記載したグラフェン接合体を基材ないしは部品に圧着させる3つの課題のうち第3の課題が解決する。この結果、7段落に記載した3つの課題の全てが解決された。
以上に説明したグラフェン接合体を基材ないしは部品に圧着させる方法は、次の作用効果をもたらす。
第一に、基材ないしは部品にグラフェンに近い性質が付与できる。つまり、グラフェン同士を接合する微粒子が数ナノの大きさと小さく、グラフェン同士を接合したグラフェン接合体の性質は、グラフェンに近い性質を持つ。従って、グラフェン接合体を基材ないしは部品に圧着することで、基材ないしは部品にグラフェンに近い性質が付与できる。
第二に、グラフェン接合体を圧着させる基材ないしは部品の形状の制約がない。つまり、8段落に記載した方法で製造したグラフェン接合体を用い、該グラフェン接合体を基材ないしは部品に圧着させるため、グラフェン接合体を圧着させる基材ないしは部品の形状の制約がない。
第三に、基材ないしは部品に付与する性質に応じたグラフェン接合体を、基材ないしは部品に圧着できる。つまり、グラフェン接合体を、8段落に記載した方法で製造するため、製造するグラフェン接合体を構成するグラフェンの枚数が自在に変えられる。このため、基材ないしは部品に付与する性質に応じて、グラフェン接合体における重なり合ったグラフェンの枚数を自在に変え、基材ないしは部品に圧着できる。また、グラフェン同士を接合する金属ないしは金属酸化物からなる微粒子の材質は、基材ないしは部品に付与する性質に応じて選択できる。
第四に、グラフェン接合体を覆う微粒子の集まりは、一定の強度でグラフェン接合体に接合するため、微粒子を脱落させずに、グラフェン接合体がハンドリングできる。つまり、第五の工程で、金属ないしは金属酸化物からなる微粒子同士を強固に接合させ、かつ、微粒子をグラフェン接合体の表面に強固に接合させたため、微粒子の集まりで覆われたグラフェン接合体を、容器から取り出し、基材ないしは部品の表面に配置できる。
第五に、グラフェン接合体を圧着させる基材ないしは部品の材質の制約がない。つまり、微粒子の硬度が、基材ないしは部品の表面硬度より高い場合は、基材ないしは部品の表面と接触する部位を微粒子がえぐって入り込み、微粒子が基材ないしは部品の表面に熱圧着する。これに対し、微粒子の硬度が、基材ないしは部品の表面硬度より低い場合は、微粒子が弾性変形ないしは塑性変形した後に、微粒子が基材ないしは部品の表面に熱圧着する。このため、グラフェン接合体を圧着させる基材ないしは部品の材質の制約を受けない。
The method of crimping the graphene joint produced according to the method described in paragraph 8 to the base material or the component comprises the following seven steps.
First, a graphene conjugate is formed in the container according to the method described in paragraph 8. After this, an impact force is applied to the container to peel off the graphene joint from the container.
Second, the metal compound that precipitates a metal or metal oxide by thermal decomposition described in paragraph 8 is dispersed in methanol in an amount having a weight ratio of less than 10%, and the methanol dispersion is filled in the container. do.
Third, the graphene conjugate is covered with a methanol dispersion. Therefore, vibrations in three directions of front-back, left-right, and up-down are repeatedly applied to the container, and the graphene joint peeled off from the container is moved in the container in three directions of front-back, left-right, and up-down, and the graphene joint and the container are moved. A methanol dispersion is allowed to enter the gap between the two. As a result, the graphene conjugate is covered with the methanol dispersion.
Fourth, a collection of fine particles of metal or metal oxide covers the graphene conjugate. Therefore, the temperature of the container is raised to a temperature at which the metal compound is thermally decomposed, the metal compound is thermally decomposed, and a collection of granular fine particles having a size of 40-60 nm made of a metal or a metal oxide is formed in the graphene conjugate. Precipitate on the surface. That is, in the thermal decomposition of a metal compound, the metal compound is first decomposed into an inorganic substance or an organic substance and a metal, and after the inorganic substance or the organic substance is vaporized, the metal or the metal oxide is precipitated. Therefore, the precipitated metal or fine particles made of metal oxide do not contain impurities, and are precipitated as fine particles made of true metal or true metal oxide. As a result, a collection of fine particles of an intrinsic metal or an intrinsic metal oxide covers the graphene conjugate. When fine particles made of intrinsic metal come into contact with each other, the fine particles of metal are metal-bonded at the contact portion. Further, the impurities adhering to the graphene junction are vaporized when the metal compound is thermally decomposed, and the graphene junction is returned to the true state again.
Fifth, the fine particles made of metal or metal oxide are firmly bonded to each other, and the fine particles are bonded to the surface of the graphene bonded body. Therefore, the upper plane of the graphene junction is evenly compressed. As a result, adjacent fine particles are bonded to each other by frictional heat not only on the upper and lower surfaces of the graphene bonded body but also on the side surfaces, and the fine particles in contact with the graphene bonded body are bonded to the graphene bonded body by frictional heat. As a result, a new graphene junction covered with a collection of fine particles bonded by frictional heat is produced in the container. That is, when the upper plane of the graphene junction is evenly compressed, the movement of the fine particles is restricted not only on the upper and lower surfaces of the graphene junction but also on the side surfaces of the new container, so that the fine particles come into contact with each other. Furthermore, excessive frictional heat is generated at the contact portion between the fine particles. As a result, the fine particles made of the intrinsic metal or the intrinsic metal oxide are firmly bonded to each other. In addition, the genuine fine particles that have been in contact with the surface of the graphene junction are firmly bonded to the graphene junction. As a result, the first problem out of the three problems of crimping the graphene joint described in paragraph 7 to the base material or the component is solved.
Sixth, an impact force is applied to the container to peel off the new graphene junction from the container and remove the new graphene junction from the container. As a result, the second problem out of the three problems of crimping the graphene joint described in paragraph 7 to the base material or the component is solved.
Seventh, a new graphene joint is crimped to the substrate or component. Therefore, a new graphene joint is placed on the surface of the base material or part, the upper surface of the new graphene joint is evenly compressed, and the new graphene joint is crimped to the base material or part. That is, when the upper surface of the new graphene junction is evenly compressed, the fine particles of metal or metal compound on the surface of the new graphene junction that first come into contact with the substrate or component come into contact with the substrate or component. do. Furthermore, compressive stress is applied to the fine particles that come into contact with the base material or parts, and the fine particles cannot move due to the contact between the fine particles and the contact between the base materials or parts. Is generated, and a new graphene joint is thermocompression bonded to the base material or parts. In addition, frictional heat is generated at the contact portion between adjacent fine particles, and the fine particles are bonded to each other. When the hardness of the fine particles is higher than the hardness of the surface of the base material or the component, the fine particles go into the portion in contact with the surface of the base material or the component, and the fine particles are thermocompression bonded to the surface of the base material or the component. On the other hand, when the hardness of the fine particles is lower than the hardness of the surface of the base material or the component, the fine particles are elastically or plastically deformed and then thermocompression bonded to the surface of the base material or the component. Therefore, there are no restrictions on the material of the base material or parts for crimping the new graphene joint.
All of the above seven processes are extremely simple processes. Further, the metal compound is a general-purpose industrial material. As a result, the third problem out of the three problems of crimping the graphene joint described in paragraph 7 to the base material or the component is solved. As a result, all three issues described in paragraph 7 have been resolved.
The method of crimping the graphene junction described above to the base material or the component brings about the following effects.
First, it is possible to impart properties similar to graphene to the base material or parts. That is, the fine particles that bond graphene to each other are as small as several nanometers, and the properties of the graphene conjugate that joins graphene to each other are similar to those of graphene. Therefore, by crimping the graphene joint to the base material or the component, it is possible to impart properties similar to graphene to the base material or the component.
Secondly, there are no restrictions on the shape of the base material or parts that crimp the graphene joint. That is, since the graphene joint produced by the method described in paragraph 8 is used and the graphene joint is crimped to the base material or the component, there is no restriction on the shape of the base material or the part to which the graphene joint is crimped.
Third, a graphene junction according to the properties imparted to the base material or part can be crimped to the base material or part. That is, since the graphene junction is manufactured by the method described in paragraph 8, the number of graphenes constituting the graphene junction to be manufactured can be freely changed. Therefore, the number of overlapping graphenes in the graphene joint can be freely changed according to the properties imparted to the base material or the component, and the graphene can be crimped to the base material or the component. Further, the material of the fine particles made of a metal or a metal oxide that joins graphene to each other can be selected according to the properties to be imparted to the base material or the component.
Fourth, since the collection of fine particles covering the graphene joint is bonded to the graphene joint with a constant strength, the graphene joint can be handled without dropping the fine particles. That is, in the fifth step, the fine particles made of metal or metal oxide are firmly bonded to each other, and the fine particles are firmly bonded to the surface of the graphene bonded body, so that the graphene bonded body covered with a collection of fine particles is formed. , Can be removed from the container and placed on the surface of the substrate or parts.
Fifth, there are no restrictions on the material of the base material or parts for crimping the graphene joint. That is, when the hardness of the fine particles is higher than the surface hardness of the base material or the component, the fine particles go into the portion in contact with the surface of the base material or the component, and the fine particles are thermocompression bonded to the surface of the base material or the component. On the other hand, when the hardness of the fine particles is lower than the surface hardness of the base material or the component, the fine particles are elastically or plastically deformed and then thermocompression bonded to the surface of the base material or the component. Therefore, there are no restrictions on the material of the base material or parts to which the graphene joint is crimped.

8段落に記載した熱分解で金属を析出する金属化合物が、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物であり、該金属化合物を、8段落に記載した熱分解で金属を析出する金属化合物として用い、8段落に記載した方法に従って、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、8段落に記載したグラフェン接合体を製造する方法。 The metal compound that precipitates a metal by thermal decomposition described in paragraph 8 is a metal compound that precipitates a metal of silver, copper, gold, or aluminum by thermal decomposition, and the metal compound is described in paragraph 8. Graphene used as a metal compound that precipitates a metal by thermal decomposition, and graphenes are bonded to each other by overlapping through a collection of metal fine particles made of any of silver, copper, gold, or aluminum according to the method described in paragraph 8. The method for producing a graphene conjugate according to paragraph 8, wherein the conjugate is produced.

