JP2015161027A - Production of scaly base material covered with the assembly of fine particle and production method therefor - Google Patents

Production of scaly base material covered with the assembly of fine particle and production method therefor Download PDF

Info

Publication number
JP2015161027A
JP2015161027A JP2014054081A JP2014054081A JP2015161027A JP 2015161027 A JP2015161027 A JP 2015161027A JP 2014054081 A JP2014054081 A JP 2014054081A JP 2014054081 A JP2014054081 A JP 2014054081A JP 2015161027 A JP2015161027 A JP 2015161027A
Authority
JP
Japan
Prior art keywords
fine particles
metal
scaly
collection
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014054081A
Other languages
Japanese (ja)
Other versions
JP6395248B2 (en
JP2015161027A5 (en
Inventor
小林 博
Hiroshi Kobayashi
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014054081A priority Critical patent/JP6395248B2/en
Publication of JP2015161027A publication Critical patent/JP2015161027A/en
Publication of JP2015161027A5 publication Critical patent/JP2015161027A5/ja
Application granted granted Critical
Publication of JP6395248B2 publication Critical patent/JP6395248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for inexpensively producing a coupled scaly base material assembly or scaly base material, in which each scaly base material of various materials such as glass, metal oxide and metal is covered with the fine particles of metal or metal oxide, and enough in covering, electric conductivity and thermal conductivity.SOLUTION: Provided is a method for producing an assembly of scaly base materials in which the scaly base materials are covered with an assembly of metal fine particles, and further, the scaly base materials are coupled via the assembly of the metal fine particles by pouring scaly base materials into an alcoholic dispersion of a metallic compound in which metals are precipitated by thermal decomposition to prepare a suspension, vaporizing alcohol, thus obtaining scaly base materials covered with the metallic compounds and next performing heat treatment by which the metallic compounds are thermally decomposed.

Description

本発明は、鱗片状基材を少なくとも一種類の金属化合物で覆い、この鱗片状基材を熱処理して金属化合物を熱分解し、金属、合金、複合金属ないしは金属酸化物の少なくとも一種類の材質からなる微粒子の集まりで鱗片状基材を覆い、微粒子の集まりを介して結合された鱗片状基材の集まり、ないしは、微粒子集まりで覆われた鱗片状基材を製造する。なお、本発明における鱗片状基材はフレーク状の微細な粉体であって、炭素などの無機物、ガラス、マイカ、アルミナ、シリカ、酸化鉄などの金属酸化物、アルミ、銅、錫、鉄、ニッケル、銀、金などの金属、これらの金属を含む合金などの様々な材質からなる。また、本発明における微粒子とは、粒子の大きさが10nm〜100nmの範囲に入る微粒子をいう。  The present invention covers a scaly substrate with at least one kind of metal compound, heat-treats the scaly substrate and thermally decomposes the metal compound, and at least one material of metal, alloy, composite metal or metal oxide A scaly substrate is covered with a collection of fine particles made of the above, and a scaly substrate that is bonded through a collection of fine particles or covered with a collection of fine particles is produced. In addition, the scale-like base material in the present invention is a flake-like fine powder, and is an inorganic substance such as carbon, glass, mica, alumina, silica, metal oxide such as iron oxide, aluminum, copper, tin, iron, It consists of various materials, such as metals, such as nickel, silver, and gold, and the alloy containing these metals. Further, the fine particles in the present invention refer to fine particles whose particle size falls within the range of 10 nm to 100 nm.

金属ないしは金属酸化物で被覆された鱗片状基材の用途に、自動車の車体などに用いられている塗料用の顔料がある。つまり、観察角度によって明度が変化し、ハイライト(正反射光近傍)では干渉色を発現する塗色は、微妙な色変化をするメタリック塗色として注目されている。例えば、特許文献1には、ガラスフレークないしは珪砂フレークの表面に金属酸化物の被膜を形成した塗料用顔料が記載されている。  As a scale-like substrate coated with a metal or a metal oxide, there is a pigment for paint used in the body of an automobile. In other words, the paint color that changes in lightness depending on the observation angle and expresses the interference color in the highlight (near the specular reflection light) has been attracting attention as a metallic paint color that changes slightly. For example, Patent Document 1 describes a pigment for paint in which a metal oxide film is formed on the surface of glass flakes or silica sand flakes.

また、金属で被覆された鱗片状基材の用途に、導電性ペーストに用いられている導電性フィラーがある。つまり、積層コンデンサの内部電極、回路基板の導体パターン、太陽電池の基板の電極や回路、電磁波を遮蔽するシートなどの導電体を形成するために、金属粉などの導電性の粉体を樹脂などの有機成分中に分散させた導電性ペーストが使用されている。一般に、導電性ペーストは、焼成型の導電性ペーストと樹脂硬化型の導電性ペーストに分類される。焼成型の導電性ペーストでは、焼成により導体を形成するが、樹脂硬化型の導電性ペーストでは、樹脂の体積収縮により金属粉同士が接触して電気的に導通する。そのため、樹脂硬化型の導電性ペーストでは、接触面積が大きいフレーク状の金属粉が使用される。しかし、銀などの金属が高価であるため、使用する金属量を少なくしても導電性が確保できる導電性ペーストが望まれる。このような導電性ペーストとして、ガラスフレークの表面を、無電解メッキにより銀の導電性物質で被覆した導電性粉体と、液状樹脂組成物とからなる導電性組成物が提案されている。例えば、特許文献2には、フレーク状硝子粉の表面を銀で被覆し、この銀で被覆されたフレーク状硝子粉の表面に表面処理剤を付着させることにより、使用する銀の量を少なくした導電性ペーストが開示されている。  Moreover, there exists the conductive filler used for the conductive paste in the use of the scale-like base material coat | covered with the metal. In other words, conductive powder such as metal powder is used to form conductors such as internal electrodes of multilayer capacitors, conductor patterns of circuit boards, solar cell board electrodes and circuits, and sheets that shield electromagnetic waves. A conductive paste dispersed in the organic component is used. Generally, the conductive paste is classified into a fired conductive paste and a resin-cured conductive paste. In the case of the firing type conductive paste, the conductor is formed by firing, but in the case of the resin curing type conductive paste, the metal powders are brought into electrical contact with each other due to the volume shrinkage of the resin. Therefore, a flaky metal powder having a large contact area is used in the resin curable conductive paste. However, since metals such as silver are expensive, a conductive paste that can ensure conductivity even if the amount of metal used is reduced is desired. As such a conductive paste, a conductive composition comprising a conductive powder obtained by coating the surface of glass flakes with a silver conductive material by electroless plating and a liquid resin composition has been proposed. For example, in Patent Document 2, the amount of silver used is reduced by coating the surface of the flaky glass powder with silver and attaching a surface treatment agent to the surface of the flaky glass powder coated with silver. A conductive paste is disclosed.

さらに、フレーク状の銀粉はフレーク状の銅粉に比べ、マイグレーションが起こりやすく、ハンダ食われ性が劣るため、これらの欠点を克服する手段として銀被覆銅粉がある。例えば、特許文献3には、銀イオンと金属銅との置換反応を、銀イオンが存在する有機溶媒含有溶液中好ましくは有機溶媒相と水溶媒相からなるエマルジョン中で起こさせることにより、銅粉に銀被覆処理を施す際、銅粉の粒子表面に付着している疎水性物質や界面活性剤を除去するための脱脂や洗浄の工程を省略し、銀被覆を安定して形成する銀被覆処理技術が開示されている。また、特許文献4にはフレーク状の銅粉を金で被覆する技術が、特許文献5にはフレーク状のニッケル粉をパラジウムで被覆する技術が開示されている。  Furthermore, since the flaky silver powder is more likely to migrate and is less solderable than the flaky copper powder, there is silver-coated copper powder as a means of overcoming these drawbacks. For example, Patent Document 3 discloses that a copper powder is produced by causing a substitution reaction between silver ions and copper metal in an organic solvent-containing solution in which silver ions are present, preferably in an emulsion composed of an organic solvent phase and an aqueous solvent phase. Silver coating treatment that stably forms a silver coating by omitting the degreasing and washing steps to remove hydrophobic substances and surfactants adhering to the surface of the copper powder particles. Technology is disclosed. Patent Document 4 discloses a technique for coating flaky copper powder with gold, and Patent Document 5 discloses a technique for coating flaky nickel powder with palladium.

鱗片状基材の表面を金属で被覆するにあたって、真空蒸着法やスパッタリング法などのPVD法(Physical Vapor Deposition法、物理気相成長法)やCVD法(Chemical Vapor Deposition法、化学気相成長法)を用いる場合は、被膜形成の費用が極めて高価で、表面全体を満遍なく被覆するには、鱗片状基材を真空状態で浮遊させて長時間処理する必要があるため、安価な製法である無電解メッキ法で金属被膜を形成している。無電解メッキ法による金属被膜のメッキ層と鱗片状基材との結合力は、鱗片状基材が金属である場合は金属結合に基づき、鱗片状基材が非金属である場合はファンデルワールス力に基づく。メッキ層が金属からなる基材と金属結合するには、メッキ面から全ての酸化物、水分および汚染物質を完全に除去し、メッキ面を純粋表面ないしは清浄表面にしなければならないが、現実的には純粋表面ないしは清浄表面を得ることは困難である。このため、純粋表面ないしは清浄表面に近づける表面処理を行うほど、メッキ面の前処理費用がかさむ。いっぽう、酸化物、水分および汚染物質の除去が不完全であるほど、メッキ層は基材の表面から剥がれ易い。さらに、金属の標準電極電位が負の大きな値を持つジルコニウム、アルミニウム、チタン、マグネシウムなどの金属を無電解メッキで析出することは困難である。また、基材が非金属である場合は、メッキ層が結合力の弱いファンデルワールス力で結合するため、メッキ層に機械的応力ないしは熱的応力が加わるとメッキ層が容易に剥離する。
また、鱗片状の基材の表面を金属酸化物で被覆する方法は、金属アルコキシドを原料として用い、金属アルコキシドを加水分解して縮重合させてゾルとし、さらにゾルの水分を取り除いてゲルとし、このゲルを熱処理して金属酸化物の微粒子を析出させるゾル・ゲル法が用いられている。析出した金属酸化物の微粒子が堆積して金属酸化物の被膜を形成するため、析出した金属酸化物の微粒子同士が互いに結合せず、金属酸化物の被膜に機械的応力ないしは熱的応力が加わると、金属酸化物の微粒子は容易に剥離する。
When coating the surface of a scaly substrate with a metal, PVD methods (Physical Vapor Deposition method, physical vapor deposition method) such as vacuum deposition method or sputtering method, CVD methods (Chemical Vapor Deposition method, chemical vapor deposition method) The cost of film formation is extremely high, and in order to cover the entire surface evenly, it is necessary to float the scaly substrate in a vacuum state and treat it for a long time. A metal film is formed by a plating method. The bond strength between the electroless plating layer and the scaly substrate is based on metal bonding when the scaly substrate is metal, and van der Waals when the scaly substrate is non-metallic. Based on power. In order for the plating layer to be metal-bonded to the metal substrate, all oxides, moisture and contaminants must be completely removed from the plating surface, and the plating surface must be a pure or clean surface. It is difficult to obtain a pure or clean surface. For this reason, the pretreatment cost of the plating surface increases as the surface treatment is performed so as to approach a pure surface or a clean surface. On the other hand, the more incomplete removal of oxide, moisture and contaminants, the easier the plating layer will peel off from the surface of the substrate. Furthermore, it is difficult to deposit a metal such as zirconium, aluminum, titanium, magnesium, etc. having a large negative value of the standard electrode potential of the metal by electroless plating. Further, when the base material is non-metallic, the plating layer is bonded by van der Waals force having a weak bonding force. Therefore, the plating layer is easily peeled off when mechanical stress or thermal stress is applied to the plating layer.
Moreover, the method of coating the surface of the scaly substrate with a metal oxide is to use a metal alkoxide as a raw material, hydrolyze the metal alkoxide to polycondensate into a sol, and further remove the water from the sol into a gel, A sol-gel method is used in which the gel is heat-treated to precipitate metal oxide fine particles. Since the deposited metal oxide fine particles are deposited to form a metal oxide film, the deposited metal oxide fine particles are not bonded to each other, and mechanical stress or thermal stress is applied to the metal oxide film. Then, the metal oxide fine particles are easily peeled off.

特開平9−176515号公報JP-A-9-176515 特開2013−206777号公報JP 2013-206777 A 特開2006−161081号公報JP 2006-161081 A 特開平6−108102号公報JP-A-6-108102 特開平6−103816号公報JP-A-6-103816

しかしながら、微細な粉体で粒度分布を持つ鱗片状基材同士を直接結合することは困難である。このため、従来は塗料やペースト材料の製造で行われているように、バインダーとして添加した高分子材料の結合を介して鱗片状基材を結合している。しかし、高分子材料が絶縁性で非熱伝導性であるため、結合された鱗片状基材の集まりの導電性と熱伝導性が低下する。また、高分子材料は耐熱性が低いため、結合された鱗片状基材の集まりは、熱処理を伴う加工ができない。さらに、高分子材料が機械的強度に劣るため、結合された鱗片状基材は、圧縮や圧延などを伴う加工ができない。このように、高分子材料の結合を介して鱗片状基材を結合すると、高分子材料の性質が反映され、鱗片状基材が持つ固有の性質を犠牲にせざるを得ないという問題点を持つ。
また5段落で説明したように、金属被膜で覆われた鱗片状基材は、無電解メッキ法による問題点を持ち、金属酸化物で覆われた鱗片状基材は、ゾル・ゲル法による問題点を持つ。また、これらの鱗片状基材をフィラーとし、バインダーである高分子材料の結合によって、鱗片状基材を結合すると、前記したように高分子材料の性質に依る制約がもたらされる。
いっぽう、鱗片状基材は、無機物、金属酸化物、金属あるいは合金などの多種多様の材質からなり、さらに、多種多様な形状と粒度分布を有する。このため、鱗片状基材の全般について、材質や形状や粒度分布に係わらず、金属、合金、複合金属ないしは金属酸化物などの微粒子の集まりで鱗片状基材を覆うことができれば、微粒子の集まりが占める体積は、鱗片状基材の体積より著しく小さいため、鱗片状基材の性質を犠牲にすることなく、微粒子の集まりで覆われた鱗片状基材が実現でき、また、微粒子の集まりを介して鱗片状基材が結合された鱗片状基材の集まりが実現できる。さらに、熱処理や、圧縮、圧延といった熱的、機械的応力を伴う加工が可能になる。また、微粒子の材質と大きさとに基づく新たな性質を持つ。しかしながら、このような新たな試みはこれまでのところ全くない。
従って、第一に、鱗片状基材の材質や形状や粒度分布に係わらず、微粒子の集まりが鱗片状基材を覆う。第二に、安価な材料を用いて安価な製造費用で、微粒子の集まりで鱗片状基材を覆う。第三に、連続した処理で、大量の鱗片状基材が微粒子の集まりで覆われる。第四に、鱗片状基材が、微粒子を構成する金属、合金、複合金属ないしは金属酸化物などの多様な性質を持つ。第五に、微粒子同士が互いに結合し、微粒子が鱗片状基材の表面から剥がれない。これら5つの要件を兼備して微粒子の集まりが鱗片状基材を覆えば、従来における塗料用顔料や導電性フィラーが安価に製造でき、また、鱗片状基材は微粒子の性質を長期にわたって保持できる。さらに、熱処理や圧縮、圧延などの熱的、機械的応力を伴う加工が鱗片状基材に加えられる。また、金属、合金、複合金属ないしは金属酸化物などの多種多様な性質を持つ鱗片状基材が新たな用途に適応できる。本発明における解決しようとする課題は、前記した5つの要件を兼備する鱗片状基材を実現することにある。
However, it is difficult to directly bond the scaly substrates having a fine particle size distribution. For this reason, as is conventionally done in the production of paints and paste materials, the scaly substrate is bonded through the bonding of a polymer material added as a binder. However, since the polymer material is insulative and non-thermally conductive, the conductivity and thermal conductivity of the assembled scale-like base material are reduced. In addition, since the polymer material has low heat resistance, the assembled scale-like base material cannot be processed with heat treatment. Furthermore, since the polymer material is inferior in mechanical strength, the bonded scale-like substrate cannot be processed with compression or rolling. As described above, when the scaly base material is bonded through the binding of the polymer material, the properties of the polymer material are reflected, and the inherent properties of the scaly base material must be sacrificed. .
In addition, as explained in paragraph 5, the scale-like substrate covered with the metal film has a problem due to the electroless plating method, and the scale-like substrate covered with the metal oxide has a problem due to the sol-gel method. Have a point. Further, when these scaly substrates are used as fillers and the scaly substrates are bonded by bonding of a polymer material as a binder, as described above, there are restrictions depending on the properties of the polymer material.
On the other hand, the scaly substrate is made of a wide variety of materials such as inorganic substances, metal oxides, metals or alloys, and has a wide variety of shapes and particle size distributions. For this reason, if the scaly substrate can be covered with a collection of fine particles such as metal, alloy, composite metal or metal oxide, regardless of the material, shape and particle size distribution, the collection of fine particles Since the volume occupied by is significantly smaller than the volume of the flaky substrate, a flaky substrate covered with a collection of fine particles can be realized without sacrificing the properties of the flaky substrate. A group of scaly substrates to which scaly substrates are bonded can be realized. Furthermore, it is possible to perform processing with thermal and mechanical stress such as heat treatment, compression, and rolling. It also has new properties based on the material and size of the fine particles. However, so far no new attempts have been made.
Therefore, firstly, a collection of fine particles covers the scaly substrate regardless of the material, shape and particle size distribution of the scaly substrate. Secondly, the scaly substrate is covered with a collection of fine particles at a low production cost using an inexpensive material. Third, in a continuous process, a large amount of scaly substrates are covered with a collection of fine particles. Fourth, the scaly substrate has various properties such as metal, alloy, composite metal or metal oxide constituting the fine particles. Fifth, the fine particles are bonded to each other, and the fine particles are not peeled off from the surface of the scaly substrate. If a collection of fine particles covers these scaly substrates together with these five requirements, conventional paint pigments and conductive fillers can be produced at low cost, and scaly substrates can retain the properties of the fine particles over a long period of time. . Further, processing involving thermal and mechanical stress such as heat treatment, compression, and rolling is applied to the scaly substrate. In addition, scaly substrates having various properties such as metals, alloys, composite metals or metal oxides can be applied to new applications. The problem to be solved in the present invention is to realize a scaly substrate having the above five requirements.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第1特徴手段は、熱処理で金属を析出する金属化合物をアルコールに分散してアルコール分散液を作成し、該アルコール分散液に鱗片状基材の集まりを投入して懸濁液を作成し、該懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記金属化合物で覆われた処理基材を作成する、さらに、該処理基材の集まりに前記金属化合物が熱分解される熱処理を施す、これによって、前記鱗片状基材が金属微粒子の集まりで覆われるとともに、該金属微粒子の集まりを介して前記鱗片状基材が結合された鱗片状基材の集まりが製造される。  The first characteristic means for producing a scale-like substrate covered with a collection of fine particles according to the present invention is to prepare an alcohol dispersion by dispersing a metal compound that precipitates a metal by heat treatment in an alcohol, and to the alcohol dispersion. A collection of scaly substrates is added to create a suspension, and the suspension is heated to vaporize the alcohol to create a treated substrate in which the scaly substrate is covered with the metal compound. Furthermore, the group of the treated base materials is subjected to a heat treatment in which the metal compound is thermally decomposed, whereby the scaly substrate is covered with the group of metal fine particles, and the group of the metal fine particles is interposed through the group of the metal fine particles. A collection of scaly substrates combined with scaly substrates is produced.

つまり、本特徴手段に依れば、鱗片状基材が金属微粒子の集まりで覆われるとともに、金属結合した金属微粒子の集まりを介して鱗片状基材同士が結合された鱗片状基材の集まりが製造される。この鱗片状基材の集まりには、金属微粒子の集まりの性質が反映され、導電性や熱伝導性の低下や耐熱性の低下がなく、熱処理や圧縮成形や圧延加工も可能で、微粒子固有の性質を新たに持つ。例えば、鱗片状のアルミナ粉の集まりから成形体が容易に製造できる。つまり、熱処理でアルミニウムを析出するアルミニウム化合物で覆われたアルミナ粉の集まりを型に充填し、このアルミナ粉の集まりを熱処理してアルミニウム化合物を熱分解すると、アルミニウム微粒子同士の金属結合を介してアルミナ粉が結合された成形物が製造できる。この成形物は、アルミニウム微粒子の集まりでアルミナ粉が覆わるため、アルミニウム微粒子の集まりが機械的ないしは熱的応力の緩和層として作用し、セラミックス固有の性質である脆性を持たないアルミナからなる成形物が得られる。
本特徴手段では、最初に、鱗片状基材を熱処理で金属を析出する金属化合物で覆う。次に、鱗片状基材の集まりを熱処理して金属化合物を熱分解する。この際、10nm〜100nmの大きさの範囲からなる粒状の金属微粒子の集まりが一斉に析出する。金属化合物の熱分解で析出した金属は、不純物を持たない活性状態にあるため、析出した粒状の金属微粒子は互いに接触する部位で金属結合する。この結果、金属微粒子の集まりで鱗片状基材が覆われるとともに、金属微粒子の集まりを介して鱗片状基材同士が結合される。金属結合した金属微粒子は鱗片状基材から脱落せず、鱗片状基材同士の結合が破壊されない。このため、鱗片状基材の集まりに、熱処理や圧縮、圧延などの熱的、機械的応力を伴う加工を施すことができ、鱗片状基材の集まりからなる成形物や成形体などの加工品が製造できる。
いっぽう、鱗片状基材はフレーク状の微細な粉体であり、ガラス、マイカ、アルミナ、シリカ、ヘマタイトなどの金属酸化物、アルミ、銅、錫、鉄、ニッケル、銀、金などの金属、これらの金属を含む合金など多種多様な材質で構成され、さらに、フレーク状の粉体は多種多様な形状と粒度分布を形成する。本特徴手段に依れば、鱗片状基材の材質や形状や粒度分布に係わらず、金属微粒子で覆われるとともに、金属微粒子同士の金属結合を介して結合された鱗片状基材の集まりが、一度に大量に製造できる。なお、いずれの材質からなる鱗片状基材であっても、鱗片状基材は金属化合物が熱分解する温度以上の耐熱性を持つため、金属化合物の熱分解によって鱗片状基材の性質が不可逆変化することはない。
すなわち、金属化合物のアルコール分散液に、鱗片状基材の集まりを投入して懸濁液を作成し、アルコールを気化させれば、鱗片状基材の材質や形状や粒度分布に係わらず、鱗片状基材は金属化合物で均一に覆われる。なぜならば、金属化合物の粉体をアルコールに分子状態で分散し、アルコールを気化すれば、金属化合物は元の粉体に戻るからである。身近な事例を挙げれば、砂糖の粉を水に分子状態に分散し、この砂糖水を昇温して水を気化すれば、砂糖は元の粉に戻る。従って、金属化合物のアルコール分散液に、鱗片状基材の集まりを投入すれば、全ての鱗片状基材の表面はアルコール分散液と接触する。この後、アルコールを気化すれば、全ての鱗片状基材は金属化合物で均一に覆われる。
次に、この鱗片状基材の集まりを熱処理して、金属化合物を熱分解させる。鱗片状基材の表面で金属化合物の熱分解が始まると、有機物ないしは無機物と金属(分子クラスターの状態にある)とに分離し、比重が大きい金属は鱗片状基材の表面に留まり、比重が小さい有機物ないしは無機物は金属の上に移動する。さらに温度が上がると、気化熱を奪って有機物ないしは無機物が気化する。有機物ないしは無機物の気化が完了すると、金属は熱エネルギーを得て粒状の微粒子を形成して安定化し、熱分解を終える。金属微粒子の集まりが一斉に析出する際に、金属が不純物を持たない活性状態にあるため、粒状の金属微粒子は互いに接触する部位で金属結合する。この結果、鱗片状基材は金属微粒子の集まりで覆われるとともに、金属微粒子の集まりを介して鱗片状基材同士が結合される。
なお、鱗片状基材の表面に酸化物、水分および汚染物質が付着しても、アルコールが気化する際に水分と汚染物質の一部が優先して気化する。アルコールが気化した後に汚染物質が残存しても、金属化合物が熱分解する際に、汚染物質が先行して熱分解して気化する。金属化合物が熱分解した後に、酸化物と一部の汚染物質が基材の表面に残留しても、残留した酸化物と汚染物質の表面に、金属微粒子の集まりが析出する。なぜならば、残留した酸化物と汚染物質は、金属化合物の熱分解が完了する温度でも安定な物質であるからである。このため、鱗片状基材の表面の前処理が不要になり、安価な製作費用によって、金属微粒子の集まりを介して鱗片状基材が結合された鱗片状基材の集まりが製造できる。
以上に説明したように、本特徴手段に依れば、鱗片状基材の全般について、粉体の材質や形状や粒度分布に係わらず、鱗片状基材が金属微粒子の集まりで覆われるとともに、金属微粒子の集まりを介して鱗片状基材が結合した鱗片状基材の集まりが、一度に大量に製造できる。また、安価な材料である金属化合物を熱処理するだけの簡単な処理であり、さらに、鱗片状基材の前処理が不要になるため、極めて安価な製造費用で鱗片状基材の集まりが製造できる。さらに、この鱗片状基材は、金属微粒子を構成する金属の性質と、微粒子の大きさに基づく微粒子固有の性質とを有する。この結果、本特徴手段に依れば、7段落で説明した5つの要件を満たす鱗片状基材の集まりが製造される。
That is, according to the present feature means, the scaly base material is covered with a collection of metal fine particles, and the scaly base material group in which the scaly base materials are bonded to each other via a metal-bonded metal microparticle collection. Manufactured. This collection of scaly substrates reflects the nature of the collection of metal fine particles, and there is no decrease in conductivity or thermal conductivity or heat resistance, and heat treatment, compression molding or rolling can be performed. Has new properties. For example, a compact can be easily produced from a collection of scaly alumina powders. In other words, when a mold is filled with a collection of alumina powder covered with an aluminum compound that deposits aluminum by heat treatment, and the aluminum compound is thermally decomposed by heat treatment of the alumina powder collection, alumina is bonded via a metal bond between the aluminum fine particles. A molded product in which powder is combined can be produced. In this molded product, alumina powder is covered with a collection of aluminum fine particles, so that the collection of aluminum fine particles acts as a mechanical or thermal stress relaxation layer, and the molded product is made of alumina that does not have brittleness, which is a characteristic of ceramics. Is obtained.
In this feature means, first, the scaly substrate is covered with a metal compound that deposits metal by heat treatment. Next, the collection of scaly substrates is heat treated to thermally decompose the metal compound. At this time, a collection of granular metal fine particles having a size range of 10 nm to 100 nm is deposited all at once. Since the metal precipitated by the thermal decomposition of the metal compound is in an active state having no impurities, the precipitated granular metal fine particles are metal-bonded at a site where they are in contact with each other. As a result, the scaly substrates are covered with the collection of metal fine particles, and the scaly substrates are bonded to each other through the collection of metal fine particles. Metal-bonded metal fine particles do not fall off from the scaly substrates, and the bonds between the scaly substrates are not broken. For this reason, it is possible to perform processing with thermal and mechanical stress such as heat treatment, compression, rolling, etc. on a collection of scaly substrates, and processed products such as molded products and compacts composed of a collection of scaly substrates. Can be manufactured.
On the other hand, the flaky substrate is a flake-like fine powder, such as metal oxides such as glass, mica, alumina, silica, and hematite, metals such as aluminum, copper, tin, iron, nickel, silver, and gold, these The flake-shaped powder forms a wide variety of shapes and particle size distributions. According to this feature means, regardless of the material, shape and particle size distribution of the scaly substrate, a collection of scaly substrates covered with metal fine particles and bonded through metal bonds between the metal fine particles, Can be manufactured in large quantities at once. In addition, even if it is a scale-like base material made of any material, the scale-like base material has heat resistance equal to or higher than the temperature at which the metal compound is thermally decomposed. There is no change.
That is, if a suspension is prepared by adding a collection of scaly base materials to an alcohol dispersion of a metal compound and the alcohol is vaporized, the scaly bases can be used regardless of the material, shape, and particle size distribution of the scaly base material. The substrate is uniformly covered with a metal compound. This is because if the metal compound powder is dispersed in a molecular state in alcohol and the alcohol is vaporized, the metal compound returns to the original powder. For example, if sugar powder is dispersed in water in a molecular state and the sugar water is heated to vaporize the water, the sugar returns to the original powder. Therefore, if a collection of scaly substrates is put into an alcohol dispersion of a metal compound, the surfaces of all scaly substrates come into contact with the alcohol dispersion. Thereafter, if the alcohol is vaporized, all the scaly substrates are uniformly covered with the metal compound.
Next, this collection of scaly substrates is heat-treated to thermally decompose the metal compound. When thermal decomposition of the metal compound begins on the surface of the scaly substrate, it separates into organic or inorganic matter and metal (in the state of molecular clusters), and the metal with a large specific gravity remains on the surface of the scaly substrate, and the specific gravity is Small organic or inorganic substances move onto the metal. When the temperature further rises, the heat of vaporization is taken away and the organic matter or inorganic matter is vaporized. When the vaporization of the organic substance or the inorganic substance is completed, the metal obtains thermal energy, forms granular fine particles, stabilizes, and finishes the thermal decomposition. When the collection of metal fine particles is deposited all at once, the metal is in an active state having no impurities, so that the granular metal fine particles are metal-bonded at the sites where they contact each other. As a result, the scaly substrates are covered with a collection of metal fine particles, and the scaly substrates are bonded to each other through the collection of metal fine particles.
Even if oxides, moisture, and contaminants adhere to the surface of the scaly substrate, some of the moisture and contaminants vaporize preferentially when the alcohol is vaporized. Even if the pollutant remains after the alcohol is vaporized, the pollutant is first pyrolyzed and vaporized when the metal compound is thermally decomposed. Even if the oxide and some contaminants remain on the surface of the substrate after the metal compound is thermally decomposed, a collection of metal fine particles is deposited on the surface of the remaining oxide and contaminants. This is because the remaining oxides and contaminants are stable even at the temperature at which the thermal decomposition of the metal compound is completed. For this reason, the pretreatment of the surface of the scaly substrate is not necessary, and a collection of scaly substrates in which the scaly substrates are bonded via a collection of metal fine particles can be manufactured at a low production cost.
As described above, according to this feature means, the scaly base material is covered with a collection of metal fine particles regardless of the powder material, shape and particle size distribution, in general for the scaly base material, A collection of scale-like substrates in which the scale-like substrates are bonded through a collection of metal fine particles can be produced in large quantities at a time. In addition, it is a simple process by simply heat-treating a metal compound, which is an inexpensive material, and further, pretreatment of the scaly substrate is not required, so that a collection of scaly substrates can be produced at a very low cost. . Further, the scale-like substrate has properties of the metal constituting the metal fine particles and properties unique to the fine particles based on the size of the fine particles. As a result, according to the present feature means, a group of scaly substrates that satisfy the five requirements described in the seventh paragraph is manufactured.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第2特徴手段は、前記した第1特徴手段における鱗片状基材を強磁性の鱗片状基材で構成し、金属微粒子を自発磁化を有する金属酸化物微粒子で構成する、これによって、前記金属酸化物微粒子が前記強磁性の鱗片状基材に磁気吸着し、該強磁性の鱗片状基材が前記金属酸化物微粒子の集まりで覆われるとともに、該磁気吸着した金属酸化物微粒子の集まりを介して前記強磁性の鱗片状基材同士が結合された新たな鱗片状基材の集まりが製造される点にある。  The second feature means for producing a scaly substrate covered with a collection of fine particles according to the present invention is the above-mentioned first feature means, wherein the scaly substrate is composed of a ferromagnetic scaly substrate, Consists of metal oxide fine particles having spontaneous magnetization, whereby the metal oxide fine particles are magnetically attracted to the ferromagnetic scaly substrate, and the ferromagnetic scaly substrate gathers the metal oxide fine particles. In addition, a new group of scale-like substrates in which the ferromagnetic scale-like substrates are bonded to each other through the group of magnetically adsorbed metal oxide fine particles is manufactured.