グラフェンは、熱伝導率が1890W/mKで、金属の中で最も熱伝導率が高い銀の熱伝導率の4.5倍に相当する。また、銅の比抵抗の23倍に過ぎない電気導電性を兼備する。従って、熱伝導率と導電率との双方に優れる金属からなり、大きさがナノレベルである金属微粒子の集まりを介して、グラフェン同士を接合したグラフェン接合体は、熱伝導率と導電率との双方に優れる。つまり、グラフェン同士が、熱伝導率と導電率との双方に優れる金属からなる微粒子の集まりで接合されたグラフェン接合体は、相対的に熱伝導率が高い、つまり、熱が伝わりやすいグラフェンに優先して熱が伝達し、相対的に導電率が高い、つまり、電流が流れやすいグラフェン同士を接合する金属微粒子の集まりに優先して電流が流れる。この結果、グラフェン接合体は、銀より優れた熱伝導性をもち、金属に近い導電性を持つ。
熱伝導率と導電率との双方に優れる金属は、銀、銅、金、アルミニウムからなる。すなわち、金属の熱伝導率は、銀が420W/mKで、銅が398W/mKで、金が320W/mKで、アルミニウムが236W/mKである。また、金属の導電率は、銀が61.4×10S/mで、銅が59.0×10S/mで、金が45.5×10S/mで、アルミニウムが37.4×10S/mである。なお、アルミニウムの比抵抗は、銅の比抵抗の1.6倍であり、アルミニウムのほうがグラフェンより導電率が高い。従って、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりでグラフェン同士を接合したグラフェン接合体は、銀より優れた熱伝導性をもち、金属微粒子を構成する金属に近い導電性を持つ。
いっぽう、ヤング率は、グラフェンが1100GPaであるのに対し、銅が130GPaで、銀が82.7GPaで、金が78GPaで、アルミニウムが70.3GPaである。従って、アルミニウム、金、銀、銅の順で弾性変形しやすく、グラフェンは弾性変形しにくい。このため、金属微粒子の集まりがグラフェン同士の間隙に析出した該グラフェンの集まりに圧縮応力を加えると、金属微粒子が優先して弾性変形する。このため、金属微粒子の弾性変形が始まる直前に、隣接する金属微粒子同士の接触部に過大な摩擦熱が発生し、また、金属微粒子とグラフェンとの接触部に過大な摩擦熱が発生し、隣接する金属微粒子同士が摩擦熱で接合するとともに、金属微粒子がグラフェンの表面に熱圧着する。次に、熱圧着した金属微粒子の弾性変形が進む。従って、ヤング率が1桁大きいグラフェンは弾性変形せず、熱圧着した金属微粒子の弾性変形が優先して進む。従って、グラフェン接合体を製造する際にグラフェンの集まりに加える圧縮応力を、金属微粒子の弾性変形が開始される圧縮応力にすると、金属微粒子がグラフェンの表面に熱圧着し、グラフェン接合体が形成される。
また、グラフェンの引張強度は42N/mであるのに対して、鉄の引張強度が0.084−0.40N/mである。従って、グラフェン接合体を製造する際に、金属微粒子の集まりがグラフェン同士の間隙に析出した該グラフェンの集まりに大きな圧縮応力を加えても、金属微粒子の弾性変形が進むだけで、グラフェンは破断しない。
以上に説明したように、銀、銅、金、ないしはアルミニウムのいずれかの金属を熱分解で析出する金属化合物を、熱分解で金属を析出する金属化合物として用い、8段落に記載した方法に従ってグラフェン接合体を製造すると、製造されたグラフェン接合体は、銀より優れた熱伝導性をもち、金属微粒子を構成する金属に近い導電性を持つ。
Graphene has a thermal conductivity of 1890 W / mK, which is 4.5 times the thermal conductivity of silver, which has the highest thermal conductivity among metals. In addition, it also has electrical conductivity that is only 23 times the specific resistance of copper. Therefore, a graphene conjugate in which graphene is bonded to each other through a collection of metal fine particles having a size of nano level, which is made of a metal having excellent both thermal conductivity and conductivity, has a thermal conductivity and conductivity. Excellent for both. That is, a graphene conjugate in which graphenes are bonded to each other by a collection of fine particles made of a metal having excellent both thermal conductivity and conductivity has relatively high thermal conductivity, that is, priority is given to graphene which easily conducts heat. Then, heat is transferred, and the current flows in preference to the collection of metal fine particles that join graphenes, which have relatively high conductivity, that is, graphenes through which current easily flows. As a result, the graphene conjugate has better thermal conductivity than silver and has conductivity close to that of metal.
Metals with excellent thermal conductivity and conductivity are composed of silver, copper, gold, and aluminum. That is, the thermal conductivity of the metal is 420 W / mK for silver, 398 W / mK for copper, 320 W / mK for gold, and 236 W / mK for aluminum. The conductivity of the metal is 61.4 × 10 6 S / m for silver, 59.0 × 10 6 S / m for copper, 45.5 × 10 6 S / m for gold, and 37 for aluminum. .4 × 10 6 S / m. The specific resistance of aluminum is 1.6 times that of copper, and aluminum has a higher resistivity than graphene. Therefore, a graphene junction in which graphenes are bonded to each other by a collection of metal fine particles made of any of silver, copper, gold, or aluminum has better thermal conductivity than silver and is close to the metal constituting the metal fine particles. Has conductivity.
On the other hand, the Young's modulus is 1100 GPa for graphene, 130 GPa for copper, 82.7 GPa for silver, 78 GPa for gold, and 70.3 GPa for aluminum. Therefore, aluminum, gold, silver, and copper are easily elastically deformed in this order, and graphene is not easily elastically deformed. Therefore, when a compressive stress is applied to the aggregate of graphene in which the aggregate of metal fine particles is deposited in the gap between graphenes, the metallic fine particles are preferentially elastically deformed. For this reason, immediately before the elastic deformation of the metal fine particles starts, an excessive frictional heat is generated at the contact portion between the adjacent metal fine particles, and an excessive frictional heat is generated at the contact portion between the metal fine particles and the graphene, and the metal fine particles are adjacent to each other. The metal fine particles are bonded to each other by frictional heat, and the metal fine particles are thermally pressure-bonded to the surface of the graphene. Next, the elastic deformation of the thermocompression-bonded metal fine particles proceeds. Therefore, graphene having an order of magnitude higher Young's modulus does not elastically deform, and elastic deformation of thermocompression-bonded metal fine particles proceeds with priority. Therefore, when the compressive stress applied to the aggregate of graphene during the production of the graphene junction is set to the compressive stress at which the elastic deformation of the metal fine particles is started, the metal fine particles are thermocompression bonded to the surface of the graphene to form the graphene junction. NS.
Further, the tensile strength of graphene is 42 N / m, whereas the tensile strength of iron is 0.084-0.40 N / m. Therefore, when a graphene junction is produced, even if a large compressive stress is applied to the graphene aggregates in which the aggregates of metal fine particles are deposited in the gaps between the graphenes, the elastic deformation of the metal fine particles only progresses and the graphene does not break. ..
As described above, a metal compound that precipitates a metal of silver, copper, gold, or aluminum by thermal decomposition is used as a metal compound that precipitates a metal by thermal decomposition, and graphene is used according to the method described in paragraph 8. When the bonded body is manufactured, the manufactured graphene bonded body has better thermal conductivity than silver and has conductivity close to that of the metal constituting the metal fine particles.

13段落に記載したグラフェン接合体の製造方法において、前記金属化合物が、無機物のイオンないしは分子からなる配位子が、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに配位結合した金属錯イオンを有する無機金属化合物からなる金属錯体であり、該無機金属化合物からなる金属錯体を、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物として用い、前記グラフェン接合体を製造する方法に従って、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、13段落に記載したグラフェン接合体の製造方法。 In the method for producing a graphene conjugate described in paragraph 13, the metal compound coordinates a ligand composed of an inorganic ion or molecule to a metal ion composed of any metal of silver, copper, gold, or aluminum. It is a metal complex composed of an inorganic metal compound having bonded metal complex ions, and the metal complex composed of the inorganic metal compound is used as a metal compound for precipitating any metal of silver, copper, gold, or aluminum by thermal decomposition. , A graphene junction in which graphenes are overlapped and bonded to each other via a collection of metal fine particles made of any of silver, copper, gold, or aluminum according to the method for producing a graphene conjugate, according to paragraph 13. The method for producing a graphene conjugate described.

8段落で説明したように、熱分解で金属を析出する金属化合物は、熱分解で金属を析出する第一の性質と、メタノールに分散するがメタノールに溶解しない第二の性質を兼備する。こうした性質を兼備する金属化合物に、無機物のイオンないしは分子からなる配位子が、金属からなる金属イオンに配位結合した金属錯イオンを有する無機金属化合物からなる金属錯体がある。つまり、無機物のイオンないしは分子からなる配位子が、金属イオンに配位結合した金属錯イオンを有する無機金属化合物からなる金属錯体を、還元雰囲気で熱処理すると、180−220℃で金属が析出する。すなわち、無機金属化合物からなる金属錯体は、還元雰囲気で熱処理すると、無機物と金属とに分解され、無機物が気化熱を奪って気化し、180−220℃で無機物の気化が完了し、金属が析出して熱分解反応を終える。
つまり、金属錯体を構成するイオンの中で、分子の中央に位置する金属イオンが最も大きく、金属イオンと配位子との距離が最も長い。この金属錯体を還元雰囲気で熱処理すると、金属イオンが配位子と結合する配位結合部が最初に分断され、金属と無機物とに分解する。さらに温度が上がると、無機物が気化熱を奪って気化し、無機物の気化が完了すると金属が析出する。こうした無機金属化合物からなる金属錯体は、分子量が小さいため、無機物の気化が180−220℃で完了し、金属が析出する温度は、金属化合物の熱分解で金属が析出する温度の中で最も低い。
また、無機物からなる分子ないしはイオンが配位子になって、金属イオンに配位結合する金属錯イオンは、他の金属錯イオンに比べて合成が容易である。このような金属錯イオンとして、アンモニアNHが配位子となって金属イオンに配位結合するアンミン金属錯イオン、水HOが配位子となって金属イオンに配位結合するアクア金属錯イオン、水酸基OHが配位子となって金属イオンに配位結合するヒドロキソ金属錯イオン、塩素イオンClが、ないしは塩素イオンClとアンモニアNHとが配位子となって金属イオンに配位結合するクロロ金属錯イオンなどがある。こうした配位子は、いずれも分子量が小さい。さらに、このような金属錯イオンを有する塩化物、硫酸塩、硝酸塩などの無機塩からなる金属錯体は、無機塩の分子量が小さい。このため、180−220℃の温度範囲で無機物の気化が完了し金属を析出する。この金属が析出する温度は、金属化合物の熱分解で金属を析出する温度の中で最も低い。
従って、無機物のイオンないしは分子からなる配位子が、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに配位結合した無機金属化合物からなる金属錯体を、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物として用い、13段落に記載したグラフェン接合体の製造方法に従ってグラフェン接合体を製造すると、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体が製造される。
As explained in paragraph 8, a metal compound that precipitates a metal by thermal decomposition has both a first property of precipitating a metal by thermal decomposition and a second property of being dispersed in methanol but not soluble in methanol. Among the metal compounds having such properties, there is a metal complex composed of an inorganic metal compound having a metal complex ion in which a ligand composed of an inorganic ion or a molecule is coordinated to a metal ion composed of a metal. That is, when a metal complex composed of an inorganic metal compound having a metal complex ion in which a ligand composed of an inorganic ion or a molecule is coordinated to a metal ion is heat-treated in a reducing atmosphere, a metal is precipitated at 180-220 ° C. .. That is, when the metal complex composed of an inorganic metal compound is heat-treated in a reducing atmosphere, it is decomposed into an inorganic substance and a metal, the inorganic substance takes away heat of vaporization and vaporizes, and the vaporization of the inorganic substance is completed at 180-220 ° C., and the metal precipitates. And finish the thermal decomposition reaction.
That is, among the ions constituting the metal complex, the metal ion located in the center of the molecule is the largest, and the distance between the metal ion and the ligand is the longest. When this metal complex is heat-treated in a reducing atmosphere, the coordination bond portion where the metal ion binds to the ligand is first separated and decomposed into a metal and an inorganic substance. When the temperature rises further, the inorganic substance takes away the heat of vaporization and vaporizes, and when the vaporization of the inorganic substance is completed, the metal precipitates. Since the metal complex composed of such an inorganic metal compound has a small molecular weight, the vaporization of the inorganic substance is completed at 180-220 ° C., and the temperature at which the metal is precipitated is the lowest among the temperatures at which the metal is precipitated by the thermal decomposition of the metal compound. ..
Further, a metal complex ion in which a molecule or an ion composed of an inorganic substance serves as a ligand and is coordinate-bonded to the metal ion is easier to synthesize than other metal complex ions. As such metal complex ions, ammonia NH 3 serves as a ligand to coordinate bond to metal ions, and water H 2 O serves as a ligand to coordinate bond to metal ions. Hydroxometal complex ion, chlorine ion Cl −, in which the complex ion, hydroxyl group OH serves as a ligand and coordinates to the metal ion, or chlorine ion Cl and ammonia NH 3 serve as a ligand and metal ion. There are chlorometal complex ions that are coordinated to. All of these ligands have a small molecular weight. Further, a metal complex composed of an inorganic salt such as a chloride, a sulfate or a nitrate having such a metal complex ion has a small molecular weight of the inorganic salt. Therefore, the vaporization of the inorganic substance is completed in the temperature range of 180-220 ° C., and the metal is precipitated. The temperature at which this metal is precipitated is the lowest among the temperatures at which the metal is precipitated by the thermal decomposition of the metal compound.
Therefore, a metal complex composed of an inorganic metal compound in which a ligand composed of an inorganic ion or a molecule is coordinated to a metal ion composed of a metal of silver, copper, gold, or aluminum is decomposed into silver by thermal decomposition. When a graphene conjugate is produced according to the method for producing a graphene conjugate described in paragraph 13, using a metal of copper, gold, or aluminum as a metal compound for precipitating, any of silver, copper, gold, or aluminum is used. A graphene junction is produced in which graphenes are overlapped and bonded to each other through a collection of metal fine particles made of metal.

13段落に記載したグラフェン接合体の製造方法において、前記金属化合物が、カルボン酸のカルボキシル基を構成する酸素イオンが、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに共有結合する第一の特徴と、前記カルボン酸が飽和脂肪酸からなる第二の特徴とを兼備するカルボン酸金属化合物であり、該カルボン酸金属化合物を熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物として用い、前記グラフェン接合体を製造する方法に従って銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、13段落に記載したグラフェン接合体の製造方法。 In the method for producing a graphene conjugate described in paragraph 13, in the metal compound, the oxygen ion constituting the carboxyl group of the carboxylic acid is covalently bonded to the metal ion composed of any metal of silver, copper, gold, or aluminum. It is a carboxylic acid metal compound having both the first characteristic of the carboxylic acid and the second characteristic of the carboxylic acid being a saturated fatty acid, and the carboxylic acid metal compound is thermally decomposed into any one of silver, copper, gold, or aluminum. Graphene junction in which graphenes are overlapped and bonded through a collection of metal fine particles made of any of silver, copper, gold, or aluminum according to the method for producing the graphene junction. The method for producing a graphene conjugate according to paragraph 13, wherein the body is produced.

8段落で説明したように、熱分解で金属を析出する金属化合物は、熱分解で金属を析出する第一の性質と、メタノールに分散するがメタノールに溶解しない第二の性質を兼備する。こうした性質を兼備する金属化合物に、カルボン酸のカルボキシル基を構成する酸素イオンが金属イオンに共有結合するカルボン酸金属化合物がある。なお、カルボン酸金属化合物の熱分解温度は、前記した無機金属化合物からなる金属錯体の熱分解温度より高いが、大気雰囲気で熱分解する。また、汎用的なカルボン酸からなるカルボン酸金属化合物であるため、無機金属化合物からなる金属錯体より安価な金属化合物である。
つまり、カルボン酸金属化合物を構成するイオンの中で、最も大きいイオンは金属イオンである。従って、カルボン酸のカルボキシル基を構成する酸素イオンが、金属イオンに共有結合すれば、金属イオンとカルボキシル基を構成する酸素イオンとの距離が、イオン同士の距離の中で最も長い。こうしたカルボン酸金属化合物を大気雰囲気で昇温させ、カルボン酸の沸点を超えると、カルボン酸金属化合物はカルボン酸と金属とに分解する。さらに昇温すると、カルボン酸が飽和脂肪酸で構成されれば、カルボン酸が気化熱を伴って気化し、カルボン酸の気化が完了した直後に金属が析出する。なお、還元雰囲気でのカルボン酸金属化合物の熱分解は、大気雰囲気での熱分解より40℃程度高温側で進むため、大気雰囲気での熱分解のほうが熱処理費用は安価で済む。またカルボン酸が不飽和脂肪酸であれば、炭素原子が水素原子に対して過剰になるため、不飽和脂肪酸からなるカルボン酸金属化合物が熱分解すると、金属酸化物が析出する。
いっぽう、カルボン酸金属化合物の中で、カルボン酸のカルボキシル基を構成する酸素イオンが配位子となって金属イオンに近づいて配位結合するカルボン酸金属化合物は、金属イオンと酸素イオンとの距離が短くなり、反対に、酸素イオンが金属イオンと反対側で結合するイオンとの距離が最も長くなる。このような分子構造の特徴を持つカルボン酸金属化合物の熱分解反応は、酸素イオンが金属イオンと反対側で結合するイオンとの結合部が最初に分断され、カルボン酸が気化した直後に金属酸化物が析出する。
さらに、カルボン酸金属化合物は、カルボン酸が最も汎用的な有機酸であるため、合成が容易で最も安価な有機金属化合物である。つまり、カルボン酸を水酸化ナトリウムなどの強アルカリ溶液中で反応させると、カルボン酸アルカリ金属化合物が生成される。このカルボン酸アルカリ金属化合物を、硫酸金属塩などの無機金属化合物と反応させると、カルボン酸金属化合物が生成される。このため、カルボン酸金属化合物は、有機金属化合物の中で最も安価な金属化合物である。
つまり、カルボン酸金属化合物は、金属Mが2価のイオンである場合は、組成式がM(COOR)であり、金属Mが3価のイオンである場合は、組成式はM(COOR)で表わせられる。Rは炭化水素で、この組成式はCである(ここでmとnとは整数)。カルボン酸金属化合物を構成する物質の中で、組成式の中央に位置する金属イオンが最も大きい。従って、金属イオンとカルボキシル基を構成する酸素イオンとが共有結合する場合は、金属イオンと酸素イオンとの距離が最大になる。この理由は、金属原子の共有結合半径が、酸素原子と炭素原子との双方の共有結合半径より大きいことによる。このため、このような分子構造の特徴を持つカルボン酸金属化合物を昇温すると、カルボン酸金属化合物がカルボン酸の沸点を超えると、結合距離が最も長い金属イオンとカルボキシル基を構成する酸素イオンとの結合部が最初に分断され、金属とカルボン酸とに分離する。さらに昇温すると、カルボン酸が飽和脂肪酸であれば、カルボン酸が気化熱を伴って気化し、カルボン酸の気化が完了した直後に金属が析出する。こうしたカルボン酸金属化合物として、カルボン酸の沸点が低い順に、オクチル酸金属化合物、ラウリン酸金属化合物、ステアリン酸金属化合物などがある。このようなカルボン酸金属化合物の多くは、金属石鹸として市販されている安価な工業用薬品である。
さらに、飽和脂肪酸の沸点が低ければ、カルボン酸金属化合物は低い温度で熱分解し、金属を析出させる熱処理費用が安価で済む。飽和脂肪酸を構成する炭化水素が長鎖構造である場合は、長鎖が長いほど、つまり、飽和脂肪酸の分子量が大きいほど、飽和脂肪酸の沸点が高くなり、飽和脂肪酸の気化熱が大きいため、熱分解温度が高くなる。ちなみに、分子量が200.3であるラウリン酸の大気圧での沸点は296℃であり、分子量が284.5であるステアリン酸の大気圧での沸点は361℃である。
また、分岐鎖構造を有する飽和脂肪酸である場合は、直鎖構造の飽和脂肪酸より鎖の長さが短く、沸点がさらに低くなり、気化熱も小さい。これによって、分岐鎖構造を有する飽和脂肪酸からなるカルボン酸金属化合物は、さらに低い温度で熱分解温度する。また、分岐鎖構造を有する飽和脂肪酸は極性を持つため、分岐鎖構造を有する飽和脂肪酸からなるカルボン酸金属化合物も極性を持ち、極性を持つメタノールに相対的に高い割合で分散する。このような分岐構造の飽和脂肪酸としてオクチル酸がある。オクチル酸は構造式がCH(CHCH(C)COOHで示され、CHでCH(CHとCとのアルカンに分岐され、CHにカルボキシル基COOHが結合する。オクチル酸の大気圧での沸点は228℃であり、ラウリン酸より沸点が68℃低い。このため、金属を析出する原料として、熱分解温度が最も低いオクチル酸金属化合物が望ましい。オクチル酸金属化合物は、大気雰囲気において290℃で熱分解が完了して金属が析出し、また、メタノールに10重量%近く分散する。
従って、カルボン酸のカルボキシル基を構成する酸素イオンが、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに共有結合する第一の特徴と、カルボン酸が飽和脂肪酸からなる第二の特徴とを兼備するカルボン酸金属化合物は、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属を析出する。このため、該カルボン酸金属化合物を、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物として用い、13段落に記載したグラフェン接合体の製造方法に従ってグラフェン接合体を製造すると、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体が製造される。
As explained in paragraph 8, a metal compound that precipitates a metal by thermal decomposition has both a first property of precipitating a metal by thermal decomposition and a second property of being dispersed in methanol but not soluble in methanol. Among the metal compounds having such properties, there is a carboxylic acid metal compound in which oxygen ions constituting the carboxyl group of the carboxylic acid are covalently bonded to the metal ions. Although the thermal decomposition temperature of the metal carboxylate compound is higher than the thermal decomposition temperature of the metal complex composed of the above-mentioned inorganic metal compound, it is thermally decomposed in an atmospheric atmosphere. Further, since it is a carboxylic acid metal compound composed of a general-purpose carboxylic acid, it is a metal compound that is cheaper than a metal complex composed of an inorganic metal compound.
That is, among the ions constituting the carboxylic acid metal compound, the largest ion is a metal ion. Therefore, if the oxygen ion constituting the carboxyl group of the carboxylic acid is covalently bonded to the metal ion, the distance between the metal ion and the oxygen ion constituting the carboxyl group is the longest among the distances between the ions. When the temperature of such a metal carboxylic acid compound is raised in an atmospheric atmosphere and the boiling point of the carboxylic acid is exceeded, the metal carboxylic acid compound is decomposed into a carboxylic acid and a metal. When the temperature is further raised, if the carboxylic acid is composed of saturated fatty acids, the carboxylic acid is vaporized with heat of vaporization, and the metal is precipitated immediately after the vaporization of the carboxylic acid is completed. Since the thermal decomposition of the metal carboxylate compound in the reducing atmosphere proceeds at a higher temperature side of about 40 ° C. than the thermal decomposition in the atmospheric atmosphere, the heat treatment cost is lower in the thermal decomposition in the atmospheric atmosphere. If the carboxylic acid is an unsaturated fatty acid, the carbon atom becomes excessive with respect to the hydrogen atom. Therefore, when the metal carboxylate compound composed of the unsaturated fatty acid is thermally decomposed, a metal oxide is precipitated.
On the other hand, among the carboxylic acid metal compounds, the carboxylic acid metal compound in which the oxygen ion constituting the carboxyl group of the carboxylic acid acts as a ligand and is coordinated to the metal ion is the distance between the metal ion and the oxygen ion. On the contrary, the distance between the metal ion and the ion bonded on the opposite side is the longest. In the thermal decomposition reaction of a carboxylic acid metal compound having such a characteristic of molecular structure, the bond portion of the oxygen ion with the ion bonded to the metal ion is first broken, and the metal oxidation occurs immediately after the carboxylic acid is vaporized. The thing precipitates.
Further, the carboxylic acid metal compound is the cheapest organic metal compound which is easy to synthesize because the carboxylic acid is the most general-purpose organic acid. That is, when a carboxylic acid is reacted in a strong alkaline solution such as sodium hydroxide, an alkali metal carboxylate compound is produced. When this alkali metal carboxylate compound is reacted with an inorganic metal compound such as a metal sulfate, a metal carboxylate compound is produced. Therefore, the metal carboxylate compound is the cheapest metal compound among the organometallic compounds.
That is, the composition formula of the metal carboxylate compound is M (COOR) 2 when the metal M is a divalent ion, and the composition formula is M (COOR) when the metal M is a trivalent ion. It is represented by 3 . R is a hydrocarbon, and the composition formula is C m H n (where m and n are integers). Among the substances constituting the carboxylic acid metal compound, the metal ion located in the center of the composition formula is the largest. Therefore, when the metal ion and the oxygen ion constituting the carboxyl group are covalently bonded, the distance between the metal ion and the oxygen ion is maximized. The reason for this is that the covalent radius of the metal atom is larger than the covalent radius of both the oxygen atom and the carbon atom. Therefore, when the temperature of the metal carboxylic acid compound having such characteristics of the molecular structure is raised, when the metal carboxylic acid compound exceeds the boiling point of the carboxylic acid, the metal ion having the longest bond distance and the oxygen ion constituting the carboxyl group are formed. The bond is first split and separated into a metal and a carboxylic acid. When the temperature is further raised, if the carboxylic acid is a saturated fatty acid, the carboxylic acid is vaporized with heat of vaporization, and the metal is precipitated immediately after the vaporization of the carboxylic acid is completed. Examples of such a metal carboxylate compound include a metal octylate compound, a metal laurate compound, and a metal stearate compound in ascending order of boiling point of the carboxylic acid. Most of such metal carboxylate compounds are inexpensive industrial chemicals commercially available as metal soaps.
Further, if the boiling point of the saturated fatty acid is low, the metal carboxylate compound is thermally decomposed at a low temperature, and the heat treatment cost for precipitating the metal can be reduced. When the hydrocarbons constituting the saturated fatty acid have a long chain structure, the longer the long chain, that is, the larger the molecular weight of the saturated fatty acid, the higher the boiling point of the saturated fatty acid and the larger the heat of vaporization of the saturated fatty acid. The decomposition temperature rises. Incidentally, the boiling point of lauric acid having a molecular weight of 200.3 at atmospheric pressure is 296 ° C, and the boiling point of stearic acid having a molecular weight of 284.5 at atmospheric pressure is 361 ° C.
Further, in the case of a saturated fatty acid having a branched chain structure, the chain length is shorter, the boiling point is further lower, and the heat of vaporization is smaller than that of the saturated fatty acid having a linear structure. As a result, the metal carboxylate compound composed of saturated fatty acids having a branched chain structure is thermally decomposed at a lower temperature. Further, since the saturated fatty acid having a branched chain structure has a polarity, the carboxylic acid metal compound composed of the saturated fatty acid having a branched chain structure also has a polarity and is dispersed in a relatively high proportion in the polar methanol. Octylic acid is a saturated fatty acid having such a branched structure. The structural formula of octyl acid is represented by CH 3 (CH 2 ) 3 CH (C 2 H 5 ) COOH, and CH is branched into an alkane of CH 3 (CH 2 ) 3 and C 2 H 5, and a carboxyl group is added to CH. COOH binds. The boiling point of octyl acid at atmospheric pressure is 228 ° C, which is 68 ° C lower than that of lauric acid. Therefore, as a raw material for precipitating a metal, a metal octylate compound having the lowest thermal decomposition temperature is desirable. The metal octylate compound is thermally decomposed at 290 ° C. in the atmospheric atmosphere to precipitate a metal, and is dispersed in methanol in an amount of about 10% by weight.
Therefore, the first characteristic that the oxygen ion constituting the carboxyl group of the carboxylic acid is covalently bonded to the metal ion made of any metal of silver, copper, gold, or aluminum, and the second feature that the carboxylic acid is made of a saturated fatty acid. The carboxylic acid metal compound having the above-mentioned characteristics precipitates a metal composed of any metal of silver, copper, gold, or aluminum by thermal decomposition. Therefore, the metal carboxylate compound is used as a metal compound for precipitating any metal of silver, copper, gold, or aluminum by thermal decomposition, and the graphene conjugate is prepared according to the method for producing a graphene conjugate described in paragraph 13. When manufactured, a graphene junction is produced in which graphenes are overlapped and bonded to each other via a collection of metal fine particles made of any of silver, copper, gold, or aluminum.