つまり、本特徴手段に依れば、前記した第1特徴手段において、鱗片状基材が強磁性の鱗片状基材で構成し、金属微粒子が自発磁化を有する金属酸化物微粒子で構成すると、自発磁化を有する金属酸化物微粒子が、強磁性の鱗片状基材に磁気吸着し、鱗片状基材が金属酸化物微粒子の集まりで覆われるとともに、磁気吸着した金属酸化物微粒子の集まりを介して鱗片状基材同士が結合された新たな鱗片状基材の集まりが製造される。
すなわち、従来は、微細な粉体で粒度分布を持つ強磁性の鱗片状基材同士を結合には、バインダーとしての高分子材料の結合を介して鱗片状基材を結合している。しかし、高分子材料が非磁性であるため、結合された鱗片状基材の集まりの磁気特性が低下する。また、高分子材料は耐熱性が低いため、結合された鱗片状基材を熱処理する、例えば、歪を除去して磁気特性を向上させる磁気焼鈍が行えない。さらに、高分子材料が機械的強度に劣るため、結合された鱗片状基材を圧縮成形できず、圧縮成形によって磁気特性の向上が図れない、あるいは、圧延加工によってシート成形物が加工できない。これらの問題点はいずれも、バインダーとしての高分子材料によってもたらされる。
これに対し、例えば、鉄、ニッケル、コバルトからなる強磁性の鱗片状金属粉や、これら金属を含む合金からなる強磁性の鱗片状合金粉に、絶縁体で耐熱性とモース硬度とが金属粉や合金粉よりまさる自発磁化を有する金属酸化物、例えば、マグヘマイト微粒子の集まりを磁気吸着させると、磁気吸着したマグヘマイト微粒子の集まりを介して金属粉や合金粉同士が結合する。この金属粉や合金粉の集まりに、圧縮や圧延の加工を加えると成形体ができ、成形体の機械的強度と磁気特性が著しく向上する。また、圧縮時の歪を除去する磁気焼鈍もでき、さらに、成形体における渦電流損失が著しく低下する。
本特徴手段では、最初に、熱処理で自発磁化を有する金属酸化物を析出する金属化合物で、強磁性の鱗片状基材を覆う。次に、この鱗片状基材の集まりを熱処理して金属化合物を熱分解する。この際、10nm〜100nmの大きさの範囲からなる粒状の金属酸化物微粒子の集まりが析出する。析出した金属酸化物微粒子は、鱗片状基材に磁気吸着するとともに、微粒子同士も互いに磁気吸着する。この結果、磁気吸着した金属酸化物微粒子の集まりを介して鱗片状基材が結合される。なお、金属酸化物が微粒子であるため、磁気吸着した金属酸化物微粒子を分離することは困難である。
つまり、金属化合物で覆われた鱗片状基材の集まりを熱処理し、金属化合物を熱分解させると、鱗片状基材の表面で金属化合物の熱分解が始まる。最初に有機物と金属酸化物(分子クラスターの状態にある)とに分離し、比重が大きい金属酸化物は鱗片状基材の表面に留まり、比重が小さい有機物は金属酸化物の上に移動する。さらに温度が上がると、気化熱を奪って有機物が気化する。有機物の気化が完了すると、金属酸化物は熱エネルギーを得て粒状の微粒子を形成して安定化し、熱分解を終える。微粒子が一斉に析出する際、微粒子同士が互いに磁気吸着する。この結果、金属酸化物微粒子の集まりが鱗片状基材に磁気吸着し、磁気吸着した金属酸化物微粒子の集まりを介して鱗片状基材が結合する。
また、9段落で説明した金属微粒子の集まりで鱗片状基材を覆う事例と同様に、強磁性の鱗片状基材の材質や形状や粒度分布に係わらず、鱗片状基材が磁気吸着した金属酸化物微粒子で覆われ、磁気吸着した金属酸化物微粒子の集まりを介して結合された鱗片状基材の集まりが、一度に大量に製造できる。なお、強磁性の鱗片状基材は、金属化合物が熱分解する温度以上の耐熱性を持つため、金属化合物の熱分解によって鱗片状基材の性質が不可逆変化しない。さらに、鱗片状基材の表面の前処理は不要になる。
以上に説明したように、本特徴手段に依れば、強磁性の鱗片状基材の全般について、強磁性の粉体の材質や形状や粒度分布に係わらず、鱗片状基材が自発磁化を有する金属酸化物微粒子の集まりで覆われるとともに、磁気吸着した金属酸化物微粒子の集まりを介して鱗片状基材が結合した新たな鱗片状基材の集まりが、一度に大量に製造できる。また、安価な材料である金属化合物を熱処理するだけの処理であり、また、鱗片状基材の前処理が不要になるため、極めて安価な製造費用で新たな鱗片状基材の集まりが製造できる。さらに、この鱗片状基材は、金属酸化物の性質と、微粒子の大きさに基づく固有の性質とを新たに持つ。この結果、本特徴手段に依れば、7段落で説明した5つの要件を満たす新たな鱗片状基材の集まりが製造される。
That is, according to this feature means, in the first feature means described above, if the scaly substrate is composed of a ferromagnetic scaly substrate and the metal fine particles are composed of metal oxide fine particles having spontaneous magnetization, Magnetized metal oxide fine particles are magnetically adsorbed to a ferromagnetic scaly substrate, and the scaly substrate is covered with a collection of metal oxide fine particles, and the scaly through a collection of magnetically adsorbed metal oxide fine particles. A new group of scale-like base materials in which the base materials are bonded to each other is manufactured.
That is, conventionally, for binding magnetic flaky substrates having a fine particle size and particle size distribution, flaky substrates are bonded through bonding of a polymer material as a binder. However, since the polymer material is non-magnetic, the magnetic properties of the gathered group of scale-like substrates are deteriorated. In addition, since the polymer material has low heat resistance, the bonded scale-like substrate cannot be heat-treated, for example, magnetic annealing that removes strain and improves magnetic properties cannot be performed. Furthermore, since the polymer material is inferior in mechanical strength, the bonded scaly substrate cannot be compression-molded, and the magnetic properties cannot be improved by compression molding, or the sheet molding cannot be processed by rolling. Both of these problems are caused by the polymer material as the binder.
On the other hand, for example, a ferromagnetic scaly metal powder made of iron, nickel, and cobalt, or a ferromagnetic scaly alloy powder made of an alloy containing these metals, a metal powder having heat resistance and Mohs hardness with an insulator. When a metal oxide having spontaneous magnetization superior to that of an alloy powder, for example, a group of maghemite fine particles is magnetically adsorbed, the metal powder and the alloy powder are bonded to each other through the group of magnetically adsorbed maghemite fine particles. When the metal powder or alloy powder is subjected to compression or rolling, a molded body is formed, and the mechanical strength and magnetic properties of the molded body are remarkably improved. In addition, magnetic annealing can be performed to remove strain during compression, and eddy current loss in the compact is significantly reduced.
In this feature means, first, the ferromagnetic scaly substrate is covered with a metal compound that deposits a metal oxide having spontaneous magnetization by heat treatment. Next, this collection of scaly substrates is heat-treated to thermally decompose the metal compound. At this time, a collection of granular metal oxide fine particles having a size range of 10 nm to 100 nm is deposited. The deposited metal oxide fine particles are magnetically adsorbed to the scaly substrate, and the fine particles are also magnetically adsorbed to each other. As a result, the scaly base material is bonded through a collection of magnetically adsorbed metal oxide fine particles. Since the metal oxide is fine particles, it is difficult to separate the magnetically adsorbed metal oxide fine particles.
That is, when a group of scaly substrates covered with a metal compound is heat-treated to thermally decompose the metal compound, thermal decomposition of the metal compound starts on the surface of the scaly substrate. First, it is separated into an organic substance and a metal oxide (in a molecular cluster state), the metal oxide having a large specific gravity stays on the surface of the scaly substrate, and the organic substance having a small specific gravity moves onto the metal oxide. When the temperature rises further, the heat of vaporization is taken away and the organic matter is vaporized. When the vaporization of the organic substance is completed, the metal oxide obtains thermal energy, forms granular fine particles, stabilizes, and finishes thermal decomposition. When the fine particles are deposited all at once, the fine particles are magnetically adsorbed to each other. As a result, a collection of metal oxide fine particles is magnetically adsorbed on the scaly substrate, and the scaly substrate is bonded through the collection of magnetically adsorbed metal oxide fine particles.
In addition, as in the case of covering the scaly substrate with the collection of metal fine particles described in paragraph 9, the metal on which the scaly substrate is magnetically adsorbed regardless of the material, shape and particle size distribution of the ferromagnetic scaly substrate. A collection of scaly substrates covered with oxide fine particles and bonded via a collection of magnetically adsorbed metal oxide fine particles can be produced in large quantities at a time. In addition, since the ferromagnetic scaly base material has heat resistance equal to or higher than the temperature at which the metal compound is thermally decomposed, the properties of the scaly base material are not irreversibly changed by the thermal decomposition of the metal compound. Furthermore, the pretreatment of the surface of the scaly substrate becomes unnecessary.
As described above, according to this feature means, the flaky base material exhibits spontaneous magnetization regardless of the material, shape, and particle size distribution of the ferromagnetic powder. A large collection of new scaly substrates, which are covered with a collection of metal oxide fine particles and have a scaly substrate bonded through a collection of magnetically adsorbed metal oxide particles, can be produced in large quantities. In addition, the metal compound, which is an inexpensive material, is simply a heat treatment, and since no pretreatment of the scaly substrate is required, a new collection of scaly substrates can be produced at a very low cost. . Furthermore, this scale-like base material newly has a property of a metal oxide and an inherent property based on the size of fine particles. As a result, according to this feature means, a new group of scaly substrates satisfying the five requirements described in the seventh paragraph is manufactured.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第3特徴手段は、前記した第1特徴手段における鱗片状基材が金属化合物で覆われた処理基材を、鱗片状基材が熱処理で金属を析出する第一の金属化合物と、該第一の金属化合物が金属を析出する熱処理温度より高い熱処理温度で金属酸化物を析出する第二の金属化合物とからなる2種類の金属化合物の2重構造で覆われた新たな処理基材とし、該新たな処理基材の集まりを、前記第一の金属化合物が熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う、これによって、金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが製造される点にある。  The third characteristic means for producing a scaly base material covered with a collection of fine particles according to the present invention comprises a processing base material in which the scaly base material in the first characteristic means is covered with a metal compound. Two types of materials comprising: a first metal compound that deposits a metal by heat treatment; and a second metal compound that deposits a metal oxide at a heat treatment temperature higher than the heat treatment temperature at which the first metal compound deposits metal. A new treatment base material covered with a double structure of the metal compound is used, and the first heat treatment in which the first metal compound is thermally decomposed and the second metal compound are collected from the new treatment base material. Two heat treatments comprising a second heat treatment in which the metal is thermally decomposed are continuously performed, whereby a new structure covered with a double structure of fine particles comprising a collection of metal fine particles and a collection of metal oxide fine particles is formed. The point is that a collection of scaly substrates is manufactured. .

つまり、本特徴手段に依れば、鱗片状基材を熱処理で金属を析出する第一の金属化合物で覆い、さらにその表面を、熱処理で金属酸化物を析出する第二の金属化合物で覆う。この鱗片状基材の集まりを、連続して2回の熱処理を行う。第一の熱処理で第一の金属化合物が熱分解し、10nm〜100nmの大きさの範囲からなる粒状の金属微粒子が析出する。第二の熱処理で第二の金属化合物が熱分解し、10nm〜100nmの大きさの範囲からなる粒状の金属酸化物の微粒子が析出する。この結果、鱗片状基材は2種類の微粒子の集まりからなる2重構造で覆われる。
すなわち、第一の金属化合物のアルコール分散液に、鱗片状基材の集まりを投入して懸濁液を作成し、アルコールを気化させれば、鱗片状基材の材質や粒度分布に係わらず、鱗片状基材は第一の金属化合物で均一に覆われる。同様に、第二の金属化合物のアルコール分散液に、第一の金属化合物で覆われた鱗片状基材の集まりを投入し、アルコールを気化させれば、第一の金属化合物で覆われた鱗片状基材は、その表面を第二の金属化合物で覆われる。この結果、鱗片状基材は、鱗片状基材の材質や形状や粒度分布に係わらず、2種類の金属化合物の被膜からなる2重構造で覆われる。
つまり、金属化合物がアルコールに分散できる分散濃度は、重量割合で10%程度までである。このため、第二の金属化合物のアルコール分散液に、第一の金属化合物の被膜で覆われた鱗片状基材の集まりを投入しても、第一の金属化合物がアルコールに再度分散することはない。従って、第一の金属化合物で覆われた鱗片状基材の集まりを、第二の金属化合物のアルコール分散液に投入し、この後、アルコールを気化すれば、鱗片状基材は2種類の金属化合物の被膜からなる2重構造で覆われる。
さらに、この鱗片状基材の集まりを、2回の熱処理を連続して実施する。第一の熱処理で第一の金属化合物を熱分解させ、第二の熱処理で第二の金属化合物を熱分解させる。つまり、熱分解温度が低い第一の金属化合物が、鱗片状基材の表面で優先して熱分解を始め、有機物ないしは無機物と金属(分子クラスターの状態にある)とに分離し、比重が大きい金属は鱗片状基材の表面に留まり、比重が小さい有機物ないしは無機物は金属の上に移動する。従って、有機物ないしは無機物の上に第二の金属化合物の被膜が存在する。さらに温度が上がると、気化熱を奪って有機物ないしは無機物が気化し、第二の金属化合物の被膜を貫通して蒸発する。有機物ないしは無機物の気化が完了すると、金属は熱エネルギーを得て粒状の微粒子を形成して安定化し、熱分解を終える。この際、析出した金属が不純物を持たない活性状態にあるため、粒状の金属微粒子を形成して安定化する際に、金属微粒子は互いに接触する部位で金属結合して金属微粒子の集まりを形成する。さらに温度が上がると、熱分解温度が高い第二の金属化合物の熱分解が始まり、有機物と金属酸化物とに分離し、有機物が気化熱を奪って気化し、有機物の気化が完了すると、金属酸化物は熱エネルギーを得て粒状の微粒子を形成して安定化し、熱分解を終える。こうして、鱗片状基材の材質や形状や粒度分布に係わらず、鱗片状基材が金属微粒子の集まりと金属酸化物の微粒子の集まりからなる微粒子の2重構造で覆われる。
なお、第一の金属化合物の熱分解で析出する粒状の金属微粒子は、互いに接触する部位で金属結合し、金属結合した金属微粒子の集まりが鱗片状基材を覆う。いっぽう、金属酸化物の微粒子の集まりが、金属微粒子の集まりの表面を覆わなければ、9段落で説明した第1特徴手段のように、鱗片状基材同士が金属結合した金属微粒子の集まりを介して結合する。つまり、金属酸化物の微粒子同士は結合しないため、金属酸化物の微粒子で覆われた鱗片状基材同士は結合しない。従って、鱗片状基材の表面を金属微粒子と金属酸化物の微粒子とからなる微粒子の2重構造で覆うことで、鱗片状基材同士の結合が回避できる。
つまり、2種類の金属化合物の熱分解温度が異なるため、金属微粒子と金属酸化物微粒子との境界面において、金属微粒子と金属酸化物微粒子が互いに反応せず、金属微粒子と金属酸化物微粒子とは結合しない。また、金属酸化物は酸化物であるため、互いに金属結合、共有結合ないしはイオン結合しない。いっぽう、粒状の金属微粒子は互いに接触する部位で金属結合し、金属結合した金属微粒子の集まりが鱗片状基材を覆う。
また、9段落で説明した金属微粒子の集まりで鱗片状基材を覆う事例と同様に、鱗片状基材の材質や形状や粒度分布に係わらず、微粒子の2重構造で覆われた鱗片状基材の集まりが、一度に大量に製造できる。また、鱗片状基材は2種類の金属化合物が熱分解する温度以上の耐熱性を持つため、金属化合物の熱分解で鱗片状基材の性質が不可逆変化することはない。さらに、9段落で説明した事例と同様に、鱗片状基材の表面の前処理が不要になる。また、安価な材料である2種類の金属化合物を熱処理するだけの極めて簡単な処理であり、製造費用は極めて安価で済む。さらに、この鱗片状基材は、金属の性質と金属酸化物の性質と、微粒子の大きさに基づく固有の性質とを持つ。この結果、本特徴手段に依れば、7段落で説明した5つの要件を満たす新たな鱗片状基材の集まりが製造される。
That is, according to this feature means, the scaly substrate is covered with the first metal compound that deposits metal by heat treatment, and the surface is further covered with the second metal compound that deposits metal oxide by heat treatment. This group of scaly substrates is subjected to heat treatment twice in succession. The first metal compound is thermally decomposed by the first heat treatment, and granular metal fine particles having a size range of 10 nm to 100 nm are deposited. The second metal compound is thermally decomposed by the second heat treatment, and particulate metal oxide fine particles having a size range of 10 nm to 100 nm are deposited. As a result, the scaly substrate is covered with a double structure composed of a collection of two kinds of fine particles.
That is, a collection of scaly substrates is added to the alcohol dispersion of the first metal compound to create a suspension, and if the alcohol is vaporized, regardless of the material and particle size distribution of the scaly substrate, The scaly substrate is uniformly covered with the first metal compound. Similarly, if a collection of scaly substrates covered with the first metal compound is introduced into the alcohol dispersion of the second metal compound and the alcohol is vaporized, the scale covered with the first metal compound The surface of the substrate is covered with a second metal compound. As a result, the scaly substrate is covered with a double structure composed of a coating of two types of metal compounds regardless of the material, shape and particle size distribution of the scaly substrate.
That is, the dispersion concentration at which the metal compound can be dispersed in alcohol is up to about 10% by weight. For this reason, even if a collection of scaly substrates covered with a coating of the first metal compound is added to the alcohol dispersion of the second metal compound, the first metal compound is not dispersed again in the alcohol. Absent. Therefore, if the group of scaly substrates covered with the first metal compound is put into an alcohol dispersion of the second metal compound and then the alcohol is vaporized, the scaly substrate will be composed of two kinds of metals. It is covered with a double structure consisting of a compound film.
Further, the gathering of the scaly base materials is successively subjected to two heat treatments. The first metal compound is thermally decomposed by the first heat treatment, and the second metal compound is thermally decomposed by the second heat treatment. In other words, the first metal compound with a low thermal decomposition temperature starts thermal decomposition preferentially on the surface of the scaly substrate, and is separated into an organic or inorganic substance and a metal (in a molecular cluster state), and has a high specific gravity. The metal stays on the surface of the scaly substrate, and the organic or inorganic substance having a small specific gravity moves on the metal. Accordingly, a coating of the second metal compound is present on the organic or inorganic material. When the temperature rises further, the heat of vaporization is taken away and the organic substance or inorganic substance is vaporized and penetrates the coating of the second metal compound and evaporates. When the vaporization of the organic substance or the inorganic substance is completed, the metal obtains thermal energy, forms granular fine particles, stabilizes, and finishes the thermal decomposition. At this time, since the deposited metal is in an active state having no impurities, when forming and stabilizing the granular metal fine particles, the metal fine particles are metal-bonded to form a collection of metal fine particles at a portion in contact with each other. . When the temperature rises further, the thermal decomposition of the second metal compound, which has a high thermal decomposition temperature, begins to separate into an organic substance and a metal oxide, and the organic substance takes the heat of vaporization and vaporizes. The oxide obtains thermal energy and forms granular fine particles to be stabilized, and finishes thermal decomposition. Thus, regardless of the material, shape and particle size distribution of the scaly substrate, the scaly substrate is covered with a double structure composed of a collection of metal fine particles and a collection of metal oxide fine particles.
In addition, the granular metal fine particles precipitated by thermal decomposition of the first metal compound are metal-bonded at the portions where they are in contact with each other, and a collection of metal-bonded metal fine particles covers the scaly substrate. On the other hand, if the collection of metal oxide fine particles does not cover the surface of the metal fine particle collection, as in the first characteristic means described in the ninth paragraph, through the collection of metal fine particles in which the scaly substrates are metal-bonded to each other. And combine. In other words, since the metal oxide fine particles are not bonded to each other, the scaly substrates covered with the metal oxide fine particles are not bonded to each other. Accordingly, by covering the surface of the scaly base material with a double structure of fine particles composed of metal fine particles and metal oxide fine particles, binding between the scaly base materials can be avoided.
That is, since the two kinds of metal compounds have different thermal decomposition temperatures, the metal fine particles and the metal oxide fine particles do not react with each other at the interface between the metal fine particles and the metal oxide fine particles. Do not combine. In addition, since metal oxides are oxides, they do not form metal bonds, covalent bonds, or ionic bonds with each other. On the other hand, the granular metal fine particles are metal-bonded at the portions where they are in contact with each other, and the group of metal fine particles that are metal-bonded covers the scaly substrate.
In addition, as in the case of covering the scaly substrate with the collection of metal microparticles described in paragraph 9, regardless of the material, shape, and particle size distribution of the scaly substrate, the scaly substrate covered with a double structure of particles. A large collection of materials can be produced at one time. In addition, since the scaly substrate has heat resistance equal to or higher than the temperature at which two types of metal compounds are thermally decomposed, the properties of the scaly substrate are not irreversibly changed by the thermal decomposition of the metal compounds. Furthermore, as in the case described in paragraph 9, pretreatment of the surface of the scaly substrate becomes unnecessary. In addition, it is an extremely simple process by simply heat-treating two kinds of metal compounds, which are inexpensive materials, and the manufacturing cost is extremely low. Furthermore, this scale-like base material has the property of a metal, the property of a metal oxide, and the intrinsic property based on the size of fine particles. As a result, according to this feature means, a new group of scaly substrates satisfying the five requirements described in the seventh paragraph is manufactured.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第4特徴手段は、前記した第3特徴手段における微粒子の2重構造で覆われた鱗片状基材の集まりに負荷を加え、該鱗片状基材から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、金属微粒子の集まりで覆われた新たな鱗片状基材が製造される点にある。  The fourth feature means for producing a scale-like substrate covered with a collection of fine particles according to the present invention applies a load to the collection of scale-like substrates covered with a double particle structure in the third feature means. , Removing a collection of metal oxide fine particles from the flaky substrate, and separating the collection of flaky substrate into individual flaky substrates, whereby a new flaky shape covered with a collection of metal fine particles The base material is manufactured.

つまり、本特徴手段に依れば、前記した第3特徴手段に基づいて製造した鱗片状基材は、表層の金属酸化物の微粒子同士が結合しないため、鱗片状基材の集まりに負荷を加える、例えば、鱗片状基材の集まりを容器に入れ、加振機によって容器に振動を加えると、金属酸化物微粒子の集まりは鱗片状基材から容易に脱落し、鱗片状基材の集まりが個々の鱗片状基材に分離する。この後、メッシュフィルターを通すと、金属微粒子の集まりで覆われた新たな鱗片状基材が得られる。金属微粒子は互いに金属結合しているため、金属微粒子は鱗片状基材の表面から脱落せず、鱗片状基材は長期にわたって金属微粒子の性質を持つ。また、金属微粒子の集まりで覆われた鱗片状基材の集まりに、熱処理や圧縮、圧延などの熱的、機械的応力を伴う加工を施し、成形物や成形体の加工品の製造ができる。
このような鱗片状基材を塗料の顔料に用いる場合は、鱗片状基材が容易に塗料に分散し、この塗料は、金属微粒子の性質が長期にわたって保持できる作用効果を持つ。また、導電性フィラーとして用いる場合は、鱗片状基材が容易に導電性ペーストに分散し、この導電性ペーストは、金属微粒子の性質が長期にわたって保持できる作用効果を持つ。
さらに塗料の顔料に用いる場合は、鱗片状基材が10nm〜100nmの大きさの範囲からなる粒状の金属微粒子で覆われるため、鱗片状基材の表面は可視光線の波長より短い10nm〜100nmの大きさの範囲からなる凹凸が形成され、光の白色散乱が殆どなく、染料並みの彩度と透明性を持つ顔料として作用する。また、微粒子の集まりの厚みが、可視光線の波長の1/4ないしはその整数倍であれば、金属微粒子の表面での反射光と鱗片状基材の表面での反射光とが互いに干渉して増幅され、その波長の色調が強い反射光となる。いっぽう、金属微粒子の厚みは、鱗片状基材に吸着した金属化合物の量によって自在に変えられるため、強い反射光となる色調を自在に変えられる。さらに、鱗片状基材の材質と金属の材質との組み合わせによって、鱗片状基材が発する色調を様々な色調に変えることができる。ちなみに可視光線に相当する電磁波の波長は、380〜750nmである。
いっぽう、導電性フィラーに用いる場合は、金属微粒子同士が金属結合で結合されるため、電気導電と熱伝導との経路が金属微粒子に形成され、優れた電気導電と熱伝導とを兼ねるため、導電性フィラーの充填率を従来の導電性フィラーに比べて下げても、導電性が確保できるため、導電性ペーストが安価に製造できる作用効果をもたらす。
さらに、ガラス、マイカ、シリカなどの絶縁性の金属酸化物からなる鱗片状基材を金属微粒子の集まりで覆うと、鱗片状基材は金属の導電性と熱伝導性の性質持ち、金属からなる鱗片状基材に比べて重量低減の効果がもたらされる。例えば、鉛ガラスを除くガラスの密度は2.2〜2.6g/cmであり、銅の密度は8.96g/cmであり、銀の密度は10.49g/cmである。このため、銅ないしは銀の微粒子で覆われたガラスフレークは銅ないしは銀の性質を持つが、銅粉ないしは銀粉より重量が低減するため、塗料の顔料に用いる場合は塗料における顔料の分散性が向上し、導電性フィラーに用いる場合は導電性ペーストにおける導電性フィラーの分散性が向上する。
以上説明したように、本特徴手段に依れば、13段落で説明した微粒子の2重構造で覆われた鱗片状基材の集まりに負荷を加えるだけで、金属微粒子で覆われた鱗片状基材が製造できる。この結果、7段落で説明した5つの要件を満たす新たな鱗片状基材が製造される。
That is, according to this feature means, the scale-like base material manufactured based on the third feature means adds a load to the group of scale-like base materials because the fine particles of the metal oxide on the surface layer do not bind to each other. For example, when a collection of scaly substrates is placed in a container and the container is vibrated by a shaker, the collection of metal oxide fine particles easily falls off from the scaly substrate, and each of the scaly substrates gathers individually. Separated into scaly substrates. Thereafter, when passing through a mesh filter, a new scaly substrate covered with a collection of metal fine particles is obtained. Since the metal fine particles are metal-bonded to each other, the metal fine particles do not fall off from the surface of the scaly base material, and the scaly base material has a property of metal fine particles over a long period of time. In addition, a collection of scale-like substrates covered with a collection of metal fine particles can be subjected to processing accompanied by thermal and mechanical stresses such as heat treatment, compression, and rolling to produce a molded product or a processed product of the molded body.
When such a scaly substrate is used as a pigment for a paint, the scaly substrate is easily dispersed in the paint, and this paint has an effect of maintaining the properties of the metal fine particles over a long period of time. Further, when used as a conductive filler, the scaly substrate is easily dispersed in the conductive paste, and this conductive paste has the effect of maintaining the properties of the metal fine particles over a long period of time.
Furthermore, when used as a pigment for paint, the scaly substrate is covered with granular metal fine particles having a size range of 10 nm to 100 nm, so that the surface of the scaly substrate is 10 nm to 100 nm shorter than the wavelength of visible light. Concavities and convexities having a size range are formed, there is almost no white scattering of light, and it acts as a pigment having saturation and transparency similar to dyes. Further, if the thickness of the collection of fine particles is 1/4 or an integral multiple of the wavelength of visible light, the reflected light on the surface of the metal fine particles and the reflected light on the surface of the scaly substrate interfere with each other. The amplified light is reflected light having a strong color tone. On the other hand, the thickness of the metal fine particles can be freely changed depending on the amount of the metal compound adsorbed on the scaly substrate, so that the color tone of strong reflected light can be freely changed. Furthermore, the color tone which a scale-like base material emits can be changed into various color tone by the combination of the material of a scale-like base material and the material of a metal. Incidentally, the wavelength of electromagnetic waves corresponding to visible light is 380 to 750 nm.
On the other hand, when used as a conductive filler, the metal fine particles are bonded to each other by a metal bond, so a path between electric conduction and heat conduction is formed in the metal fine particles, and both electric conduction and heat conduction are excellent. Even if the filling rate of the conductive filler is lowered as compared with the conventional conductive filler, the conductivity can be secured, so that the conductive paste can be produced at low cost.
Furthermore, when a scaly substrate made of an insulating metal oxide such as glass, mica, or silica is covered with a collection of metal fine particles, the scaly substrate has the properties of metal conductivity and heat conductivity, and is made of metal. The effect of weight reduction is brought about compared with the scale-like substrate. For example, the density of glass excluding lead glass is 2.2 to 2.6 g / cm 3 , the density of copper is 8.96 g / cm 3 , and the density of silver is 10.49 g / cm 3 . For this reason, glass flakes covered with copper or silver fine particles have the properties of copper or silver, but the weight is reduced compared to copper powder or silver powder, so when used as paint pigments, the dispersibility of pigments in paints is improved. And when it uses for an electroconductive filler, the dispersibility of the electroconductive filler in an electroconductive paste improves.
As described above, according to the present feature means, the scale-like base covered with the metal fine particles can be obtained simply by applying a load to the group of scale-like base materials covered with the double structure of the fine particles described in the 13th paragraph. The material can be manufactured. As a result, a new scaly substrate that satisfies the five requirements described in paragraph 7 is manufactured.

本発明に係わる微粒子の集まりで鱗片状基材を覆う第5特徴手段は、前記した第4特徴手段で製造した金属微粒子の集まりで覆われた鱗片状基材を原料として用い、熱処理で新たな金属を析出する第一の金属化合物をアルコールに分散してアルコール分散液を作成し、該アルコール分散液に前記鱗片状基材の集まりを投入して第一の懸濁液を作成し、該第一の懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記第一の金属化合物で覆われた第一の処理基材を作成する、さらに、前記第一の金属化合物が金属を析出する熱処理温度より高い熱処理温度で金属酸化物を析出する第二の金属化合物をアルコールに分散してアルコール分散液を作成し、該アルコール分散液に前記第一の処理基材の集まりを投入して第二の懸濁液を作成し、該第二の懸濁液を昇温して前記アルコールを気化させ、前記第一の処理基材が前記第二の金属化合物で覆われた第二の処理基材を作成する、さらに、該第二の処理基材の集まりを、前記第一の金属化合物が熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う、これによって、複合金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが製造される点にある。  The fifth characteristic means for covering the scaly substrate with a collection of fine particles according to the present invention uses a scaly base material covered with the collection of metal fine particles produced by the above-mentioned fourth characteristic means as a raw material, and a new heat treatment is performed. A first metal compound for precipitating metal is dispersed in alcohol to prepare an alcohol dispersion, and a collection of the scaly substrates is added to the alcohol dispersion to form a first suspension. One suspension is heated to vaporize the alcohol to form a first treated substrate in which the scaly substrate is covered with the first metal compound. A second metal compound that precipitates a metal oxide at a heat treatment temperature higher than the heat treatment temperature at which the metal is deposited is dispersed in alcohol to create an alcohol dispersion, and the first dispersion of the first treatment base material is collected in the alcohol dispersion. To make a second suspension And evaporating the alcohol by raising the temperature of the second suspension to produce a second treated substrate in which the first treated substrate is covered with the second metal compound, Two groups of heat treatments comprising the first heat treatment in which the first metal compound is thermally decomposed and the second heat treatment in which the second metal compound is thermally decomposed In this way, a new group of scaly substrates covered with a double structure of particles composed of a group of composite metal particles and a group of metal oxide particles is manufactured.

つまり、本特徴手段に依れば、鱗片状基材が複合金属微粒子と金属酸化物微粒子とからなる微粒子の2重構造で覆われる。すなわち、15段落で説明した製作方法で、金属微粒子の集まりで覆われた鱗片状基材を原料として用いる。この鱗片状基材を、熱処理で新たな金属を析出する金属化合物で覆い、さらにその表面を、熱処理で金属酸化物を析出する金属化合物で覆う。さらに、2種類の金属化合物の被膜の2重構造で覆われた鱗片状基材の集まりを、2回の熱処理を連続して行う。第一の熱処理で、新たな金属を析出する金属化合物を熱分解し、金属微粒子の集まりで覆われた鱗片状基材に新たな金属が析出し、金属微粒子の集まりが複合金属微粒子の集まりになる。第二の熱処理で金属酸化物の微粒子を析出させる。この結果、鱗片状基材は複合金属微粒子の集まりと金属酸化物微粒子の集まりからなる微粒子の2重構造で覆われ、13段落で説明した微粒子の2重構造とは異なる材質で構成されるため、鱗片状基材は複合金属微粒子に基づく新たな性質を持つ。
つまり、新たな金属を析出する際に、鱗片状基材を覆った金属微粒子の集まりが新たに析出する金属の核となって、金属微粒子の表面に新たな金属が析出して複合金属微粒子を形成し、金属微粒子の集まりが複合金属微粒子の集まりとなる。さらに温度が上がると、金属酸化物を析出する金属化合物が熱分解し、金属酸化物の微粒子が、複合金属微粒子の集まりの表面に析出する。この結果、鱗片状基材は、複合金属と金属酸化物とからなる微粒子の2重構造で覆われる。
以上に説明したように、本特徴手段に依れば、13段落で説明した事例と同様に、鱗片状基材の全般について、粉体の材質や形状や粒度分布に係わらず、複合金属微粒子と金属酸化物微粒子との微粒子の2重構造で覆われた新たな鱗片状基材の集まりが一度に大量に製造できる。また、安価な材料である2種類の金属化合物を熱処理するだけの極めて簡単な処理であり、さらに、鱗片状基材の前処理が不要になるため、製造費用は極めて安価で済む。さらに、この鱗片状基材は、複合金属の性質と金属酸化物の性質と、さらに、微粒子の大きさに基づく固有の性質を持つ。この結果、本特徴手段に依れば、7段落で説明した5つの要件を満たす新たな鱗片状基材の集まりが製造される。
That is, according to this feature means, the scaly substrate is covered with a double structure of fine particles composed of composite metal fine particles and metal oxide fine particles. That is, a scaly substrate covered with a collection of metal fine particles is used as a raw material by the manufacturing method described in paragraph 15. The scaly substrate is covered with a metal compound that precipitates a new metal by heat treatment, and the surface is covered with a metal compound that deposits a metal oxide by heat treatment. Further, the scaly substrate covered with the double structure of the two types of metal compound films is subjected to two successive heat treatments. In the first heat treatment, the metal compound that precipitates new metal is thermally decomposed, new metal is deposited on the scaly substrate covered with the collection of metal fine particles, and the collection of metal fine particles becomes a collection of composite metal fine particles. Become. Metal oxide fine particles are deposited by the second heat treatment. As a result, the scaly substrate is covered with a double structure of fine particles composed of a collection of composite metal fine particles and a collection of metal oxide fine particles, and is made of a material different from the double structure of fine particles described in the 13th paragraph. The scaly substrate has a new property based on composite metal fine particles.
In other words, when a new metal is deposited, a collection of metal fine particles covering the scaly substrate serves as a core of the newly deposited metal, and a new metal is deposited on the surface of the metal fine particles to form composite metal fine particles. The group of metal fine particles that are formed becomes a group of composite metal fine particles. When the temperature further rises, the metal compound that deposits the metal oxide is thermally decomposed, and the metal oxide fine particles are deposited on the surface of the aggregate of the composite metal fine particles. As a result, the scaly substrate is covered with a double structure of fine particles composed of a composite metal and a metal oxide.
As described above, according to this characteristic means, as in the case described in the 13th paragraph, the composite metal fine particles and the overall scale-like base material can be obtained regardless of the powder material, shape and particle size distribution. A large collection of new scaly substrates covered with a double structure of fine particles with metal oxide fine particles can be produced at a time. In addition, it is an extremely simple process by simply heat-treating two kinds of metal compounds, which are inexpensive materials, and further, the pre-treatment of the scaly substrate is not required, so that the manufacturing cost is extremely low. Further, the scale-like substrate has inherent properties based on the properties of the composite metal, the properties of the metal oxide, and the size of the fine particles. As a result, according to this feature means, a new group of scaly substrates satisfying the five requirements described in the seventh paragraph is manufactured.

本発明に係わる微粒子の集まりで鱗片状基材を覆う第6特徴手段は、前記した第5特徴手段における微粒子の2重構造によって覆われた鱗片状基材の集まりに負荷を加え、該鱗片状基材から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、複合金属微粒子の集まりで覆われた新たな鱗片状基材が製造される点にある。  The sixth characteristic means for covering the scaly substrate with a collection of fine particles according to the present invention applies a load to the collection of the scaly base material covered with the double structure of fine particles in the fifth characteristic means, and The collection of metal oxide fine particles is removed from the substrate, and the collection of the scaly substrates is separated into individual scaly substrates, whereby a new scaly substrate covered with the composite metal fine particles is obtained. It is in the point of being manufactured.

つまり、本特徴手段に依れば、前記した第5特徴手段における鱗片状基材は、表層の金属酸化物の微粒子同士は結合しないため、鱗片状基材の集まりに負荷を加える、例えば、鱗片状基材の集まりを容器に入れ、加振機によって容器に振動を加えると、鱗片状基材の表層から金属酸化物微粒子の集まりが容易に脱落する。この結果、鱗片状基材の集まりが個々の鱗片状基材に分離し、この後、メッシュフィルターを通すと、複合金属微粒子の集まりで覆われた新たな鱗片状基材が得られる。これによって、15段落で説明した金属微粒子の集まりで覆われた鱗片状基材が、複合金属微粒子の集まりで覆われるため、鱗片状基材の性質は複合金属の性質に拡大される。つまり、この鱗片状基材は、塗料に容易に分散し、また、導電性ペーストに容易に分散する。これによって、塗料ないしは導電性ペーストは、複合金属微粒子の性質を持つ。なお、複合金属微粒子は、微粒子同士が互いに金属結合しているため、複合金属微粒子が鱗片状基材から脱落することはない。このため、複合金属微粒子の集まりで覆われた鱗片状基材の集まりに、熱処理や圧縮、圧延などの熱的、機械的応力を伴う加工を施し、成形物や成形体などの加工品が製造できる。
例えば、塗料用顔料に用いる場合は、15段落で説明した事例と同様に、鱗片状基材が10nm〜100nmの大きさの範囲からなる粒状の複合金属微粒子で覆われるため、光の白色散乱が殆どなく、染料並みの彩度と透明性を持つようになる。また、複合金属微粒子の集まりの厚みに応じて、複合金属微粒子の集まりの表面での反射光と鱗片状基材の表面での反射光とが干渉して増幅され、その波長の色調が強い反射光となる。いっぽう、複合金属微粒子の厚みは、鱗片状基材に吸着した複数種類の金属化合物の量によって自在に変えられるため、強い反射光となる色調を自在に変えられる。また、複合金微粒子を構成する金属の種類と組成割合とによって、さらに、鱗片状基材の材質と複合金属微粒子の材質の組み合わせによって、鱗片状基材の色調は、様々な色調に変えることができる。
また、導電性フィラーとして用いる場合は、例えば、金属微粒子を銅で構成し、この銅微粒子の表面に銀を析出して、銅と銀とからなる複合微粒子の集まりで鱗片状基材を覆えば、銀微粒子の集まりで覆われた鱗片状基材に比べ、マイグレーションが起こりにくく、ハンダ食われ性が優れる導電性フィラーとなり、さらに、より安価な製造費用で製造できる。このように、導電性フィラーの用途に応じて、複合金属微粒子の組成と組成割合を自在に変え、複合金属固有の性質を導電性フィラーに付与することができる。
以上に説明したように、本特徴手段に依れば、17段落で説明した微粒子の2重構造で覆われた鱗片状基材の集まりに負荷を加えるだけで、様々な金属の組み合わせと組成割合からなる複合金属微粒子の集まりで覆われた鱗片状基材が製造できる。この鱗片状基材は、複合金属固有の性質と、微粒子の大きさに基づく固有の性質とを持つ。この結果、7段落で説明した5つの要件を満たす新たな鱗片状基材が製造される。
In other words, according to this feature means, the scale-like base material in the fifth feature means does not bind the fine particles of the metal oxide on the surface layer, so that a load is applied to the group of scale-like base materials. When a cluster of base materials is put in a container and vibration is applied to the container with a vibration exciter, the metal oxide particles collect easily from the surface layer of the scaly base material. As a result, a collection of scaly substrates is separated into individual scaly substrates, and then passed through a mesh filter to obtain a new scaly substrate covered with a collection of composite metal fine particles. As a result, the scaly substrate covered with the collection of metal fine particles described in paragraph 15 is covered with the collection of composite metal fine particles, so that the properties of the scaly substrate are expanded to the properties of the composite metal. That is, the scaly substrate is easily dispersed in the paint and easily dispersed in the conductive paste. Thus, the paint or conductive paste has the properties of composite metal fine particles. In the composite metal fine particles, since the fine particles are metal-bonded to each other, the composite metal fine particles are not dropped from the scaly substrate. For this reason, processing with thermal and mechanical stress such as heat treatment, compression, rolling, etc. is applied to a group of scaly substrates covered with a group of composite metal fine particles to produce processed products such as molded products and molded products. it can.
For example, when used as a pigment for paint, as in the case described in the 15th paragraph, the scaly substrate is covered with granular composite metal fine particles having a size range of 10 nm to 100 nm. There is almost no saturation and transparency as with dyes. In addition, depending on the thickness of the aggregate of composite metal particles, the reflected light on the surface of the composite metal particles and the reflected light on the surface of the scaly substrate are amplified by interference, and the color tone of the wavelength is strongly reflected. It becomes light. On the other hand, the thickness of the composite metal fine particles can be freely changed depending on the amount of the plurality of types of metal compounds adsorbed on the scaly substrate, so that the color tone of strong reflected light can be freely changed. Also, depending on the type and composition ratio of the metal constituting the composite gold fine particles, and the combination of the material of the scale-like base material and the material of the composite metal fine particles, the color tone of the scale-like base material can be changed to various color tones. it can.
When used as a conductive filler, for example, if the metal fine particles are made of copper, silver is deposited on the surface of the copper fine particles, and the scaly substrate is covered with a collection of composite fine particles composed of copper and silver. Compared with a scale-like substrate covered with a collection of silver fine particles, it becomes a conductive filler that is less prone to migration and excellent in soldering property, and can be manufactured at a lower manufacturing cost. Thus, according to the use of the conductive filler, the composition and composition ratio of the composite metal fine particles can be freely changed, and the properties unique to the composite metal can be imparted to the conductive filler.
As described above, according to this feature means, various combinations and composition ratios of various metals can be obtained simply by applying a load to the group of scale-like substrates covered with the double structure of fine particles described in the 17th paragraph. A scaly substrate covered with a collection of composite metal fine particles made of can be produced. This scaly substrate has properties inherent to the composite metal and properties inherent to the size of the fine particles. As a result, a new scaly substrate that satisfies the five requirements described in paragraph 7 is manufactured.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第7特徴手段は、前記した第1特徴手段および第3特徴手段および第5特徴手段における熱処理で金属を析出する金属化合物が、カルボン酸におけるカルボキシル基を構成する酸素イオンが金属イオンに共有結合する第一の特徴と、カルボン酸が飽和脂肪酸で構成される第二の特徴とからなる2つの特徴を兼備するカルボン酸金属化合物である点にある。  The seventh feature means for producing a scale-like substrate covered with a collection of fine particles according to the present invention is a metal compound that deposits metal by heat treatment in the first feature means, the third feature means, and the fifth feature means. The metal carboxylate compound has two features, the first feature in which the oxygen ion constituting the carboxyl group in the carboxylic acid is covalently bonded to the metal ion, and the second feature in which the carboxylic acid is composed of a saturated fatty acid. In that point.

つまり、本特徴手段に依れば、カルボン酸におけるカルボキシル基を構成する酸素イオンが金属イオンに共有結合する第一の特徴と、カルボン酸が飽和脂肪酸で構成される第二の特徴との2つの特徴を兼備するカルボン酸金属化合物は、大気雰囲気での熱分解で金属を析出する。このため、このようなカルボン酸金属化合物は金属微粒子の原料になる。
つまり、カルボン酸金属化合物がアルコールに分散された分散液に、鱗片状基材の集まりを浸漬し、アルコールを気化させた後に、鱗片状基材の集まりを大気雰囲気で熱処理する。この際、カルボン酸金属化合物のカルボン酸の沸点に応じて、290℃〜400℃の温度範囲でカルボン酸金属化合物の熱分解が完了し、大きさが10nm〜100nmの範囲に入る粒状の金属微粒子が析出する。この結果、鱗片状基材は、金属微粒子の集まりで覆われ、新たに金属微粒子の性質を持つことになる。なお、カルボン酸金属化合物が熱分解する温度は、鱗片状基材の耐熱温度より低いため、カルボン酸金属化合物が熱分解しても、鱗片状基材の性質は不可逆変化しない。さらに、鱗片状基材はカルボン酸金属化合物で覆われるため、カルボン酸金属化合物の熱分解時に、大気中の酸素が鱗片状基材に供給されず、鱗片状基材が酸化されやすい金属であっても鱗片状基材は酸化されない。
すなわち、カルボン酸金属化合物を構成するイオンの中で、金属イオンが最も大きい。従って、カルボン酸におけるカルボキシル基を構成する酸素イオンが金属イオンと共有結合するカルボン酸金属化合物は、カルボキシル基を構成する酸素イオンと金属イオンとの距離が、他のイオン同士の距離より長い。こうした分子構造上の特徴を持つカルボン酸金属化合物を大気雰囲気で熱処理すると、カルボン酸の沸点を超える温度で、カルボキシル基を構成する酸素イオンと金属イオンとの結合部が分断され、カルボン酸と金属とに分離する。さらに、カルボン酸が飽和脂肪酸から構成される場合は、炭素原子が水素原子に対して過剰となる不飽和構造を持たないため、カルボン酸が気化熱を奪って気化し、カルボン酸の沸点に応じた290℃〜400℃の温度範囲で全てのカルボン酸が気化して金属が析出する。こうしたカルボン酸金属化合物として、オクチル酸金属化合物、ラウリン酸金属化合物、ステアリン酸金属化合物などの飽和脂肪酸からなるカルボン酸金属化合物がある。
なお、不飽和脂肪酸からなるカルボン酸金属化合物は、飽和脂肪酸からなるカルボン酸金属化合物に比べて、炭素原子が水素原子に対して過剰になるため、熱分解によって金属酸化物が析出する。例えば、カルボン酸銅がオレイン酸銅の場合は、酸化銅(I)CuOと酸化銅(II)CuOとが同時に析出し、銅に還元するための処理費用を要する。中でも、酸化銅(I)CuOは、酸素ガスの割合が大気雰囲気よりリッチな雰囲気で、一度酸化銅(II)CuOに酸化させた後に、再度、還元雰囲気で銅に還元させる必要があるため、還元処理の費用がさらにかさむ。
さらに、前記したカルボン酸金属化合物は、容易に合成できる安価な工業用薬品である。すなわち、カルボン酸を強アルカリと反応させるとカルボン酸アルカリ金属化合物が生成される。この後、カルボン酸アルカリ金属化合物を無機金属化合物と反応させると、様々な金属からなるカルボン酸金属化合物が合成される。このため、安価なカルボン酸金属化合物を大気雰囲気で熱分解するだけで、鱗片状基材の表面が様々な金属からなる金属微粒子の集まりで覆われ、金属微粒子の性質を持つ鱗片状基材が安価に製造できる。
That is, according to this feature means, the first feature in which the oxygen ion constituting the carboxyl group in the carboxylic acid is covalently bonded to the metal ion, and the second feature in which the carboxylic acid is comprised of the saturated fatty acid. Carboxylic acid metal compounds having characteristics also deposit metal by thermal decomposition in an air atmosphere. For this reason, such a carboxylic acid metal compound becomes a raw material of metal fine particles.
That is, after the collection of scaly substrates is immersed in a dispersion liquid in which the metal carboxylate compound is dispersed in alcohol and the alcohol is vaporized, the assembly of scaly substrates is heat-treated in an air atmosphere. At this time, depending on the boiling point of the carboxylic acid of the carboxylic acid metal compound, the thermal decomposition of the carboxylic acid metal compound is completed in the temperature range of 290 ° C. to 400 ° C., and the granular metal fine particles fall within the range of 10 nm to 100 nm. Precipitates. As a result, the scaly substrate is covered with a collection of metal fine particles, and has a new property of metal fine particles. In addition, since the temperature at which the carboxylic acid metal compound is thermally decomposed is lower than the heat-resistant temperature of the scaly substrate, the properties of the scaly substrate do not change irreversibly even if the carboxylic acid metal compound is thermally decomposed. Furthermore, since the scaly substrate is covered with a carboxylic acid metal compound, oxygen in the atmosphere is not supplied to the scaly substrate during the thermal decomposition of the carboxylic acid metal compound, and the scaly substrate is a metal that is easily oxidized. However, the scaly substrate is not oxidized.
That is, the metal ion is the largest among the ions constituting the carboxylate metal compound. Therefore, in the carboxylate metal compound in which the oxygen ion constituting the carboxyl group in the carboxylic acid is covalently bonded to the metal ion, the distance between the oxygen ion constituting the carboxyl group and the metal ion is longer than the distance between the other ions. When heat treatment is performed in a carboxylic acid metal compound having such molecular structure characteristics in the atmosphere, the bond between the oxygen ion and the metal ion constituting the carboxyl group is broken at a temperature exceeding the boiling point of the carboxylic acid, and the carboxylic acid and the metal are separated. And to separate. In addition, when the carboxylic acid is composed of saturated fatty acids, the carboxylic acid takes the heat of vaporization and evaporates, depending on the boiling point of the carboxylic acid, because there is no unsaturated structure in which the carbon atoms are excessive relative to the hydrogen atoms. In the temperature range of 290 ° C. to 400 ° C., all the carboxylic acid is vaporized and the metal is deposited. Such carboxylic acid metal compounds include carboxylic acid metal compounds composed of saturated fatty acids such as octyl acid metal compounds, lauric acid metal compounds, and stearic acid metal compounds.
In addition, since the carboxylic acid metal compound consisting of an unsaturated fatty acid has an excess of carbon atoms relative to the hydrogen atom as compared with the carboxylic acid metal compound consisting of a saturated fatty acid, a metal oxide is deposited by thermal decomposition. For example, when the carboxylic acid copper is copper oleate, copper oxide (I) Cu 2 O and copper oxide (II) CuO are simultaneously deposited, and processing costs for reducing to copper are required. Among them, copper oxide (I) Cu 2 O needs to be reduced to copper again in a reducing atmosphere after once oxidized to copper (II) CuO in an atmosphere where the ratio of oxygen gas is richer than the air atmosphere. Therefore, the cost of the reduction process is further increased.
Furthermore, the aforementioned carboxylic acid metal compound is an inexpensive industrial chemical that can be easily synthesized. That is, when a carboxylic acid is reacted with a strong alkali, a carboxylic acid alkali metal compound is produced. Thereafter, when an alkali metal carboxylate compound is reacted with an inorganic metal compound, carboxylate metal compounds composed of various metals are synthesized. For this reason, by simply thermally decomposing an inexpensive metal carboxylate in the air, the surface of the scaly substrate is covered with a collection of metal fine particles made of various metals, and a scaly substrate having the properties of metal fine particles is obtained. Can be manufactured at low cost.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第8特徴手段は、前記した第1特徴手段および第3特徴手段および第5特徴手段における熱処理で金属を析出する金属化合物が、無機物の分子ないしはイオンが配位子を構成し、該配位子が金属イオンに配位結合した金属錯イオンを有する無機塩である点にある。  The eighth feature means for producing a scale-like substrate covered with a collection of fine particles according to the present invention is the metal compound that deposits metal by the heat treatment in the first feature means, the third feature means, and the fifth feature means. In addition, an inorganic molecule or ion constitutes a ligand, and the ligand is an inorganic salt having a metal complex ion coordinated to a metal ion.

つまり、本特徴手段に依れば、無機物の分子ないしはイオンが配位子を構成し、この配位子が金属イオンに配位結合した金属錯イオンを有する無機塩は、還元雰囲気で熱処理すると、200℃程度の低い温度で金属が析出する。この金属には、21段落で説明したカルボン酸金属化合物の熱分解では析出しない金属が析出する。このような金属として、白金族元素の金属と銅を除く貴金属の金属などがある。こうし金属は、希土類金属を除くと、鉄族元素、クロム族元素、マンガン族元素、スズ族元素、アルミニウム族元素、マグネシウム族元素などに属する金属、および典型金属と銅などの金属に比べて存在が希少な金属であり、付加価値の高い金属固有の性質を有する。これによって、鱗片状基材の性質が新たな金属微粒子の性質に拡大され、鱗片状基材の用途が拡大する。なお、無機物の分子ないしはイオンが配位子を構成し、この配位子が金属イオンに配位結合した金属錯イオンを有する無機塩は、一般的に21段落で説明したカルボン酸金属化合物より高価であるため、鱗片状基材に付加価値の高い性質を付与する原料として用いることが適している。
つまり、このような無機塩がアルコールに分散された分散液に、鱗片状基材の集まりを浸漬し、この鱗片状基材の集まりを還元雰囲気で熱処理する。アルコールを気化させた後に、200℃前後の温度で無機塩が熱分解し、大きさが10nm〜100nmの範囲に入る粒状の金属微粒子の集まりが析出する。この熱分解温度は、21段落で説明したカルボン酸金属化合物より著しく低いため、熱処理費用が安価で済む。この結果、鱗片状基材は、金属微粒子の集まりで覆われ、金属微粒子の性質を持つ。
すなわち、無機物の分子ないしはイオンが配位子になって、金属イオンに配位結合した金属錯イオンを有する無機塩を還元雰囲気で熱処理すると、最初に配位結合部が分断され、無機物と金属とに分解する。さらに昇温すると、無機物が気化熱を奪って気化し、180℃〜220℃の温度範囲で無機物の気化が完了して金属が析出する。つまり、無機塩を構成するイオンの中で、金属イオンが最も大きいため、無機塩の分子構造の上で、金属イオンと配位子との距離が最も長い。従って、無機塩を還元雰囲気で熱処理すると、金属イオンが配位子と結合する配位結合部が最初に分断され、金属と無機物とに分解する。さらに温度が上がると、無機物が気化熱を奪って気化し、無機物の気化が完了すると金属が析出する。
また、無機物の分子ないしはイオンからなる配位子が金属イオンに配位結合する金属錯イオンは、他の金属錯イオンに比べて合成が容易である。このような金属錯イオンとして、アンモニアNHが配位子となって金属イオンに配位結合するアンミン金属錯イオン、水HOが配位子となって金属イオンに配位結合するアクア金属錯イオン、水酸基OHが配位子となって金属イオンに配位結合するヒドロキソ金属錯イオン、塩素イオンClないしは塩素イオンClとアンモニアNHとが配位子となって金属イオンに配位結合するクロロ金属錯イオン、シアノ基CNが配位子となって金属イオンに配位結合するシアノ金属錯イオンなどがある。さらに、このような金属錯イオンを有する水素化合物、塩化物、硫酸塩、硝酸塩などの無機塩は、無機塩の分子量が小さいため、180℃〜220℃の温度範囲で無機物の気化が完了し金属を析出する。この金属が析出する温度は、金属錯イオンを有する金属錯塩が熱分解で金属を析出する温度の中で最も低い。従って、このような無機塩は、金属錯イオンを有する金属錯塩の中で最も安価であり、熱分解温度が最も低い。このため、21段落で説明したカルボン酸金属化合物の熱分解では析出しない金属からなる、付加価値の高い性質を持つ鱗片状基材が、安価な製造費用で製造できる。
That is, according to the present feature means, an inorganic salt or metal ion having a metal complex ion in which an inorganic molecule or ion constitutes a ligand and this ligand is coordinated to a metal ion is heat-treated in a reducing atmosphere. The metal is deposited at a temperature as low as about 200 ° C. The metal which does not precipitate by the thermal decomposition of the carboxylic acid metal compound described in paragraph 21 is deposited on this metal. Such metals include platinum group metals and noble metals other than copper. Compared to metals such as iron group elements, chromium group elements, manganese group elements, tin group elements, aluminum group elements, magnesium group elements, etc., and typical metals and metals such as copper, except for rare earth metals It is a rare metal and has high value-added metal-specific properties. As a result, the properties of the scaly substrate are expanded to the properties of new metal fine particles, and the use of the scaly substrate is expanded. An inorganic salt having a metal complex ion in which an inorganic molecule or ion constitutes a ligand and this ligand is coordinated to a metal ion is generally more expensive than the metal carboxylate described in paragraph 21. Therefore, it is suitable to be used as a raw material that imparts high value-added properties to the scaly substrate.
That is, a group of scaly substrates is immersed in a dispersion liquid in which such an inorganic salt is dispersed in alcohol, and the group of scaly substrates is heat-treated in a reducing atmosphere. After the alcohol is vaporized, the inorganic salt is thermally decomposed at a temperature of about 200 ° C., and a collection of particulate metal fine particles having a size in the range of 10 nm to 100 nm is deposited. Since this thermal decomposition temperature is significantly lower than that of the carboxylic acid metal compound described in paragraph 21, the heat treatment cost can be reduced. As a result, the scaly substrate is covered with a collection of metal fine particles and has the properties of metal fine particles.
That is, when an inorganic salt having a metal complex ion coordinated and bonded to a metal ion is converted into a ligand by an inorganic molecule or ion being heat-treated in a reducing atmosphere, the coordination bond is first divided, and the inorganic and metal Disassembled into When the temperature is further increased, the inorganic substance takes the heat of vaporization and vaporizes, and the vaporization of the inorganic substance is completed within a temperature range of 180 ° C. to 220 ° C., thereby depositing the metal. That is, since the metal ion is the largest among the ions constituting the inorganic salt, the distance between the metal ion and the ligand is the longest on the molecular structure of the inorganic salt. Therefore, when the inorganic salt is heat-treated in a reducing atmosphere, the coordination bond portion where the metal ion is bonded to the ligand is first divided and decomposed into a metal and an inorganic substance. When the temperature further rises, the inorganic material takes the heat of vaporization and vaporizes, and when the vaporization of the inorganic material is completed, the metal is deposited.
A metal complex ion in which a ligand composed of an inorganic molecule or ion is coordinated to a metal ion is easier to synthesize than other metal complex ions. As such a metal complex ion, ammonia NH 3 acts as a ligand to form an ammine metal complex ion that coordinates to a metal ion, and water H 2 O acts as a ligand to coordinate a bond to the metal ion. A complex ion, a hydroxo metal complex ion in which a hydroxyl group OH serves as a ligand and coordinates to a metal ion, a chlorine ion Cl or chlorine ion Cl and ammonia NH 3 serve as a ligand and is coordinated to the metal ion. position binding chloro metal complex ion, a cyano group CN - there is a cyano metal complex ions which are coordinated to the metal ion becomes ligand. Furthermore, inorganic salts such as hydrogen compounds, chlorides, sulfates, nitrates, and the like having such metal complex ions have a low molecular weight of the inorganic salt, so that the vaporization of the inorganic substance is completed in the temperature range of 180 ° C. to 220 ° C. To precipitate. The temperature at which this metal precipitates is the lowest among the temperatures at which the metal complex salt having a metal complex ion precipitates the metal by thermal decomposition. Therefore, such an inorganic salt is the cheapest among metal complex salts having metal complex ions and has the lowest thermal decomposition temperature. For this reason, the scale-like base material which has the property with a high added value which consists of a metal which does not precipitate by the thermal decomposition of the carboxylate metal compound demonstrated in 21st paragraph can be manufactured at low manufacturing cost.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第9特徴手段は、前記した第3特徴手段および第5特徴手段における熱処理で金属酸化物を析出する金属化合物が、カルボン酸におけるカルボキシル基を構成する酸素イオンが金属イオンに配位結合する第一の特徴と、カルボン酸が飽和脂肪酸で構成される第二の特徴とからなる2つの特徴を兼備するカルボン酸金属化合物である点にある。  The ninth feature means for producing a scale-like substrate covered with a collection of fine particles according to the present invention is that the metal compound that precipitates the metal oxide by the heat treatment in the third feature means and the fifth feature means is a carboxylic acid. A metal carboxylate compound that has two features: a first feature in which an oxygen ion constituting a carboxyl group in N is coordinated to a metal ion, and a second feature in which the carboxylic acid is a saturated fatty acid. In the point.

つまり、本特徴手段によれば、カルボン酸におけるカルボキシル基を構成する酸素イオンが、金属イオンに近づいて配位結合する第一の特徴と、カルボン酸が飽和脂肪酸で構成される第二の特徴とからなる2つの特徴を兼備するカルボン酸金属化合物は、大気雰囲気の400℃より低い温度で熱分解し、金属酸化物を析出する。このため、このようなカルボン酸金属化合物は金属酸化物の原料になる。なお、カルボン酸金属化合物が熱分解する温度は、鱗片状基材の性質が不可逆変化する温度より著しく低いため、カルボン酸金属化合物が熱分解しても、鱗片状基材の性質は変わらない。
すなわち、カルボキシル基を構成する酸素イオンが、金属イオンに近づいて配位結合するカルボン酸金属化合物は、最も大きいイオン半径を有する金属イオンに配位子イオンである酸素イオンが近づいて配位結合するため、両者の距離は短くなる。これによって、金属イオンと配位結合する酸素イオンが、金属イオンの反対側で共有結合するイオンとの距離が最も長くなる。こうした分子構造上の特徴を持つカルボン酸金属化合物は、カルボン酸金属化合物を構成するカルボン酸の沸点を超えると、カルボキシル基を構成する酸素イオンが金属イオンの反対側で共有結合するイオンとの結合部が最初に分断され、金属イオンと酸素イオンとの化合物である金属酸化物と、飽和脂肪酸からなるカルボン酸とに分解する。さらに昇温すると、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した後に金属酸化物が析出する。こうしたカルボン酸金属化合物として、酢酸金属化合物、カプリル酸金属化合物、安息香酸金属化合物、ナフテン酸金属化合物などがある。
このようなカルボン酸金属化合物を、金属微粒子の集まりで覆われた鱗片状基材の表面に吸着させ、カルボン酸金属化合物を熱分解させると、10nm〜100nmの大きさの範囲に入る粒状の金属酸化物の微粒子が、金属微粒子の表面に一斉に析出する。これによって、鱗片状基材は金属微粒子と金属酸化物の微粒子とからなる微粒子の2層構造で覆われる。
さらに、前記したカルボン酸金属化合物は、いずれも容易に合成できる安価な工業用薬品である。すなわち、カルボン酸を強アルカリと反応させるとカルボン酸アルカリ金属化合物が生成される。この後、カルボン酸アルカリ金属化合物を無機金属化合物と反応させることで、カルボン酸金属化合物が合成される。また、原料となるカルボン酸は、有機酸の沸点の中で相対的に低い沸点を有する有機酸であるため、大気雰囲気においては400℃より低い熱処理温度で金属酸化物の微粒子が析出する。このため、安価なカルボン酸金属化合物を大気雰囲気で熱分解するだけで、鱗片状基材の表面が様々な金属酸化物の微粒子の集まりで覆われ、金属酸化物の微粒子の性質を持つ鱗片状基材が安価に製造できる。
That is, according to this feature means, the first feature in which the oxygen ions constituting the carboxyl group in the carboxylic acid are coordinated to approach the metal ion, and the second feature in which the carboxylic acid is composed of a saturated fatty acid The carboxylic acid metal compound having the two characteristics is thermally decomposed at a temperature lower than 400 ° C. in the air atmosphere to precipitate a metal oxide. For this reason, such a carboxylic acid metal compound becomes a raw material of a metal oxide. In addition, since the temperature at which the carboxylic acid metal compound is thermally decomposed is significantly lower than the temperature at which the properties of the flaky substrate are irreversibly changed, even if the carboxylic acid metal compound is thermally decomposed, the properties of the flaky substrate are not changed.
That is, in the carboxylate metal compound in which the oxygen ion constituting the carboxyl group is coordinated and bonded to the metal ion, the oxygen ion, which is the ligand ion, is coordinated and bonded to the metal ion having the largest ion radius. Therefore, the distance between the two becomes short. Thereby, the distance between the oxygen ion coordinated with the metal ion and the ion covalently bonded on the opposite side of the metal ion is the longest. Carboxylic acid metal compounds with these molecular structural characteristics bind to ions that covalently bond oxygen ions constituting the carboxyl group on the opposite side of the metal ions when the boiling point of the carboxylic acid constituting the carboxylic acid metal compound is exceeded. Part is first divided and decomposed into a metal oxide, which is a compound of metal ions and oxygen ions, and a carboxylic acid composed of saturated fatty acids. When the temperature is further increased, the carboxylic acid takes the heat of vaporization and vaporizes, and the metal oxide is deposited after the vaporization of the carboxylic acid is completed. Examples of such a carboxylic acid metal compound include an acetic acid metal compound, a caprylic acid metal compound, a benzoic acid metal compound, and a naphthenic acid metal compound.
When such a carboxylic acid metal compound is adsorbed on the surface of a scaly substrate covered with a collection of metal fine particles, and the carboxylic acid metal compound is thermally decomposed, a granular metal that falls within a size range of 10 nm to 100 nm. Oxide fine particles are deposited on the surface of the metal fine particles all at once. As a result, the scaly substrate is covered with a two-layer structure of fine particles composed of metal fine particles and metal oxide fine particles.
Furthermore, the above-described metal carboxylate is an inexpensive industrial chemical that can be easily synthesized. That is, when a carboxylic acid is reacted with a strong alkali, a carboxylic acid alkali metal compound is produced. Thereafter, the carboxylic acid metal compound is synthesized by reacting the carboxylic acid alkali metal compound with the inorganic metal compound. Moreover, since the carboxylic acid used as a raw material is an organic acid having a relatively low boiling point among the boiling points of the organic acid, metal oxide fine particles are deposited at a heat treatment temperature lower than 400 ° C. in an air atmosphere. For this reason, only by thermally decomposing an inexpensive metal carboxylate in the atmosphere, the surface of the scaly substrate is covered with a collection of various metal oxide fine particles, and the scaly shape has the properties of metal oxide fine particles. The substrate can be manufactured at a low cost.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第10特徴手段は、前記した第3特徴手段における鱗片状基材が2種類の金属化合物の2重構造で覆われた処理基材を、鱗片状基材が熱処理で複数種類の金属が同時に析出する複数種類の金属化合物からなる第一の金属化合物と、該第一の金属化合物が複数種類の金属を同時に析出する熱処理温度より高い熱処理温度で金属酸化物を析出する金属化合物からなる第二の金属化合物とからなる2重構造で覆われた新たな処理基材とし、該新たな処理基材の集まりを、前記第一の金属化合物が熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う、これによって、合金微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが製造される点にある。  The tenth characteristic means for producing a scaly substrate covered with a collection of fine particles according to the present invention is a treatment in which the scaly substrate in the third characteristic means is covered with a double structure of two types of metal compounds. The base material is a first metal compound composed of a plurality of types of metal compounds in which a plurality of types of metals are simultaneously deposited by heat treatment of the scaly substrate, and a heat treatment temperature at which the first metal compounds simultaneously precipitates a plurality of types of metals. A new treated substrate covered with a double structure composed of a second metal compound composed of a metal compound that deposits a metal oxide at a higher heat treatment temperature is used, Two heat treatments comprising a first heat treatment in which the metal compound is thermally decomposed and a second heat treatment in which the second metal compound is thermally decomposed are continuously performed. Collection of metal oxide fine particles Collection of new scaly substrates covered with a double structure of fine particles of is in that it is manufactured.

つまり、本特徴手段に依れば、鱗片状基材を、熱処理で複数種類の金属が同時に析出する複数種類の金属化合物からなる第一の金属化合物と、熱処理で金属酸化物が析出する第二の金属化合物とで覆う。この鱗片状基材の集まりを、連続して2回熱処理する。第一の熱処理で複数種類の金属化合物を同時に熱分解し、10nm〜100nmの大きさの範囲からなる粒状の合金微粒子が析出し、鱗片状基材は合金微粒子の集まりで覆われる。第二の熱処理で第二の金属化合物が熱分解し、10nm〜100nmの大きさの範囲からなる粒状の金属酸化物の微粒子が、先行して析出した合金微粒子の表面に析出する。この結果、合金と金属酸化物とからなる微粒子の2重構造で覆われた鱗片状基材の集まりが製造され、13段落と17段落で説明した微粒子の2重構造とは異なる材質で構成されるため、鱗片状基材は合金微粒子に基づく新たな性質を持つ。
つまり、複数種類の金属化合物が同時に熱分解する際に、金属化合物のモル濃度に応じた複数種類の金属が同時に析出し、析出した複数種類の金属が不純物を持たない活性状態にあるため、モル濃度に応じた金属の組成からなる粒状の合金微粒子を形成して安定化し、熱分解を終える。この合金微粒子は互いに接触する部位で金属結合して合金微粒子の集まりを形成し、鱗片状基材の表面を覆う。
以上に説明したように、本特徴手段に依れば、鱗片状基材の全般について、粉体の材質や形状や粒度分布に係わらず、合金微粒子と金属酸化物微粒子との2重構造で覆われた鱗片状基材の集まりが一度に大量に製造できる。また、安価な材料である2種類の金属化合物を熱処理するだけの極めて簡単な処理であり、鱗片状基材の前処理が不要になるため、製造費用は極めて安価で済む。この鱗片状基材は、合金の性質と金属酸化物の性質とを有し、さらに、微粒子の大きさに基づく固有の性質を有する。この結果、本特徴手段に依れば、7段落で説明した5つの要件を満たす新たな鱗片状基材の集まりが製造される。
That is, according to the present feature means, the scaly substrate is divided into a first metal compound composed of a plurality of types of metal compounds on which a plurality of types of metals are simultaneously deposited by heat treatment and a second metal oxide on which the metal oxides are deposited by heat treatment. Cover with metal compound. This collection of scaly substrates is heat treated twice in succession. In the first heat treatment, a plurality of types of metal compounds are simultaneously pyrolyzed to deposit granular alloy fine particles having a size of 10 nm to 100 nm, and the scaly substrate is covered with a collection of alloy fine particles. In the second heat treatment, the second metal compound is thermally decomposed, and particulate metal oxide fine particles having a size in the range of 10 nm to 100 nm are deposited on the surface of the alloy fine particles deposited in advance. As a result, a collection of scaly substrates covered with a double structure of fine particles composed of an alloy and a metal oxide is manufactured, and is composed of a material different from the double structure of fine particles described in the 13th and 17th paragraphs. Therefore, the scaly substrate has a new property based on alloy fine particles.
That is, when a plurality of types of metal compounds are thermally decomposed simultaneously, a plurality of types of metals corresponding to the molar concentration of the metal compounds are simultaneously deposited, and the plurality of types of deposited metals are in an active state having no impurities. Granular alloy fine particles having a metal composition corresponding to the concentration are formed and stabilized, and thermal decomposition is completed. The alloy fine particles are metal-bonded at portions where they come into contact with each other to form a group of alloy fine particles, and cover the surface of the scaly substrate.
As described above, according to this feature means, the entire scaly substrate is covered with a double structure of alloy fine particles and metal oxide fine particles irrespective of the material, shape and particle size distribution of the powder. A large collection of broken scaly substrates can be produced at a time. In addition, it is an extremely simple process by simply heat-treating two kinds of metal compounds, which are inexpensive materials, and the pretreatment of the scaly substrate is not necessary, so that the manufacturing cost can be extremely low. This scaly base material has properties of an alloy and a metal oxide, and further has an inherent property based on the size of fine particles. As a result, according to this feature means, a new group of scaly substrates satisfying the five requirements described in the seventh paragraph is manufactured.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第11特徴手段は、前記した第10特徴手段における微粒子の2重構造で覆われた鱗片状基材の集まりに負荷を加え、該鱗片状基材の表層から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、合金微粒子の集まりで覆われた新たな鱗片状基材が製造される点にある。  The eleventh characteristic means for producing a scale-like substrate covered with a collection of fine particles according to the present invention applies a load to the collection of scale-like substrates covered with the double structure of fine particles in the tenth characteristic means described above. , Removing the collection of metal oxide fine particles from the surface layer of the scaly substrate, and separating the scaly substrate collection into individual scaly substrates, whereby a new cover covered with a collection of alloy fine particles is obtained. The scale-like substrate is manufactured.

つまり、本特徴手段に依れば、前記した第10特徴手段における鱗片状基材は、表層の金属酸化物の微粒子同士は結合しないため、鱗片状基材の集まりに負荷を加える、例えば、鱗片状基材の集まりを容器に入れ、加振機によって容器に振動を加えると、金属酸化物微粒子の集まりは鱗片状基材から容易に脱落する。この結果、鱗片状基材の集まりが個々の鱗片状基材に分離し、メッシュフィルターを通すと、合金微粒子の集まりで覆われた鱗片状基材が得られる。なお、合金微粒子同士は互いに金属結合しているため、鱗片状基材から脱落しない。この鱗片状基材は、塗料に容易に分散し、導電性ペーストに容易に分散する。これによって、塗料ないしは導電性ペーストは、合金微粒子の性質を持つ。
この合金微粒子の集まりで覆われた鱗片状基材は、15段落で説明した金属微粒子の集まりで覆われた鱗片状基材とは異なる性質、例えば、金属微粒子より耐酸化性と耐食性とに優れる。このため、耐酸化性や耐食性に優れた塗料用顔料や導電性フィラーとなる。
また、この鱗片状基材を塗料用顔料に用いる場合は、15段落と19段落で説明した場合と同様に、鱗片状基材が10nm〜100nmの大きさの範囲からなる粒状の合金微粒子で覆われるため、光の白色散乱が殆どなく、染料並みの彩度と透明性を持つ。また、合金微粒子の集まりの厚みに応じて、合金微粒子の集まりの表面での反射光と鱗片状基材の表面での反射光とが干渉して増幅され、その波長の色調が強い反射光となる。いっぽう、合金微粒子の厚みは、鱗片状基材に吸着した複数種類の金属化合物の量によって自在に変えられるため、強い反射光となる色調を自在に変えられる。さらに、鱗片状基材が発する色調は、鱗片状基材の材質と合金の材質との組み合わせによって、様々な色調に変えられる。
いっぽう、導電性フィラーとして用いる場合は、合金微粒子同士が金属結合するため、電気導電と熱伝導との連続した経路を合金微粒子が形成し、優れた電気導電性と熱伝導性とを兼ね、かつ、耐酸化性や耐食性に優れた導電性フィラーになる。また、導電性フィラーの充填率を従来の導電性フィラーに比べて下げても、導電性が確保できるため、導電性ペーストが安価に製造できる作用効果をもたらす。
以上に説明したように、本特徴手段に依れば、27段落で説明した微粒子の2重構造で覆われた鱗片状基材の集まりに負荷を加えるだけで、様々な金属の組み合わせと組成割合からなる合金微粒子の集まりで覆われた鱗片状基材が製造できる。この鱗片状基材は、合金微粒子固有の性質と、微粒子の大きさに基づく固有の性質を有する。この結果、7段落で説明した5つの要件を満たす新たな鱗片状基材が製造される。
In other words, according to this feature means, the scale-like base material in the tenth feature means does not bond the metal oxide fine particles on the surface layer, so that a load is applied to the group of scale-like base materials. When a group of metal-like base materials is put in a container and vibration is applied to the container with a vibration exciter, the metal oxide fine particles gather easily from the scale-like base material. As a result, when the group of scaly substrates is separated into individual scaly substrates and passed through a mesh filter, a scaly substrate covered with a group of alloy fine particles is obtained. In addition, since alloy fine particles are mutually metal-bonded, they do not fall off from the scaly substrate. This scale-like substrate is easily dispersed in the paint and easily dispersed in the conductive paste. As a result, the paint or conductive paste has the properties of alloy fine particles.
The scaly base material covered with the aggregate of the alloy fine particles is different from the scaly base material covered with the aggregate of the metal fine particles described in the 15th paragraph, for example, superior in oxidation resistance and corrosion resistance than the metal fine particles. . For this reason, it becomes the pigment for coating materials and the electroconductive filler excellent in oxidation resistance and corrosion resistance.
Further, when this scaly substrate is used as a pigment for paint, the scaly substrate is covered with granular alloy fine particles having a size range of 10 nm to 100 nm, as described in the 15th and 19th paragraphs. Therefore, there is almost no white scattering of light, and it has the same saturation and transparency as a dye. Also, depending on the thickness of the aggregate of alloy fine particles, the reflected light on the surface of the aggregate of alloy fine particles and the reflected light on the surface of the scaly substrate are amplified by interference and reflected light having a strong color tone. Become. On the other hand, the thickness of the alloy fine particles can be freely changed depending on the amount of the plurality of types of metal compounds adsorbed on the scaly substrate, so that the color tone of strong reflected light can be freely changed. Furthermore, the color tone emitted from the scaly substrate can be changed to various color tones depending on the combination of the material of the scaly substrate and the material of the alloy.
On the other hand, when used as a conductive filler, the alloy fine particles are metal-bonded to each other, so that the alloy fine particles form a continuous path of electrical conduction and thermal conduction, and combines excellent electrical conductivity and thermal conductivity, and It becomes a conductive filler excellent in oxidation resistance and corrosion resistance. Moreover, even if it lowers the filling rate of a conductive filler compared with the conventional conductive filler, since electroconductivity can be ensured, the effect that an electrically conductive paste can be manufactured cheaply is brought about.
As described above, according to this feature means, various combinations and composition ratios of various metals can be obtained simply by applying a load to a group of scale-like substrates covered with the double structure of fine particles described in paragraph 27. A scaly substrate covered with a collection of alloy fine particles made of can be produced. This scaly substrate has properties specific to alloy fine particles and properties specific to the size of the fine particles. As a result, a new scaly substrate that satisfies the five requirements described in paragraph 7 is manufactured.