8段落に記載した熱分解で金属酸化物を析出する金属化合物が、熱分解で酸化アルミニウムを析出する金属化合物であり、該金属化合物を、8段落に記載した熱分解で金属酸化物を析出する金属化合物として用い、8段落に記載した方法に従って、酸化アルミニウムからなる微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、8段落に記載したグラフェン接合体を製造する方法。 The metal compound that precipitates a metal oxide by thermal decomposition described in paragraph 8 is a metal compound that precipitates aluminum oxide by thermal decomposition, and the metal compound precipitates a metal oxide by thermal decomposition described in paragraph 8. The method for producing a graphene conjugate according to paragraph 8, wherein the graphene conjugate is produced as a metal compound and the graphenes are overlapped and bonded to each other via a collection of fine particles made of aluminum oxide according to the method described in paragraph 8.

つまり、酸化アルミニウムは、熱伝導率が40W/mKであり、体積抵抗率が1014Ωcm以上で、熱伝導性に優れた絶縁体である。なお、電子回路のヒートシンクなどに用いられるアルミニウムの熱伝導率が236W/mKで、鉄の熱伝導率が83.5W/mKである。また、酸化アルミニウムは、ビッカス硬度が14.5−18GPaと、セラミック材料の中で炭化ケイ素に次いで高く、ヤング率が370GPaで、銅のヤング率の3倍に近く、金属より変形しにくい。
いっぽう、グラフェンはダイアモンドより硬く、ビッカス硬度は酸化アルミニウムより1桁大きい。また、グラフェンのヤング率は1100GPaで、酸化アルミニウムの3倍に近く、酸化アルミニウムより変形しにくい。また、グラフェンの引張強度は42N/mであるのに対して、鉄の引張強度が0.084−0.40N/mである。
従って、酸化アルミニウムの微粒子の集まりがグラフェン同士の間隙に析出した該グラフェンの集まりに圧縮応力を加えると、酸化アルミニウムの微粒子同士が接触するとともに、酸化アルミニウムの微粒子の集まりがグラフェンに接触し、さらに、接触部に過大な摩擦熱が発生し、酸化アルミニウムの微粒子同士が摩擦熱で接合し、また、酸化アルミニウムの微粒子がグラフェンに熱圧着し、グラフェン同士が酸化アルミニウムの微粒子の集まりで接合されたグラフェン接合体が形成される。なお、酸化アルミニウムのヤング率が金属のヤング率より大きいため、酸化アルミニウムの微粒子は変形しにくい。
従って、熱伝導性と絶縁性との双方に優れる酸化アルミニウムからなる微粒子の集まりを介して、グラフェン同士を接合したグラフェン接合体は、熱伝導率に優れ、表面が絶縁性である。つまり、グラフェン接合体は、相対的に熱伝導率が高い、つまり、熱が伝わりやすいグラフェンに優先して熱が伝達し、相対的に導電率が高い、つまり、電流が流れやすいグラフェンに優先して電流が流れる。この結果、グラフェン接合体は、銀より優れた熱伝導性を持ち、表面は酸化アルミニウムからなる微粒子の集まりで絶縁化される。
なお、酸化マグネシウムは、熱伝導度が60W/mKであり、体積抵抗率が1014Ωcm以上で、熱伝導性に優れた絶縁体であるが、水と反応して水酸化マグネシウムを生じ、二酸化炭素および水を吸収して塩基性炭酸マグネシウムを生成し、酸およびアンモニウム塩水溶液に容易く溶けてマグネシウム塩を生成する。これに対し、酸化アルミニウムは、水や有機溶剤に溶解せず、酸やアルカリとも反応しない極めて安定な金属酸化物である。
また、酸化マグネシウムないしは酸化アルミニウムより熱伝導性が優れた絶縁性材料として窒化アルミニウムがあるが、窒化アルミニウムは、その製法によって極めて高価な材料である。すなわち、窒化アルミニウムの製法として還元窒化法と直接窒化法とがある。還元窒化法は、アルミナAl粒子を出発原料として用い、アルミナ粒子を炭素還元しながら窒化反応によって窒化アルミニウムを製造する。従って、高純度のアルミナ粒子を用いることで、優れた熱伝導性と絶縁性を兼ねる窒化アルミニウム粒子が製造されるが、長時間の高温加熱処理が必要になり、出発原料のアルミナ粒子の10倍近い製造費用が掛かる。いっぽう、直接窒化法は、高純度のアルミニウム粒子を直接高温環境下で窒化させる製法であるため、還元窒化法に比べると製造時に消費する熱エネルギーは少ないが、高温の反応時に窒化アルミニウム粒子の粒成長と焼結が進み、後処理として強制粉砕が必須になる。しかしながら、窒化アルミニウムは非常に硬い物質であるため、強制粉砕の際に酸素と金属のコンタミネーションを伴う。このため、純度の高い窒化アルミニウム粒子を製造する費用は、アルミナ粒子の製造費の10倍に近くなる。
以上に説明したように、酸化アルミニウムを熱分解で析出する金属化合物を、熱分解で金属酸化物を析出する金属化合物として用い、8段落に記載した方法に従ってグラフェン接合体を製造すると、製造されたグラフェン接合体は、銀より優れた熱伝導性をもち、表面が絶縁化される。
That is, aluminum oxide is an insulator having a thermal conductivity of 40 W / mK, a volume resistivity of 10 14 Ωcm or more, and excellent thermal conductivity. The thermal conductivity of aluminum used for heat sinks of electronic circuits is 236 W / mK, and the thermal conductivity of iron is 83.5 W / mK. Aluminum oxide has a Biccus hardness of 14.5-18 GPa, which is the second highest after silicon carbide among ceramic materials, and has a Young's modulus of 370 GPa, which is close to three times the Young's modulus of copper and is less deformable than metal.
On the other hand, graphene is harder than diamond and Vickers hardness is an order of magnitude higher than aluminum oxide. In addition, the Young's modulus of graphene is 1100 GPa, which is close to three times that of aluminum oxide and is less likely to be deformed than aluminum oxide. Further, the tensile strength of graphene is 42 N / m, whereas the tensile strength of iron is 0.084-0.40 N / m.
Therefore, when a compressive stress is applied to the aggregate of aluminum oxide fine particles deposited in the gap between the graphenes, the aluminum oxide fine particles come into contact with each other, and the aggregate of aluminum oxide fine particles comes into contact with the graphene, and further. Excessive frictional heat was generated at the contact part, and the fine particles of aluminum oxide were bonded by frictional heat, and the fine particles of aluminum oxide were heat-bonded to the graphene, and the graphenes were bonded to each other by a collection of fine particles of aluminum oxide. A graphene junction is formed. Since the Young's modulus of aluminum oxide is larger than the Young's modulus of metal, the fine particles of aluminum oxide are not easily deformed.
Therefore, the graphene junction in which graphenes are bonded to each other through a collection of fine particles made of aluminum oxide having excellent thermal conductivity and insulating properties has excellent thermal conductivity and a surface insulating property. That is, the graphene conjugate has a relatively high thermal conductivity, that is, heat is transferred in preference to the graphene in which heat is easily transferred, and the graphene has a relatively high conductivity, that is, a graphene in which an electric current easily flows. Current flows. As a result, the graphene conjugate has better thermal conductivity than silver, and the surface is insulated by a collection of fine particles made of aluminum oxide.
Magnesium oxide is an insulator with a thermal conductivity of 60 W / mK, a volume resistance of 10 14 Ωcm or more, and excellent thermal conductivity, but it reacts with water to produce magnesium hydroxide, which produces magnesium dioxide. It absorbs carbon and water to produce basic magnesium carbonate, which is easily dissolved in acid and ammonium salt aqueous solutions to produce magnesium salts. On the other hand, aluminum oxide is an extremely stable metal oxide that does not dissolve in water or organic solvents and does not react with acids or alkalis.
Further, there is aluminum nitride as an insulating material having better thermal conductivity than magnesium oxide or aluminum oxide, but aluminum nitride is an extremely expensive material due to its manufacturing method. That is, there are a reduction nitriding method and a direct nitriding method as a method for producing aluminum nitride. In the reduction nitriding method, alumina Al 2 O 3 particles are used as a starting material, and aluminum nitride is produced by a nitriding reaction while carbon-reducing the alumina particles. Therefore, by using high-purity alumina particles, aluminum nitride particles having both excellent thermal conductivity and insulating properties can be produced, but long-term high-temperature heat treatment is required, which is 10 times that of the starting material alumina particles. It costs a close manufacturing cost. On the other hand, the direct nitriding method is a manufacturing method in which high-purity aluminum particles are directly nitrided in a high-temperature environment, and therefore consumes less heat energy during production than the reduction nitriding method. As growth and sintering progress, forced pulverization becomes essential as a post-treatment. However, since aluminum nitride is a very hard substance, it involves contamination of oxygen and metal during forced milling. Therefore, the cost of producing high-purity aluminum nitride particles is close to 10 times the cost of producing alumina particles.
As described above, a metal compound that precipitates aluminum oxide by thermal decomposition is used as a metal compound that precipitates a metal oxide by thermal decomposition, and a graphene conjugate is produced according to the method described in paragraph 8. Graphene conjugates have better thermal conductivity than silver and are surface insulated.

19段落に記載したグラフェン接合体の製造方法において、前記金属化合物が、カルボキシル基を構成する酸素イオンがアルミニウムイオンに配位結合したカルボン酸アルミニウム化合物であり、該カルボン酸アルミニウム化合物を熱分解で酸化アルミニウムを析出する金属化合物として用い、前記グラフェン接合体を製造する方法に従って、酸化アルミニウムからなる微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、19段落に記載したグラフェン接合体の製造方法。 In the method for producing a graphene conjugate described in paragraph 19, the metal compound is an aluminum carboxylate compound in which oxygen ions constituting a carboxyl group are coordinated and bonded to aluminum ions, and the aluminum carboxylate compound is oxidized by thermal decomposition. The graphene junction according to paragraph 19, wherein the graphene junction is produced by using it as a metal compound for precipitating aluminum and bonding graphenes by overlapping each other through a collection of fine particles made of aluminum oxide according to the method for producing a graphene conjugate. How to make a body.

つまり、カルボキシル基を構成する酸素イオンが、アルミニウムイオンに近づいて配位結合するカルボン酸アルミニウム化合物は、熱分解によって酸化アルミニウムを析出する。従って、カルボン酸アルミニウム化合物は、酸化アルミニウムを析出する原料になる。
すなわち、カルボキシル基を構成する酸素イオンが、アルミニウムイオンに近づいて配位結合するカルボン酸アルミニウム化合物は、最も大きいイオン半径を有するアルミニウムイオンに、配位子イオンである酸素イオンが近づいて配位結合するため、両者の距離は短くなる。これによって、アルミニウムイオンと配位結合する酸素イオンが、アルミニウムイオンの反対側で共有結合するイオンとの距離が最も長くなる。こうした分子構造上の特徴を持つカルボン酸アルミニウム化合物は、カルボン酸アルミニウム化合物を構成するカルボン酸の沸点を超えると、カルボキシル基を構成する酸素イオンがアルミニウムイオンの反対側で共有結合するイオンとの結合部が最初に分断され、アルミニウムイオンと酸素イオンとの化合物である酸化アルミニウムとカルボン酸とに分解する。さらに昇温すると、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した直後に酸化アルミニウムが析出する。こうしたカルボン酸アルミニウム化合物として、酢酸アルミニウム、カプリル酸アルミニウム、安息香酸アルミニウム、ナフテン酸アルミニウムなどがある。なお、カルボン酸アルミニウム化合物の熱分解温度は、大気雰囲気では窒素雰囲気より40℃程度低い。
さらに、前記したカルボン酸アルミニウム化合物は、いずれも容易に合成できる安価な工業用薬品である。すなわち、カルボン酸を強アルカリと反応させるとカルボン酸アルカリ金属化合物が生成される。この後、カルボン酸アルカリ金属化合物を無機アルミニウム塩と反応させると、カルボン酸アルミニウム化合物が合成される。また、カルボン酸は有機酸の沸点の中で相対的に低い沸点を有する有機酸であるため、大気雰囲気においては300℃程度の比較的低い熱処理温度で熱分解して酸化アルミニウムが析出するため、熱処理費用も安価で済む。
従って、カルボキシル基を構成する酸素イオンが、アルミニウムイオンに近づいて配位結合するカルボン酸アルミニウム化合物は、熱分解で酸化アルミニウムを析出する。このため、該カルボン酸アルミニウム化合物を、熱分解で酸化アルミニウムを析出する金属化合物として用い、19段落に記載したグラフェン接合体の製造方法に従ってグラフェン接合体を製造すると、酸化アルミニウムの微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体が製造される。
That is, the aluminum carboxylate compound in which the oxygen ions constituting the carboxyl group are coordinated and bonded close to the aluminum ions deposits aluminum oxide by thermal decomposition. Therefore, the aluminum carboxylate compound becomes a raw material for precipitating aluminum oxide.
That is, in the aluminum carboxylate compound in which the oxygen ions constituting the carboxyl group are coordinated and bonded close to the aluminum ion, the oxygen ion which is the ligand ion is coordinated to the aluminum ion having the largest ion radius. Therefore, the distance between the two becomes shorter. As a result, the oxygen ion that coordinates with the aluminum ion has the longest distance from the ion that covalently bonds on the opposite side of the aluminum ion. An aluminum carboxylate compound having such molecular structural characteristics is bonded to an ion in which an oxygen ion constituting a carboxyl group is covalently bonded on the opposite side of the aluminum ion when the boiling point of the carboxylic acid constituting the aluminum carboxylate compound is exceeded. The part is first divided and decomposed into aluminum oxide and carboxylic acid, which are compounds of aluminum ion and oxygen ion. When the temperature is further raised, the carboxylic acid takes away the heat of vaporization and vaporizes, and aluminum oxide precipitates immediately after the vaporization of the carboxylic acid is completed. Examples of such an aluminum carboxylate compound include aluminum acetate, aluminum caprylate, aluminum benzoate, and aluminum naphthenate. The thermal decomposition temperature of the aluminum carboxylate compound is about 40 ° C. lower in the atmospheric atmosphere than in the nitrogen atmosphere.
Further, all of the above-mentioned aluminum carboxylate compounds are inexpensive industrial chemicals that can be easily synthesized. That is, when a carboxylic acid is reacted with a strong alkali, an alkali metal carboxylic acid compound is produced. After that, when the alkali metal carboxylate compound is reacted with the inorganic aluminum salt, the aluminum carboxylate compound is synthesized. Further, since the carboxylic acid is an organic acid having a relatively low boiling point among the boiling points of the organic acid, it is thermally decomposed at a relatively low heat treatment temperature of about 300 ° C. in an air atmosphere to precipitate aluminum oxide. The heat treatment cost is also low.
Therefore, the aluminum carboxylate compound in which the oxygen ions constituting the carboxyl group are coordinated and bonded close to the aluminum ions deposits aluminum oxide by thermal decomposition. Therefore, when the aluminum carboxylate compound is used as a metal compound for precipitating aluminum oxide by thermal decomposition and the graphene conjugate is produced according to the method for producing a graphene conjugate described in paragraph 19, the graphene conjugate is produced through a collection of fine particles of aluminum oxide. A graphene junction is produced in which graphenes are overlapped and bonded to each other.

銀の微粒子の集まりを介して、グラフェン同士が重なり合って接合したグラフェン接合体の側面の一部を拡大し、模式的に表した説明図である。It is explanatory drawing which enlarged and represented a part of the side surface of the graphene bonded body in which graphenes overlapped and bonded to each other through the collection of silver fine particles.

実施例1
本実施例は、8段落に記載した製造方法に従って、銀の微粒子の集まりを介して、グラフェン同士が重なり合って接合したグラフェン接合体を、容器の底面に形成する。なお、熱分解で銀を析出する金属化合物は、アンミン錯体の銀塩化物であるジアンミン銀塩化物[Ag(NH]Clであり、還元雰囲気の200℃程度の比較的低い温度で銀を析出する。ジアンミン銀塩化物の分子量は177.4g/モルと小さい。
最初に、2リットルのメタノールに、12g(0.07モルに相当する)のジアンミン銀塩化物(田中貴金属工業株式会社の製品)を分散した。このジアンミン銀塩化物のメタノール分散液を、1.2m×1.2mの底面をもち、底が浅い容器に充填した。
次に、2枚の平行平板電極の間隙に電界が発生する電極の有効面積が、1m×1mである平行平板電極を用意し、2枚の平行平板電極を100μmの間隙で重ね合わせ、この間隙に黒鉛粒子を満遍なく引き詰めた。なお、黒鉛粒子を粒径が25μmの球と仮定し、黒鉛粒子の厚みの平均値が10μmと仮定した場合、2枚の平行平板電極で作られる100μmの間隙に、黒鉛粒子を満遍なく引き詰めた場合、6.4×10個の黒鉛粒子が存在する。この黒鉛粒子の集まりに、10.6キロボルト以上の直流電圧を印加すると、全ての黒鉛粒子の基底面の層間結合が同時に破壊される。この際、1.9×1013個のグラフェンの集まりが得られ、用いる黒鉛粒子の集まりは、僅かに1.18gである。
すなわち、電界が発生する電極の有効面積が1m×1mである平行平板電極の表面に、鱗片状黒鉛粒子(例えば、伊藤黒鉛工業株式会社のXD100)の10gを重ねて引き詰めた。この平行平板電極を、ジアンミン銀塩化物のメタノール分散液が充填された容器に浸漬し、さらに、もう一方の平行平板電極を前記の平行平板電極の上に重ね合わせ、2枚の平行平板電極を100μmの間隙で離間させ、12キロボルトの直流電圧を電極間に加えた。次に、2枚の平行平板電極の間隙を拡大し、さらに、2枚の平行平板電極をジアンミン銀塩化物のメタノール分散液中で傾斜させ、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、この後、容器から2枚の平行平板電極を取り出した。さらに、容器内のグラフェンの集まりに、超音波ホモジナイザー装置(ヤマト科学株式会社の製品LUH300)によって20kHzの超音波振動を2分間加えた。この後、再度、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、グラフェンの集まりを製造した。
次に、5cm×10cmの底面を持つ底が浅い10個の新たな容器の各々に、前記した容器内のグラフェンの集まりの一部を、同量のグラフェンの集まりとして充填した。さらに、0.2Gからなる3方向の振動加速度を、新たな容器に繰り返し加えた。この後、新たな容器を65℃に昇温し、ジアンミン銀塩化物のメタノール分散液からメタノールを気化した。さらに、新たな容器の底面に形成された試料の上方の平面に、5cm×10cmの面積を持つ治具を載せ、治具に10kgの圧縮荷重を加え、試料の上方の平面を均等に圧縮した。
さらに、新たな容器を水素ガス雰囲気の熱処理装置に配置し、熱処理装置を180℃まで昇温し、新たな容器を180℃に5分間放置した。この後、熱処理装置から新たな容器を取り出し、治具に加える圧縮荷重を40kgに増やし、10分間放置した。さらに、治具を取り除いたのち、新たな容器の底面に1Gに相当する衝撃力を加えた。この後、10個の新たな容器のうちの5つの新たな容器の各々から、5枚の試料を取り出した。
次に、試料の2つの平面と側面とを、電子顕微鏡を用いて観察と分析を行なった。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100ボルトからの極低加速電圧による表面観察が可能で、試料に導電性の被膜を形成せずに直接試料の表面が観察できる特徴を持つ。最初に、試料の平面の複数個所からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の平面はいずれも、5−8nmの大きさらなる微粒子の集まりで覆われていた。次に、試料の側面の複数個所からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。厚みが極めて薄い物質が、5−8nmの大きさらなる微粒子の集まりを介して、30層前後が重なり合っていた。また、重なり合った厚みが極めて薄い物質同士の間隙は、微粒子の集まりで埋め尽くされていた。さらに、特性エックス線のエネルギーとその強度を画像処理した結果、5−8nmの大きさらなる微粒子は銀原子のみが存在し、厚みが極めて薄い物質は炭素原子のみ存在した。このため、試料は、グラフェン同士が銀微粒子の集まりを介して重なり合ったグラフェン接合体であることが確認できた。図1に、銀の微粒子の集まりを介して、グラフェン同士が重なり合って接合したグラフェン接合体の側面の一部を拡大して模式的に示す。1はグラフェンで、2は銀微粒子である。
さらに、5枚の試料の各々の表面抵抗を表面抵抗計によって測定した(例えば、シムコジャパン株式会社の表面抵抗計ST−4)。表面抵抗値は1×10Ω/□未満であったため、いずれの試料も銀に近い表面抵抗を有する。
次に、5枚の試料の各々の熱伝導率を、熱伝導率測定装置によって測定した(例えば、株式会社リガクの熱伝導率測定装置TCi)。熱伝導率が1800W/mK前後であったため、いずれの試料も銀の熱伝導率の4.3倍で、グラフェンに近い熱伝導率を持った。
なお、作成した試料の5枚の各々を、2mの高さから落下させても、試料に損傷が見られなかったため、一定の接合力でグラフェン同士が接合されていることが分かった。
Example 1
In this embodiment, a graphene junction in which graphenes are overlapped and bonded to each other is formed on the bottom surface of the container through a collection of silver fine particles according to the production method described in paragraph 8. The metal compound that precipitates silver by thermal decomposition is diammine silver chloride [Ag (NH 3 ) 2 ] Cl, which is a silver chloride of an ammine complex, and silver at a relatively low temperature of about 200 ° C. in a reducing atmosphere. Precipitate. The molecular weight of diammine silver chloride is as small as 177.4 g / mol.
First, 12 g (corresponding to 0.07 mol) of diammine silver chloride (a product of Tanaka Kikinzoku Kogyo Co., Ltd.) was dispersed in 2 liters of methanol. This methanol dispersion of diammine silver chloride was filled in a container having a bottom surface of 1.2 m × 1.2 m and a shallow bottom.
Next, a parallel plate electrode having an effective area of 1 m × 1 m in which an electric field is generated in the gap between the two parallel plate electrodes is prepared, and the two parallel plate electrodes are superposed with a gap of 100 μm, and this gap is formed. The graphite particles were evenly packed. Assuming that the graphite particles are spheres having a particle size of 25 μm and the average thickness of the graphite particles is 10 μm, the graphite particles are evenly packed in the gap of 100 μm formed by the two parallel plate electrodes. In the case, there are 6.4 × 10 7 graphite particles. When a DC voltage of 10.6 kilovolts or more is applied to this group of graphite particles, the interlayer bond between the basal planes of all the graphite particles is broken at the same time. At this time, an aggregate of 1.9 × 10 13 graphenes was obtained, and the aggregate of graphite particles used was only 1.18 g.
That is, 10 g of scaly graphite particles (for example, XD100 manufactured by Ito Graphite Industry Co., Ltd.) were stacked and compacted on the surface of a parallel plate electrode having an effective area of an electrode in which an electric field is generated of 1 m × 1 m. This parallel plate electrode is immersed in a container filled with a methanol dispersion of diammine silver chloride, and the other parallel plate electrode is further superposed on the parallel plate electrode to form two parallel plate electrodes. A 12 kilovolt DC voltage was applied between the electrodes, separated by a gap of 100 μm. Next, the gap between the two parallel plate electrodes is expanded, and the two parallel plate electrodes are tilted in a methanol dispersion of diammine silver chloride, and a vibration acceleration consisting of 0.2 G in three directions is applied to the container. Repeated addition, after which two parallel plate electrodes were removed from the container. Further, 20 kHz ultrasonic vibration was applied to the graphene collection in the container by an ultrasonic homogenizer device (product LUH300 of Yamato Scientific Co., Ltd.) for 2 minutes. After that, vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the container to produce a graphene aggregate.
Next, each of the ten shallow-bottomed new containers having a bottom surface of 5 cm × 10 cm was filled with a part of the graphene cluster in the container as the same amount of graphene cluster. Further, vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the new container. After that, the temperature of the new container was raised to 65 ° C., and methanol was vaporized from the methanol dispersion of diammine silver chloride. Further, a jig having an area of 5 cm × 10 cm was placed on the plane above the sample formed on the bottom surface of the new container, and a compressive load of 10 kg was applied to the jig to evenly compress the plane above the sample. ..
Further, a new container was placed in a heat treatment apparatus having a hydrogen gas atmosphere, the temperature of the heat treatment apparatus was raised to 180 ° C., and the new container was left at 180 ° C. for 5 minutes. After that, a new container was taken out from the heat treatment apparatus, the compressive load applied to the jig was increased to 40 kg, and the container was left for 10 minutes. Further, after removing the jig, an impact force equivalent to 1 G was applied to the bottom surface of the new container. After this, 5 samples were taken from each of the 5 new containers out of the 10 new containers.
Next, the two planes and sides of the sample were observed and analyzed using an electron microscope. As the electron microscope, an extremely low acceleration voltage SEM manufactured by JFE Techno Research Co., Ltd. was used. This device can observe the surface with an extremely low acceleration voltage from 100 volts, and has the feature that the surface of the sample can be directly observed without forming a conductive film on the sample. First, secondary electron beams between 900-1000 volts of backscattered electron beams from a plurality of points on the plane of the sample were taken out and image processing was performed. The planes of the samples were all covered with a large collection of fine particles of 5-8 nm. Next, secondary electron beams between 900 and 1000 volts of backscattered electron beams from a plurality of locations on the side surface of the sample were taken out and image processing was performed. Around 30 layers of a substance having an extremely thin thickness overlapped with each other through a collection of large fine particles having a size of 5-8 nm. In addition, the gaps between the overlapping substances having extremely thin thickness were filled with a collection of fine particles. Furthermore, as a result of image processing of the energy of the characteristic X-ray and its intensity, only silver atoms were present in the fine particles having a size of 5-8 nm, and only carbon atoms were present in the extremely thin substance. Therefore, it was confirmed that the sample was a graphene conjugate in which graphenes were overlapped with each other via a collection of silver fine particles. FIG. 1 schematically shows an enlarged part of a side surface of a graphene bonded body in which graphenes are overlapped and bonded to each other through a collection of silver fine particles. 1 is graphene and 2 is silver fine particles.
Further, the surface resistance of each of the five samples was measured with a surface resistance meter (for example, surface resistance meter ST-4 of Simco Japan Co., Ltd.). Since the surface resistance value was less than 1 × 10 3 Ω / □, all the samples had a surface resistance close to that of silver.
Next, the thermal conductivity of each of the five samples was measured by a thermal conductivity measuring device (for example, the thermal conductivity measuring device TCi of Rigaku Co., Ltd.). Since the thermal conductivity was around 1800 W / mK, all the samples had a thermal conductivity close to that of graphene, which was 4.3 times the thermal conductivity of silver.
Even if each of the five prepared samples was dropped from a height of 2 m, no damage was observed in the samples, so it was found that the graphenes were bonded to each other with a constant bonding force.