本発明に係わる微粒子の集まりで覆われた鱗片状基材を製造する第12特徴手段は、前記した第10特徴手段における複数種類の金属化合物が、同一のカルボン酸で構成される第1の特徴と、カルボン酸のカルボキシル基を構成する酸素イオンが異なる金属イオンに共有結合する第2の特徴と、カルボン酸が飽和脂肪酸で構成される第3の特徴とからなる3つの特徴を兼備する複数種類のカルボン酸金属化合物である点にある。  The twelfth feature means for producing a scale-like substrate covered with a collection of fine particles according to the present invention is the first feature wherein the plurality of types of metal compounds in the tenth feature means are composed of the same carboxylic acid. And two kinds of features that include the second feature in which the oxygen ions constituting the carboxyl group of the carboxylic acid are covalently bonded to different metal ions, and the third feature in which the carboxylic acid is comprised of a saturated fatty acid. It is that it is a carboxylic acid metal compound.

つまり、本特徴手段に依れば、カルボン酸が同一のカルボン酸で構成され、カルボン酸におけるカルボキシル基を構成する酸素イオンが異なる金属イオンに共有結合し、カルボン酸が飽和脂肪酸で構成される3つの特徴を兼備する複数種類のカルボン酸金属化合物を、大気雰囲気で熱分解すると、カルボン酸金属化合物のモル濃度に応じて複数の金属が同時に析出し、析出した金属の組成割合からなる合金が生成される。このため、複数種類のカルボン酸金属化合物は、合金微粒子を生成する原料になる。
すなわち、複数種類のカルボン酸金属化合物をアルコールに分散し、この分散液に鱗片状基材の集まりを浸漬し、アルコールを気化させた後に、鱗片状基材の集まりを大気雰囲気で熱処理する。この際、カルボン酸金属化合物を構成するカルボン酸の沸点に応じて、290℃〜400℃の温度範囲で複数種類のカルボン酸金属化合物が同時に熱分解し、大きさが10nm〜100nmの範囲に入る粒状の合金微粒子の集まりが析出する。この結果、鱗片状基材は、様々な組成と組成割合からなる合金属微粒子の集まりで覆われ、鱗片状基材は、15段落で説明した金属より酸化ないしは腐食しにくい合金微粒子の性質を持つ。
つまり、複数種類のカルボン酸金属化合物を大気雰囲気で熱処理すると、カルボン酸金属化合物が同一のカルボン酸から構成されるため、カルボン酸の沸点を超えると、複数種類のカルボン酸金属化合物が同時にカルボン酸と金属とに分離し、更に昇温すると、カルボン酸の気化がカルボン酸の沸点に応じた290℃〜400℃の温度範囲で完了し、カルボン酸金属化合物のモル濃度に応じて複数種類の金属が析出する。これらの金属はいずれも不純物を持たない活性状態にあるため、析出した複数種類の金属から構成され、カルボン酸金属化合物のモル濃度に応じた組成割合からなる合金を生成して熱分解を終える。このため、安価な複数種類のカルボン酸金属化合物を大気雰囲気で熱分解するだけで様々な合金が生成され、合金微粒子の性質を持つ鱗片状基材が安価に製造できる。
That is, according to this feature means, the carboxylic acid is composed of the same carboxylic acid, the oxygen ions constituting the carboxyl group in the carboxylic acid are covalently bonded to different metal ions, and the carboxylic acid is composed of the saturated fatty acid. When two or more types of carboxylic acid metal compounds that have the same characteristics are pyrolyzed in the atmosphere, a plurality of metals are deposited at the same time depending on the molar concentration of the carboxylic acid metal compound, and an alloy consisting of the composition ratio of the deposited metal is generated. Is done. For this reason, a plurality of types of carboxylic acid metal compounds are used as raw materials for producing alloy fine particles.
That is, a plurality of types of metal carboxylate compounds are dispersed in alcohol, and a group of scaly substrates is immersed in this dispersion to vaporize the alcohol, and then the group of scaly substrates is heat-treated in an air atmosphere. At this time, depending on the boiling point of the carboxylic acid constituting the carboxylic acid metal compound, a plurality of types of carboxylic acid metal compounds are simultaneously thermally decomposed in a temperature range of 290 ° C. to 400 ° C., and the size falls within the range of 10 nm to 100 nm. A collection of granular alloy fine particles is deposited. As a result, the scaly substrate is covered with a collection of mixed metal fine particles having various compositions and composition ratios, and the scaly substrate has the property of alloy fine particles that are less susceptible to oxidation or corrosion than the metal described in the 15th paragraph. .
In other words, when a plurality of types of carboxylic acid metal compounds are heat-treated in the air atmosphere, the carboxylic acid metal compounds are composed of the same carboxylic acid. When the carboxylic acid is further heated, the vaporization of the carboxylic acid is completed in a temperature range of 290 ° C. to 400 ° C. according to the boiling point of the carboxylic acid, and a plurality of types of metals are selected according to the molar concentration of the carboxylic acid metal compound. Precipitates. Since all of these metals are in an active state having no impurities, they are composed of a plurality of kinds of precipitated metals, and an alloy having a composition ratio according to the molar concentration of the carboxylic acid metal compound is generated to complete the thermal decomposition. For this reason, various alloys are produced only by thermally decomposing a plurality of inexpensive metal carboxylate compounds in the air atmosphere, and a scaly substrate having the properties of alloy fine particles can be manufactured at low cost.

本発明に係わる微粒子の集まりで鱗片状基材を覆う第1の製造方法は、熱処理で金属を析出する金属化合物をアルコールに分散してアルコール分散液を作成する第一の工程と、該アルコール分散液に鱗片状基材の集まりを投入して懸濁液を作成する第二の工程と、該懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記金属化合物で覆われた処理基材を作成する第三の工程と、該処理基材の集まりに、前記金属化合物が熱分解される熱処理を施す第四の工程とからなり、これら4つの工程を連続して実施することで、前記鱗片状基材が金属微粒子の集まりで覆われるとともに、該金属微粒子同士の金属結合を介して前記鱗片状基材同士が結合された鱗片状基材の集まりが製造される製造方法である塩にある。  A first production method for covering a scaly substrate with a collection of fine particles according to the present invention includes a first step of dispersing a metal compound that precipitates a metal by heat treatment in alcohol to form an alcohol dispersion, and the alcohol dispersion A second step of adding a collection of scaly substrates to the liquid to create a suspension; and heating the suspension to vaporize the alcohol; and covering the scaly substrate with the metal compound. It consists of a third step of creating a treated substrate and a fourth step of subjecting the group of treated substrates to a heat treatment in which the metal compound is thermally decomposed. In this way, the scaly substrate is covered with a collection of metal fine particles, and a collection of scaly substrates in which the scaly substrates are bonded through metal bonds between the metal particles is manufactured. The method is in salt.

つまり、本製造方法に依れば、極めて簡単な4つの処理を連続して実施することで、鱗片状基材が金属微粒子の集まりで覆われるとともに、金属微粒子同士の金属結合を介して鱗片状基材同士が結合された鱗片状基材の集まりが製造される。このため、安価な製造費用で鱗片状基材同士が結合された鱗片状基材の集まりが大量に製造される。
すなわち、第一の工程は、金属化合物をアルコールに分散するだけの処理である。第二の工程は、アルコール分散液に鱗片状基材の集まりを投入するだけの処理である。第三の工程は、アルコールを気化させるだけの処理である。第四の工程は、金属化合物を熱処理だけの処理である。このような極めて簡単な4つの処理を連続して実施することで、金属微粒子の集まりを介して鱗片状基材同士が結合された新たな性質を持つ鱗片状基材の集まりが、大量にかつ安価に製造できる。
In other words, according to this manufacturing method, by performing four extremely simple processes in succession, the scaly substrate is covered with a collection of metal fine particles, and a scaly shape is formed through metal bonds between the metal fine particles. A collection of scaly substrates in which the substrates are bonded together is manufactured. For this reason, the collection of the scaly base material with which scaly base materials were couple | bonded together by cheap manufacturing cost is manufactured in large quantities.
That is, the first step is a treatment simply by dispersing the metal compound in alcohol. The second step is simply a process of charging a collection of scaly substrates into the alcohol dispersion. The third step is a process that only vaporizes alcohol. In the fourth step, the metal compound is treated only by heat treatment. By carrying out such extremely simple four processes in succession, a large number of scale-like base materials having a new property in which the scale-like base materials are bonded to each other through a collection of metal fine particles. Can be manufactured at low cost.

本発明に係わる微粒子の集まりで鱗片状基材を覆う第2の製造方法は、前記した第1の製造方法において、鱗片状基材として強磁性の鱗片状基材を用い、かつ、金属化合物として熱処理で自発磁化を有する金属酸化物を析出する金属化合物を用い、前記した第1の製造方法に記載した4つの工程を連続して実施する、これによって、磁気吸着した金属酸化物微粒子の集まりを介して鱗片状基材同士が結合された新たな鱗片状基材の集まりが製造される製造方法である点にある。  A second production method for covering a scaly substrate with a collection of fine particles according to the present invention uses a ferromagnetic scaly substrate as a scaly substrate and a metal compound in the first production method described above. Using a metal compound that precipitates a metal oxide having spontaneous magnetization during heat treatment, the four steps described in the first manufacturing method described above are performed in succession, thereby collecting a collection of magnetically adsorbed metal oxide fine particles. It is the point which is a manufacturing method in which a collection of new scaly substrates in which scaly substrates are bonded to each other is manufactured.

つまり本製造方法に依れば、前記の第1の製造方法において、鱗片状基材として強磁性の鱗片状基材を用い、金属化合物として熱処理で自発磁化を有する金属酸化物を析出する金属化合物を用い、第1の製造方法に記載した4つの処理を連続して実施すると、磁気吸着した金属酸化物微粒子の集まりで鱗片状基材が覆われるとともに、磁気吸着した金属酸化物微粒子の集まりを介して鱗片状基材同士が結合された新たな鱗片状基材の集まりが製造される。このため、安価な製造費用で新たな鱗片状基材の集まりが大量に製造される。  That is, according to this production method, in the first production method, a metal compound that uses a ferromagnetic scale-like substrate as the scale-like substrate and deposits a metal oxide having spontaneous magnetization by heat treatment as the metal compound. When the four treatments described in the first manufacturing method are continuously performed, the scaly substrate is covered with a collection of magnetically adsorbed metal oxide fine particles, and a collection of magnetically adsorbed metal oxide fine particles is collected. A new group of flaky substrates in which the flaky substrates are bonded to each other is manufactured. For this reason, a collection of new scaly substrates is manufactured in large quantities at a low manufacturing cost.

本発明に係わる微粒子の集まりで鱗片状基材を覆う第3の製造方法は、熱処理で金属を析出する第一の金属化合物をアルコールに分散してアルコール分散液を作成する第一の工程と、該アルコール分散液に鱗片状基材の集まりを投入して第一の懸濁液を作成する第二の工程と、該第一の懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材の表面が前記第一の金属化合物で覆われた第一の処理基材を作成する第三の工程と、前記第一の金属化合物が金属を析出する温度より高い温度で金属酸化物を析出する第二の金属化合物をアルコールに分散してアルコール分散液を作成する第四の工程と、該アルコール分散液に前記第一の処理基材の集まりを投入して第二の懸濁液を作成する第五の工程と、該第二の懸濁液を昇温して前記アルコールを気化させ、前記第一の処理基材が前記第二の金属化合物で覆われた第二の処理基材を作成する第六の工程と、該第二の処理基材の集まりを、前記第一の金属化合物を熱分解する熱処理と、前記第二の金属化合物を熱分解する熱処理とからなる2回の熱処理を連続して行う第七の工程とからなり、これら7つの工程を連続して実施することで、金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが製造される製造方法である点にある。  The third production method for covering the scaly substrate with a collection of fine particles according to the present invention includes a first step of dispersing the first metal compound that precipitates the metal by heat treatment in alcohol to create an alcohol dispersion, A second step of creating a first suspension by adding a collection of scaly substrates to the alcohol dispersion, and heating the first suspension to vaporize the alcohol; A metal oxide at a temperature higher than a temperature at which the first metal compound precipitates a metal, and a third step of creating a first treated substrate in which the surface of the substrate is covered with the first metal compound A fourth step of preparing an alcohol dispersion by dispersing the second metal compound that precipitates in the alcohol, and adding a collection of the first treatment substrates to the alcohol dispersion to form a second suspension A fifth step of preparing the second suspension and raising the temperature of the second suspension Vaporizing the first treatment substrate to create a second treatment substrate covered with the second metal compound, and a collection of the second treatment substrates, It consists of a seventh step in which two heat treatments consisting of a heat treatment for thermally decomposing the first metal compound and a heat treatment for thermally decomposing the second metal compound are continuously performed, and these seven steps are continuously performed. This is a manufacturing method in which a new group of scaly substrates covered with a double structure of fine particles composed of a collection of metal fine particles and a collection of metal oxide fine particles is manufactured.

つまり、本製造方法に依れば、極めて簡単な7つの処理を連続して実施することで、金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造によって覆われた鱗片状基材の集まりが大量に製造される。すなわち、第一の工程と第四の工程とは、金属化合物をアルコールに分散するだけの処理である。第二の工程と第五の工程とは、アルコール分散液に、鱗片状基材の集まりないしは第一処理基材の集まりを投入するだけの処理である。第三の工程と第六の工程とは、アルコールを気化させるだけの処理である。第七の工程は、2種類の金属化合物を連続した2回の熱処理で熱分解するだけの処理である。このような極めて簡単な7つの処理を連続して実施することで、金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが、大量にかつ安価に製造できる。  In other words, according to this manufacturing method, a scale-like shape covered with a double structure of fine particles composed of a collection of metal fine particles and a collection of metal oxide fine particles by continuously performing seven extremely simple processes. Large collections of substrates are produced. That is, the first step and the fourth step are treatments simply by dispersing the metal compound in alcohol. The second step and the fifth step are treatments in which a collection of scaly base materials or a collection of first treatment base materials is simply added to the alcohol dispersion. A 3rd process and a 6th process are processes which only vaporize alcohol. The seventh step is a treatment that only thermally decomposes two kinds of metal compounds by two successive heat treatments. By carrying out such seven very simple treatments in succession, a new collection of scale-like substrates covered with a double structure of fine particles consisting of a collection of metal fine particles and a collection of metal oxide fine particles can be obtained. Can be manufactured in large quantities and at low cost.

本発明に係わる微粒子の集まりで鱗片状基材を覆う第4の製造方法は、前記した第3の製造方法で製造した鱗片状基材の集まりに負荷を加え、該鱗片状基材の表面から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、金属微粒子の集まりで覆われた新たな鱗片状基材が製造される製造方法である点にある。  In the fourth production method of covering the scaly substrate with a collection of fine particles according to the present invention, a load is applied to the assembly of the scaly substrate produced by the third production method described above, and the surface of the scaly substrate is applied. Manufacture of a new scaly substrate covered with a collection of metal fine particles by dropping off a collection of metal oxide fine particles and separating the scaly substrate assembly into individual scaly substrates. The point is in the way.

つまり本製造方法に依れば、前記の第3の製造方法で製造した鱗片状基材の集まりに負荷を加える。例えば、鱗片状基材の集まりを容器に入れ、加振機によって容器に振動を加える。この際、金属酸化物微粒子同士は結合していないため、鱗片状基材の表層から金属酸化物の微粒子の集まりが簡単に脱落し、鱗片状基材の集まりが個々の鱗片状基材に分離し、メッシュフィルターを通すと、金属微粒子の集まりで覆われた鱗片状基材が得られる。このように、第4の製造方法で製造した鱗片状基材の集まりに負荷を加えるだけで、金属微粒子の集まりで覆われた新たな鱗片状基材が、大量にかつ安価に製造できる。  That is, according to this manufacturing method, a load is applied to the group of scaly base materials manufactured by the third manufacturing method. For example, a collection of scaly substrates is placed in a container, and the container is vibrated by a vibrator. At this time, since the metal oxide fine particles are not bonded to each other, the collection of metal oxide fine particles is easily dropped from the surface layer of the flaky substrate, and the collection of flaky substrate is separated into individual flaky substrates. When passing through a mesh filter, a scaly substrate covered with a collection of metal fine particles is obtained. In this way, a new scaly substrate covered with a collection of metal fine particles can be produced in large quantities and at low cost simply by applying a load to the assembly of scaly substrates produced by the fourth production method.

本発明に係わる微粒子の集まりで鱗片状基材を覆う第5の製造方法は、前記した第4の製造方法で製造した鱗片状基材を原料として用い、熱処理で新たな金属を析出する第一の金属化合物をアルコールに分散してアルコール分散液を作成する第一の工程と、該アルコール分散液に前記鱗片状基材の集まりを投入して第一の懸濁液を作成する第二の工程と、該第一の懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材の表面が前記第一の金属化合物で覆われた第一の処理基材を作成する第三の工程と、前記第一の金属化合物が金属を析出する熱処理温度より高い熱処理温度で金属酸化物を析出する第二の金属化合物をアルコールに分散してアルコール分散液を作成する第四の工程と、該アルコール分散液に前記第一の処理基材の集まりを投入して第二の懸濁液を作成する第五の工程と、該第二の懸濁液を昇温して前記アルコールを気化させ、前記第一の処理基材が前記第二の金属化合物で覆われた第二の処理基材を作成する第六の工程と、該第二の処理基材の集まりを、前記第一の金属化合物が熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う第七の工程とからなり、これら7つの工程を連続して実施することで、複合金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが製造される製造方法である点にある。  The fifth production method for covering the scaly substrate with the collection of fine particles according to the present invention is a first method in which a new metal is deposited by heat treatment using the scaly substrate produced by the above-described fourth production method as a raw material. A first step of creating an alcohol dispersion by dispersing the metal compound in alcohol, and a second step of creating a first suspension by charging the scaly substrate into the alcohol dispersion. And evaporating the alcohol by elevating the temperature of the first suspension to form a first treated substrate in which the surface of the scaly substrate is covered with the first metal compound. A fourth step of dispersing the second metal compound that precipitates the metal oxide at a heat treatment temperature higher than the heat treatment temperature at which the first metal compound precipitates the metal in alcohol to create an alcohol dispersion; The first treatment substrate is collected in the alcohol dispersion. A second step of creating a second suspension, and evaporating the alcohol by raising the temperature of the second suspension, wherein the first treated substrate is the second metal A sixth step of creating a second treated substrate covered with the compound, a collection of the second treated substrate, a first heat treatment in which the first metal compound is thermally decomposed, and the first The second step is a seventh step in which two heat treatments in which the two metal compounds are thermally decomposed are continuously performed. By performing these seven steps in succession, the composite metal fine particles This is a manufacturing method in which a new group of scaly substrates covered with a double structure of fine particles composed of a collection and a collection of metal oxide fine particles is manufactured.

つまり、本製造方法に依れば、前記の第4の製造方法で製造した鱗片状基材を原料として用い、極めて簡単な7つの処理を連続して実施することで、複合金属微粒子の集まりと金属酸化物微粒子の集まりからなる微粒子の2重構造で覆われた鱗片状基材の集まりが大量に製造される。すなわち、第一と第四の工程とは、金属化合物をアルコールに分散するだけの処理である。第二の工程と第五の工程とは、アルコール分散液に、鱗片状基材の集まりないしは第一処理基材の集まりを投入するだけの処理である。第三の工程と第六の工程とは、アルコールを気化させるだけの処理である。第七の工程は、2種類の金属化合物を連続した2回の熱処理で熱分解させるだけの処理である。このような極めて簡単な7つの処理を連続して実施することで、複合金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが、大量にかつ安価に製造できる。  That is, according to this production method, by using the scaly substrate produced by the fourth production method as a raw material, and carrying out seven simple processes in succession, A large number of scale-like base materials covered with a double structure of fine particles composed of metal oxide fine particles are produced. That is, the first and fourth steps are treatments simply by dispersing the metal compound in alcohol. The second step and the fifth step are treatments in which a collection of scaly base materials or a collection of first treatment base materials is simply added to the alcohol dispersion. A 3rd process and a 6th process are processes which only vaporize alcohol. The seventh step is a treatment in which two kinds of metal compounds are simply thermally decomposed by two successive heat treatments. By carrying out seven such extremely simple treatments in succession, a new collection of scale-like substrates covered with a double structure of fine particles composed of a collection of composite metal fine particles and a collection of metal oxide fine particles. However, it can be manufactured in large quantities and at low cost.

本発明に係わる微粒子の集まりで鱗片状基材を覆う第6の製造方法は、前記した第5の製造方法で製造した鱗片状基材の集まりに負荷を加え、該鱗片状基材の表面から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、複合金属微粒子の集まりで覆われた新たな鱗片状基材が製造される製造方法である点にある。  In the sixth production method for covering the scaly substrate with the collection of fine particles according to the present invention, a load is applied to the assembly of the scaly substrate produced by the above-described fifth production method, and the surface of the scaly substrate is applied. The collection of metal oxide fine particles is removed, and the collection of scale-like substrates is separated into individual scale-like substrates, thereby producing a new scale-like substrate covered with the collection of composite metal fine particles. It is a manufacturing method.

つまり本製造方法に依れば、第5の製造方法で製造した鱗片状基材の集まりに負荷を加える。例えば、鱗片状基材の集まりを容器に入れ、加振機によって容器に振動を加える。この際、金属酸化物微粒子同士は結合していないため、鱗片状基材の表層から金属酸化物微粒子の集まりは簡単に脱落し、メッシュフィルターを通すと、複合金金属微粒子の集まりで覆われた鱗片状基材が得られる。このように、第5の製造方法で製造した鱗片状基材の集まりに、負荷を加えるだけで、複合金属微粒子の集まりで覆われた新たな鱗片状基材か、大量にかつ安価に製造できる。  That is, according to this manufacturing method, a load is applied to the group of scaly substrates manufactured by the fifth manufacturing method. For example, a collection of scaly substrates is placed in a container, and the container is vibrated by a vibrator. At this time, since the metal oxide fine particles are not bonded to each other, the collection of metal oxide fine particles can be easily dropped from the surface layer of the scaly substrate, and covered with the collection of composite gold metal fine particles when passed through the mesh filter. A scaly substrate is obtained. In this way, it is possible to manufacture a new scaly substrate covered with a collection of composite metal fine particles or a large amount at low cost simply by applying a load to the assembly of scaly substrates manufactured by the fifth manufacturing method. .

本発明に係わる微粒子の集まりで鱗片状基材を覆う第7の製造方法は、熱処理で複数種類の金属を同時に析出する複数種類の金属化合物を、アルコールに分散してアルコール分散液を作成する第一の工程と、該アルコール分散液に鱗片状基材の集まりを投入して第一の懸濁液を作成する第二の工程と、該第一の懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記複数種類の金属化合物で覆われた第一の処理基材を作成する第三の工程と、前記複数種類の金属化合物が複数種類の金属を同時に析出する熱処理温度より高い熱処理温度で金属酸化物を析出する第二の金属化合物をアルコールに分散してアルコール分散液を作成する第四の工程と、該アルコール分散液に前記第一の処理基材の集まりを投入して第二の懸濁液を作成する第五の工程と、該第二の懸濁液を昇温して前記アルコールを気化させ、前記第一の処理基材が前記第二の金属化合物で覆われた第二の処理基材を作成する第六の工程と、該第二の処理基材の集まりを、前記複数種類の金属化合物が同時に熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う第七の工程とからなり、これら7つの工程を連続して実施することで、合金微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われる新たな鱗片状基材の集まりが製造される製造方法である点にある。  A seventh production method for covering a scaly substrate with a collection of fine particles according to the present invention is a method in which an alcohol dispersion is prepared by dispersing a plurality of types of metal compounds that simultaneously precipitate a plurality of types of metals in heat treatment in alcohol. One step, a second step in which a collection of scaly substrates is added to the alcohol dispersion to create a first suspension, and the alcohol is heated by heating the first suspension. A third step of vaporizing and preparing a first treatment substrate in which the scaly substrate is covered with the plurality of types of metal compounds; and a heat treatment in which the plurality of types of metal compounds simultaneously precipitate a plurality of types of metals. A fourth step in which a second metal compound that precipitates a metal oxide at a heat treatment temperature higher than the temperature is dispersed in alcohol to form an alcohol dispersion, and the first dispersion of the first treatment substrate is added to the alcohol dispersion. To create a second suspension And a second treatment substrate in which the first treatment substrate is covered with the second metal compound by elevating the temperature of the second suspension to vaporize the alcohol. A sixth process to be created, a collection of the second treated substrates, a first heat treatment in which the plurality of types of metal compounds are pyrolyzed simultaneously, and a second in which the second metal compounds are pyrolyzed And a seventh step in which two heat treatments are successively performed, and by performing these seven steps in succession, fine particles comprising a collection of alloy fine particles and a collection of metal oxide fine particles. This is a manufacturing method in which a new group of scaly substrates covered with a double structure is manufactured.

つまり、本製造方法に依れば、極めて簡単な7つの処理を連続して実施することで、合金微粒子集まりと金属酸化物微粒子の集まりからなる微粒子の2重構造で覆われた鱗片状基材の集まりが大量に製造される。すなわち、第一の工程と第四の工程とは、複数種類の金属化合物を、ないしは、第二の金属化合物をアルコールに分散するだけの処理である。第二の工程と第五の工程とは、アルコール分散液に鱗片状基材の集まり、ないしは、第一処理基材の集まりを投入するだけの処理である。第三の工程と第六の工程とは、アルコールを気化させるだけの処理である。第七の工程は、複数種類の金属化合物と第二の金属化合物を連続した2回の熱処理で熱分解するだけの処理である。このような極めて簡単な7つの処理を連続して実施することで、合金微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな性質を持つ鱗片状基材の集まりが、大量にかつ安価に製造できる。  That is, according to this manufacturing method, a scaly substrate covered with a double structure of fine particles composed of a collection of alloy fine particles and metal oxide fine particles by continuously performing seven extremely simple treatments. A large collection is produced. That is, the first step and the fourth step are treatments in which a plurality of types of metal compounds or a second metal compound is simply dispersed in alcohol. The second step and the fifth step are processes in which a collection of scaly base materials or a collection of first treatment base materials is added to the alcohol dispersion. A 3rd process and a 6th process are processes which only vaporize alcohol. The seventh step is a treatment in which a plurality of types of metal compounds and a second metal compound are simply thermally decomposed by two successive heat treatments. By carrying out seven such simple processes in succession, a scaly substrate having a new property covered with a double structure of fine particles composed of a collection of alloy fine particles and a collection of metal oxide fine particles. Can be manufactured in large quantities at low cost.

本発明に係わる微粒子の集まりで鱗片状基材を覆う第8の製造方法は、前記した第7の製造方法で製造した鱗片状基材の集まりに負荷を加え、該鱗片状基材の表面から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、合金微粒子の集まりで覆われた新たな鱗片状基材が製造される製造方法である点にある。  In the eighth manufacturing method of covering the scaly substrate with the collection of fine particles according to the present invention, a load is applied to the assembly of the scaly substrate manufactured by the seventh manufacturing method described above, and the surface of the scaly substrate is applied. Manufacture of a new scaly substrate covered with a collection of alloy fine particles by dropping off a collection of metal oxide fine particles and separating the scaly substrate population into individual scaly substrates. The point is in the way.

つまり本製造方法に依れば、前記の第7の製造方法で製造した鱗片状基材の集まりに負荷を加える。例えば、鱗片状基材の集まりを容器に入れ、加振機によって容器に振動を加える。この際、金属酸化物微粒子同士は結合していないため、鱗片状基材の表層から金属酸化物微粒子の集まりは簡単に脱落し、鱗片状基材の集まりが個々の鱗片状基材に分離し、メッシュフィルターを通すと、合金微粒子の集まりで覆われた鱗片状基材が得られる。このように、第7の製造方法で製造した鱗片状基材の集まりに、負荷を加えるだけで、合金微粒子の集まりで覆われた新たな鱗片状基材が、大量にかつ安価に製造できる。  That is, according to this manufacturing method, a load is applied to the group of scaly substrates manufactured by the seventh manufacturing method. For example, a collection of scaly substrates is placed in a container, and the container is vibrated by a vibrator. At this time, since the metal oxide fine particles are not bonded to each other, the collection of metal oxide fine particles easily falls off from the surface layer of the flaky substrate, and the collection of flaky substrate is separated into individual flaky substrates. When the mesh filter is passed, a scaly substrate covered with a collection of alloy fine particles is obtained. Thus, a new scaly substrate covered with a collection of alloy fine particles can be produced in large quantities and at low cost simply by applying a load to the group of scaly substrates produced by the seventh production method.

金属結合した銅微粒子の集まりを介して結合された鱗片状黒鉛粒子の集まりを製造する製造工程を説明する図である。It is a figure explaining the manufacturing process which manufactures the collection of the scaly graphite particle | grains couple | bonded through the collection of the copper fine particles couple | bonded with the metal. 磁気吸着したマグヘマイト微粒子の集まりを介して結合された扁平鉄粉の集まりを製造する製造工程を説明する図である。It is a figure explaining the manufacturing process which manufactures the collection of the flat iron powder couple | bonded through the collection of the magnetically adsorbed maghemite fine particles. 磁気吸着したマグヘマイト微粒子の集まりを介して結合された3種類の扁平粉の集まりを製造する製造工程を説明する図である。It is a figure explaining the manufacturing process which manufactures the collection of three types of flat powder couple | bonded through the collection of the magnetically adsorbed maghemite fine particles. 鉄微粒子で覆われた扁平銅粉を製造する製作工程を説明する図である。It is a figure explaining the manufacturing process which manufactures the flat copper powder covered with the iron fine particle. パーマロイ微粒子で覆われた扁平銅粉を製造する製作工程を説明する図である。It is a figure explaining the manufacturing process which manufactures the flat copper powder covered with the permalloy fine particle. 金と銅とからなる複合金属微粒子で覆われたガラスフレーク粉を製造する製作工程を説明する図である。It is a figure explaining the manufacturing process which manufactures the glass flake powder covered with the composite metal fine particle which consists of gold | metal | money and copper.

実施形態1Embodiment 1

本実施形態は、鱗片状基材の表面に金属微粒子を析出する原料に係わる第一の実施形態である。本発明における金属微粒子を製造する原理は、9段落で説明したように、第一に金属微粒子の原料を鱗片状基材の表面に吸着させる。第二に吸着した原料を鱗片状基材の表面で金属微粒子の集まりに変化させる。
金属微粒子の原料が鱗片状基材に吸着するには、原料が液相化され、液相化された原料に鱗片状基材の集まりを投入し、液相化された原料における液体を蒸発させると、原料が鱗片状基材の表面に吸着する。従って、金属微粒子の原料は液相化しなければならない。
ここで、金属を銅とし、銅化合物を例として説明する。塩化銅、硫酸銅、硝酸銅などの無機銅化合物は、液相化された無機銅化合物中に銅イオンが溶出してしまい、多くの銅イオンが銅微粒子の析出に参加できなくなる。従って、銅化合物は溶剤に溶解せず、溶剤に分散する性質を持つことが必要になる。また、アルコールなどの汎用的な有機溶剤に分散できれば、銅化合物が溶剤中に均一に分散し、この分散液に鱗片状基材を投入し、アルコールを気化させれば、鱗片状基材の表面に銅化合物が均一に吸着する。酸化銅、水酸化銅、炭酸銅などの無機銅化合物はアルコールに分散しない。このため、鱗片状基材の表面に吸着する銅化合物は、無機銅化合物ではなく有機銅化合物が望ましい。
次に、有機銅化合物は鱗片状基材の表面で銅微粒子の集まりに変化しなければならない。つまり、有機銅化合物から銅が生成される化学反応が、鱗片状基材の表面で起こる必要がある。有機銅化合物から銅が生成される化学反応の中で、最も簡単な処理による化学反応に熱分解反応がある。つまり、有機銅化合物を昇温するだけで、有機銅化合物が熱分解して銅が析出する。さらに、有機銅化合物の合成が容易でれば、有機銅化合物を安価に製造できる。こうした性質を兼ね備える有機銅化合物にカルボン酸銅がある。つまり、カルボン酸銅を構成するイオンの中で、最も大きいイオンは銅イオンである。従って、カルボン酸銅におけるカルボキシル基を構成する酸素イオンが、銅イオンと共有結合すれば、銅イオンとカルボキシル基を構成する酸素イオンとの距離が、カルボン酸銅の中で最も長くなる。こうした分子構造上の特徴を持つカルボン酸銅を昇温させると、カルボン酸の沸点において、カルボン酸と銅とに分解する。さらに昇温すると、カルボン酸が飽和脂肪酸で構成されれば、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した後に銅が析出する。また、カルボン酸銅は合成が容易で、安価な有機銅化合物である。つまり、カルボン酸を水酸化ナトリウムなどの強アルカリ溶液中で反応させると、カルボン酸アルカリ金属が生成される。このカルボン酸アルカリ金属を、硫酸銅などの無機銅化合物と反応させると、カルボン酸銅が生成される。なお、カルボン酸が不飽和脂肪酸であれば、炭素原子が水素原子に対して過剰になり、不飽和脂肪酸からなるカルボン酸銅が熱分解すると、複数種類の銅の酸化物が析出する。なお、カルボキシル基を構成する酸素イオンが配位子となって銅イオンに近づき、酸素イオンが銅イオンに配位結合するカルボン酸銅は、銅イオンと酸素イオンとの距離が短くなるため、熱分解によって酸化銅を生成する。
カルボン酸銅の組成式は、RCOO−Cu−COORで表わせられる。Rは炭化水素で、この組成式はCである(ここでmとnとは整数)。カルボン酸銅を構成する物質の中で、組成式の中央に存在する銅イオンCu2+が最も大きい物質になる。従って、銅イオンCu2+とカルボキシル基を構成する酸素イオンOとが共有結合する場合は、銅イオンCu2+と酸素イオンOとの距離が最大になる。この理由は、銅イオンCu2+の共有結合半径は112pmであり、酸素イオンOの共有結合半径は63pmであり、炭素原子の共有結合半径は75pmであり、酸素原子の共有結合半径は57pmであることによる。このため、銅イオンとカルボキシル基を構成する酸素イオンとが共有結合するカルボン酸銅は、カルボン酸の沸点において、結合距離が最も長い銅イオンとカルボキシル基を構成する酸素イオンとの結合部が最初に切断され、銅とカルボン酸とに分離する。さらに昇温すると、カルボン酸銅を構成するカルボン酸が飽和脂肪酸であれば、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した後に銅が析出する。こうしたカルボン酸銅として、オクチル酸銅、ラウリン酸銅、ステアリン酸銅などがある。
さらに、飽和脂肪酸の沸点が相対的に低ければ、カルボン酸銅は相対的に低い温度で熱分解し、銅微粒子の製造に関わる熱処理費用が安価で済む。飽和脂肪酸を構成する炭化水素が長鎖構造である場合は、長鎖が長いほど、つまり、飽和脂肪酸の分子量が大きいほど、飽和脂肪酸の沸点が高くなる。ちなみに、分子量が200.3であるラウリン酸の大気圧での沸点は296℃であり、分子量が284.5であるステアリン酸の大気圧での沸点は361℃である。従って、飽和脂肪酸の分子量が相対的に小さい飽和脂肪酸からなるカルボン酸銅は、熱分解温度が相対的に低くなるので、銅微粒子の原料として望ましい。
また、飽和脂肪酸が分岐鎖構造を有する場合は、直鎖構造の飽和脂肪酸より鎖の長さが短く、沸点が相対的に低くなる。このため、カルボン酸銅も相対的に低い温度で熱分解温度する。さらに、分岐鎖構造を有する飽和脂肪酸は極性を持つため、カルボン酸銅も極性を持ち、アルコールなどの極性を持つ有機溶剤に相対的に高い割合で分散する。このようなカルボン酸銅としてオクチル銅がある。すなわち、オクチル酸は構造式がCH(CHCH(C)COOHで示され、CHでCH(CHとCとのアルカンに分岐され、CHにカルボキシル基COOHが結合する。オクチル酸の大気圧での沸点は228℃であり、前記したラウリン酸より沸点が68℃低い。このため、銅微粒子の原料として、オクチル酸銅が望ましい。オクチル酸銅は、大気雰囲気において290℃で熱分解が完了して銅が析出し、メタノールやn‐ブタノールなどに10重量%まで分散する。
以上に説明したように、金属微粒子の原料は、液相化できる有機金属化合物が望ましい。さらに、カルボキシル基を構成する酸素イオンが、金属イオンと共有結合するカルボン酸金属化合物が望ましい。さらに、飽和脂肪酸から構成されるカルボン酸金属化合物が望ましい。さらに、直鎖が短い飽和脂肪酸からなるカルボン酸金属化合物が望ましい。さらに、分岐鎖構造を有する直鎖が短い飽和脂肪酸からなるオクチル酸金属化合物が最も望ましい。
なお、合金の微粒子を製造する原料として、同一の飽和脂肪酸からなる複数種類のカルボン酸金属化合物を用いることができる。つまり、複数種類のカルボン酸金属化合物が、同一の飽和脂肪酸から構成されるため、飽和脂肪酸の沸点で複数種類のカルボン酸金属化合物が同時に熱分解し、飽和脂肪酸の気化が完了した後に、各々のカルボン酸金属化合物のモル濃度に応じて複数種類の金属が析出する。この際、複数種類の金属は不純物を持たない活性状態にあるため、複数種類のカルボン酸金属化合物のモル濃度に応じた金属の組成からなる合金が生成される。
This embodiment is a first embodiment relating to a raw material for depositing fine metal particles on the surface of a scaly substrate. As explained in paragraph 9, the principle of producing the metal fine particles in the present invention is to first adsorb the raw material of the metal fine particles on the surface of the scaly substrate. Secondly, the adsorbed raw material is changed into a collection of metal fine particles on the surface of the scaly substrate.
In order for the metal fine particle raw material to be adsorbed on the scaly base material, the raw material is made into a liquid phase, and a collection of scaly base materials is added to the liquid phase raw material to evaporate the liquid in the liquid phase raw material. Then, the raw material is adsorbed on the surface of the scaly substrate. Therefore, the raw material for the metal fine particles must be in a liquid phase.
Here, the metal is copper, and a copper compound will be described as an example. Inorganic copper compounds such as copper chloride, copper sulfate, and copper nitrate are eluted in a liquid phase inorganic copper compound, and many copper ions cannot participate in the precipitation of copper fine particles. Accordingly, it is necessary that the copper compound does not dissolve in the solvent but has a property of being dispersed in the solvent. Moreover, if it can disperse | distribute to general purpose organic solvents, such as alcohol, a copper compound will disperse | distribute uniformly in a solvent, a scale-like base material will be thrown into this dispersion liquid, and if alcohol is vaporized, the surface of a scale-like base material The copper compound is uniformly adsorbed on the surface. Inorganic copper compounds such as copper oxide, copper hydroxide and copper carbonate are not dispersed in alcohol. For this reason, the copper compound adsorbed on the surface of the scaly substrate is preferably an organic copper compound, not an inorganic copper compound.
Next, the organocopper compound must change into a collection of copper fine particles on the surface of the scaly substrate. That is, a chemical reaction in which copper is generated from the organic copper compound needs to occur on the surface of the scaly substrate. Among the chemical reactions in which copper is produced from an organic copper compound, the chemical reaction by the simplest treatment is a thermal decomposition reaction. That is, only by raising the temperature of the organic copper compound, the organic copper compound is thermally decomposed and copper is deposited. Furthermore, if the synthesis of the organic copper compound is easy, the organic copper compound can be produced at a low cost. An organic copper compound having these properties is copper carboxylate. In other words, the largest ion among the ions constituting copper carboxylate is a copper ion. Therefore, if the oxygen ion constituting the carboxyl group in the copper carboxylate is covalently bonded to the copper ion, the distance between the copper ion and the oxygen ion constituting the carboxyl group is the longest among the copper carboxylates. When the temperature of the carboxylic acid copper having such a molecular structure is raised, it decomposes into carboxylic acid and copper at the boiling point of the carboxylic acid. When the temperature is further increased, if the carboxylic acid is composed of a saturated fatty acid, the carboxylic acid takes the heat of vaporization and vaporizes, and copper is deposited after the vaporization of the carboxylic acid is completed. Moreover, copper carboxylate is an organic copper compound that is easy to synthesize and inexpensive. That is, when a carboxylic acid is reacted in a strong alkali solution such as sodium hydroxide, an alkali metal carboxylate is generated. When this alkali metal carboxylate is reacted with an inorganic copper compound such as copper sulfate, copper carboxylate is produced. If the carboxylic acid is an unsaturated fatty acid, carbon atoms are excessive with respect to hydrogen atoms, and when the carboxylic acid copper composed of the unsaturated fatty acid is thermally decomposed, a plurality of types of copper oxides are precipitated. In addition, the carboxylate copper in which the oxygen ion constituting the carboxyl group becomes a ligand and approaches the copper ion, and the oxygen ion is coordinated to the copper ion, the distance between the copper ion and the oxygen ion is shortened. Copper oxide is produced by decomposition.
The composition formula of copper carboxylate is represented by RCOO-Cu-COOR. R is a hydrocarbon, and this compositional formula is C m H n (where m and n are integers). Among the substances constituting copper carboxylate, the copper ion Cu 2+ present at the center of the composition formula is the largest substance. Therefore, when the copper ion Cu 2+ and the oxygen ion O constituting the carboxyl group are covalently bonded, the distance between the copper ion Cu 2+ and the oxygen ion O is maximized. The reason is that the covalent bond radius of the copper ion Cu 2+ is 112 pm, the covalent bond radius of the oxygen ion O is 63 pm, the covalent bond radius of the carbon atom is 75 pm, and the covalent bond radius of the oxygen atom is 57 pm. It depends. For this reason, copper carboxylate, in which copper ions and oxygen ions constituting the carboxyl group are covalently bonded, has a bond portion between the copper ion having the longest bond distance and the oxygen ion constituting the carboxyl group at the boiling point of the carboxylic acid. And separated into copper and carboxylic acid. When the temperature is further increased, if the carboxylic acid constituting the carboxylic acid copper is a saturated fatty acid, the carboxylic acid takes the heat of vaporization and vaporizes, and copper is deposited after the vaporization of the carboxylic acid is completed. Examples of such copper carboxylates include copper octylate, copper laurate, and copper stearate.
Further, if the boiling point of the saturated fatty acid is relatively low, the copper carboxylate is thermally decomposed at a relatively low temperature, and the heat treatment cost for producing the copper fine particles can be reduced. When the hydrocarbon constituting the saturated fatty acid has a long chain structure, the longer the long chain, that is, the higher the molecular weight of the saturated fatty acid, the higher the boiling point of the saturated fatty acid. Incidentally, the boiling point at atmospheric pressure of lauric acid having a molecular weight of 200.3 is 296 ° C., and the boiling point of stearic acid having a molecular weight of 284.5 at 361 ° C. is 361 ° C. Accordingly, copper carboxylate composed of saturated fatty acid having a relatively small molecular weight of saturated fatty acid is desirable as a raw material for copper fine particles because its thermal decomposition temperature is relatively low.
When the saturated fatty acid has a branched chain structure, the chain length is shorter than that of the saturated fatty acid having a straight chain structure, and the boiling point is relatively low. For this reason, copper carboxylate is also thermally decomposed at a relatively low temperature. Further, since saturated fatty acids having a branched chain structure have polarity, copper carboxylate also has polarity and is dispersed at a relatively high rate in an organic solvent having polarity such as alcohol. Such carboxylic acid copper includes octyl copper. That is, octylic acid has a structural formula represented by CH 3 (CH 2 ) 3 CH (C 2 H 5 ) COOH, and is branched into an alkane of CH 3 (CH 2 ) 3 and C 2 H 5 with CH. Carboxyl group COOH binds. The boiling point of octylic acid at atmospheric pressure is 228 ° C., which is 68 ° C. lower than that of lauric acid. For this reason, copper octylate is desirable as a raw material for the copper fine particles. Copper octylate is thermally decomposed at 290 ° C. in an air atmosphere to precipitate copper, and is dispersed up to 10% by weight in methanol, n-butanol or the like.
As explained above, the metal particulate material is preferably an organometallic compound that can be made into a liquid phase. Furthermore, a carboxylic acid metal compound in which an oxygen ion constituting a carboxyl group is covalently bonded to a metal ion is desirable. Furthermore, a carboxylic acid metal compound composed of a saturated fatty acid is desirable. Furthermore, a carboxylic acid metal compound composed of a saturated fatty acid having a short straight chain is desirable. Furthermore, an octylic acid metal compound composed of a saturated fatty acid having a short straight chain having a branched chain structure is most desirable.
In addition, as a raw material for producing alloy fine particles, a plurality of types of carboxylic acid metal compounds composed of the same saturated fatty acid can be used. That is, since a plurality of types of carboxylic acid metal compounds are composed of the same saturated fatty acid, each of the plurality of types of carboxylic acid metal compounds is simultaneously pyrolyzed at the boiling point of the saturated fatty acid, and after vaporization of the saturated fatty acid is completed, A plurality of types of metals are deposited depending on the molar concentration of the carboxylic acid metal compound. At this time, since the plurality of types of metals are in an active state having no impurities, an alloy having a metal composition corresponding to the molar concentration of the plurality of types of carboxylic acid metal compounds is generated.

実施形態2Embodiment 2

本実施形態は、鱗片状基材の表面に金属微粒子を析出する原料に係わる第二の実施形態であり、49段落で説明したカルボン酸金属化合物の熱分解では析出しない金属を析出する原料である。このような金属として、白金族元素の金属と銅を除く貴金属の金属などがある。こうし金属は存在が希少な金属であるため、金属化合物は49段落で説明したカルボン酸金属化合物より高価である。このため、鱗片状基材に付加価値の高い性質を付与する金属の原料として用いることが適している。以下の説明では、金微粒子を析出する原料を事例として説明する。
金微粒子を析出する原料も、49段落で説明した銅微粒子の原料と同様に、原料が分子状態で分散された分散液が望ましい。また分散液の分散媒体は、アルコールが適している。つまり、アルコールは様々な沸点を有し、原料の熱分解温度より低い沸点を持つアルコールが選択でき、これによって、気化したアルコールが容易に回収できる。このため、原料は、アルコールに分散する性質と、金を析出する性質を持つことが必要になる。
金化合物から金が生成される化学反応の中で、最も簡単な処理による化学反応に還元雰囲気における熱分解反応がある。つまり、金化合物を昇温するだけで、金化合物が熱分解して金が析出する。さらに、金化合物の熱分解温度が、49段落で説明したカルボン酸金属化合物の熱分解温度より低ければ、熱処理費用も安価で済む。無機物の分子ないしはイオンが配位子となって、金イオンに配位結合する金錯イオンは、他の金錯イオンに比べて合成が容易な金錯イオンである。さらに、こうした金錯イオンを有する無機塩は、無機塩の分子量が小さければ、熱分解する温度は低い。つまり、金と無機物とに分解される温度が低く、さらに、分解された無機物が容易に気化する。従って、このような無機塩は、有機金属化合物より高価な物質であるが、より低い熱処理温度で金を析出する。
つまり、金錯イオンを有する金錯塩には多くの種類があり、有機物が配位子となって金イオンに配位結合する金錯イオンを有する金錯塩は、金と有機物に分解される温度が高く、さらに、有機物の気化に多くの熱エネルギーが必要になり、金が析出する温度は、無機物の分子ないしはイオンが配位子となって金イオンに配位結合する金錯イオンを有する金錯塩に比べて高い。また、配位子に酸素原子が含まれ、酸素原子が金イオンに共有結合する場合は、金酸化物を析出する。さらに、金錯イオンの合成に多くの費用を要し、無機物の分子ないしはイオンが配位子となって金イオンに配位結合する金錯イオンに比べて製造費用が高い。さらに、金錯イオンを有する無機塩は、無機物の分子量が小さければ、金錯塩の中で最も低い温度で金属を析出する。
すなわち、無機物の分子ないしはイオンが配位子となって金イオンに配位結合する金錯イオンを構成する分子の中で、金イオンが最も大きい。ちなみに、金原子の共有結合半径は124pmであり、窒素原子の共有結合半径の71pmであり、酸素原子の共有結合半径は63pmである。このため、金錯イオンを有する金錯塩の分子構造において、無機物の分子ないしはイオンからなる配位子が金イオンに配位結合する配位結合部の距離が最も長い。従って、還元雰囲気の熱処理においては、最初に配位結合部が分断され、金と無機物とに分解し、無機物の気化が完了した後に金が析出する。
さらに、無機物の分子ないしはイオンからなる配位子が金イオンに配位結合する金錯イオンの中で、塩素イオンClが配位子となって金イオンAu3+に配位結合するテトラクロロ金錯イオン[Au(Cl)は最も容易に合成され、さらに、テトラクロロ金(III)酸水素H[Au(Cl)]は、金を王水に溶かすだけで、あるいは、塩化金(III)AuClを塩酸に溶かして結晶化させるだけで容易に合成でき、かつ、分子量が最も小さい無機塩である。このテトラクロロ金(III)酸水素は、アンモニアガスや水素ガスなどの還元性雰囲気で熱処理すると、配位結合部位が最初に分断され、金属と無機物とに分解され、無機物の分子量が小さいため、200℃程度の低い温度で無機物の気化が完了して金が析出する。また、メタノールやn−ブタノールなどのアルコールに10重量%近くまで分散する。
以上に説明したように、無機物の分子ないしはイオンが配位子となって金属イオンに配位結合する金属錯イオンを有する無機塩からなる分子量が小さい金属錯塩は、合成が容易で、より低い温度で金属を析出する。従って、このような無機塩は、金属錯イオンを有する金属錯塩の中で最も安価であり、熱分解温度が最も低い。このため、付加価値の高い金属の性質を、安価な製造費用で鱗片状基材に付与できる原料になる。
This embodiment is a second embodiment relating to a raw material for depositing metal fine particles on the surface of a scaly substrate, and is a raw material for depositing a metal that does not precipitate in the thermal decomposition of a carboxylic acid metal compound described in paragraph 49. . Such metals include platinum group metals and noble metals other than copper. Since these metals are rare metals, the metal compounds are more expensive than the carboxylic acid metal compounds described in paragraph 49. For this reason, it is suitable to use as a raw material of the metal which gives a property with high added value to a scale-like base material. In the following description, a raw material for depositing gold fine particles will be described as an example.
The raw material for depositing the gold fine particles is preferably a dispersion liquid in which the raw materials are dispersed in a molecular state as in the case of the copper fine particle raw material described in paragraph 49. Also, alcohol is suitable for the dispersion medium of the dispersion. That is, the alcohol has various boiling points, and an alcohol having a boiling point lower than the thermal decomposition temperature of the raw material can be selected, whereby the vaporized alcohol can be easily recovered. For this reason, the raw material needs to have a property of dispersing in alcohol and a property of depositing gold.
Among chemical reactions in which gold is generated from a gold compound, the simplest treatment chemical reaction is a thermal decomposition reaction in a reducing atmosphere. That is, only by raising the temperature of the gold compound, the gold compound is thermally decomposed and gold is deposited. Furthermore, if the thermal decomposition temperature of the gold compound is lower than the thermal decomposition temperature of the carboxylic acid metal compound described in paragraph 49, the heat treatment cost can be reduced. A gold complex ion that is coordinated and bonded to a gold ion by an inorganic molecule or ion as a ligand is a gold complex ion that is easier to synthesize than other gold complex ions. Further, the inorganic salt having a gold complex ion has a low thermal decomposition temperature if the molecular weight of the inorganic salt is small. That is, the temperature for decomposition into gold and inorganic substance is low, and further, the decomposed inorganic substance is easily vaporized. Accordingly, such inorganic salts are more expensive than organometallic compounds, but deposit gold at a lower heat treatment temperature.
In other words, there are many types of gold complex salts having gold complex ions, and gold complex salts having gold complex ions that are coordinated and bonded to gold ions by using organic compounds as ligands have a temperature at which they are decomposed into gold and organic compounds. In addition, a large amount of heat energy is required to vaporize the organic substance, and the temperature at which gold is deposited is a gold complex salt having a gold complex ion that is coordinated to a gold ion with an inorganic molecule or ion as a ligand. Higher than Further, when an oxygen atom is contained in the ligand and the oxygen atom is covalently bonded to a gold ion, a gold oxide is precipitated. Further, the synthesis of the gold complex ion requires a lot of cost, and the production cost is higher than that of the gold complex ion in which an inorganic molecule or ion becomes a ligand and is coordinated to the gold ion. Further, the inorganic salt having a gold complex ion precipitates a metal at the lowest temperature among the gold complex salts if the molecular weight of the inorganic substance is small.
That is, the gold ion is the largest among the molecules constituting the gold complex ion in which an inorganic molecule or ion is coordinated to the gold ion as a ligand. Incidentally, the covalent bond radius of gold atoms is 124 pm, the covalent bond radius of nitrogen atoms is 71 pm, and the covalent bond radius of oxygen atoms is 63 pm. For this reason, in the molecular structure of a gold complex salt having a gold complex ion, the distance of the coordinate bond portion where a ligand composed of an inorganic molecule or ion is coordinated to the gold ion is the longest. Accordingly, in the heat treatment in a reducing atmosphere, the coordination bond is first broken, decomposed into gold and inorganic material, and gold is deposited after vaporization of the inorganic material is completed.
Further, among gold complex ions in which a ligand composed of an inorganic molecule or ion is coordinated to a gold ion, tetrachlorogold in which a chlorine ion Cl is coordinated to the gold ion Au 3+ as a ligand. The complex ion [Au (Cl) 4 ] is most easily synthesized, and the tetrachlorogold (III) hydrogen hydride H [Au (Cl) 4 ] can be obtained by simply dissolving gold in aqua regia or by using gold chloride. (III) An inorganic salt having the smallest molecular weight that can be easily synthesized by simply dissolving AuCl 3 in hydrochloric acid and crystallizing it. When this tetrachloroauric (III) hydrogen acid is heat-treated in a reducing atmosphere such as ammonia gas or hydrogen gas, the coordination bond site is first divided and decomposed into a metal and an inorganic substance, and the molecular weight of the inorganic substance is small. At a temperature as low as about 200 ° C., vaporization of the inorganic substance is completed and gold is deposited. Moreover, it disperse | distributes to near 10 weight% in alcohol, such as methanol and n-butanol.
As explained above, a metal complex salt having a small molecular weight composed of an inorganic salt having a metal complex ion coordinated to a metal ion by using an inorganic molecule or ion as a ligand is easy to synthesize and has a lower temperature. To deposit metal. Therefore, such an inorganic salt is the cheapest among metal complex salts having metal complex ions and has the lowest thermal decomposition temperature. For this reason, it becomes a raw material which can provide the property of a metal with a high added value to a scaly base material with cheap manufacturing cost.

実施形態3Embodiment 3

本実施形態は、金属酸化物の微粒子を析出する原料に係わる実施形態である。以下の説明では、強磁性の性質を有する鉄の酸化物の微粒子を析出する原料を例として説明する。
鉄の酸化物からなる微粒子を析出する原料も、49段落で説明した銅微粒子の原料と同様に、液相化できる性質を持つことが必要になり、有機鉄化合物が望ましい。
さらに、有機鉄化合物は、熱分解によって酸化鉄(II)FeOを析出する性質を持つことが必要になる。つまり、酸化鉄(II)FeOを大気中で昇温すると、酸化鉄(II)FeOを構成する2価の鉄イオンFe2+の半数が酸化して3価の鉄イオンFe3+になり、FeO・Feの組成式で表さられるマグネタイトFeになる。このマグネタイトFeは、透磁率に優れた強磁性体で導電性の酸化物である。さらに大気中で昇温すると、2価の鉄イオンFe2+の全てが酸化されて3価の鉄イオンFe3+になり、酸化鉄(III)Feのγ相であるマグヘマイトγ−Feになる。このマグヘマイトγ−Feは、自発磁化を有する強磁性体で絶縁性の酸化物である。なお、有機鉄化合物を構成する物質の中で、最も大きい共有結合半径を持つ物質は鉄イオンFe2+である。いっぽう、鉄イオンFe2+とカルボキシル基を構成する酸素イオンOとが共有結合するカルボン酸鉄は、鉄イオンと酸素イオンとの距離が最大になるため、49段落で説明した銅と同様に、熱分解で鉄を析出する。従って、熱分解によって酸化鉄(II)FeOを析出する有機鉄化合物は、鉄イオンFe2+と結合する酸素イオンOとの距離が短く、酸素イオンOが鉄イオンFe2+の反対側で結合するイオンと結合する距離が長い分子構造上の特徴を持つ必要がある。つまり、有機鉄化合物の熱分解が始まると、酸素イオンOが鉄イオンFe2+の反対側で結合するイオンと結合する部位が最初に切れ、鉄イオンと結合した酸素イオン、つまり、酸化鉄(II)FeOと有機酸とに分解する。このような分子構造上の特徴を持つ有機鉄化合物として、カルボキシル基を構成する酸素イオンOが配位子になって鉄イオンFe2+に近づいて配位結合するカルボン酸鉄化合物がある。
また、有機金属化合物の中でカルボン酸金属化合物は、49段落で説明したように合成が容易で、有機酸の沸点が低いため熱分解温度が比較的低い。このため、カルボキシル基を構成する酸素イオンが、配位子となって金属イオンに近づいて配位結合するカルボン酸金属化合物は、安価な化学薬品であり、熱処理費用も安価で済む。こうしたカルボン酸金属化合物として、酢酸金属化合物、カプリル酸金属化合物、安息香酸金属化合物、ナフテン酸金属化合物などが挙げられる。なお、カルボン酸鉄においては、酢酸鉄とカプリル酸鉄と安息香酸鉄とは、酸素イオンが鉄イオンに近づいて配位結合して、複核錯塩を形成するが、熱分解の途上においては不安定な物質であるため取り扱いが難しい。従って、酸化鉄FeOを析出するカルボン酸鉄としては、ナフテン酸鉄が望ましい。さらに、ナフテン酸鉄はn‐ブタノールに対して10重量%近くまで分散する。
This embodiment is an embodiment relating to a raw material for depositing metal oxide fine particles. In the following description, a raw material for depositing iron oxide fine particles having ferromagnetic properties will be described as an example.
The raw material for precipitating fine particles of iron oxide is required to have a liquid phase property like the copper fine particle raw material described in paragraph 49, and an organic iron compound is desirable.
Furthermore, the organic iron compound needs to have a property of precipitating iron (II) oxide by thermal decomposition. That is, when the temperature of iron (II) FeO is raised in the atmosphere, half of the divalent iron ions Fe 2+ constituting the iron (II) FeO are oxidized to become trivalent iron ions Fe 3+ , and FeO. It becomes magnetite Fe 3 O 4 represented by the composition formula of Fe 2 O 3 . This magnetite Fe 3 O 4 is a ferromagnetic and conductive oxide excellent in magnetic permeability. When the temperature is further increased in the atmosphere, all of the divalent iron ions Fe 2+ are oxidized to become trivalent iron ions Fe 3+ , and maghemite γ-Fe 2 which is a γ phase of iron (III) Fe 2 O 3. O 3 This maghemite γ-Fe 2 O 3 is a ferromagnetic and insulating oxide having spontaneous magnetization. Of the substances constituting the organic iron compound, the substance having the largest covalent bond radius is iron ion Fe 2+ . On the other hand, the iron carboxylate in which the iron ion Fe 2+ and the oxygen ion O constituting the carboxyl group are covalently bonded has the maximum distance between the iron ion and the oxygen ion. Iron is deposited by pyrolysis. Therefore, the organic iron compound that precipitates iron (II) FeO by thermal decomposition has a short distance from the oxygen ion O that binds to the iron ion Fe 2+, and the oxygen ion O binds to the opposite side of the iron ion Fe 2+. It is necessary to have a characteristic on the molecular structure that has a long distance to bond with the ion. That is, when the thermal decomposition of the organic iron compound starts, the site where the oxygen ion O binds to the ion bound on the opposite side of the iron ion Fe 2+ is cut first, and the oxygen ion bound to the iron ion, that is, iron oxide ( II) Decomposes into FeO and organic acids. As an organic iron compound having such a molecular structure, there is an iron carboxylate compound in which an oxygen ion O constituting a carboxyl group becomes a ligand and coordinates with the iron ion Fe 2+ .
Among the organometallic compounds, the carboxylic acid metal compound is easy to synthesize as described in paragraph 49, and the pyrolysis temperature is relatively low because the boiling point of the organic acid is low. For this reason, the metal carboxylic acid compound in which the oxygen ion constituting the carboxyl group becomes a ligand and coordinates with the metal ion is a low-cost chemical and the heat treatment cost is low. Examples of such carboxylic acid metal compounds include acetic acid metal compounds, caprylic acid metal compounds, benzoic acid metal compounds, and naphthenic acid metal compounds. In iron carboxylate, iron acetate, iron caprylate, and iron benzoate form coordinate complexes with oxygen ions close to iron ions to form a binuclear complex salt, which is unstable during thermal decomposition. It is difficult to handle because it is a difficult substance. Therefore, iron naphthenate is desirable as the iron carboxylate on which iron oxide FeO is deposited. Furthermore, iron naphthenate is dispersed to near 10% by weight with respect to n-butanol.