実施例2
本実施例は、実施例1で作成したグラフェン接合体を、フェノール樹脂の板に圧着する。
最初に、実施例1で用いたジアンミン銀塩化物を、メタノールに5重量%として分散した。
次に、実施例1において、10個の容器のうち、残った5つの容器の各々に、ジアンミン銀塩化物の5重量%のメタノール分散液の同量を充填した。さらに、各々の容器に、0.2Gからなる3方向の振動加速度を繰り返し加え、この後、全ての容器を水素ガス雰囲気の熱処理装置に配置し、熱処理装置を180℃まで昇温し、全ての容器を180℃に5分間放置した。さらに、熱処理装置から5つの容器を取り出し、実施例1で用いた治具を、各々の容器に形成された試料の上に載せ、さらに、治具に30kgの圧縮荷重を加え、10分間放置した。さらに、治具を取り除いたのち、5つの容器の各々の底面に1Gに相当する衝撃力を加えた。この後、各々の容器から5枚の試料を取り出した。
次に、5枚の試料の各々を、5cm×10cm×1cmのフェノール樹脂の板の上に載せ、さらに、試料の上に前記した治具を載せ、治具に40kgの圧縮荷重を加え、10分間放置し、実施例2の試料を作成した。
作成した試料の各々を、1.5mの高さから5回ずつ落下させたが、フェノール樹脂の板に形成された膜が剥がれなかった。このため、一定の接合力でグラフェン接合体がフェノール樹脂の板に接合されていることが分かった。
Example 2
In this embodiment, the graphene junction prepared in Example 1 is pressure-bonded to a phenol resin plate.
First, the diammine silver chloride used in Example 1 was dispersed in methanol in an amount of 5% by weight.
Next, in Example 1, each of the remaining 5 containers out of the 10 containers was filled with the same amount of 5% by weight methanol dispersion of diammine silver chloride. Further, vibration acceleration in three directions consisting of 0.2 G is repeatedly applied to each container, and then all the containers are placed in a heat treatment device having a hydrogen gas atmosphere, the heat treatment device is heated to 180 ° C., and all the containers are heated. The container was left at 180 ° C. for 5 minutes. Further, five containers were taken out from the heat treatment apparatus, the jig used in Example 1 was placed on the sample formed in each container, a compressive load of 30 kg was further applied to the jig, and the jig was left for 10 minutes. .. Further, after removing the jig, an impact force corresponding to 1 G was applied to the bottom surface of each of the five containers. After this, 5 samples were taken out from each container.
Next, each of the five samples was placed on a 5 cm × 10 cm × 1 cm phenol resin plate, and the above-mentioned jig was further placed on the sample, and a compressive load of 40 kg was applied to the jig. The sample was left for a minute to prepare a sample of Example 2.
Each of the prepared samples was dropped 5 times from a height of 1.5 m, but the film formed on the phenol resin plate did not peel off. Therefore, it was found that the graphene bond was bonded to the phenol resin plate with a constant bonding force.

実施例3
本実施例は、8段落に記載した製造方法に従って、酸化アルミニウムの微粒子の集まりを介して、グラフェン同士が重なり合って接合したグラフェン接合体を、容器の底面に形成する。なお、安息香酸アルミニウムAl(CCOO)(例えば、三津和化学薬品株式会社の製品)を、熱分解で酸化アルミニウムを析出する金属化合物として用いた。安息香酸アルミニウムは310℃で熱分解し、酸化アルミニウムを析出する。安息香酸アルミニウムの分子量は390g/モルである。
最初に、2リットルのメタノールに、12g(0.03モルに相当する)の安息香酸アルミニウムを分散した。
次に、安息香酸アルミニウムのメタノール分散液を、実施例1と同様に、1.2m×1.2mの底面をもち、底が浅い容器に充填した。
さらに、実施例1と同様に、電界が発生する電極の有効面積が1m×1mである平行平板電極の表面に、鱗片状黒鉛粒子の10gを重ねて引き詰めた。この平行平板電極を、安息香酸アルミニウムのメタノール分散液が充填された容器に浸漬し、さらに、もう一方の平行平板電極を前記の平行平板電極の上に重ね合わせ、2枚の平行平板電極を100μmの間隙で離間させ、12キロボルトの直流電圧を電極間に加えた。次に、2枚の平行平板電極の間隙を拡大し、さらに、2枚の平行平板電極を安息香酸アルミニウムのメタノール分散液中で傾斜させ、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、この後、実施例1と同様に、容器から2枚の平行平板電極を取り出した。さらに、容器内のグラフェンの集まりに、実施例1と同様に、超音波ホモジナイザー装置によって20kHzの超音波振動を2分間加えた。この後、再度、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、グラフェンの集まりを製造した。
次に、5cm×10cmの底面を持つ底が浅い10個の新たな容器の各々に、前記した容器内のグラフェンの集まりの一部を、実施例1の2倍になる量として充填した。さらに、0.2Gからなる3方向の振動加速度を、新たな容器に繰り返し加えた。この後、新たな容器を65℃に昇温し、安息香酸アルミニウムのメタノール分散液からメタノールを気化した。さらに、10個の新たな容器の底面に形成された各々の試料の上方の平面に、5cm×10cmの面積を持つ治具を載せ、さらに、治具に10kgの圧縮荷重を加え、試料の上方の平面を均等に圧縮した。
さらに、10個の新たな容器を大気雰囲気の熱処理装置に配置し、熱処理装置を310℃まで昇温し、310℃に1分間放置した。この後、熱処理装置から10個の新たな容器を取り出し、治具に加える圧縮荷重を50kgに増やし、10分間放置した。さらに、治具を取り除いたのち、新たな容器の底面に1Gに相当する衝撃力を加えた。この後、10個の新たな容器のうちの5つの新たな容器の各々から、5枚の試料を取り出した。
次に、実施例1と同様に、5枚の試料の平面と側面とを、電子顕微鏡を用いて観察と分析を行なった。最初に、試料の平面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の平面は、5−8nmの大きさらなる微粒子の集まりで覆われていた。次に、試料の側面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。厚みが極めて薄い物質が、5−8nmの大きさらなる微粒子の集まりを介して、60層前後が重なり合っていた。さらに、特性エックス線のエネルギーとその強度を画像処理した結果、5−8nmの大きさらなる微粒子は酸素原子とアルミニウム原子とが存在し、厚みが極めて薄い物質は炭素原子のみ存在した。このため、試料は、グラフェン同士が酸化アルミニウム微粒子の集まりを介して重なり合ったグラフェン接合体であることが確認できた。
さらに、5枚の試料の各々の絶縁抵抗を絶縁抵抗計によって測定した(例えば、日置電機株式会社の絶縁抵抗計)。絶縁抵抗は1MΩを超えたため、いずれの試料の表面は絶縁性を示した。
次に、5枚の試料の各々の熱伝導率を、実施例1と同様に、熱伝導率測定装置によって測定した。熱伝導率が1800W/mK前後であったため、いずれの試料も銀の熱伝導率の4.3倍で、グラフェンに近い熱伝導率を持った。
なお、作成した試料の5枚の各々を、2mの高さから落下させても、試料に損傷が見られなかったため、一定の接合力でグラフェン同士が接合されていることが分かった。
Example 3
In this embodiment, a graphene junction in which graphenes are overlapped and bonded to each other is formed on the bottom surface of the container through a collection of fine particles of aluminum oxide according to the production method described in paragraph 8. Aluminum benzoate Al (C 6 H 5 COO) 3 (for example, a product of Mitsuwa Chemical Co., Ltd.) was used as a metal compound for precipitating aluminum oxide by thermal decomposition. Aluminum benzoate is thermally decomposed at 310 ° C. to precipitate aluminum oxide. The molecular weight of aluminum benzoate is 390 g / mol.
First, 12 g (corresponding to 0.03 mol) of aluminum benzoate was dispersed in 2 liters of methanol.
Next, a methanol dispersion of aluminum benzoate was filled in a container having a bottom surface of 1.2 m × 1.2 m and a shallow bottom, as in Example 1.
Further, similarly to Example 1, 10 g of scaly graphite particles were superposed on the surface of a parallel plate electrode having an effective area of an electrode in which an electric field was generated of 1 m × 1 m and pulled. This parallel plate electrode is immersed in a container filled with a methanol dispersion of aluminum benzoate, and the other parallel plate electrode is further superposed on the parallel plate electrode, and the two parallel plate electrodes are 100 μm. A 12 kilovolt DC voltage was applied between the electrodes. Next, the gap between the two parallel plate electrodes is expanded, the two parallel plate electrodes are tilted in a methanol dispersion of aluminum benzoate, and vibration acceleration in three directions consisting of 0.2 G is repeated in the container. In addition, after this, two parallel plate electrodes were taken out from the container in the same manner as in Example 1. Further, as in Example 1, 20 kHz ultrasonic vibration was applied to the graphene cluster in the container by an ultrasonic homogenizer device for 2 minutes. After that, vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the container to produce a graphene aggregate.
Next, each of the ten shallow-bottomed new containers having a bottom surface of 5 cm × 10 cm was filled with a part of the graphene cluster in the container in an amount twice that of Example 1. Further, vibration acceleration in three directions consisting of 0.2 G was repeatedly applied to the new container. After that, the temperature of the new container was raised to 65 ° C., and methanol was vaporized from the methanol dispersion of aluminum benzoate. Further, a jig having an area of 5 cm × 10 cm is placed on the plane above each sample formed on the bottom surface of 10 new containers, and a compressive load of 10 kg is further applied to the jig to be above the sample. The plane of was evenly compressed.
Further, 10 new containers were placed in the heat treatment apparatus in the air atmosphere, the heat treatment apparatus was heated to 310 ° C., and left at 310 ° C. for 1 minute. After that, 10 new containers were taken out from the heat treatment apparatus, the compressive load applied to the jig was increased to 50 kg, and the container was left for 10 minutes. Further, after removing the jig, an impact force equivalent to 1 G was applied to the bottom surface of the new container. After this, 5 samples were taken from each of the 5 new containers out of the 10 new containers.
Next, as in Example 1, the planes and sides of the five samples were observed and analyzed using an electron microscope. First, the secondary electron beam between 900 and 1000 volts of the backscattered electron beam from the plane of the sample was taken out and image processed. The plane of the sample was covered with a collection of additional fine particles as large as 5-8 nm. Next, the secondary electron beam between 900 and 1000 volts of the backscattered electron beam from the side surface of the sample was taken out and image processing was performed. Around 60 layers of a substance having an extremely thin thickness overlapped with each other through a collection of large fine particles having a size of 5-8 nm. Furthermore, as a result of image processing of the energy of the characteristic X-ray and its intensity, oxygen atoms and aluminum atoms were present in the fine particles having a size of 5-8 nm, and only carbon atoms were present in the extremely thin substance. Therefore, it was confirmed that the sample was a graphene conjugate in which graphenes were overlapped with each other via a collection of aluminum oxide fine particles.
Further, the insulation resistance of each of the five samples was measured with an insulation resistance tester (for example, an insulation resistance tester manufactured by Hioki Electric Co., Ltd.). Since the insulation resistance exceeded 1 MΩ, the surface of each sample showed insulation.
Next, the thermal conductivity of each of the five samples was measured by a thermal conductivity measuring device in the same manner as in Example 1. Since the thermal conductivity was around 1800 W / mK, all the samples had a thermal conductivity close to that of graphene, which was 4.3 times the thermal conductivity of silver.
Even if each of the five prepared samples was dropped from a height of 2 m, no damage was observed in the samples, so it was found that the graphenes were bonded to each other with a constant bonding force.