本実施例は、9段落で説明した本発明の第1特徴手段に係わり、金属微粒子の集まりを介して鱗片状基材が結合された鱗片状基材の集まりを製造する具体例であり、銅微粒子の集まりで鱗片状黒鉛粒子を結合する。なお、鱗片状基材は鱗片状黒鉛粒子に限定されず、鱗片状基材は金属化合物が熱分解する温度以上の耐熱性を持つため、9段落で説明した様々な材質からなるフレーク状の粉体を用いることができる。また、金属微粒子は銅微粒子に限定されず、21段落で説明したカルボン酸金属化合物と、23段落で説明した金属錯イオンを有する無機塩を用いることで、様々な金属微粒子で鱗片状基材を覆うことができる。
本実施例では、鱗片状黒鉛粒子(鱗状黒鉛粒子ともいう)として日本黒鉛株式会社が製造するCB黒鉛を用いた。銅微粒子の原料として、オクチル酸銅Cu(C15COO)(例えば、三津和薬品工業株式会社の製品)を用いた。n−ブタノールは試薬1級品を用いた。銅微粒子の集まりを介して結合された黒鉛粒子の集まりを製造する製作工程を図1に示す。最初に、オクチル酸銅の0.5モルを2リットルのn−ブタノールに分散した(S10工程)。この分散液を容器に入れ、鱗片状黒鉛粒子100gを投入して撹拌した(S11工程)。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した(S12工程)。さらに、容器を大気雰囲気からなる熱処理炉に入れ、容器内の試料を290℃に昇温してオクチル酸銅を熱分解した(S13工程)。最後に容器から試料を取り出した。
次に、製作した試料の表面と切断面とを電子顕微鏡で観察した。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100Vからの極低加速電圧による表面観察が可能で、試料に導電性の被膜を形成せずに直接試料の表面が観察できる特徴を持つ。最初に、試料からの反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。試料表面は、40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、試料断面の画像から、粒状微粒子の集まりが約2μmの厚みからなる多層構造を形成していた。次に、試料からの反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。濃淡が認められなかったので、同一の物質から形成されていることが分かった。さらに、試料からの特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。銅原子のみが存在した。これらの結果から、銅微粒子の集まりが2μmの厚みを形成して鱗片状黒鉛粒子を結合していることが分かった。
本実施例で製造した鱗片状黒鉛粒子の集まりは、グラファイトシートと呼ばれる銅より熱伝導率が高い熱伝導シートの原料になる。
すなわち鱗片状黒鉛粒子は、炭素原子が作る六角形の網目構造が平面状に拡がった基底面が2つの層を形成し、この2つの層が交互に規則的に積層された層状構造を有する単結晶材料である。この基底面のヤング率は1020GPaというダイアモンドに近い大きな値を持ち、基底面に直交するせん断弾性率も440GPaという極めて大きな数値を持ち、炭素原子同士が共有結合した基底面は壊れにくい。いっぽう、基底に垂直な方向のヤング率は36GPaであり、基底面に沿ったせん断弾性率は4.5GPaであり、ファンデルワールス力で結合した基底面同士の層間結合力は弱く、層間結合が容易に破壊される。
いっぽう、基底面は炭素原子の原子間距離が1.421Åで結合されるため、極めて優れた熱的性質を持ち、300°Kにおける熱伝導率は19.5WC−1−1であり、金属の中で最も熱伝導率が高い銀の4.5倍の熱伝導率に相当する。これに対し、基底面同士は3.354Åの距離で結合されるため、基底面の垂直方向は熱伝導率が低い。しかしながら、地下資源を工業的に精製して製造される鱗片状黒鉛粒子は、平均粒径が30μm〜50μmに及び、粒径分布が1μm〜250μmに及ぶ微細な粉体である。このような粒径分布が大きく、かつ、微細な粉体である黒鉛粒子を接合することは困難である。たとえ、黒鉛粒子を接合できたとしても、接合した黒鉛粒子を圧縮した際に、黒鉛結晶がバラバラになり、黒鉛結晶を基底面の面方向に積層ないし接合することは到底できない。
しかしながら、本実施例における銅微粒子の集まりで覆われた鱗片状黒鉛粒子を圧縮すると、黒鉛結晶の層間結合が破壊され、薄片状となった黒鉛結晶が、黒鉛粒子の厚みに対し直角な方向に広がり、薄片状の黒鉛結晶が面方向に積層ないし接合された平板状の黒鉛結晶の集まりが得られる。つまり、黒鉛結晶の層間結合が継続して破壊され、これに追従して、金属結合した銅微粒子の集まりが塑性変形する。この結果、平板状の黒鉛結晶の集まりが、銅微粒子の集まりで覆われるとともに、銅微粒子の集まりを介して、平板状の黒鉛結晶の集まりが結合されて平板状基材となる。黒鉛粒子に比べて銅微粒子は3桁小さいため、平板状基材に占める黒鉛結晶の体積占有率は100%に近く、平板状基材は、黒鉛結晶の基底面に近い性質を示し、銅より熱伝導性が著しく高い画期的な熱伝導シートとなる。
いっぽう、ノートパソコンや携帯電話に代表される電子機器は、高性能化・小型化が著しく進み、これに伴って、内部に組み込まれた半導体部品は大容量化・高集積化が進み、この結果、電子機器内部における半導体部品の発熱量が増加し、発生した熱が電子機器内に留まり、半導体部品の熱劣化を早めるという問題が起きている。しかし、銅やアルミニウムなどの熱伝導性のよい金属板を介してフィンやヒートシンクに伝えて外部に放熱させる手段では、発熱源である半導体部品が発する熱を直接金属板に伝導させることができず、半導体部品が熱劣化してしまう。また、金属板の使用によって、電子機器の厚みが増し重量が著しく増加する。これに対し、金属より熱伝導率が高く、金属より軽量で厚みが極薄い熱伝導シートを回路基板と一体化することで、半導体部品からの熱が直接熱伝導シートに伝わり、熱伝導シートから電子機器の外部に放熱させることが可能になる。
しかしながら従来のグラファイトシートは、ポリイミド等の高分子フィルムを、2400℃以上の温度の不活性ガスや真空雰囲気で長時間焼成して製造するため、極めて高額な製造費用を伴う高価な基材であり、グラファイトシートを使用できる領域が限られる。また、膨張黒鉛を用いてグラファイトシートを製造する製造方法もある。つまり、黒鉛粒子に濃硫酸とともに過酸化水素などの酸化剤を加えると、黒鉛結晶の層間にこれらの薬品が侵入する。この後、還元性雰囲気の1000℃から1200℃の温度に急激に昇温させると、層間に挿入された薬品が分解してガス化し、このガス圧で黒鉛結晶の層間距離が拡がり、黒鉛粒子を膨張させたものである。こうして得られた膨張黒鉛の集まりを圧縮成形し、黒鉛結晶を破壊して基底面の集合体を得る。しかしながら、膨張黒鉛の製造には、高濃度の硫酸を使用し、しかも急加熱処理の際にSO等の有毒ガスが発生するために危険であり、硫酸や過酸化水素等の酸化剤の廃液によって、周囲の環境汚染を引き起こす問題がある。さらに、黒鉛結晶の層間をガスの発生によって急激に膨張させるが、必ずしも全ての層間が膨張するとは限らない。このため、こうした膨張黒鉛を圧縮しても、基底面のみからなるグラファイトシートが得られない。さらに厄介なことは、膨張黒鉛を破壊した際に基底面がバラバラになり、微細な物質である基底面を面方向のみに積層ないし接合することはできない。また、膨張黒鉛から製造したグラファイトシートは空隙が多く密度が低いため、前記したポリイミド等の高分子フィルムを超高温で還元焼成したものに比べると著しく低い。
本実施例における黒鉛粒子の集まりを原料とする熱伝導シートは、前記した従来のグラファイトシートの製造上の課題を根本的に解決させるため、次5つの要件を熱伝導シートの製造に反映し、熱伝導率が高い格段に安価な熱伝導シートを実現させことができる。
第一に、黒鉛結晶の基底面が極めて優れた熱伝導率を持つため、黒鉛の結晶化が最も進んだ鱗片状黒鉛粒子を熱伝導シートの原料とした。
第二に、黒鉛結晶は熱伝導率についても異方性を持ち、基底面の垂直方向は熱伝導率が低い。このため、基底面を面方向に積層ないし接合し、熱が基底面の面方向に伝達させる必要がある。いっぽう黒鉛粒子の集まりを圧縮すると、層間結合が破壊され、黒鉛粒子は莫大な数の薄片状の黒鉛結晶の集まりになる。しかしながら、膨張黒鉛の製造上の問題点で説明したように、黒鉛粒子が破壊すれば、さらに微細な薄片状の黒鉛結晶はバラバラになり、黒鉛結晶を面方向にのみ積層ないし接合させることはできない。このため、銅微粒子の集まりで黒鉛粒子を覆うと、黒鉛結晶は銅微粒子の集まりに拘束され、面方向にのみ広がる。この結果、薄片状の黒鉛結晶が面方向のみに積層ないし接合される。また、黒鉛粒子が破壊する際に銅微粒子の集まりが塑性変形し、熱抵抗となる空隙は形成されない。
第三に、熱抵抗となる間隙を形成せずに、黒鉛粒子同士を結合する必要がある。本実施例では、オクチル酸銅のn−ブタノール分散液に黒鉛粒子の集まりを混合して攪拌し、この後、n−ブタノールを気化させ、オクチル酸銅を黒鉛粒子に吸着させる。黒鉛粒子は前記したように粒度分布が大きいため、攪拌後に黒鉛粒子が再配列し、黒鉛粒子間の間隙が少なくなるように、黒鉛粒子が積み重なって容器の底に堆積する。つまり、黒鉛粒子間に間隙があれば、相対的に微細な黒鉛粒子が間隙に入り込む。次に、オクチル酸銅を熱分解し、銅微粒子の集まりを黒鉛粒子の表面に析出させる。銅微粒子が一斉に析出する際に、黒鉛粒子の表面を覆うのみならず、隣接する黒鉛粒子の間隙を埋めるように銅微粒子が析出する。このため、黒鉛粒子の集まりには熱抵抗となる空隙が形成されない。
第四に、基底面方向に熱が伝わることで、熱伝導シートの熱伝導率が高まる。本実施例では、薄片状の黒鉛結晶が面方向に積層ないし接合されて平板状の黒鉛結晶の集まりになり、この平板状の黒鉛結晶が銅微粒子で結合される。銅微粒子の大きさは、黒鉛粒子の大きさより3桁小さいため、平板状基材における黒鉛結晶の体積占有率は100%に近い。このため、本実施例による熱伝導シートは、基底面方向に熱が伝道する熱伝導シートになる。
第五に、製造された熱伝導シートが一定の機械的強度を持てば、ハンドリング、例えば、電子回路基板との一体化ができる。金属結合した銅微粒子の集まりは、一定の結合強度を持つため、平板状基材のハンドリングが可能になる。さらに、本実施例で製造した熱伝導シートは、表面に無数の銅微粒子が存在するため、熱伝導シートを回路基板に重ねて圧縮すると、無数の銅微粒子が回路基板に食い込んで回路基板と一体化する。このため、熱伝導性に劣る接着剤によって、熱伝導シートを回路基板に接着する必要がない。
いっぽう、本実施例で製造した黒鉛粒子の集まりを圧縮成形した平板状基材は、金属に準ずる電気導電性を持つため、導電性フィルムとして用いることができる。すなわち、基底面に平行な方向の比抵抗は3.8×10−7Ωmであり、基底面に垂直な方向の比抵抗は7.6×10−3Ωmである。このように黒鉛結晶は、電気抵抗についても異方性を持ち、基底面に平行な方向の比抵抗は銅の23倍に過ぎない。このため、平板状基材においては、抵抗値が小さい基底面方向に電子が移動するため、平板状基材は導電性フィルムとして作用する。
また、黒鉛粒子の大きさに比べて、銅微粒子の大きさは3桁小さいため、平板状基材に占める黒鉛結晶の体積占有率は100%に近い。従って、合成樹脂に導電性フィラーを分散させた従来の導電性フィルムより、電気導電性が格段に高い導電性シートになる。なお、導電性フィルムは、本実施例で製造した鱗片状黒鉛粒子の集まりを、インフレーション法、フラットダイ法などの従来の成形法によって容易に製造できる。
最近、電子部品や半導体素子など、導電性が必要とされる分野において、成形性や可撓性に優れる樹脂で形成された導電性フィルムが使用されている。特に、電子部品の小型化や薄肉化などに伴って、薄肉の導電性フィルムが要求されている。例えば、リチウムイオン二次電池の中で、集電体を介して正極と負極とを積層させるバイポーラ電池では、限定されたスペースにおいて、多数の導電フィルムを集電体として積層させているため、薄肉かつ軽量で、高い導電性を有するフィルムが必要とされている。
このような薄肉導電性フィルムを製造する従来の方法に、樹脂成分を溶媒に溶解した後に導電性フィラーを添加し、基材上にキャストすることによりフィルム状に加工するキャスト法、導電性フィラーを分散させた熱可塑性樹脂を溶融押出や圧延などによりフィルム状に成形する熱成形法などがある。しかし、キャスト法では、溶剤に溶解させる必要があるため、耐溶剤性の高いポリマー、例えば、結晶性樹脂はフィルム化できない。特に、リチウムイオン電池の集電体では、有機溶媒を含む電解液を使用するため、高い耐溶剤性が要求される。さらに、キャスト法では、ピンホール発生防止や塗膜の均質性を維持しながら溶剤を徐々に蒸発させる煩雑な工程を有するとともに、基板から薄肉導電性フィルムを傷つけずに剥離させる必要があり、生産性や簡便性が低い上に、得られた導電性薄膜フィルムに溶剤が残留する。一方、導電性フィラーを含む樹脂組成物の押出成形により、薄肉フィルムを製造する場合、導電性を増大させるため樹脂組成物中の導電性フィラーの割合を高くすると、樹脂組成物をフィルムに加工する際に必要な溶融張力が不足する。つまり、樹脂は、溶融時でもその分子間の絡み合いにより溶融粘度が高く、同時に溶融張力を有している。そのため、樹脂を加熱して押出成形によりフィルムに加工する場合、この溶融張力により押出成形の金型を出た溶融樹脂はフィルムの引き取りによる張力を受けても、破断やフィルム厚みの変動を抑制するのは容易である。これに対して、導電性フィラーは、樹脂と異なり分子間の絡み合いがなく、溶融張力を生じないため、樹脂組成物中の導電フィラーの割合を多くすると、押出し成形でフィルムを引取る際に破断や厚み変動が生じ易い。そこで、非晶性熱可塑性エラストマーなどの弾性体の配合が必要となる。しかし、非晶性熱可塑性エラストマーやゴム成分を配合すると、樹脂組成物の耐溶剤性やガスバリア性が低下する。特に、リチウムイオン電池の集電体では、電解液の特性上、極めて高い耐溶剤性が要求されるが、このような用途での使用は困難である。
このように、従来における導電性フィルムの製造上の問題点は、導電性フィラーを合成樹脂に分散して複合化する点に集約される。いっぽう、本実施例では、前記したように、銅微粒子の集まりによって黒鉛粒子どうしを接合するため、導電性フィラーを分散する手段を一切用いない。このため、従来の導電性フィルムの製造上の問題点が全て解決されるだけではなく、導電性フィルムにおける導電性が飛躍的に増大する。また、導電性フィラーについて説明すれば、炭素系材料の導電性フィラーとして、カーボンブラックを用いる事例が多いが、カーボンブラックの中で導電性が相対的に高いアセチレンブラックの比抵抗は2.1×10−3Ωmであり、黒鉛結晶の基底面に比べ、5500倍も導電性が劣る。また、炭素系材料のフィラーとして、極めて高価な炭素繊維を用いる事例もあるが、炭素繊維の中でも相対的に導電性が高いピッチ系炭素繊維の比抵抗は2〜5×10−6Ωmであり、黒鉛結晶の基底面に比べ導電性は5〜13倍劣る。このように、黒鉛結晶の基底面は炭素系材料の中で最も導電性に優れる。また、黒鉛粒子は強酸や強アルカリとも反応しない極めて化学的に安定した材料であり、耐熱性にも優れる。また、本実施例に依る平板状基材からなる導電性フィルムは、従来の導電性フィルムに比べ、極めて薄いフィルムとすることができ、実質的に重量を持たない極めて軽量な導電性フィルムとなる。
以上に、本実施例で製造した平板状基材を工業製品に適応する事例として、熱伝導シートと導電性フィルムに適応する事例を説明したが、これらの事例に限定されることはない。極めて軽量で極めて薄い熱伝導手段や導電手段として、他の工業製品に適応できる。
This example relates to the first characteristic means of the present invention described in paragraph 9, and is a specific example for producing a group of scale-like substrates in which scale-like substrates are bonded through a group of metal fine particles. The scaly graphite particles are bound by a collection of fine particles. The scaly base material is not limited to scaly graphite particles, and the scaly base material has a heat resistance equal to or higher than the temperature at which the metal compound is thermally decomposed. Therefore, the flaky powder made of various materials described in paragraph 9 The body can be used. Further, the metal fine particles are not limited to copper fine particles, and by using the carboxylic acid metal compound described in the 21st paragraph and the inorganic salt having the metal complex ion described in the 23rd paragraph, a scaly substrate can be formed with various metal fine particles. Can be covered.
In this example, CB graphite produced by Nippon Graphite Co., Ltd. was used as scaly graphite particles (also referred to as scaly graphite particles). As a raw material for the copper fine particles, copper octylate Cu (C 7 H 15 COO) 2 (for example, a product of Mitsuwa Pharmaceutical Co., Ltd.) was used. As n-butanol, a reagent first grade product was used. FIG. 1 shows a manufacturing process for producing a collection of graphite particles bonded through a collection of copper fine particles. First, 0.5 mol of copper octylate was dispersed in 2 liters of n-butanol (step S10). This dispersion was put into a container, and 100 g of scaly graphite particles were added and stirred (step S11). Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered (step S12). Furthermore, the container was placed in a heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 290 ° C. to thermally decompose the copper octylate (step S13). Finally, a sample was taken out from the container.
Next, the surface and cut surface of the manufactured sample were observed with an electron microscope. The electron microscope used was an ultra-low acceleration voltage SEM from JFE Techno-Research Corporation. This apparatus is capable of observing the surface with an extremely low acceleration voltage from 100 V, and has the feature that the surface of the sample can be observed directly without forming a conductive film on the sample. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam from the sample was taken out and image processing was performed. The sample surface was uniformly covered with granular fine particles having a size of 40 nm to 60 nm. Further, from the sample cross-sectional image, a multilayer structure in which a collection of granular fine particles has a thickness of about 2 μm was formed. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam from the sample, and the difference in material was observed depending on the density of the image. Since no shade was observed, it was found that they were formed from the same substance. Furthermore, the energy of the characteristic X-ray from the sample and its intensity were image-processed, and the elements constituting the fine particles were analyzed. Only copper atoms were present. From these results, it was found that a collection of copper fine particles formed a thickness of 2 μm and bound to the scaly graphite particles.
The aggregate of the scaly graphite particles produced in this example becomes a raw material for a heat conductive sheet having a higher thermal conductivity than copper called a graphite sheet.
In other words, scaly graphite particles have a single-layer structure in which a hexagonal network structure formed by carbon atoms is formed into two layers on a basal plane, and these two layers are alternately stacked regularly. Crystal material. The Young's modulus of the basal plane has a large value close to diamond of 1020 GPa, the shear modulus perpendicular to the basal plane has an extremely large value of 440 GPa, and the basal plane in which carbon atoms are covalently bonded is not easily broken. On the other hand, the Young's modulus in the direction perpendicular to the base is 36 GPa, the shear elastic modulus along the basal plane is 4.5 GPa, and the interlaminar bonding force between the basal planes bonded by van der Waals force is weak. Easily destroyed.
On the other hand, since the basal plane is bonded with an interatomic distance of carbon atoms of 1.421 mm, it has extremely excellent thermal properties, and the thermal conductivity at 300 ° K is 19.5 WC −1 m −1. This corresponds to a thermal conductivity 4.5 times that of silver, which has the highest thermal conductivity. On the other hand, since the basal planes are coupled at a distance of 3.354 mm, the thermal conductivity is low in the vertical direction of the basal plane. However, scaly graphite particles produced by industrially refining underground resources are fine powders having an average particle size of 30 μm to 50 μm and a particle size distribution of 1 μm to 250 μm. It is difficult to join graphite particles having such a large particle size distribution and fine powder. Even if the graphite particles can be joined, when the joined graphite particles are compressed, the graphite crystals fall apart, and the graphite crystals cannot be stacked or joined in the plane direction of the basal plane.
However, when the scaly graphite particles covered with a collection of copper fine particles in this example are compressed, the interlayer bonds of the graphite crystals are broken, and the flake-like graphite crystals are in a direction perpendicular to the thickness of the graphite particles. A group of flat graphite crystals that are spread and laminated or joined in the plane direction is obtained. That is, the interlayer bond of the graphite crystal is continuously broken, and following this, a collection of metal-bonded copper fine particles is plastically deformed. As a result, a collection of tabular graphite crystals is covered with a collection of copper fine particles, and the collection of tabular graphite crystals is bonded via the collection of copper fine particles to form a flat substrate. Since the copper fine particles are three orders of magnitude smaller than the graphite particles, the volume occupancy of the graphite crystals occupying the flat substrate is close to 100%, and the flat substrate exhibits properties close to the basal plane of the graphite crystals. It becomes an epoch-making heat conductive sheet with extremely high heat conductivity.
On the other hand, electronic devices such as notebook computers and mobile phones have been remarkably advanced in performance and downsizing, and as a result, semiconductor components incorporated inside have increased in capacity and integration, and as a result However, there is a problem in that the amount of heat generated by the semiconductor component inside the electronic device increases, and the generated heat stays in the electronic device, thereby accelerating the thermal deterioration of the semiconductor component. However, the means of transferring heat to the fins and heat sink through a metal plate with good thermal conductivity, such as copper or aluminum, and dissipating it to the outside cannot directly conduct the heat generated by the semiconductor component as the heat source to the metal plate. The semiconductor component will be thermally deteriorated. Further, the use of a metal plate increases the thickness of the electronic device and significantly increases the weight. In contrast, by integrating a heat conductive sheet with higher thermal conductivity than metal, lighter and thinner than metal with a circuit board, the heat from the semiconductor component is directly transferred to the heat conductive sheet. It becomes possible to dissipate heat outside the electronic device.
However, the conventional graphite sheet is an expensive base material with extremely high production costs because a polymer film such as polyimide is produced by firing for a long time in an inert gas or vacuum atmosphere at a temperature of 2400 ° C. or higher. The area where the graphite sheet can be used is limited. There is also a production method for producing a graphite sheet using expanded graphite. That is, when an oxidizing agent such as hydrogen peroxide is added to graphite particles together with concentrated sulfuric acid, these chemicals enter between the graphite crystal layers. Thereafter, when the temperature is rapidly increased from 1000 ° C. to 1200 ° C. in the reducing atmosphere, the chemicals inserted between the layers are decomposed and gasified, and the interlayer distance of the graphite crystals is expanded by this gas pressure. It is inflated. The aggregate of expanded graphite obtained in this way is compression-molded, and the graphite crystal is broken to obtain an aggregate of the basal plane. However, the production of expanded graphite, using a high concentration of sulfuric acid, moreover dangerous for toxic gases such as SO x during the rapid heating process occurs, waste oxidizing agent such as sulfuric acid and hydrogen peroxide There is a problem that causes environmental pollution of the surroundings. Furthermore, although the graphite crystal layers are rapidly expanded by the generation of gas, not all the layers are necessarily expanded. For this reason, even if such expanded graphite is compressed, a graphite sheet consisting only of the base surface cannot be obtained. Even more troublesome is that when the expanded graphite is destroyed, the basal plane becomes disjoint, and the basal plane, which is a fine substance, cannot be laminated or bonded only in the plane direction. Moreover, since the graphite sheet produced from expanded graphite has many voids and low density, it is significantly lower than that obtained by reducing and firing a polymer film such as polyimide described above at an ultrahigh temperature.
In order to fundamentally solve the above-described problems in manufacturing the conventional graphite sheet, the heat conductive sheet using the aggregate of graphite particles in this example as a raw material reflects the following five requirements in the manufacture of the heat conductive sheet. An extremely inexpensive heat conductive sheet having a high heat conductivity can be realized.
First, since the basal plane of the graphite crystal has an extremely excellent thermal conductivity, the scaly graphite particles with the most advanced crystallization of graphite were used as the raw material of the heat conductive sheet.
Secondly, graphite crystals have anisotropy in terms of thermal conductivity, and the thermal conductivity is low in the vertical direction of the basal plane. For this reason, it is necessary to laminate | stack or join a basal plane in a surface direction, and to transmit heat to the surface direction of a basal plane. On the other hand, when the aggregate of graphite particles is compressed, the interlayer bond is broken, and the graphite particles become an aggregate of a huge number of flaky graphite crystals. However, as explained in the problem of the production of expanded graphite, if the graphite particles are destroyed, the finer flake-like graphite crystals will fall apart, and the graphite crystals cannot be laminated or bonded only in the plane direction. . For this reason, when the graphite particles are covered with a collection of copper fine particles, the graphite crystal is restricted by the collection of copper fine particles and spreads only in the plane direction. As a result, flaky graphite crystals are laminated or joined only in the plane direction. Further, when the graphite particles are broken, a collection of copper fine particles is plastically deformed, so that no voids that become thermal resistance are formed.
Third, it is necessary to bond the graphite particles without forming a gap that becomes a thermal resistance. In this example, n-butanol dispersion of copper octylate is mixed with agglomeration of graphite particles and stirred. Thereafter, n-butanol is vaporized and copper octylate is adsorbed on the graphite particles. Since the graphite particles have a large particle size distribution as described above, the graphite particles are rearranged after stirring, and the graphite particles are stacked and deposited on the bottom of the container so that the gap between the graphite particles is reduced. That is, if there is a gap between graphite particles, relatively fine graphite particles enter the gap. Next, the copper octylate is thermally decomposed to deposit a collection of copper fine particles on the surface of the graphite particles. When the copper fine particles are deposited all at once, the copper fine particles are deposited not only to cover the surface of the graphite particles but also to fill the gaps between the adjacent graphite particles. For this reason, voids serving as thermal resistance are not formed in the aggregate of graphite particles.
4thly, the heat conductivity of a heat conductive sheet increases because heat | fever transfers to a base face direction. In this embodiment, flaky graphite crystals are laminated or joined in the plane direction to form a collection of flat graphite crystals, and the flat graphite crystals are bonded with copper fine particles. Since the size of the copper fine particles is three orders of magnitude smaller than the size of the graphite particles, the volume occupation ratio of the graphite crystals in the flat substrate is close to 100%. For this reason, the heat conductive sheet by a present Example turns into a heat conductive sheet in which heat is transmitted to a base face direction.
Fifth, if the manufactured heat conductive sheet has a certain mechanical strength, it can be handled, for example, integrated with an electronic circuit board. A collection of copper fine particles that are metal-bonded has a certain bond strength, so that a flat substrate can be handled. Furthermore, since the heat conductive sheet manufactured in this example has countless copper fine particles on the surface, when the heat conductive sheet is stacked on the circuit board and compressed, the countless copper fine particles bite into the circuit board and are integrated with the circuit board. Turn into. For this reason, it is not necessary to adhere | attach a heat conductive sheet to a circuit board with the adhesive agent inferior to heat conductivity.
On the other hand, the flat base material obtained by compression-molding the aggregate of graphite particles produced in this example can be used as a conductive film because it has electrical conductivity similar to that of metal. That is, the specific resistance in the direction parallel to the basal plane is 3.8 × 10 −7 Ωm, and the specific resistance in the direction perpendicular to the basal plane is 7.6 × 10 −3 Ωm. Thus, the graphite crystal has anisotropy in terms of electrical resistance, and the specific resistance in the direction parallel to the basal plane is only 23 times that of copper. For this reason, in a flat base material, since an electron moves to the base face direction with small resistance value, a flat base material acts as a conductive film.
Further, since the size of the copper fine particles is three orders of magnitude smaller than the size of the graphite particles, the volume occupancy of the graphite crystals in the flat substrate is close to 100%. Therefore, it becomes a conductive sheet whose electrical conductivity is remarkably higher than that of a conventional conductive film in which a conductive filler is dispersed in a synthetic resin. In addition, a conductive film can manufacture easily the aggregate | assembly of the scaly graphite particle manufactured in the present Example by conventional shaping | molding methods, such as an inflation method and a flat die method.
Recently, in fields where electrical conductivity is required, such as electronic parts and semiconductor elements, conductive films formed of a resin having excellent moldability and flexibility have been used. In particular, with the miniaturization and thinning of electronic components, a thin conductive film is required. For example, in a lithium ion secondary battery, a bipolar battery in which a positive electrode and a negative electrode are laminated via a current collector, a large number of conductive films are laminated as a current collector in a limited space. There is also a need for a lightweight and highly conductive film.
In the conventional method for producing such a thin conductive film, a casting method in which a resin component is dissolved in a solvent and then a conductive filler is added, and then cast on a substrate, is processed into a film, There is a thermoforming method in which a dispersed thermoplastic resin is formed into a film by melt extrusion or rolling. However, since the casting method needs to be dissolved in a solvent, a polymer having high solvent resistance, such as a crystalline resin, cannot be formed into a film. In particular, a current collector of a lithium ion battery uses an electrolytic solution containing an organic solvent, and therefore requires high solvent resistance. Furthermore, the casting method has a complicated process of gradually evaporating the solvent while maintaining pinholes generation prevention and coating uniformity, and it is necessary to peel the thin conductive film from the substrate without damaging it. In addition to low properties and convenience, a solvent remains in the obtained conductive thin film. On the other hand, when producing a thin film by extrusion molding of a resin composition containing a conductive filler, if the proportion of the conductive filler in the resin composition is increased to increase the conductivity, the resin composition is processed into a film. The necessary melt tension is insufficient. That is, even when the resin is melted, the resin has a high melt viscosity due to entanglement between the molecules, and at the same time has a melt tension. Therefore, when the resin is heated and processed into a film by extrusion, the molten resin that has exited the extrusion mold due to this melt tension suppresses breakage and fluctuations in film thickness even when subjected to tension due to film take-up. It's easy. On the other hand, unlike the resin, the conductive filler has no entanglement between molecules and does not generate melt tension. Therefore, if the proportion of the conductive filler in the resin composition is increased, the film is broken when the film is taken out by extrusion molding. And thickness variation is likely to occur. Therefore, it is necessary to blend an elastic body such as an amorphous thermoplastic elastomer. However, when an amorphous thermoplastic elastomer or a rubber component is blended, the solvent resistance and gas barrier properties of the resin composition are lowered. In particular, the current collector of a lithium ion battery requires extremely high solvent resistance due to the characteristics of the electrolytic solution, but is difficult to use in such applications.
As described above, the conventional problems in manufacturing the conductive film are summarized in that the conductive filler is dispersed in the synthetic resin and combined. On the other hand, in this embodiment, as described above, the graphite particles are joined together by the collection of copper fine particles, and therefore, no means for dispersing the conductive filler is used. For this reason, not only all the problems in manufacturing the conventional conductive film are solved, but also the conductivity in the conductive film is dramatically increased. As for the conductive filler, carbon black is often used as the conductive filler of the carbon-based material, but the specific resistance of acetylene black having a relatively high conductivity among carbon blacks is 2.1 ×. 10 −3 Ωm, and the conductivity is inferior by 5500 times compared to the base surface of the graphite crystal. In addition, there are cases where extremely expensive carbon fibers are used as fillers for carbon-based materials, but the specific resistance of pitch-based carbon fibers having relatively high conductivity among carbon fibers is 2 to 5 × 10 −6 Ωm. The conductivity is 5 to 13 times inferior to the basal plane of graphite crystals. Thus, the basal plane of the graphite crystal has the highest conductivity among the carbon-based materials. Graphite particles are extremely chemically stable materials that do not react with strong acids or strong alkalis, and are excellent in heat resistance. In addition, the conductive film made of a flat substrate according to the present embodiment can be a very thin film compared to a conventional conductive film, and becomes a very lightweight conductive film having substantially no weight. .
As described above, the case where the flat base material manufactured in this example is applied to an industrial product has been described as being applied to a heat conductive sheet and a conductive film. However, the present invention is not limited to these cases. It can be applied to other industrial products as a very light and extremely thin heat conduction means or conductive means.

本実施例は、11段落で説明した本発明の第2特徴手段に係わり、磁気吸着した金属酸化物微粒子の集まりで結合された鱗片状基材の集まりを製造する具体例であり、還元鉄粉を扁平化処理した扁平鉄粉を、自発磁化を有するマグヘマイトγ−Fe微粒子の集まりで結合する。なお、マグヘマイトは酸化鉄(III)のγ相であり、電気絶縁性で自発磁化を持つ硬磁性材料である。また、強磁性の鱗片状基材は扁平鉄粉に限定されず、透磁率に優れた軟磁性材料の合金粉を扁平処理した扁平粉を用いることができる。本実施例における扁平鉄粉は、JFEスチール株式会社が製造する扁平鉄粉MG150Dを用いた。この扁平鉄粉は見かけ密度が1.50Mg/mで、粒度分布が45μmパスが14%で、45μm〜63μmが12%で、63μm〜75μmが6%で、75μm〜106μmが24%で、106μm〜150μmが42%で、150μm〜180μmが2%である。またマグヘマイトの原料としてナフテン酸鉄(例えば、東栄化工株式会社の製品)を用いた。つまり、ナフテン酸鉄の熱分解で酸化鉄(II)FeOを析出させ、酸化鉄(II)FeOの鉄イオンFe2+をFe3+に酸化させることで、マグヘマイトγ−Feが生成される。また、n−ブタノールは試薬1級品を用いた。
磁気吸着したマグヘマイト微粒子の集まりを介して結合された扁平鉄粉の集まりを製造する製造工程を図2に示す。最初に、ナフテン酸鉄Fe(C2n−1COO)(五員環を持つ複数の飽和脂肪酸と鉄との化合物)の0.1モルを500ccのn−ブタノールに分散した(S20工程)。この分散液を容器に入れ、扁平鉄粉300gを投入して撹拌した(S21工程)。容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した(S22工程)。さらに、容器を大気雰囲気からなる熱処理炉に入れ、容器内の試料を300℃に昇温してナフテン酸鉄を熱分解した(S23工程)。この後、熱処理炉の温度を300℃から1℃/min.の速度で390℃まで昇温し、390℃に容器を30分間放置し、酸化鉄(II)FeOをマグヘマイトγ−Feに酸化した(S24工程)。最後に、容器から試料を取り出した。
次に、製作した試料の表面と切断面とについて、実施例1と同様に電子顕微鏡で観察と分析を行なった。最初に反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行い、試料の表面を観察した。40nm〜60nmの大きさからなる粒状微粒子が、試料の表面全体に満遍なく形成していた。また、試料断面の画像から、粒状微粒子の集まりは約0.2μmの厚みからなる多層構造を形成していた。次に、特性X線のエネルギーとその強度を画像処理し、粒状微粒子を構成する元素の種類とその分布状態を分析した。鉄原子と酸素原子の双方が表面に均一に存在し、特段に偏在する箇所が見られなかったため、酸化鉄からなる粒状微粒子であることが分かった。さらに、極低加速電圧SEMの機能にEBSP解析機能を付加し、酸化鉄の結晶構造の解析を行なった。この結果から、粒状微粒子がマグヘマイトγ−Feであることが確認できた。なおEBSP解析機能とは、試料に電子線を照射したとき、反射電子が試料中の原子面によって回折されることでバンド状のパターンを形成し、このバンドの対称性が結晶系に対応し、バンドの間隔が原子面間隔に対応するため、このパターンを解析することで、結晶方位や結晶系が解析できる。
これらの結果から、磁気吸着したマグヘマイト微粒子の集まりが、0.2μmの層をなして扁平鉄粉を覆っていることが確認できた。なお、マグヘマイトは自発磁化を持つため、マグヘマイト微粒子同士が互いに磁気吸着するとともに、扁平鉄粉に磁気吸着する。
本実施例で製作した試料は、圧粉磁心の好適な原料になる。つまり、第一に、マグヘマイトは比抵抗が10Ωmの絶縁物質であるため、マグヘマイト微粒子で覆われた扁平鉄粉は絶縁体になる。ちなみに鉄の比抵抗は10−7Ωmであり、鉄粉の渦電流損失は比抵抗に反比例するので、絶縁化された鉄粉の渦電流損失は著しく小さくなる。第二に、マグヘマイトは自発磁化を有するため鉄粉に磁気吸着し、鉄粉の圧縮成形時に過大な圧力を加えても、磁気吸着したマグヘマイト微粒子は、微粒子であるがゆえに鉄粉から剥がれない。これによって、成形後の鉄粉の絶縁性が保たれる。また、絶縁層を形成するための鉄粉の前処理は一切不要になる。第三に、450℃近辺でヘマタイトに相転移する。このため、450℃以上の温度で成形体の磁気焼鈍を実施すると、マグヘマイトはヘマタイトに相転移する。なお、この相転移は不可逆変化である。ヘマタイトは10Ωmの比抵抗を持つ物質であり、焼鈍によって鉄粉の絶縁性がさらに一桁向上し、渦電流損失はさらに低減する。また、ヘマタイトは安定した酸化物、つまり、不動態であり、融点の1566℃に近い耐熱性を有する。このため、一般的に行われている600℃以上の磁気焼鈍によってもヘマタイトの性質は変わらない。また、焼鈍時に鉄粉との界面における拡散現象が起らず、鉄粉の変質が起こらない。ちなみに、鉄の融点は1535℃である。なお、ヘマタイトは化学式がα−Feで表され、酸化鉄(III)Feのα相であり、弱強磁性の性質を持ち、磁気キュリー点が950℃である。第四に、モース硬度が5.5であり、鉄ないしは鉄系の合金より硬い物質である。このため、圧縮成形時に圧力が加えられてもマグヘマイト微粒子は破壊されない。つまり、圧縮成形時において、マグヘマイト微粒子は磁気吸着した状態を維持し、この状態でマグヘマイトより硬度が小さい鉄粉が優先して塑性変形する。これによって、鉄粉同士が絡み合って鉄粉同士が結合する。この際、鉄粉の表面はマグヘマイト微粒子によって絶縁性が維持され、成形体の密度の増大によって圧粉磁心の磁束密度と機械的強度とが増大する。
なお、圧粉磁心の原料としては、還元鉄粉を扁平処理した扁平鉄粉に限らず、アトマイズ純鉄粉ないしはアトマイズ合金粉を扁平処理した磁性粉を用いることができる。
The present embodiment relates to the second characteristic means of the present invention described in the eleventh paragraph, and is a specific example for producing a group of scaly substrates bonded by a group of magnetically adsorbed metal oxide fine particles. The flat iron powder obtained by flattening is combined with a collection of maghemite γ-Fe 2 O 3 fine particles having spontaneous magnetization. Maghemite is a γ phase of iron (III) oxide, and is a hard magnetic material that is electrically insulating and has spontaneous magnetization. Further, the ferromagnetic scaly substrate is not limited to flat iron powder, and a flat powder obtained by flattening an alloy powder of a soft magnetic material excellent in magnetic permeability can be used. As the flat iron powder in this example, flat iron powder MG150D manufactured by JFE Steel Corporation was used. This flat iron powder has an apparent density of 1.50 Mg / m 3 , a particle size distribution of 45% path is 14%, 45 μm to 63 μm is 12%, 63 μm to 75 μm is 6%, 75 μm to 106 μm is 24%, 106 μm to 150 μm is 42%, and 150 μm to 180 μm is 2%. Further, iron naphthenate (for example, a product of Toei Chemical Co., Ltd.) was used as a raw material for maghemite. That is, iron (II) FeO is precipitated by thermal decomposition of iron naphthenate, and iron ions Fe 2+ of iron (II) FeO are oxidized to Fe 3+ to produce maghemite γ-Fe 2 O 3. . In addition, n-butanol was a reagent first grade product.
A manufacturing process for manufacturing a collection of flat iron powders bonded through a collection of magnetically adsorbed maghemite fine particles is shown in FIG. First, 0.1 mol of iron naphthenate Fe (C n H 2n-1 COO) 2 ( compound of the more saturated fatty acids and iron with a 5-membered ring) was dispersed in 500cc of n- butanol (S20 step ). This dispersion was put into a container, and 300 g of flat iron powder was added and stirred (step S21). The container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered (step S22). Furthermore, the container was placed in a heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 300 ° C. to thermally decompose iron naphthenate (step S23). Thereafter, the temperature of the heat treatment furnace is changed from 300 ° C. to 1 ° C./min. The temperature was raised to 390 ° C. at a rate of 390 ° C., and the container was left at 390 ° C. for 30 minutes to oxidize iron (II) FeO to maghemite γ-Fe 2 O 3 (step S24). Finally, the sample was removed from the container.
Next, the surface and the cut surface of the manufactured sample were observed and analyzed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam was taken out, image processing was performed, and the surface of the sample was observed. Particulate fine particles having a size of 40 nm to 60 nm were uniformly formed on the entire surface of the sample. Further, from the sample cross-sectional image, the collection of granular fine particles formed a multilayer structure having a thickness of about 0.2 μm. Next, the energy and intensity of characteristic X-rays were subjected to image processing, and the types of elements constituting the particulate particles and their distribution states were analyzed. Both iron atoms and oxygen atoms were present uniformly on the surface, and no particularly uneven locations were found. Thus, it was found that the particles were granular fine particles made of iron oxide. Furthermore, an EBSP analysis function was added to the function of the extremely low acceleration voltage SEM, and the crystal structure of iron oxide was analyzed. From this result, it was confirmed that the particulate fine particles were maghemite γ-Fe 2 O 3 . The EBSP analysis function means that when a sample is irradiated with an electron beam, the reflected electrons are diffracted by the atomic plane in the sample to form a band-like pattern, and the symmetry of this band corresponds to the crystal system, Since the band interval corresponds to the atomic plane interval, the crystal orientation and the crystal system can be analyzed by analyzing this pattern.
From these results, it was confirmed that a collection of magnetically adsorbed maghemite fine particles formed a 0.2 μm layer and covered the flat iron powder. Since maghemite has spontaneous magnetization, maghemite fine particles are magnetically adsorbed to each other and magnetically adsorbed to the flat iron powder.
The sample produced in this example is a suitable raw material for the dust core. That is, first, since maghemite is an insulating material having a specific resistance of 10 6 Ωm, the flat iron powder covered with maghemite fine particles becomes an insulator. Incidentally, the specific resistance of iron is 10 −7 Ωm, and the eddy current loss of iron powder is inversely proportional to the specific resistance, so that the eddy current loss of insulated iron powder is significantly reduced. Secondly, since maghemite has spontaneous magnetization, it is magnetically adsorbed to the iron powder, and even if an excessive pressure is applied during compression molding of the iron powder, the magnetically adsorbed maghemite fine particles are fine particles and thus do not peel off from the iron powder. Thereby, the insulating property of the iron powder after molding is maintained. In addition, no pretreatment of iron powder for forming the insulating layer is required. Third, it transitions to hematite around 450 ° C. For this reason, when magnetic annealing of the compact is performed at a temperature of 450 ° C. or higher, maghemite undergoes phase transition to hematite. This phase transition is an irreversible change. Hematite is a substance having a specific resistance of 10 7 Ωm, and annealing improves the insulation of iron powder by an order of magnitude and further reduces eddy current loss. Hematite is a stable oxide, that is, passive, and has heat resistance close to the melting point of 1566 ° C. For this reason, the property of hematite is not changed even by magnetic annealing at 600 ° C. or higher which is generally performed. In addition, no diffusion phenomenon occurs at the interface with the iron powder during annealing, and no alteration of the iron powder occurs. Incidentally, the melting point of iron is 1535 ° C. Hematite has a chemical formula of α-Fe 2 O 3 , is an α phase of iron (III) Fe 2 O 3 , has weak ferromagnetism, and has a magnetic Curie point of 950 ° C. Fourth, the Mohs hardness is 5.5, which is a material harder than iron or iron-based alloys. For this reason, even if pressure is applied during compression molding, the maghemite fine particles are not destroyed. That is, at the time of compression molding, the maghemite fine particles maintain a magnetically adsorbed state, and in this state, iron powder having a lower hardness than maghemite preferentially undergoes plastic deformation. As a result, the iron powders are intertwined and the iron powders are combined. At this time, the surface of the iron powder is kept insulative by the maghemite fine particles, and the magnetic flux density and the mechanical strength of the dust core increase as the density of the compact increases.
The raw material of the powder magnetic core is not limited to the flat iron powder obtained by flattening reduced iron powder, but may be a magnetic powder obtained by flattening atomized pure iron powder or atomized alloy powder.

本実施例は、11段落で説明した本発明の第2特徴手段に係わり、自発磁化を有する金属酸化物微粒子の集まりで結合された鱗片状基材の集まりを製造する第2の具体例であり、軟磁性材料の合金粉を扁平化処理した合金粉が、マグヘマイトγ−Fe微粒子の集まりで結合される。扁平合金粉は、山陽特殊鋼株式会社が製造する合金粉で、50%ニッケルと鉄からなる合金粉(以下ではFe−50Niと記述する)と、3%シリコンと鉄からなる合金粉(以下ではFe−3Siと記述する)と、6%シリコンと鉄からなる合金粉(以下ではFe−6Siと記述する)とからなり、これら3種類の合金粉をボールミルで扁平処理した扁平粉を用いた。Fe−50Niの扁平粉はアスペクト比が33であり、平均粒径が14μmである。Fe−3Siの扁平粉はアスペクト比が38であり、平均粒径が9μmである。Fe−6Siの扁平粉はアスペクト比が23であり、平均粒径が8μmである。
磁気吸着したマグヘマイト微粒子の集まりを介して結合した3種類の扁平粉の集まりを製造する製造工程を図3に示す。最初に、Fe−50Niの扁平粉の65gとFe−3Siの扁平粉の70gとFe−6Siの扁平粉の100gを混合する(S30工程)。次に、ナフテン酸鉄の0.05モルを500ccのn−ブタノールに分散する(S31工程)。この分散液を容器に入れ、3種類の扁平粉の混合物を投入して撹拌した(S32工程)。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した(S33工程)。さらに、容器を大気雰囲気からなる熱処理炉に入れ、容器内の試料を300℃に昇温してナフテン酸鉄を熱分解した(S34工程)。この後、熱処理炉の温度を300℃から1℃/min.の速度で390℃まで昇温し、390℃に容器を30分間放置し、酸化鉄(II)FeOをマグヘマイトγ−Feに酸化した(S35工程)。最後に、容器から試料を取り出した。
次に、製作した試料の表面と切断面とについて、実施例1と同様に電子顕微鏡で観察と分析を行なった。最初に反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行い、試料の表面を観察した。40nm〜60nmの大きさからなる粒状微粒子が、試料の表面全体に満遍なく形成していた。また、試料断面の画像から、粒状微粒子の集まりは約0.1μmの厚みからなる多層構造を形成していた。次に、特性X線のエネルギーとその強度を画像処理し、粒状微粒子を構成する元素の種類とその分布状態を分析した。鉄原子と酸素原子の双方が表面に均一に存在し、特段に偏在する箇所が見られなかったため、酸化鉄からなる粒状微粒子であることが分かった。さらに、極低加速電圧SEMの機能にEBSP解析機能を付加し、酸化鉄の結晶構造の解析を行なった。この結果から、粒状微粒子がマグヘマイトγ−Feであることが確認できた。
本実施例で製作した試料は、電波吸収材の好適な原料となる。つまり、3種類の扁平粉の混合物を多段冷間圧延ロールによってシート状に圧延成形すると、電波吸収シートが製造される。すなわち、マグヘマイト微粒子がモース硬度5.5からなる硬い微粒子であるため、扁平粉が圧延される際に、マグヘマイト微粒子は扁平粉に磁気吸着した状態を維持し、硬度が小さい扁平粉が優先して塑性変形する。これによって、扁平粉同士が絡み合って扁平粉が結合し、電波吸収シートが得られる。この際、マグヘマイト微粒子がごく薄い層で扁平粉を覆うため、マグヘマイト微粒子の集まりが占める体積割合は1%にも達しない少量であるため、扁平粉は優れた軟磁性特性を低下させることなく互いに結合される。
すなわち、3種類の扁平粉の中で、相対的に柔らかいFe−50Ni粉は、扁平処理によって相対的にアスペクト比が大きく、平均粒径も大きい扁平粉になる。このため、相対的に大きな複素透磁率を持ち、電磁波吸収能力は高いが、複素透磁率が大きい値を示す周波数領域が、3種類の扁平粉の中で、相対的に低い周波数の領域になる。これに対し、3種類の扁平粉の中で、相対的に硬いFe−6Si粉は、扁平処理によって相対的にアスペクト比が小さく、平均粒径も小さい扁平粉になる。このため、Fe−50Niの扁平粉と比較すると、相対的に複素透磁率は小さいが、複素透磁率が大きい値を示す周波数の領域が、3種類の扁平粒子の中で、相対的に高い周波数の領域になる。なお、Fe−3Si粉は、硬ささがFe−50Ni粉に近く、扁平処理によってアスペクト比はFe−50Ni粉に近いアスペクト比を持つが、平均粒径はFe−6Si粉に近い。このため、Fe−3Si粉は、Fe−50Ni粉に近い大きい複素透磁率を持ち、電波吸収能力は高いが、吸収する電磁波の周波数は、Fe−6Si粉に近い。従って、3種類の扁平粉の中で、複素透磁率が相対的に小さく、電波吸収能力が相対的に低いFe−6Si粉の混合比率を高めて3種類の扁平粉を混合し、混合された扁平粉を圧縮成形すると、2GHzから8GHzに及ぶ周波数範囲の電磁波を吸収するシートになる。
つまり、アトマイズ法で作成した軟磁性の合金粉は、合金の組成に応じた硬さと磁気特性を持つ。このため、合金粉をボールミルで扁平処理した扁平粉は、合金の組成に応じた形状になる。この結果、扁平粉が示す最大複素透磁率の大きさと、大きな複素透磁率を示す周波数領域は、合金の組成に応じて変わる。従って、吸収する電磁波の周波数範囲が広がるほど、多くの種類の扁平粉を複素透磁率の大きさに応じた混合割合で混合し、これらの混合物を冷間圧延して電波吸収シートを製造する。従来における融解した高分子材料と扁平粉とからなる複合材料を押し出した後に、圧延成形で電波吸収シートを製造する方法では、形状が異なる扁平粉の種類が多くなるほど、より多くの高分子材料を配合しなければならず、扁平粉の配合割合が低下することで電波吸収能力が低下する。これに対し本実施例は、扁平粉より硬いマグヘマイト微粒子で覆われた扁平粉を冷間圧延するだけであるため、どのような形状や材質からなる扁平粉であっても、シート状に圧延できる。さらに、強磁性のマグヘマイト微粒子が扁平粉をごく薄い層として覆うため、シートに占める扁平粉の体積割合は100%近くになり、電波吸収能力は従来の製法のものに比べて格段に高い。
なお、扁平粉の集まりをシート状に冷間圧延する成形品は、電波吸収シートに限られることはない。扁平粉の材質や形状によらず、磁気吸着したマグヘマイト微粒子の集まりを介して扁平粉同士が結合し、さらに、扁平粉の集まりを圧延や圧縮などの加工ができ、成形体に占める扁平粉の体積割合が100%に近いため、成形体は扁平粉の性質を発揮する。このため、用途に応じた扁平粉を、磁気吸着したマグヘマイト微粒子の集まりで結合させ、これを様々な手段で加工すると、扁平粉の性質を活かした様々な成形体が製造できる。
This example relates to the second characteristic means of the present invention described in the 11th paragraph, and is a second specific example for producing a collection of scale-like substrates bonded by a collection of metal oxide fine particles having spontaneous magnetization. The alloy powder obtained by flattening the alloy powder of the soft magnetic material is bonded by a collection of maghemite γ-Fe 2 O 3 fine particles. The flat alloy powder is an alloy powder manufactured by Sanyo Special Steel Co., Ltd., which is an alloy powder composed of 50% nickel and iron (hereinafter referred to as Fe-50Ni), and an alloy powder composed of 3% silicon and iron (hereinafter referred to as Fe-50Ni). Fe-3Si) and an alloy powder composed of 6% silicon and iron (hereinafter referred to as Fe-6Si), and flat powder obtained by flattening these three kinds of alloy powder with a ball mill was used. The flat powder of Fe-50Ni has an aspect ratio of 33 and an average particle size of 14 μm. The flat powder of Fe-3Si has an aspect ratio of 38 and an average particle size of 9 μm. The flat powder of Fe-6Si has an aspect ratio of 23 and an average particle size of 8 μm.
FIG. 3 shows a production process for producing a collection of three types of flat powders bonded via a collection of magnetically adsorbed maghemite fine particles. First, 65 g of flat powder of Fe-50Ni, 70 g of flat powder of Fe-3Si, and 100 g of flat powder of Fe-6Si are mixed (step S30). Next, 0.05 mol of iron naphthenate is dispersed in 500 cc of n-butanol (step S31). This dispersion was put into a container, and a mixture of three kinds of flat powder was added and stirred (step S32). Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered (step S33). Further, the container was placed in a heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 300 ° C. to thermally decompose iron naphthenate (step S34). Thereafter, the temperature of the heat treatment furnace is changed from 300 ° C. to 1 ° C./min. The temperature was raised to 390 ° C. at a rate of 390 ° C., and the container was left at 390 ° C. for 30 minutes to oxidize iron (II) FeO to maghemite γ-Fe 2 O 3 (step S35). Finally, the sample was removed from the container.
Next, the surface and the cut surface of the manufactured sample were observed and analyzed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam was taken out, image processing was performed, and the surface of the sample was observed. Particulate fine particles having a size of 40 nm to 60 nm were uniformly formed on the entire surface of the sample. Further, from the sample cross-sectional image, the collection of granular fine particles formed a multilayer structure having a thickness of about 0.1 μm. Next, the energy and intensity of characteristic X-rays were subjected to image processing, and the types of elements constituting the particulate particles and their distribution states were analyzed. Both iron atoms and oxygen atoms were present uniformly on the surface, and no particularly uneven locations were found. Thus, it was found that the particles were granular fine particles made of iron oxide. Furthermore, an EBSP analysis function was added to the function of the extremely low acceleration voltage SEM, and the crystal structure of iron oxide was analyzed. From this result, it was confirmed that the particulate fine particles were maghemite γ-Fe 2 O 3 .
The sample manufactured in this example is a suitable raw material for the radio wave absorber. That is, when a mixture of three types of flat powder is rolled and formed into a sheet shape by a multi-stage cold rolling roll, a radio wave absorbing sheet is produced. That is, since the maghemite fine particles are hard fine particles having a Mohs hardness of 5.5, when the flat powder is rolled, the maghemite fine particles maintain the state of being magnetically adsorbed to the flat powder, and the flat powder having a low hardness is given priority. Plastic deformation. As a result, the flat powders are entangled with each other, and the flat powders are combined to obtain a radio wave absorbing sheet. At this time, since the maghemite fine particles cover the flat powder with a very thin layer, the volume ratio occupied by the aggregate of the maghemite fine particles is a small amount that does not reach 1%. Therefore, the flat powder does not deteriorate the excellent soft magnetic properties. Combined.
That is, among the three types of flat powder, the relatively soft Fe-50Ni powder becomes a flat powder having a relatively large aspect ratio and a large average particle diameter by the flattening treatment. For this reason, although having a relatively large complex permeability and high electromagnetic wave absorption capability, a frequency region in which the complex permeability has a large value is a region of a relatively low frequency among the three types of flat powders. . On the other hand, among the three types of flat powder, the relatively hard Fe-6Si powder becomes a flat powder having a relatively small aspect ratio and a small average particle diameter by the flattening treatment. For this reason, when compared with the flat powder of Fe-50Ni, the complex magnetic permeability is relatively small, but the frequency region showing a large complex magnetic permeability is a relatively high frequency among the three types of flat particles. It becomes the area of. The Fe-3Si powder has a hardness close to that of the Fe-50Ni powder and has an aspect ratio close to that of the Fe-50Ni powder by flattening treatment, but the average particle size is close to that of the Fe-6Si powder. For this reason, Fe-3Si powder has a large complex permeability close to that of Fe-50Ni powder and has a high radio wave absorption capability, but the frequency of electromagnetic waves to be absorbed is close to that of Fe-6Si powder. Accordingly, among the three types of flat powders, the mixing ratio of the Fe-6Si powder having a relatively low complex permeability and a relatively low radio wave absorption capability was increased to mix and mix the three types of flat powders. When flat powder is compression-molded, it becomes a sheet that absorbs electromagnetic waves in a frequency range ranging from 2 GHz to 8 GHz.
That is, the soft magnetic alloy powder prepared by the atomizing method has hardness and magnetic properties corresponding to the composition of the alloy. For this reason, the flat powder obtained by flattening the alloy powder with a ball mill has a shape corresponding to the composition of the alloy. As a result, the magnitude of the maximum complex permeability exhibited by the flat powder and the frequency region showing a large complex permeability vary depending on the composition of the alloy. Therefore, as the frequency range of electromagnetic waves to be absorbed increases, many types of flat powder are mixed at a mixing ratio corresponding to the magnitude of the complex magnetic permeability, and these mixtures are cold-rolled to produce a radio wave absorbing sheet. In the conventional method of manufacturing a radio wave absorption sheet by rolling after extruding a composite material composed of a molten polymer material and flat powder, the more types of flat powder having different shapes, the more polymer materials It has to mix | blend and an electromagnetic wave absorption capability falls by the mixture ratio of a flat powder falling. On the other hand, since this example only cold-rolls the flat powder covered with maghemite fine particles harder than the flat powder, any flat powder made of any shape or material can be rolled into a sheet shape. . Furthermore, since the ferromagnetic maghemite fine particles cover the flat powder as a very thin layer, the volume ratio of the flat powder to the sheet is close to 100%, and the radio wave absorption ability is much higher than that of the conventional manufacturing method.
In addition, the molded product which cold-rolls the collection of flat powder into a sheet form is not restricted to a radio wave absorption sheet. Regardless of the material and shape of the flat powder, the flat powders are bonded together through a collection of magnetically adsorbed maghemite particles, and the flat powder can be processed by rolling, compression, etc. Since the volume ratio is close to 100%, the compact exhibits the properties of flat powder. For this reason, if the flat powder according to a use is combined with the gathering of the magnetically adsorbed maghemite fine particles and processed by various means, various shaped bodies utilizing the properties of the flat powder can be manufactured.

本実施例は、15段落で説明した本発明の第4特徴手段と、17段落で説明した本発明の第5特徴手段に係わり、金属微粒子で覆われた鱗片状基材を製造する具体例であり、フレーク銅粉を鉄微粒子の集まりで覆う。なお、フレーク銅粉は三井金属鉱山株式会社が製造する型番MA−C08JFを用いた。この銅フレーク粉は、比表面積が0.73m/gで、粒度分布はD10が5.0μmでD50が11.9μmでD90が24.7μmからなり、タップ密度が3.5g/cmであり、表面処理がなされていない。鉄微粒子は不純物を含まない純鉄であるため、比透磁率が100,000に近い優れた軟磁性材料である。鉄の原料はオクチル酸鉄Fe(C15COO)(例えば、日本化学産業株式会社の製品)を用いた。さらに、鉄微粒子の表面を覆う金属酸化物微粒子は酸化亜鉛で構成し、酸化亜鉛の原料はナフテン酸亜鉛(C11COO)Zn(例えば、東栄化工株式会社の製品)を用いた。n−ブタノールは試薬1級品を用いた。
鉄微粒子の集まりで覆われたフレーク銅粉を製造する製作工程を図4に示す。最初に、オクチル酸鉄の0.1モルを1リットルのn−ブタノールに分散した(S40工程)。この分散液を容器に入れ、フレーク銅粉300gを投入して撹拌した(S41工程)。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した(S42工程)。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散する(S43工程)。この分散液をフレーク銅粉の集まりが入った容器に入れて撹拌した(S44工程)。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した(S45工程)。さらに、容器を大気雰囲気からなる第一の熱処理炉に入れ、容器内の試料を290℃に昇温してオクチル酸鉄を熱分解した(S46工程)。さらに容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した(S47工程)。この後、容器を加振機に設置して5分間容器に振動を加えた(S48工程)。最後に、容器内の試料を目合が33μmからなるメッシュフィルターを3枚重ねたフィルターを通し、本実施例の試料を得た(S49工程)。なお、メッシュフィルターを通過した酸化亜鉛ZnO微粒子は、ゴムや合成樹脂の添加物として利用するため回収した。
次に、製作した試料の表面と切断面とを実施例1と同様に電子顕微鏡で観察した。最初に、試料からの反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。試料表面は、40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、試料断面の画像から、粒状微粒子の集まりが約0.5μmの厚みからなる多層構造を形成していた。次に、試料からの反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。濃淡が認められなかったので、同一の物質から形成されていることが分かった。さらに、試料からの特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。鉄原子のみが存在した。これらの結果から、鉄微粒子の集まりが0.5μmの厚みを形成してフレーク銅粉を覆っていることが分かった。
さらに、直流抵抗計(例えば、鶴賀電気株式会社の直流抵抗計モデル356H)を用いて、試料の電気抵抗を測定した。試料の4か所に端子をかませ、試料に異なる方向に直流電流を流して、内側の2つの端子で電圧を2回測り、これら2つの電圧値の差を、外側の2つの端子で測った電流値で割った値から求めた抵抗値は、鉄に近い体積固有抵抗を示した。従って、本実施例で製作した試料は、内部は銅の導電性を示し、表層は鉄の強磁性を示す。このため、本実施例で製作した鉄微粒子の集まりで覆われた銅粉は、電磁波遮蔽シートの原料として用いることができる。
This example relates to the fourth characteristic means of the present invention described in the 15th paragraph and the fifth characteristic means of the present invention described in the 17th paragraph, and is a specific example for producing a scaly substrate covered with metal fine particles. Yes, cover the flake copper powder with a collection of iron fine particles. The flake copper powder used was model number MA-C08JF manufactured by Mitsui Metal Mining Co., Ltd. This copper flake powder has a specific surface area of 0.73 m 2 / g, a particle size distribution of D10 of 5.0 μm, D50 of 11.9 μm, D90 of 24.7 μm, and tap density of 3.5 g / cm 3 . There is no surface treatment. Since the iron fine particles are pure iron containing no impurities, they are excellent soft magnetic materials having a relative magnetic permeability close to 100,000. The iron raw material used was iron octylate Fe (C 7 H 15 COO) 3 (for example, a product of Nippon Chemical Industry Co., Ltd.). Further, the metal oxide fine particles covering the surface of the iron fine particles were composed of zinc oxide, and zinc naphthenate (C 11 H 7 COO) 2 Zn (for example, a product of Toei Chemical Co., Ltd.) was used as the zinc oxide raw material. As n-butanol, a reagent first grade product was used.
A production process for producing flake copper powder covered with a collection of iron fine particles is shown in FIG. First, 0.1 mol of iron octylate was dispersed in 1 liter of n-butanol (step S40). This dispersion was placed in a container, and 300 g of flake copper powder was added and stirred (step S41). Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered (step S42). Further, 0.1 mol of zinc naphthenate is dispersed in 1 liter of n-butanol (step S43). This dispersion was placed in a container containing a collection of flake copper powder and stirred (step S44). Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered (step S45). Further, the container was placed in a first heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 290 ° C. to thermally decompose iron octylate (step S46). Further, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate (step S47). Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes (step S48). Finally, the sample in the container was passed through a filter in which three mesh filters each having a mesh size of 33 μm were stacked to obtain a sample of this example (Step S49). The zinc oxide ZnO fine particles that passed through the mesh filter were collected for use as an additive for rubber and synthetic resin.
Next, the surface and cut surface of the manufactured sample were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam from the sample was taken out and image processing was performed. The sample surface was uniformly covered with granular fine particles having a size of 40 nm to 60 nm. Further, from the sample cross-sectional image, a multilayer structure in which a collection of granular fine particles has a thickness of about 0.5 μm was formed. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam from the sample, and the difference in material was observed depending on the density of the image. Since no shade was observed, it was found that they were formed from the same substance. Furthermore, the energy of the characteristic X-ray from the sample and its intensity were image-processed, and the elements constituting the fine particles were analyzed. Only iron atoms were present. From these results, it was found that a collection of iron fine particles formed a thickness of 0.5 μm and covered the flake copper powder.
Furthermore, the electrical resistance of the sample was measured using a DC resistance meter (for example, DC resistance meter model 356H of Tsuruga Electric Co., Ltd.). Terminals are clamped at four locations on the sample, a direct current is passed through the sample in different directions, the voltage is measured twice at the two inner terminals, and the difference between these two voltage values is measured at the two outer terminals. The resistance value obtained from the value divided by the current value showed a volume resistivity close to that of iron. Therefore, the sample manufactured in this example shows copper conductivity inside, and the surface layer shows iron ferromagnetism. For this reason, the copper powder covered with the collection of iron fine particles manufactured in the present embodiment can be used as a raw material for the electromagnetic wave shielding sheet.

本実施例は、29段落で説明した本発明の第11特徴手段と、31段落で説明した本発明の第12特徴手段に係わり、合金微粒子の集まりで覆われた鱗片状基材を製造する具体例であり、実施例4で用いたフレーク銅粉をパーマロイ微粒子で覆う。なお、パーマロイの組成は、ニッケルが77.7%を占め鉄が22.3%を占める割合からなり、鉄に対するニッケルの比率が3.48からなるパーマロイで、パーマロイの中でも大きな透磁率を持つ。このため、実施例4の純鉄よりさらに大きな透磁率を持ち、電磁波遮蔽シートの原料としては、実施例4より優れた電磁波の遮蔽性能を持つシートになる。また、パーマロイの原料となる鉄は実施例4のオクチル酸鉄を用い、ニッケルの原料はオクチル酸ニッケルNi(C15COO)(例えば、日本化学産業株式会社の製品)を用いた。いずれもオクチル酸金属化合物であり、オクチル酸の沸点で同時に熱分解し、オクチル酸の気化が完了した後に、パーマロイが生成される。なお、パーマロイ微粒子の表面は、実施例4と同様に酸化亜鉛ZnO微粒子で覆った。n−ブタノールは試薬1級品を用いた。
パーマロイ微粒子で覆われたフレーク銅粉を製造する製作工程を図5に示す。最初に、オクチル酸ニッケルの0.0777モルとオクチル酸鉄の0.0223モルとを秤量し、500ccのn−ブタノールに分散して撹拌した(S50工程)。この分散液を容器に入れ、フレーク銅粉300gを投入して撹拌した(S51工程)。次に、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した(S52工程)。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散した(S53工程)。この分散液を、銅粉の集まりが入った容器に入れて撹拌した(S54工程)。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した(S55工程)。さらに、容器を大気雰囲気からなる第一の熱処理炉に入れ、容器内の試料を290℃に昇温し、オクチル酸ニッケルとオクチル酸鉄とを同時に熱分解した(S56工程)。さらに、大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した(S57工程)。この後、容器を加振機に設置して5分間容器に振動を加えた(S58工程)。最後に、容器内の試料を目合が33μmからなるメッシュフィルターを3枚重ねたフィルターを通し、本実施例の試料を得た(S59工程)。フィルターを通過した酸化亜鉛ZnO微粒子は回収した。
次に、前記の製法で製作した試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、試料からの反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。試料表面は、40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、試料断面の画像から、粒状微粒子の集まりは約0.5μmの厚みからなる多層構造を形成していた。次に、試料からの反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。さらに、試料からの特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。過剰のニッケル原子と鉄原子とが存在し、偏在する箇所が認められなかったので、微粒子はニッケル−鉄合金からなる。なお、オクチル酸ニッケルとオクチル酸鉄とをモル比率で77.7対22.3の割合で混合したため、ニッケル−鉄合金はニッケルが77.7%の割合を占めるパーマロイであると考える。これらの結果から、パーマロイの粒状微粒子の集まりが、0.5μmの厚みを形成して銅粉を覆うことが分かった。
さらに、実施例4と同様に、直流抵抗計を用いて、試料の電気抵抗を測定した。試料の抵抗値は、ニッケルの2倍を超える体積固有抵抗を示した。
本実施例で製作した試料は、内部は銅の導電性を示し、表層はパーマロイの軟磁性を示す。このため、本実施例で製作したパーマロイ微粒子で覆われた銅粉は、電磁波遮蔽シートの原料として用いることができる。なお、従来のパーマロイの製法は、溶製材に依るため、高温の水素ガス雰囲気における焼鈍が必須な高価な材料である。本実施例では、溶製材に比べると著しく低い温度でパーマロイ微粒子が生成できるため、水素焼鈍が不要になる。従って本実施例で製作した試料は、安価な電磁波遮蔽シートの原料になる。
This example relates to the eleventh characteristic means of the present invention described in paragraph 29 and the twelfth characteristic means of the present invention described in paragraph 31, and is a specific example for producing a scaly substrate covered with a collection of alloy fine particles. For example, the flake copper powder used in Example 4 is covered with permalloy fine particles. The composition of permalloy is such that nickel accounts for 77.7% and iron accounts for 22.3%, and the ratio of nickel to iron is 3.48. Permalloy has a large magnetic permeability. For this reason, it has a magnetic permeability larger than that of pure iron of Example 4, and is a sheet having an electromagnetic wave shielding performance superior to that of Example 4 as a raw material for the electromagnetic wave shielding sheet. Moreover, the iron used as the raw material of permalloy was the iron octylate of Example 4, and the nickel raw material was nickel octylate Ni (C 7 H 15 COO) 2 (for example, a product of Nippon Chemical Industry Co., Ltd.). Both are octylic acid metal compounds, which are simultaneously thermally decomposed at the boiling point of octylic acid, and after the vaporization of octylic acid is completed, permalloy is produced. The surface of the permalloy fine particles was covered with zinc oxide ZnO fine particles in the same manner as in Example 4. As n-butanol, a reagent first grade product was used.
FIG. 5 shows a production process for producing flake copper powder covered with permalloy fine particles. First, 0.0777 mol of nickel octylate and 0.0223 mol of iron octylate were weighed, dispersed in 500 cc of n-butanol, and stirred (step S50). This dispersion was put into a container, and 300 g of flake copper powder was added and stirred (step S51). Next, the temperature of the container was raised to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered (step S52). Furthermore, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol (step S53). This dispersion was placed in a container containing a collection of copper powder and stirred (step S54). Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered (step S55). Further, the container was placed in a first heat treatment furnace composed of an atmospheric atmosphere, the sample in the container was heated to 290 ° C., and nickel octylate and iron octylate were simultaneously pyrolyzed (step S56). Further, the sample was placed in a second heat treatment furnace composed of an air atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate (step S57). Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes (step S58). Finally, the sample in the container was passed through a filter in which three mesh filters each having a mesh size of 33 μm were stacked to obtain a sample of this example (step S59). The zinc oxide ZnO fine particles that passed through the filter were collected.
Next, the surface and cut surface of the sample manufactured by the above manufacturing method were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam from the sample was taken out and image processing was performed. The sample surface was uniformly covered with granular fine particles having a size of 40 nm to 60 nm. Further, from the sample cross-sectional image, the collection of granular fine particles formed a multilayer structure having a thickness of about 0.5 μm. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam from the sample, and the difference in material was observed depending on the density of the image. Furthermore, the energy of the characteristic X-ray from the sample and its intensity were image-processed, and the elements constituting the fine particles were analyzed. Since excessive nickel atoms and iron atoms existed and no unevenly distributed portions were observed, the fine particles consist of a nickel-iron alloy. In addition, since nickel octylate and iron octylate were mixed at a molar ratio of 77.7 to 22.3, the nickel-iron alloy is considered to be a permalloy in which nickel accounts for 77.7%. From these results, it was found that a collection of granular fine particles of permalloy formed a thickness of 0.5 μm and covered the copper powder.
Furthermore, as in Example 4, the electrical resistance of the sample was measured using a DC resistance meter. The resistance value of the sample showed a volume resistivity exceeding twice that of nickel.
The sample manufactured in this example shows copper conductivity inside, and the surface layer shows permalloy soft magnetism. For this reason, the copper powder covered with the permalloy fine particles manufactured in the present Example can be used as a raw material of an electromagnetic wave shielding sheet. In addition, since the conventional permalloy manufacturing method depends on the melted material, it is an expensive material in which annealing in a high-temperature hydrogen gas atmosphere is essential. In this embodiment, since permalloy fine particles can be generated at a temperature significantly lower than that of the melted material, hydrogen annealing is not necessary. Therefore, the sample manufactured in this example becomes a raw material for an inexpensive electromagnetic wave shielding sheet.

本実施例は、15段落で説明した本発明の第四特徴手段と、17段落で説明した本発明の第五特徴手段に係わり、金属微粒子で覆われた鱗片状基を製造する第二の具体例であり、ガラスフレーク粉を銀微粒子の集まりで覆う。本実施例では、日本板硝子株式会社が製造する品番RCF−600のガラスフレーク粉を用いた。このガラスフレーク粉は、含アルカリガラス(Cガラスと呼ばれる)からなり、平均の厚みが5μmで、1700μm〜300μmの大きさが80%以上で、150μm〜45μmの大きさが20%以下である粒度分布を持ち、中心粒度が600μmである。銀の原料はオクチル酸銀Ag(C15COO)を用いた。なお、オクチル酸銀は市販されていないため、次の製法で新たに合成した。オクチル酸カリウム(例えば、東栄化工株式会社の製品)と硝酸銀(試薬1級品)とを反応させてオクチル酸銀を析出させ、この析出したオクチル酸銀を水洗してオクチル酸銀を得た。オクチル酸銀は、オクチル酸の沸点でオクチル酸と銀に熱分解し、オクチル酸の気化が完了した後に銀が析出する。なお、銀微粒子の表面は、実施例4と同様に酸化亜鉛ZnO微粒子で覆った。n−ブタノールは試薬1級品を用いた。
銀微粒子の集まりで覆われたガラスフレーク粉を製造する製作工程を説明する。なお、本実施例の製造工程は、実施例4における製作工程において、鉄微粒子が銀微粒子に置き換わり、フレーク銅粉がガラスフレーク粉に置き換わった類似した製造工程であるため、製造工程の図示は省略した。最初に、オクチル酸銀の0.1モルを500ccのn−ブタノールに分散した。この分散液を容器に入れ、ガラスフレーク粉100gを投入して撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散した。この分散液を、ガラスフレーク粉が入った容器に入れて撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、容器を大気雰囲気からなる第一の熱処理炉に入れ、容器内の試料を290℃に昇温してオクチル酸銀を熱分解した。さらに、大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した。この後、容器を加振機に設置し5分間容器に振動を加えた。最後に、容器内の試料を目合が45μmからなるメッシュフィルターを通し、本実施例の試料を得た。なおフィルターを通過した酸化亜鉛ZnO微粒子は回収した。
次に、製作した試料の表面と切断面を実施例1と同様に電子顕微鏡で観察した。最初に、試料からの反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。試料表面は、40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、試料断面の画像から、粒状微粒子の集まりが約0.5μmの厚みからなる多層構造を形成していた。次に、試料からの反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。濃淡が認められなかったので、同一の物質から形成されていることが分かった。さらに、試料からの特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。銀原子のみが存在した。これらの結果から、銀微粒子の集まりが0.5μmの厚みを形成してガラスフレーク粉を覆っていることが分かった。
さらに、実施例4と同様に直流抵抗計を用いて、試料の電気抵抗を測定した。試料の抵抗値は、銀に近い体積固有抵抗を示した。従って、本実施例で製作した試料は、金属元素の中で最も優れた熱伝導性と電気導電性を持ち、全ての可視光領域で最も高い反射率を持つ銀の性質を有するガラスフレーク粉となる。このため、本実施例で製作したガラスフレーク粉は、導電性ペーストの導電性フィラーとして用いることができる。
またガラスフレーク粉は、40nm〜60nmの大きさの範囲からなる粒状の銀微粒子で覆われるため、表面は40nm〜60nmの大きさの凹凸が形成され、光の白色散乱が殆どなく、彩度に優れた金属光沢を発した。また、0.5μmの厚みからなる銀微粒子の集まりは、青緑色の可視光の波長に相当するため、銀微粒子の表面での反射光とガラスフレーク表面での反射光とが互いに干渉して増幅され、青緑色の色調が相対的に強い反射光となった。この結果、本実施例で製作したガラスフレーク粉は、青緑色がかった彩度に優れた金属光沢を発する塗料用顔料として用いることができる。
This embodiment relates to the fourth characteristic means of the present invention described in the 15th paragraph and the fifth characteristic means of the present invention described in the 17th paragraph, and is a second specific example for producing a scaly group covered with metal fine particles. For example, glass flake powder is covered with a collection of silver fine particles. In this example, glass flake powder of product number RCF-600 manufactured by Nippon Sheet Glass Co., Ltd. was used. This glass flake powder is made of alkali-containing glass (called C glass), has an average thickness of 5 μm, a size of 1700 μm to 300 μm is 80% or more, and a size of 150 μm to 45 μm is 20% or less. It has a distribution and a central particle size of 600 μm. Silver octylate Ag (C 7 H 15 COO) was used as a silver raw material. Since silver octylate is not commercially available, it was newly synthesized by the following production method. Potassium octylate (for example, a product of Toei Chemical Co., Ltd.) and silver nitrate (reagent grade 1 product) were reacted to precipitate silver octylate, and the precipitated silver octylate was washed with water to obtain silver octylate. Silver octylate is thermally decomposed into octylic acid and silver at the boiling point of octylic acid, and silver is deposited after vaporization of octylic acid is completed. The surface of the silver fine particles was covered with zinc oxide ZnO fine particles as in Example 4. As n-butanol, a reagent first grade product was used.
A production process for producing glass flake powder covered with a collection of silver fine particles will be described. The manufacturing process of this example is a similar manufacturing process in which the iron fine particles are replaced with silver fine particles and the flake copper powder is replaced with glass flake powder in the manufacturing process in Example 4, and therefore the illustration of the manufacturing process is omitted. did. First, 0.1 mole of silver octylate was dispersed in 500 cc of n-butanol. This dispersion was put in a container, and 100 g of glass flake powder was added and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Further, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol. This dispersion was stirred in a container containing glass flake powder. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Further, the container was placed in a first heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 290 ° C. to thermally decompose silver octylate. Further, the sample was placed in a second heat treatment furnace composed of an air atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate. Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes. Finally, the sample in the container was passed through a mesh filter having a mesh size of 45 μm to obtain a sample of this example. The zinc oxide ZnO fine particles that passed through the filter were collected.
Next, the surface and cut surface of the manufactured sample were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam from the sample was taken out and image processing was performed. The sample surface was uniformly covered with granular fine particles having a size of 40 nm to 60 nm. Further, from the sample cross-sectional image, a multilayer structure in which a collection of granular fine particles has a thickness of about 0.5 μm was formed. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam from the sample, and the difference in material was observed depending on the density of the image. Since no shade was observed, it was found that they were formed from the same substance. Furthermore, the energy of the characteristic X-ray from the sample and its intensity were image-processed, and the elements constituting the fine particles were analyzed. Only silver atoms were present. From these results, it was found that a collection of silver fine particles formed a thickness of 0.5 μm and covered the glass flake powder.
Further, the electrical resistance of the sample was measured using a DC resistance meter in the same manner as in Example 4. The resistance value of the sample showed a volume resistivity close to silver. Therefore, the sample manufactured in this example has the best thermal conductivity and electrical conductivity among the metal elements, and the glass flake powder having the silver property having the highest reflectance in all visible light regions. Become. For this reason, the glass flake powder manufactured in the present Example can be used as a conductive filler of a conductive paste.
Further, since the glass flake powder is covered with granular silver fine particles having a size range of 40 nm to 60 nm, the surface has irregularities with a size of 40 nm to 60 nm, almost no white scattering of light, and saturation is achieved. Excellent metallic luster. In addition, the collection of silver fine particles having a thickness of 0.5 μm corresponds to the wavelength of blue-green visible light, so that the reflected light on the surface of the silver fine particles and the reflected light on the surface of the glass flakes interfere with each other and are amplified. As a result, the bluish green color tone became a relatively strong reflected light. As a result, the glass flake powder produced in this example can be used as a pigment for paints that emits a metallic luster with a blue-greenish chroma and excellent chroma.