実施例4
本実施例は、実施例3で作成したグラフェン接合体を、フェノール樹脂の板に圧着する。
最初に、実施例3で用いた安息香酸アルミニウムを、メタノールに5重量%として分散した。
次に、実施例3において、10個の容器のうち、残った5つの容器の各々に、安息香酸アルミニウムの5重量%のメタノール分散液の同量を充填した。さらに、各々の容器に、0.2Gからなる3方向の振動加速度を繰り返し加え、この後、全ての容器を大気雰囲気の熱処理装置に配置し、熱処理装置を310℃まで昇温し、310℃に1分間放置した。さらに、熱処理装置から5つの新たな容器を取り出し、実施例3で用いた治具を、各々の容器に形成された試料の上に載せ、さらに、治具に50kgの圧縮荷重を加え、10分間放置した。さらに、治具を取り除いたのち、5つの容器の各々の底面に1Gに相当する衝撃力を加えた。この後、各々の容器から5枚の試料を取り出した。
次に、5枚の試料の各々を、5cm×10cm×1cmのフェノール樹脂の板の上に載せ、さらに、試料の上に前記した治具を載せ、治具に加える圧縮荷重を60kgに増やし、10分間放置し、実施例4の試料を作成した。
作成した試料の各々を、1.5mの高さから5回ずつ落下させたが、フェノール樹脂の板に形成された膜が剥がれなかった。このため、一定の接合力でグラフェン接合体がフェノール樹脂の板に接合されていることが分かった。
Example 4
In this embodiment, the graphene junction prepared in Example 3 is pressure-bonded to a phenol resin plate.
First, the aluminum benzoate used in Example 3 was dispersed in methanol in an amount of 5% by weight.
Next, in Example 3, each of the remaining 5 containers out of the 10 containers was filled with the same amount of 5% by weight methanol dispersion of aluminum benzoate. Further, vibration acceleration in three directions consisting of 0.2 G is repeatedly applied to each container, and then all the containers are placed in a heat treatment apparatus in an air atmosphere, and the heat treatment apparatus is heated to 310 ° C. to 310 ° C. It was left for 1 minute. Further, five new containers were taken out from the heat treatment apparatus, the jig used in Example 3 was placed on the sample formed in each container, and a compressive load of 50 kg was further applied to the jig for 10 minutes. I left it. Further, after removing the jig, an impact force corresponding to 1 G was applied to the bottom surface of each of the five containers. After this, 5 samples were taken out from each container.
Next, each of the five samples was placed on a 5 cm × 10 cm × 1 cm phenol resin plate, and the above-mentioned jig was placed on the sample, and the compressive load applied to the jig was increased to 60 kg. The sample was left for 10 minutes to prepare a sample of Example 4.
Each of the prepared samples was dropped 5 times from a height of 1.5 m, but the film formed on the phenol resin plate did not peel off. Therefore, it was found that the graphene bond was bonded to the phenol resin plate with a constant bonding force.

グラフェン同士を、銀微粒子の集まりと、酸化アルミニウムの微粒子の集まりで接合した実施例を説明した。銀微粒子のみならず、熱伝導性と導電性との双方に優れる銅、金、アルミニウムからなる微粒子の集まりについても、熱分解に依って銅、金ないしはアルミニウムを析出する金属化合物を用いることで、グラフェン同士を銅、金ないしはアルミニウムの微粒子の集まりで接合することができる。
また、グラフェン接合体を圧着する事例は、フェノール樹脂の板に限定されない。つまり、グラフェン接合体を基材ないしは部品の表面に熱圧着させるため、グラフェン接合体を熱圧着する際に加える圧縮応力によって、基材ないしは部品が破断しない限り、グラフェン接合体を圧着する基材ないしは部品の制約はない。
An example in which graphenes are joined by a collection of silver fine particles and a collection of aluminum oxide fine particles has been described. Not only silver fine particles, but also a collection of fine particles made of copper, gold, and aluminum, which are excellent in both thermal conductivity and conductivity, can be obtained by using a metal compound that precipitates copper, gold, or aluminum by thermal decomposition. Graphenes can be joined together by a collection of fine particles of copper, gold or aluminum.
Further, the case of crimping the graphene joint is not limited to the phenol resin plate. That is, in order to thermocompression-bond the graphene joint to the surface of the base material or parts, the base material or parts that crimp the graphene joints unless the base material or parts are broken by the compressive stress applied when the graphene joint is thermocompression-bonded. There are no restrictions on parts.

1 グラフェン 2 銀微粒子
1 graphene 2 silver fine particles

Claims (7)

グラフェン同士が金属ないしは金属酸化物の微粒子の集まりを介して重なり合って接合したグラフェン接合体を製造する製造方法は、
熱分解で金属ないしは金属酸化物を析出する第一の性質と、メタノールに分散するがメタノールに溶解しない第二の性質を兼備する金属化合物を、メタノールに分散する重量割合が1%以下になるようにメタノールに分散し、該金属化合物のメタノール分散液を容器に充填する第一の工程と、
2枚の平行平板電極からなる平行平板電極対を構成する一方の平行平板電極の表面に、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを平坦に引き詰め、該一方の平行平板電極を、前記容器に充填された前記金属化合物のメタノール分散液中に浸漬させる、さらに、前記平行平板電極対を構成する他方の平行平板電極を前記一方の平行平板電極の上に重ね合わせ、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを介して、前記2枚の平行平板電極が離間した平行平板電極対を構成し、該平行平板電極対を前記金属化合物のメタノール分散液中に浸漬させる、この後、該平行平板電極対の間隙に直流の電位差を印加し、該電位差の大きさを前記平行平板電極対の間隙の大きさで割った値に相当する電界が、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりに印加され、該電界の印加によって、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する基底面の層間結合の全てが同時に破壊され、前記平行平板電極対の間隙に、前記基底面に相当するグラフェンの集まりが析出する工程からなる第二の工程と、
前記平行平板電極対の間隙を拡大し、さらに、該平行平板電極対を前記金属化合物のメタノール分散液中で傾斜させ、この後、前記容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェンの集まりを、前記平行平板電極対の間隙から前記金属化合物のメタノール分散液中に移動させる、この後、前記容器から前記2枚の平行平板電極を取り出す工程からなる第三の工程と、
前記容器内の金属化合物のメタノール分散液中にホモジナイザー装置を配置させ、該ホモジナイザー装置を前記金属化合物のメタノール分散液中で稼働させ、該金属化合物のメタノール分散液を介して前記グラフェンの集まりに衝撃を繰り返し加え、該グラフェンの集まりを、前記金属化合物のメタノール分散液中で1枚1枚のグラフェンに分離させる、この後、前記ホモジナイザー装置を前記容器から取り出す工程からなる第四の工程と、
前記容器内のグラフェンの集まりの一部を、製造するグラフェン接合体に必要なグラフェンンの量として、前記製造するグラフェン接合体の形状を底面の形状として持つ新たな容器に移し、さらに、該新たな容器に前後、左右、上下の3方向の振動を繰り返し加え、前記グラフェン同士が前記金属化合物のメタノール分散液を介して重なり合った該グラフェンの集まりを、前記新たな容器の底面に該底面の形状として形成する工程からなる第五の工程と、
前記新たな容器を昇温して前記金属化合物のメタノール分散液を構成するメタノールを気化させ、前記グラフェン同士が重なり合った該グラフェン同士の間隙と、前記グラフェン同士が重なり合った該グラフェンの集まりの表面とに、前記金属化合物の微細結晶の集まりを析出させる第六の工程と、
前記グラフェン同士が重なり合った該グラフェンの集まりの上方の平面を均等に圧縮する圧縮応力を、該グラフェンの集まりの上方の平面に加え、前記グラフェン同士が重なり合った該グラフェン同士の間隙と、前記グラフェン同士が重なり合った該グラフェンの集まりの表面とに析出した前記金属化合物の微細結晶を、さらに微細な結晶に粉砕する第七の工程と、
前記グラフェンの集まりの上方の平面に圧縮応力を加えながら、前記新たな容器を前記金属化合物が熱分解する温度に昇温し、前記粉砕した金属化合物の微細な結晶を熱分解させ、前記グラフェン同士が重なり合った該グラフェン同士の間隙と、前記グラフェン同士が重なり合った該グラフェンの集まりの表面とに、前記粉砕した金属化合物の微細な結晶の大きさに応じた金属ないしは金属酸化物の微粒子の集まりを析出させる第八の工程と、
前記金属化合物の微細結晶をさらに微細な結晶に粉砕する際に加えた圧縮応力より大きな圧縮応力を、前記グラフェン同士が重なり合った該グラフェンの集まりの上方の平面に均等に加え、前記グラフェンと接触する前記金属ないしは前記金属酸化物の微粒子の集まりを、該グラフェンに摩擦熱で接合させるとともに、隣接する前記金属ないしは前記金属酸化物の微粒子同士を摩擦熱で接合させる、これによって、前記摩擦熱で接合した前記金属ないしは前記金属酸化物の微粒子の集まりを介して、前記グラフェン同士が接合され、該グラフェン同士が重なり合って接合したグラフェン接合体が、前記新たな容器の底面に該底面の形状として形成される第九の工程と、
前記新たな容器に衝撃力を加え、前記グラフェン接合体を前記新たな容器から引き剥がし、該グラフェン接合体を前記新たな容器から取り出す第十の工程とからなり、
これら10の工程からなる全ての工程を連続して実施することで、グラフェン同士が金属ないしは金属酸化物の微粒子の集まりを介して重なり合って接合したグラフェン接合体を製造するグラフェン接合体の製造方法。
A manufacturing method for producing a graphene conjugate in which graphenes are bonded to each other by overlapping through a collection of fine particles of metal or metal oxide is
A metal compound having both the first property of precipitating a metal or metal oxide by thermal decomposition and the second property of being dispersed in methanol but not being dissolved in methanol is dispersed in methanol so that the weight ratio is 1% or less. In the first step of dispersing in methanol and filling a container with a methanol dispersion of the metal compound,
A collection of scaly graphite particles or a collection of massive graphite particles is flatly attracted to the surface of one parallel plate electrode forming a parallel plate electrode pair consisting of two parallel plate electrodes, and the one parallel plate electrode is attached. Immersed in a methanol dispersion of the metal compound filled in the container, and further superimposing the other parallel plate electrode constituting the parallel plate electrode pair on the one parallel plate electrode, the scaly graphite A parallel plate electrode pair is formed by separating the two parallel plate electrodes through a collection of particles or a collection of the massive graphite particles, and the parallel plate electrode pair is immersed in a methanol dispersion of the metal compound. After that, a DC potential difference is applied to the gap between the parallel plate electrode pairs, and an electric field corresponding to the value obtained by dividing the magnitude of the potential difference by the size of the gap between the parallel plate electrode pairs is generated by the scaly graphite particles. It is applied to the aggregate or the aggregate of the massive graphite particles, and by applying the electric field, all the interlayer bonds of the basal plane forming the scaly graphite particles or the massive graphite particles are simultaneously destroyed, and the gap between the parallel plate electrode pairs. In addition, a second step consisting of a step of precipitating a collection of graphenes corresponding to the base surface, and
The gap between the parallel plate electrode pairs is expanded, the parallel plate electrode pairs are further tilted in the methanol dispersion of the metal compound, and then vibrations in three directions of left and right, front and back, and up and down are repeatedly applied to the container. A third step consisting of moving the aggregate of graphene from the gap between the pair of parallel plate electrodes into the methanol dispersion of the metal compound, and then taking out the two parallel plate electrodes from the container. ,
A homogenizer device is placed in the methanol dispersion of the metal compound in the container, the homogenizer device is operated in the methanol dispersion of the metal compound, and the aggregate of graphene is impacted via the methanol dispersion of the metal compound. Is repeatedly added to separate the aggregate of graphene into individual graphenes in a methanol dispersion of the metal compound, followed by a fourth step consisting of a step of removing the homogenizer device from the container.
A part of the graphene aggregate in the container is transferred to a new container having the shape of the graphene joint to be manufactured as the shape of the bottom surface as the amount of graphene required for the graphene joint to be manufactured, and further, the new container is used. The graphene is repeatedly vibrated in three directions of front-back, left-right, and up-down to the container, and a collection of graphene in which the graphenes are overlapped with each other via a methanol dispersion of the metal compound is formed on the bottom surface of the new container. The fifth step, which consists of the steps of forming as
The temperature of the new container is raised to vaporize the methanol constituting the methanol dispersion of the metal compound, and the gaps between the graphenes on which the graphenes overlap and the surface of the aggregate of graphenes on which the graphenes overlap each other are formed. In addition, the sixth step of precipitating a collection of fine crystals of the metal compound and
A compressive stress that evenly compresses the plane above the graphene clusters on which the graphenes overlap is applied to the plane above the graphene clusters, and the gaps between the graphenes on which the graphenes overlap and the graphenes overlap. A seventh step of pulverizing the fine crystals of the metal compound deposited on the surface of the aggregate of graphene on which the graphenes are overlapped into finer crystals.
While applying compressive stress to the plane above the aggregate of graphenes, the new container is heated to a temperature at which the metal compounds are thermally decomposed, and the fine crystals of the crushed metal compounds are thermally decomposed to each other. On the gaps between the graphenes on which the graphenes overlap and on the surface of the aggregates of the graphenes on which the graphenes overlap, a collection of fine particles of metal or metal oxide according to the size of fine crystals of the crushed metal compound is formed. Eighth step of precipitation and
A compressive stress larger than the compressive stress applied when crushing the fine crystals of the metal compound into finer crystals is evenly applied to the plane above the group of graphenes on which the graphenes overlap, and comes into contact with the graphenes. A collection of fine particles of the metal or the metal oxide is bonded to the graphene by frictional heat, and adjacent fine particles of the metal or the metal oxide are bonded to each other by frictional heat, whereby the metal or metal oxide fine particles are bonded by the frictional heat. The graphenes are bonded to each other through a collection of fine particles of the metal or the metal oxide, and a graphene bonded body in which the graphenes are overlapped and bonded is formed on the bottom surface of the new container as the shape of the bottom surface. Ninth step and
It comprises a tenth step of applying an impact force to the new container, peeling the graphene junction from the new container, and removing the graphene junction from the new container.
A method for producing a graphene junction, which comprises continuously carrying out all the steps including these 10 steps to produce a graphene conjugate in which graphenes are bonded to each other by being overlapped with each other via a collection of fine particles of metal or metal oxide.
請求項1に記載した方法に従って製造したグラフェン接合体を基材ないしは部品に圧着する方法は、
請求項1に記載した方法に従って容器内にグラフェン接合体を形成し、該容器に衝撃力を加え、前記グラフェン接合体を前記容器から引き剥がす第一の工程と、
請求項1に記載した金属化合物を、メタノール中に分散する重量割合が10%より少ない量としてメタノールに分散し、該金属化合物のメタノール分散液を前記容器に充填する第二の工程と、
前記容器に前後、左右、上下の3方向の振動を繰り返し加え、前記グラフェン接合体の表面を前記メタノール分散液で覆う第三の工程と、
前記容器を前記金属化合物が熱分解する温度に昇温し、金属ないしは金属酸化物からなる40−60nmの大きさからなる粒状の微粒子の集まりを析出させ、該微粒子の集まりで前記グラフェン接合体の表面を覆う第四の工程と、
前記容器内の前記グラフェン接合体の上方の平面を均等に圧縮し、隣接する前記金属ないしは前記金属酸化物からなる微粒子同士が摩擦熱で接合するとともに、前記グラフェン接合体と接触する前記金属ないしは前記金属酸化物からなる微粒子が、該グラフェン接合体に摩擦熱で接合し、前記金属ないしは前記金属酸化物からなる微粒子同士が接合した該微粒子の集まりが、前記グラフェン接合体に接合した新たなグラフェン接合体を前記容器内に製造する第五の工程と、
前記容器に衝撃力を加え、前記新たなグラフェン接合体を前記容器から引き剥がし、該新たなグラフェン接合体を前記容器から取り出し、該新たなグラフェン接合体を基材ないしは部品の表面に配置させる第六の工程と、
前記新たなグラフェン接合体の上方の表面を均等に圧縮し、該新たなグラフェン接合体を前記基材ないしは前記部品に圧着させる第七の工程とからなり、
これら7つの工程からなる全ての工程を連続して実施することで、基材ないしは部品の表面にグラフェン接合体が圧着する、請求項1に記載した方法に従って製造したグラフェン接合体を基材ないしは部品に圧着する方法。
A method of crimping a graphene joint produced according to the method according to claim 1 to a base material or a component is as follows.
A first step of forming a graphene joint in a container according to the method according to claim 1, applying an impact force to the container, and peeling the graphene joint from the container.
A second step of dispersing the metal compound according to claim 1 in methanol with a weight ratio of less than 10% dispersed in methanol, and filling the container with a methanol dispersion of the metal compound.
A third step of repeatedly applying vibrations in three directions of front-back, left-right, and up-down to the container to cover the surface of the graphene conjugate with the methanol dispersion liquid.
The temperature of the container is raised to a temperature at which the metal compound is thermally decomposed, and a collection of granular fine particles having a size of 40-60 nm made of a metal or a metal oxide is precipitated. The fourth step of covering the surface and
The plane above the graphene junction in the container is evenly compressed, and the adjacent fine particles of the metal or the metal oxide are bonded to each other by frictional heat, and the metal or the metal in contact with the graphene junction is said. Fine particles made of a metal oxide are bonded to the graphene junction by frictional heat, and a group of the fine particles bonded to the metal or the fine particles made of the metal oxide are bonded to the graphene junction in a new graphene junction. The fifth step of manufacturing the body in the container,
An impact force is applied to the container, the new graphene joint is peeled off from the container, the new graphene joint is taken out from the container, and the new graphene joint is placed on the surface of a base material or a component. Six steps and
It comprises a seventh step of evenly compressing the upper surface of the new graphene junction and crimping the new graphene junction to the substrate or component.
By continuously carrying out all the steps consisting of these seven steps, the graphene joint is pressure-bonded to the surface of the base material or the part, and the graphene joint manufactured according to the method according to claim 1 is formed into the base material or the part. How to crimp to.
請求項1に記載したグラフェン接合体の製造方法において、前記熱分解で金属を析出する金属化合物が、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物であり、該金属化合物を、前記熱分解で金属を析出する金属化合物として用い、前記したグラフェン接合体の製造方法に従って、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、請求項1に記載したグラフェン接合体の製造方法。 In the method for producing a graphene conjugate according to claim 1, the metal compound that precipitates a metal by thermal decomposition is a metal compound that precipitates a metal of silver, copper, gold, or aluminum by thermal decomposition. The metal compound is used as the metal compound for precipitating a metal by the thermal decomposition, and according to the above-mentioned method for producing a graphene conjugate, through a collection of metal fine particles made of any metal of silver, copper, gold, or aluminum. The method for producing a graphene junction according to claim 1, wherein a graphene conjugate in which graphenes are overlapped and bonded to each other is produced. 請求項3に記載したグラフェン接合体の製造方法において、前記金属化合物が、無機物のイオンないしは分子からなる配位子が、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに配位結合した金属錯イオンを有する無機金属化合物からなる金属錯体であり、該無機金属化合物からなる金属錯体を、熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物として用い、前記グラフェン接合体の製造方法に従って、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、請求項3に記載したグラフェン接合体の製造方法。 In the method for producing a graphene conjugate according to claim 3, the metal compound has a ligand composed of an inorganic ion or a molecule assigned to a metal ion composed of a metal of silver, copper, gold, or aluminum. It is a metal complex composed of an inorganic metal compound having a position-bonded metal complex ion, and the metal complex composed of the inorganic metal compound is used as a metal compound that precipitates a metal of silver, copper, gold, or aluminum by thermal decomposition. According to the method for producing a graphene junction, a graphene conjugate is produced in which graphenes are overlapped and bonded to each other through a collection of metal fine particles made of any of silver, copper, gold, or aluminum. The method for producing a graphene conjugate described in 1. 請求項3に記載したグラフェン接合体の製造方法において、前記金属化合物が、カルボン酸のカルボキシル基を構成する酸素イオンが、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属イオンに共有結合する第一の特徴と、前記カルボン酸が飽和脂肪酸からなる第二の特徴とを兼備するカルボン酸金属化合物であり、該カルボン酸金属化合物を熱分解で銀、銅、金、ないしはアルミニウムのいずれかの金属を析出する金属化合物として用い、前記グラフェン接合体の製造方法に従って、銀、銅、金、ないしはアルミニウムのいずれかの金属からなる金属微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、請求項3に記載したグラフェン接合体の製造方法。 In the method for producing a graphene conjugate according to claim 3, the metal compound shares the oxygen ion constituting the carboxyl group of the carboxylic acid with the metal ion composed of any metal of silver, copper, gold, or aluminum. It is a carboxylic acid metal compound having both the first characteristic of binding and the second characteristic of the carboxylic acid being a saturated fatty acid, and the carboxylic acid metal compound is thermally decomposed to any of silver, copper, gold, or aluminum. Graphene is used as a metal compound that precipitates the metal, and graphenes are bonded to each other by overlapping with each other through a collection of metal fine particles made of any of silver, copper, gold, or aluminum according to the method for producing a graphene conjugate. The method for producing a graphene conjugate according to claim 3, wherein the conjugate is produced. 請求項1に記載したグラフェン接合体の製造方法において、前記熱分解で金属酸化物を析出する金属化合物が、熱分解で酸化アルミニウムを析出する金属化合物であり、該金属化合物を、前記熱分解で金属酸化物を析出する金属化合物として用い、前記したグラフェン接合体の製造方法に従って、酸化アルミニウムからなる微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、請求項1に記載したグラフェン接合体を製造する方法。 In the method for producing a graphene conjugate according to claim 1, the metal compound that precipitates a metal oxide by thermal decomposition is a metal compound that precipitates aluminum oxide by thermal decomposition, and the metal compound is subjected to the thermal decomposition. The first aspect of claim 1, wherein a graphene conjugate is produced in which graphenes are overlapped and bonded to each other via a collection of fine particles made of aluminum oxide according to the method for producing a graphene conjugate described above, which is used as a metal compound that precipitates a metal oxide. A method for producing a graphene conjugate. 請求項6に記載したグラフェン接合体の製造方法において、前記金属化合物が、カルボキシル基を構成する酸素イオンがアルミニウムイオンに配位結合したカルボン酸アルミニウム化合物であり、該カルボン酸アルミニウム化合物を熱分解で酸化アルミニウムを析出する金属化合物として用い、前記グラフェン接合体の製造方法に従って、酸化アルミニウムからなる微粒子の集まりを介してグラフェン同士が重なり合って接合したグラフェン接合体を製造する、請求項6に記載したグラフェン接合体の製造方法。
In the method for producing a graphene conjugate according to claim 6, the metal compound is an aluminum carboxylate compound in which oxygen ions constituting a carboxyl group are coordinated and bonded to aluminum ions, and the aluminum carboxylate compound is thermally decomposed. The graphene according to claim 6, wherein an aluminum oxide is used as a metal compound for precipitating, and according to the method for producing a graphene conjugate, a graphene conjugate in which graphenes are overlapped and bonded to each other via a collection of fine particles made of aluminum oxide is produced. Method of manufacturing a joint.
JP2020036311A 2020-03-03 2020-03-03 Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide Pending JP2021138566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020036311A JP2021138566A (en) 2020-03-03 2020-03-03 Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020036311A JP2021138566A (en) 2020-03-03 2020-03-03 Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide

Publications (1)

Publication Number Publication Date
JP2021138566A true JP2021138566A (en) 2021-09-16

Family

ID=77667691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020036311A Pending JP2021138566A (en) 2020-03-03 2020-03-03 Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide

Country Status (1)

Country Link
JP (1) JP2021138566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117801735A (en) * 2024-03-01 2024-04-02 广州昊毅新材料科技股份有限公司 Low-temperature pressure-sensitive lithium battery negative electrode adhesive material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117801735A (en) * 2024-03-01 2024-04-02 广州昊毅新材料科技股份有限公司 Low-temperature pressure-sensitive lithium battery negative electrode adhesive material and preparation method thereof
CN117801735B (en) * 2024-03-01 2024-05-24 广州昊毅新材料科技股份有限公司 Low-temperature pressure-sensitive lithium battery negative electrode adhesive material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102140147B1 (en) Heterogeneous laminate comprising graphene, preparing method thereof, thermoelectric material, thermoelectric module and thermoelectric apparatus comprising same
Markova-Deneva Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt, and nickel synthesized through borohydride reduction method
Kubozono et al. Recent progress on carbon-based superconductors
Li et al. Low-temperature Cu-to-Cu bonding using silver nanoparticles stabilised by saturated dodecanoic acid
JP2021138566A (en) Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide
TW201515994A (en) Nano-graphene hollow particles and manufacturing method thereof
Kieslich et al. Solution synthesis of nanoparticular binary transition metal antimonides
Barry et al. A general and flexible synthesis of transition-metal polyphosphides via PCl3 elimination
Li et al. The synthesis and characterization of h-BN nanosheets with high yield and crystallinity
JP2015161027A5 (en)
JP2015161027A (en) Production of scaly base material covered with the assembly of fine particle and production method therefor
JP2020186144A (en) Method for manufacturing graphene joined body in which flat faces of graphene are bonded together by assembly of metal fine particles composed of any metal of silver, copper, gold or aluminum
JP7195513B2 (en) A method of producing a graphene sheet consisting of a collection of graphene in which flat planes of graphene are overlapped and joined, and a method of covering the surface of the graphene sheet with a collection of fine particles of metal or insulating metal oxide.
JP2020200210A5 (en)
JP2024012241A (en) Method for manufacturing circuit component comprising using graphene assembly made by frictionally compressing graphenes with one another as circuit board, frictionally compressing insulating layer to surface of circuit board, and frictionally compressing conductive layer to surface of insulating layer
Homkar et al. Few-Layer SrRu2O6 Nanosheets as Non-Van der Waals Honeycomb Antiferromagnets: Implications for Two-Dimensional Spintronics
JP7023035B2 (en) A method for producing an insulating film having an insulating film having the shape of the bottom surface on the bottom surface of a container as an insulating film composed of a collection of the flat powders in which the flat surfaces of the insulating flat powder are overlapped with each other.
JP2021107313A (en) Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component
JP2019200867A (en) Production method of conductive film where aspect ratio and shape can be freely changed
JP2022113591A (en) Method for producing aggregation of scaly graphite particles in which aggregates of scaly graphite particles are fractured with regard to interlayer bonding in basal surfaces of graphite crystals, and basal surfaces of fractured scaly graphite particles are bonded to each other via a cluster of metal-bonded metal nanoparticles
JP2015056392A (en) Production of electroconductive paste material and production method
JP2023166917A (en) Method for stacking graphene sheets, pressing and joining the stacked graphene group by friction to make graphene joint, and then pressing and welding the graphene joint by friction onto surface of substrate or component
JP2022120727A (en) Method for producing graphite sheet consisting of aggregates of flattened graphite powders in which interlayer bonds of basal surfaces of graphite crystals that form scale-like graphite particles are broken to form flattened powders having small thickness, and flat surfaces of the flattened powders are bonded together to sheet-like shape
JP2020125225A (en) Method for manufacturing graphene bonded body formed by producing suspension in which a group of graphene individually separated is dispersed in alcohol and using the suspension to bond flat surfaces of graphenes with each other
JP2019182726A (en) Production method of graphene conjugate capable of freely changeable each of thickness, surface area and shape