本実施例は、29段落で説明した本発明の第11特徴手段と、31段落で説明した本発明の第12特徴手段に係わり、合金微粒子で覆われた鱗片状基材を製造する第二の具体例であり、銀と銅からなる合金微粒子の集まりでガラスフレーク粉を覆う。ガラスフレーク粉は、日本板硝子株式会社が製造する品番RCF−160を用いた。このガラスフレーク粉は、含アルカリガラスからなり、平均の厚みが5μmで、1700μm〜300μmの大きさが10%以下で、300μm〜150μmの大きさが65%以上で、45μmパスの大きさが5%以下で、中心粒度が160μmである粒度分布を持つ。なお、合金微粒子は、銀にわずかな銅を含有させ、銀の熱伝導性と電気導電性と可視光の反射率とを犠牲にすることなく、銀の耐食性を向上させるため、銅の構成割合が5%とからなる95銀5銅の合金とした。銀の原料は実施例6で用いたオクチル酸銀とした。銅の原料は実施例1で用いたオクチル酸銅とした。いずれもオクチル酸金属化合物であるため、オクチル酸の沸点で同時に熱分解し、オクチル酸の気化が完了した後に銀−銅合金が生成される。なお、銀−銅合金微粒子の表面は、実施例4と同様に酸化亜鉛ZnO微粒子で覆った。n−ブタノールは試薬1級品を用いた。
銀−銅合金の微粒子で覆われたガラスフレーク粉を製造する製作工程を説明する。なお、本実施例の製造工程は、実施例5における製作工程において、パーマロイ微粒子が銀−銅合金微粒子に置き換わり、フレーク銅粉がガラスフレーク粉に置き換わった類似した製造工程であるため、製造工程の図示は省略した。最初に、オクチル酸銀の0.095モルとオクチル酸銅の0.005モルとを秤量し、500ccのn−ブタノールに分散して撹拌した。この分散液を容器に入れ、ガラスフレーク粉80gを投入して撹拌した。次に、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散した。この分散液を、ガラスフレーク粉の集まりが入った容器に入れて撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、容器を大気雰囲気からなる第一の熱処理炉に入れ、容器内の試料を290℃に昇温してオクチル酸銀とオクチル酸銅とを同時に熱分解した。さらに、容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した。この後、容器を加振機に設置して5分間容器に振動を加えた。最後に、容器内の試料を目合が41μmからなるメッシュフィルターを通し、本実施例の試料を得た。なお、メッシュフィルターを通過した酸化亜鉛ZnO微粒子は回収した。
次に、製作した試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、試料からの反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。試料表面は、40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、試料断面の画像から、粒状微粒子の集まりは約0.6μmの厚みからなる多層構造を形成していた。次に、試料からの反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。さらに、試料からの特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。過剰の銀原子と僅かな銅原子とが存在し、偏在する箇所が認められなかったので、微粒子は銀−銅の合金からなる。なお、オクチル酸銀とオクチル酸銅とをモル比率で95対5の割合で混合したため、銀−銅合金は95対5の割合で構成される合金であると考える。これらの結果から、銀−銅合金の粒状微粒子の集まりが、0.6μmの厚みを形成してガラスフレーク粉を覆うことが分かった。
さらに、実施例4と同様に直流抵抗計を用いて、試料の電気抵抗を測った。試料の抵抗値は、銀に近い体積固有抵抗を示した。従って、製作した試料は、銀に近い導電性と熱伝導性と可視光を反射するガラスフレーク粉となる。このため、本実施例で製作したガラスフレーク粉は、実施例6の銀微粒子の集まりで覆われたガラスフレークに比べ、耐久性が高い導電性フィラーや塗料用顔料として用いることができる。
また、ガラスフレーク粉は、40nm〜60nmの大きさの範囲からなる粒状の合金微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れた金属光沢を発した。また、0.6μmの厚みからなる合金微粒子の集まりは、橙色の可視光の波長に相当するため、合金微粒子の表面での反射光とガラスフレーク表面での反射光とが互いに干渉して増幅され、橙色の色調が相対的に強い反射光となった。この結果、本実施例で製作したガラスフレーク粉は、橙色がかった彩度に優れた金属光沢を発する塗料用顔料として用いることができる。
This example relates to the eleventh characteristic means of the present invention described in the 29th paragraph and the twelfth characteristic means of the present invention described in the 31st paragraph, and is a second method for producing a scaly substrate covered with alloy fine particles. It is a specific example, and the glass flake powder is covered with a collection of alloy fine particles made of silver and copper. As the glass flake powder, product number RCF-160 manufactured by Nippon Sheet Glass Co., Ltd. was used. This glass flake powder is made of an alkali-containing glass, has an average thickness of 5 μm, a size of 1700 μm to 300 μm is 10% or less, a size of 300 μm to 150 μm is 65% or more, and a size of 45 μm pass is 5 % And a particle size distribution with a central particle size of 160 μm. The alloy fine particles contain a small amount of copper in silver, and improve the corrosion resistance of silver without sacrificing the thermal conductivity, electrical conductivity, and reflectance of visible light. An alloy of 95 silver 5 copper consisting of 5%. The silver raw material was the silver octylate used in Example 6. The copper raw material was the copper octylate used in Example 1. Since both are octylic acid metal compounds, they are thermally decomposed simultaneously at the boiling point of octylic acid, and a silver-copper alloy is formed after the evaporation of octylic acid is completed. The surface of the silver-copper alloy fine particles was covered with zinc oxide ZnO fine particles as in Example 4. As n-butanol, a reagent first grade product was used.
A production process for producing glass flake powder covered with fine particles of silver-copper alloy will be described. In addition, since the manufacturing process of the present example is a similar manufacturing process in which the permalloy fine particles are replaced with silver-copper alloy fine particles and the flake copper powder is replaced with glass flake powder in the manufacturing step in Example 5, Illustration is omitted. First, 0.095 mol of silver octylate and 0.005 mol of copper octylate were weighed, dispersed in 500 cc of n-butanol, and stirred. This dispersion was put in a container, and 80 g of glass flake powder was added and stirred. Next, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Further, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol. This dispersion was stirred in a container containing a collection of glass flake powder. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Further, the container was placed in a first heat treatment furnace consisting of an atmospheric atmosphere, and the sample in the container was heated to 290 ° C. to simultaneously thermally decompose silver octylate and copper octylate. Furthermore, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate. Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes. Finally, the sample in the container was passed through a mesh filter having a mesh of 41 μm to obtain a sample of this example. In addition, the zinc oxide ZnO microparticles | fine-particles which passed the mesh filter were collect | recovered.
Next, the surface and cut surface of the manufactured sample were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam from the sample was taken out and image processing was performed. The sample surface was uniformly covered with granular fine particles having a size of 40 nm to 60 nm. Further, from the sample cross-sectional image, the collection of granular fine particles formed a multilayer structure having a thickness of about 0.6 μm. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam from the sample, and the difference in material was observed depending on the density of the image. Furthermore, the energy of the characteristic X-ray from the sample and its intensity were image-processed, and the elements constituting the fine particles were analyzed. Since there are excess silver atoms and a few copper atoms, and no unevenly distributed portions were observed, the fine particles consist of a silver-copper alloy. Since silver octylate and copper octylate were mixed at a molar ratio of 95: 5, the silver-copper alloy is considered to be an alloy composed of 95: 5. From these results, it was found that a collection of granular fine particles of silver-copper alloy formed a thickness of 0.6 μm and covered the glass flake powder.
Furthermore, the electrical resistance of the sample was measured using a DC resistance meter in the same manner as in Example 4. The resistance value of the sample showed a volume resistivity close to silver. Therefore, the manufactured sample becomes a glass flake powder that reflects electrical conductivity and thermal conductivity close to silver and reflects visible light. For this reason, the glass flake powder produced in this example can be used as a conductive filler or paint pigment having higher durability than the glass flakes covered with the silver fine particles gathered in Example 6.
Further, the glass flake powder was covered with granular alloy fine particles having a size range of 40 nm to 60 nm, and therefore, there was almost no white scattering of light and a metallic luster excellent in saturation was emitted. In addition, since the collection of alloy fine particles having a thickness of 0.6 μm corresponds to the wavelength of orange visible light, the reflected light on the surface of the alloy fine particles and the reflected light on the glass flake surface interfere with each other and are amplified. The orange color tone was a relatively strong reflected light. As a result, the glass flake powder produced in this example can be used as a pigment for paints that emits a metallic luster with an orange-colored chroma.

本実施例は、15段落で説明した本発明の第四特徴手段と、17段落で説明した本発明の第五特徴手段に係わり、金属微粒子の集まりで覆われた鱗片状基材を製造する第三の具体例であり、金微粒子の集まりでガラスフレーク粉を覆う。ガラスフレーク粉は、実施例7のガラスフレーク粉を用いた。金の原料はテトラクロロ金(III)酸水素H[Au(Cl)](例えば、三津和薬品工業株式会社の製品)を用いた。また、金微粒子の表面は、実施例4と同様に酸化亜鉛ZnO微粒子で覆った。また、n−ブタノールは試薬1級品を用いた。
金微粒子の集まりで覆われたガラスフレーク粉を製造する製作工程を説明する。なお、本実施例の製造工程は、実施例4における製作工程において、鉄微粒子が金微粒子に置き換わり、フレーク銅粉がガラスフレーク粉に置き換わった類似した製造工程であるため、製造工程の図示は省略した。最初に、テトラクロロ金(III)酸水素の0.1モルを1リットルのn−ブタノールに分散した。この分散液を容器に入れ、ガラスフレーク粉130gを投入して撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散し、この分散液を、ガラスフレーク粉の集まりが入った容器に入れて撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。この後、容器を水素ガス雰囲気からなる第一の熱処理炉に入れ、容器内の試料を180℃に昇温してテトラクロロ金(III)酸水素を熱分解した。さらに、容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した。この後、容器を加振機に設置して5分間容器に振動を加えた。最後に、容器内の試料を目合が41μmからなるメッシュフィルターを通して本実施例の試料を得た。
次に、製作した試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、試料からの反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。試料表面は、40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、試料断面の画像から、粒状微粒子の集まりは約0.65μmの厚みからなる多層構造を形成していた。次に、試料からの反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。濃淡が認められなかったので、同一の物質から形成されていた。さらに、特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。金原子のみが存在した。これらの結果から、金微粒子が0.65μmの厚みでガラスフレーク粉を覆うことが分かった。
さらに、実施例4と同様に直流抵抗計を用いて試料の電気抵抗を測った。試料の抵抗値は、金に近い体積固有抵抗を示した。従って、本実施例で製作した試料は、金に近い導電性と熱伝導性を有するガラスフレーク粉となる。このため、本実施例で製作した金微粒子で覆われたガラスフレーク粉は、導電性ペーストの導電性フィラーや金属光沢の輝きを持つ塗料用顔料として用いることができる。
また、ガラスフレーク粉は、40nm〜60nmの大きさの範囲からなる粒状の金微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れたゴールドの輝きを発した。また、0.65μmの厚みからなる金微粒子の集まりは、深紅色の可視光の波長に相当するため、金微粒子の表面での反射光とガラスフレーク表面での反射光とが互いに干渉して増幅され、深紅の色調が相対的に強い反射光となった。この結果、ガラスフレーク粉は、深紅の色調が強調された彩度に優れた金属光沢を発する塗料用顔料として用いることができる。
The present embodiment relates to the fourth characteristic means of the present invention described in the 15th paragraph and the fifth characteristic means of the present invention described in the 17th paragraph, and is a method for producing a scaly substrate covered with a collection of metal fine particles. These are three specific examples, in which glass flake powder is covered with a collection of gold fine particles. The glass flake powder of Example 7 was used as the glass flake powder. Tetrachlorogold (III) oxyhydrogen H [Au (Cl) 4 ] (for example, a product of Mitsuwa Pharmaceutical Co., Ltd.) was used as the gold raw material. The surface of the gold fine particles was covered with zinc oxide ZnO fine particles as in Example 4. In addition, n-butanol was a reagent first grade product.
A production process for producing glass flake powder covered with a collection of gold fine particles will be described. The manufacturing process of this example is a similar manufacturing process in which the iron fine particles are replaced with gold fine particles and the flake copper powder is replaced with glass flake powder in the manufacturing process in Example 4, and therefore the illustration of the manufacturing process is omitted. did. First, 0.1 mole of hydrogen tetrachloroaurate (III) was dispersed in 1 liter of n-butanol. This dispersion was placed in a container, and 130 g of glass flake powder was added and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Further, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol, and this dispersion was placed in a container containing glass flake powder and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Thereafter, the container was placed in a first heat treatment furnace comprising a hydrogen gas atmosphere, and the sample in the container was heated to 180 ° C. to thermally decompose tetrachloroauric (III) oxyhydrogen. Furthermore, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate. Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes. Finally, the sample in this example was obtained through a mesh filter having a mesh size of 41 μm.
Next, the surface and cut surface of the manufactured sample were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam from the sample was taken out and image processing was performed. The sample surface was uniformly covered with granular fine particles having a size of 40 nm to 60 nm. Further, from the sample cross-sectional image, the collection of granular fine particles formed a multilayer structure having a thickness of about 0.65 μm. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam from the sample, and the difference in material was observed depending on the density of the image. Since no shade was observed, it was formed from the same substance. Further, the energy and intensity of characteristic X-rays were subjected to image processing, and the elements constituting the fine particles were analyzed. Only gold atoms were present. From these results, it was found that the gold fine particles covered the glass flake powder with a thickness of 0.65 μm.
Further, the electrical resistance of the sample was measured using a DC resistance meter in the same manner as in Example 4. The resistance value of the sample showed a volume resistivity close to that of gold. Therefore, the sample manufactured in this example is a glass flake powder having conductivity and thermal conductivity close to gold. For this reason, the glass flake powder covered with the gold fine particles produced in this example can be used as a conductive filler of a conductive paste or a paint pigment having a metallic luster.
Further, since the glass flake powder was covered with granular gold fine particles having a size range of 40 nm to 60 nm, there was almost no white light scattering, and the gold flakes with excellent chroma were emitted. Moreover, since the collection of gold fine particles having a thickness of 0.65 μm corresponds to the wavelength of visible light of deep red, the reflected light on the surface of the gold fine particles and the reflected light on the glass flake surface interfere with each other and are amplified. As a result, the crimson color became a relatively strong reflected light. As a result, the glass flake powder can be used as a pigment for paints that emits a metallic luster excellent in saturation with an emphasis on the deep red color tone.

本実施例は、ガラスフレーク粉を金微粒子で覆う第2の実施例で、金微粒子の厚みを実施例8の厚みより薄くした。ガラスフレーク粉は、実施例7で用いたガラスフレーク粉とした。金の原料は実施例8で用いたテトラクロロ金(III)酸水素とした。また、金微粒子の表面は、実施例4と同様に酸化亜鉛ZnO微粒子で覆った。
金微粒子の集まりで覆われたガラスフレーク粉を製造する製作工程を説明する。最初に、テトラクロロ金(III)酸水素の0.1モルを、1リットルのn−ブタノールに分散した。この分散液を容器に入れ、ガラスフレーク粉190gを浸漬して撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散し、この分散液を、ガラスフレーク粉が入った容器に入れて撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。この後、容器を水素ガス雰囲気からなる第一の熱処理炉に入れ、容器内の試料を180℃に昇温してテトラクロロ金(III)酸水素を熱分解した。さらに、容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した。この後、容器を加振機に設置して5分間容器に振動を加えた。最後に、容器内の試料を目合が41μmからなるメッシュフィルターを通し、本実施例の試料を得た。
次に、製作した試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、試料からの反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。試料表面は、40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、試料断面の画像から、粒状微粒子の集まりは約0.45μmの厚みからなる多層構造を形成していた。次に、試料からの反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。濃淡が認められなかったので、同一の物質から形成されていた。さらに、特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。金原子のみが存在した。従って、金微粒子の集まりが0.45μmの厚みを形成してガラスフレーク粉を覆った。
さらに、実施例4と同様に直流抵抗計を用いて、試料の電気抵抗を測った。試料の抵抗値は、金に近い体積固有抵抗を示した。従って、本実施例で製作した試料は、金に近い導電性と熱伝導性を有するガラスフレーク粉となる。このため、本実施例で製作したガラスフレーク粉は、導電性フィラーや塗料用顔料として用いることができる。
また、ガラスフレーク粉は、40nm〜60nmの大きさの範囲からなる粒状の金微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れた輝きを発した。さらに、0.45μmの厚みからなる金微粒子の集まりは、青色の可視光の波長に相当するため、金微粒子の表面での反射光とガラスフレーク粉表面での反射光とが互いに干渉して増幅され、青の色調が相対的に強い反射光となった。この結果、ガラスフレーク粉は、青の色調が強調された彩度に優れた金属光沢を発する塗料用顔料として用いることができる。
本実施例と実施例8とは、いずれもガラスフレーク粉を金微粒子の集まりで覆った事例であり、金微粒子の厚みが異なるため、2つの事例における反射光の干渉現象が異なり、金微粒子の集まりで覆われたガラスフレーク粉が発する色調が異なった。いっぽう、塗料用顔料における色調は、第一に、鱗片状基材の材質に基づく色調と、第二に、金属微粒子を構成する金属元素に基づく色調と、第三に、金属微粒子の集まりの厚みに基づく反射光における干渉現象とからなる3つの要素によって色調が決まる。本発明においては、第一に、鱗片状基材の材質の如何に係わらず、鱗片状基材を金属微粒子で覆うことができ、第二に、金属微粒子を構成する金属元素に制約がなく、第三に、金属微粒子の厚みを自在に変えることができる。従って、前記した3つの要素を組み合わせることで、塗料用顔料の色調を自在に変えることができる。
This example is a second example in which the glass flake powder is covered with gold fine particles, and the thickness of the gold fine particles is made thinner than that of Example 8. The glass flake powder was the glass flake powder used in Example 7. The gold raw material was the tetrachloroauric (III) hydrogen acid used in Example 8. The surface of the gold fine particles was covered with zinc oxide ZnO fine particles as in Example 4.
A production process for producing glass flake powder covered with a collection of gold fine particles will be described. First, 0.1 mole of hydrogen tetrachloroaurate (III) was dispersed in 1 liter of n-butanol. This dispersion was put into a container, and 190 g of glass flake powder was immersed and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Furthermore, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol, and this dispersion was placed in a container containing glass flake powder and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Thereafter, the container was placed in a first heat treatment furnace comprising a hydrogen gas atmosphere, and the sample in the container was heated to 180 ° C. to thermally decompose tetrachloroauric (III) oxyhydrogen. Furthermore, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate. Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes. Finally, the sample in the container was passed through a mesh filter having a mesh of 41 μm to obtain a sample of this example.
Next, the surface and cut surface of the manufactured sample were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam from the sample was taken out and image processing was performed. The sample surface was uniformly covered with granular fine particles having a size of 40 nm to 60 nm. Further, from the sample cross-sectional image, the collection of granular fine particles formed a multilayer structure having a thickness of about 0.45 μm. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam from the sample, and the difference in material was observed depending on the density of the image. Since no shade was observed, it was formed from the same substance. Further, the energy and intensity of characteristic X-rays were subjected to image processing, and the elements constituting the fine particles were analyzed. Only gold atoms were present. Therefore, a collection of gold fine particles formed a thickness of 0.45 μm and covered the glass flake powder.
Furthermore, the electrical resistance of the sample was measured using a DC resistance meter in the same manner as in Example 4. The resistance value of the sample showed a volume resistivity close to that of gold. Therefore, the sample manufactured in this example is a glass flake powder having conductivity and thermal conductivity close to gold. For this reason, the glass flake powder produced in the present Example can be used as a conductive filler or a pigment for paint.
Further, since the glass flake powder was covered with granular gold fine particles having a size range of 40 nm to 60 nm, there was almost no white scattering of light and emitted a brilliant chroma. Furthermore, since the collection of gold fine particles having a thickness of 0.45 μm corresponds to the wavelength of blue visible light, the reflected light on the surface of the gold fine particles and the reflected light on the surface of the glass flake powder interfere with each other and are amplified. As a result, the blue color became a relatively strong reflected light. As a result, the glass flake powder can be used as a pigment for paint that emits a metallic luster excellent in saturation with an emphasis on blue color tone.
This example and Example 8 are both examples in which glass flake powder is covered with a collection of gold fine particles, and since the thickness of the gold fine particles is different, the interference phenomenon of reflected light in the two cases is different. The color of the glass flake powder covered with the gathering was different. On the other hand, the color tone of the pigment for coating is firstly based on the color tone based on the material of the scaly substrate, secondly based on the color tone based on the metal elements constituting the metal fine particles, and thirdly the thickness of the collection of metal fine particles. The color tone is determined by three elements including the interference phenomenon in the reflected light based on the above. In the present invention, first, regardless of the material of the flaky substrate, the flaky substrate can be covered with metal fine particles, and secondly, there is no restriction on the metal elements constituting the metal fine particles, Third, the thickness of the metal fine particles can be freely changed. Therefore, the color tone of the paint pigment can be freely changed by combining the above three elements.

本実施例は、15段落で説明した本発明の第四特徴手段と、17段落で説明した本発明の第五特徴手段に係わり、金属微粒子の集まりで覆われた鱗片状基材を製造する第五の具体例であり、銅フレーク粉を金微粒子の集まりで覆う。銅フレーク粉は、三井金属鉱山株式会社が製造する型番MA−C08JFを用いた。この銅フレーク粉は、比表面積が0.73m/gで、粒度分布のD10が5.0μmで、D50が11.9μmで、D90が24.7μmからなり、タップ密度が3.5g/cmであり、表面処理がなされていない。金の原料は実施例8で用いたテトラクロロ金(III)酸水素である。また、金微粒子の表面は、実施例4と同様に酸化亜鉛微粒子で覆った。また、n−ブタノールは試薬1級品を用いた。
金微粒子で覆われた銅フレーク粉を製造する製作工程を説明する。なお、本実施例の製造工程は、実施例4における製作工程において、鉄微粒子が金微粒子に置き換わった類似した製造工程であるため、製造工程の図示は省略した。最初に、テトラクロロ金(III)酸水素の0.1モルを1リットルのn−ブタノールに分散した。この分散液を容器に入れ、銅フレーク粉300gを投入して撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散し、この分散液を、銅レーク粉が入った容器に入れて撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。この後、容器を水素ガス雰囲気からなる第一の熱処理炉に入れ、容器内の試料を180℃に昇温してテトラクロロ金(III)酸水素を熱分解した。さらに、容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した。この後、容器を加振機に設置して5分間容器に振動を加えた。最後に、容器内の試料を、目合が33μmからなるメッシュフィルターを3枚重ねたフィルターを通過させ、本実施例における試料を得た。
次に、製作した試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、試料からの反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。試料表面は、40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、試料断面の画像から、粒状微粒子の集まりは約0.45μmの厚みからなる多層構造を形成していた。次に、試料からの反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。濃淡が認められなかったので、同一の物質から形成されていることが分かった。さらに、特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。金原子のみが存在した。従って、金微粒子の集まりが、0.45μmの厚みを形成して銅フレーク粉を覆った。
さらに、実施例4と同様に直流抵抗計を用いて、試料の電気抵抗を測った。試料の抵抗値は、金に近い体積固有抵抗を示した。従って、本実施例で製作した試料は、金に近い導電性と熱伝導性を有する銅フレーク粉となる。このため、金微粒子の集まりで覆われた銅フレーク粉は、導電性フィラーや塗料の顔料として用いることができる。
また、銅フレーク粉は、40nm〜60nmの大きさの範囲からなる粒状の金微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れた輝きを発した。また、0.45μmの厚みの金微粒子の集まりは、青色の可視光の波長に相当するため、金微粒子の表面での反射光と銅フレーク粉表面での反射光とが互いに干渉して増幅され、青の色調が相対的に強い反射光となる。この結果、銅フレーク粉は、銅のフレーク粉の赤銅色の色調に青の色調が混合された彩度に優れた黄色に近い金属光沢を発する塗料用顔料として用いることができる。
The present embodiment relates to the fourth characteristic means of the present invention described in the 15th paragraph and the fifth characteristic means of the present invention described in the 17th paragraph, and is a method for producing a scaly substrate covered with a collection of metal fine particles. This is a fifth example, in which copper flake powder is covered with a collection of gold fine particles. As the copper flake powder, model number MA-C08JF manufactured by Mitsui Mining Co., Ltd. was used. This copper flake powder has a specific surface area of 0.73 m 2 / g, a particle size distribution of D10 of 5.0 μm, D50 of 11.9 μm, D90 of 24.7 μm, and a tap density of 3.5 g / cm. 3. No surface treatment was performed. The gold raw material is hydrogen tetrachlorogold (III) used in Example 8. The surface of the gold fine particles was covered with zinc oxide fine particles as in Example 4. In addition, n-butanol was a reagent first grade product.
A production process for producing copper flake powder covered with gold fine particles will be described. The manufacturing process of this example is a similar manufacturing process in which iron fine particles are replaced with gold fine particles in the manufacturing process in Example 4, and thus the illustration of the manufacturing process is omitted. First, 0.1 mole of hydrogen tetrachloroaurate (III) was dispersed in 1 liter of n-butanol. This dispersion was put in a container, and 300 g of copper flake powder was added and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Further, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol, and this dispersion was placed in a container containing copper lake powder and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Thereafter, the container was placed in a first heat treatment furnace comprising a hydrogen gas atmosphere, and the sample in the container was heated to 180 ° C. to thermally decompose tetrachloroauric (III) oxyhydrogen. Furthermore, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate. Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes. Finally, the sample in the container was passed through a filter in which three mesh filters having a mesh size of 33 μm were stacked, and the sample in this example was obtained.
Next, the surface and cut surface of the manufactured sample were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam from the sample was taken out and image processing was performed. The sample surface was uniformly covered with granular fine particles having a size of 40 nm to 60 nm. Further, from the sample cross-sectional image, the collection of granular fine particles formed a multilayer structure having a thickness of about 0.45 μm. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam from the sample, and the difference in material was observed depending on the density of the image. Since no shade was observed, it was found that they were formed from the same substance. Further, the energy and intensity of characteristic X-rays were subjected to image processing, and the elements constituting the fine particles were analyzed. Only gold atoms were present. Therefore, a collection of gold fine particles formed a thickness of 0.45 μm and covered the copper flake powder.
Furthermore, the electrical resistance of the sample was measured using a DC resistance meter in the same manner as in Example 4. The resistance value of the sample showed a volume resistivity close to that of gold. Therefore, the sample manufactured in this example is copper flake powder having conductivity close to gold and thermal conductivity. For this reason, the copper flake powder covered with a collection of gold fine particles can be used as a conductive filler or a pigment of a paint.
Further, since the copper flake powder was covered with granular gold fine particles having a size of 40 nm to 60 nm, there was almost no white scattering of light and emitted a brilliant chroma. In addition, since the collection of 0.45 μm thick gold fine particles corresponds to the wavelength of blue visible light, the reflected light on the surface of the gold fine particles and the reflected light on the surface of the copper flake powder interfere with each other and are amplified. The blue color tone is a relatively strong reflected light. As a result, the copper flake powder can be used as a pigment for paints that emits a metallic luster close to yellow with excellent saturation, which is obtained by mixing a copper color of copper flake powder with a copper color.

本実施例は、鱗片状基材として、実施例10における銅フレーク粉に替えて酸化鉄粉を用い、酸化鉄粉を金微粒子の集まりで覆う。なお、酸化鉄は酸化鉄(III)Feのα相で、ヘマタイトないしは赤色酸化鉄と呼ばれ、化学式はα−Feで示される。融点が1566℃と高く、極めて安定した酸化物で、電気的には絶縁体で、弱強磁性という微弱な磁性を有する。粉体は赤褐色を示し、赤さびないしは弁柄として知られている。酸化鉄粉は、チタン工業株式会社が製造するAM−200を用いた。この鱗片状酸化鉄粉は光の屈折率が3に近い値を持ち、比表面積が1.5〜2.2m/gで、粒子径は2〜50μmであり、平均粒子径が12〜15μmであり、平均粒子厚みが0.2〜0.3μmと薄く、嵩密度が0.3〜0.4g/cmである。金の原料は実施例8で用いたテトラクロロ金(III)酸水素である。また、金微粒子の表面は、実施例4と同様に酸化亜鉛微粒子で覆った。n−ブタノールは試薬1級品を用いた。
金微粒子の集まりで覆われた鱗片状酸化鉄粉を製造する製作工程を説明する。なお、本実施例の製造工程は、実施例4における製作工程において、鉄微粒子が金微粒子に置き換わり、フレーク銅粉が酸化鉄粉に置き換わった類似した製造工程であるため、製造工程の図示は省略した。最初に、テトラクロロ金(III)酸水素の0.1モルを1リットルのn−ブタノールに分散した。この分散液を容器に入れ、鱗片状酸化鉄粉450gを投入して撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散し、この分散液を、酸化鉄粉が入った容器に入れて撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。この後、容器を水素ガス雰囲気からなる第一の熱処理炉に入れ、容器内の試料を180℃に昇温してテトラクロロ金(III)酸水素を熱分解した。さらに、容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した。この後、容器を加振機に設置して5分間容器に振動を加えた。最後に、容器内の試料を、目合が33μmからなるメッシュフィルターを5枚重ねたフィルターを通過させ、本実施例の試料を得た。
次に、製作した試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、試料からの反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。試料表面は、40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、試料断面の画像から、粒状微粒子の集まりは約0.45μmの厚みからなる多層構造を形成していた。次に、反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。濃淡が認められなかったので、同一の物質から形成されていることが分かった。さらに、特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。金原子のみが存在した。従って、金微粒子が0.45μmの厚みを形成して鱗片状酸化鉄粉を覆った。
さらに、実施例4と同様に直流抵抗計を用いて、試料の電気抵抗を測った。試料の抵抗値は、金に近い体積固有抵抗を示した。従って、本実施例で製作した試料は、金に近い導電性と熱伝導性を有する鱗片状酸化鉄粉となる。このため、金微粒子の集まりで覆われた鱗片状酸化鉄粉は、導電性フィラーや塗料の顔料として用いることができる。
また、鱗片状酸化鉄粉は、40nm〜60nmの大きさの範囲からなる粒状の金微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れた輝きを発した。また、0.45μmの厚みの金微粒子の集まりは、青色の可視光の波長に相当するため、金微粒子の表面での反射光と鱗片状酸化鉄粉表面での反射光とが互いに干渉して増幅され、青の色調が相対的に強い反射光となる。この結果、鱗片状酸化鉄粉は、鱗片状酸化鉄粉の赤褐色に青の色調が混合された彩度に優れた黄緑色の金属光沢を発する塗料用顔料として用いることができる。
なお、塗料用顔料について説明すれば、実施例9〜実施例11の3つの実施例において、3種類の鱗片状基材を、同じ厚みからなる金微粒子の集まりで覆った。この結果、鱗片状基材の材質に応じて、金微粒子の集まりで覆われた鱗片状基材が発する色調が変わった。いっぽう、塗料用顔料における色調は、実施例9の64段落で説明したように、鱗片状基材の材質に基づく色調と、金属微粒子を構成する金属元素に基づく色調と、金属微粒子の集まりの厚みに基づく反射光における干渉現象とからなる3つの要素によって色調が決まる。本発明は、鱗片状基材の材質の如何に係わらず、金属微粒子で覆うことができ、金属微粒子を構成する金属元素に制約がなく、金属微粒子の厚みを自在に変えることができる。従って、3つの要素を組み合わせることで、塗料用顔料の色調を自在に変えることができる。
In this example, iron oxide powder is used instead of the copper flake powder in Example 10 as the scaly substrate, and the iron oxide powder is covered with a collection of gold fine particles. Iron oxide is an α phase of iron (III) Fe 2 O 3 and is called hematite or red iron oxide. The chemical formula is represented by α-Fe 2 O 3 . The melting point is as high as 1566 ° C., and it is an extremely stable oxide. It is an electrical insulator and has a weak magnetism of weak ferromagnetism. The powder is reddish brown and is known as red rust or petal. AM-200 manufactured by Titanium Industry Co., Ltd. was used as the iron oxide powder. This scaly iron oxide powder has a light refractive index close to 3, a specific surface area of 1.5 to 2.2 m 2 / g, a particle size of 2 to 50 μm, and an average particle size of 12 to 15 μm. The average particle thickness is as thin as 0.2 to 0.3 μm, and the bulk density is 0.3 to 0.4 g / cm 3 . The gold raw material is hydrogen tetrachlorogold (III) used in Example 8. The surface of the gold fine particles was covered with zinc oxide fine particles as in Example 4. As n-butanol, a reagent first grade product was used.
A production process for producing the scale-like iron oxide powder covered with the collection of gold fine particles will be described. The manufacturing process of this example is a similar manufacturing process in which the iron fine particles are replaced with gold fine particles and the flake copper powder is replaced with iron oxide powder in the manufacturing process in Example 4, and therefore the illustration of the manufacturing process is omitted. did. First, 0.1 mole of hydrogen tetrachloroaurate (III) was dispersed in 1 liter of n-butanol. This dispersion was put in a container, and 450 g of scaly iron oxide powder was added and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Furthermore, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol, and this dispersion was placed in a container containing iron oxide powder and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Thereafter, the container was placed in a first heat treatment furnace comprising a hydrogen gas atmosphere, and the sample in the container was heated to 180 ° C. to thermally decompose tetrachloroauric (III) oxyhydrogen. Furthermore, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate. Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes. Finally, the sample in the container was passed through a filter in which five mesh filters each having a mesh size of 33 μm were stacked to obtain a sample of this example.
Next, the surface and cut surface of the manufactured sample were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam from the sample was taken out and image processing was performed. The sample surface was uniformly covered with granular fine particles having a size of 40 nm to 60 nm. Further, from the sample cross-sectional image, the collection of granular fine particles formed a multilayer structure having a thickness of about 0.45 μm. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam, and the difference in material was observed depending on the density of the image. Since no shade was observed, it was found that they were formed from the same substance. Further, the energy and intensity of characteristic X-rays were subjected to image processing, and the elements constituting the fine particles were analyzed. Only gold atoms were present. Therefore, the gold fine particles formed a thickness of 0.45 μm and covered the scaly iron oxide powder.
Furthermore, the electrical resistance of the sample was measured using a DC resistance meter in the same manner as in Example 4. The resistance value of the sample showed a volume resistivity close to that of gold. Therefore, the sample manufactured in this example is a scale-like iron oxide powder having conductivity and thermal conductivity close to gold. For this reason, the scale-like iron oxide powder covered with the collection of gold fine particles can be used as a conductive filler or a pigment of a paint.
Moreover, since the scaly iron oxide powder was covered with granular gold fine particles having a size range of 40 nm to 60 nm, there was almost no white scattering of light and emitted a brilliant chroma. Moreover, since the collection of 0.45 μm thick gold fine particles corresponds to the wavelength of blue visible light, the reflected light on the surface of the gold fine particles and the reflected light on the surface of the scaly iron oxide powder interfere with each other. Amplified and reflected light having a relatively strong blue color tone. As a result, the scaly iron oxide powder can be used as a pigment for paints that emits a yellow-green metallic luster with excellent saturation, in which the reddish brown color of the scaly iron oxide powder is mixed with a blue color tone.
As for the pigment for coating, in three examples of Examples 9 to 11, three kinds of scale-like substrates were covered with a collection of gold fine particles having the same thickness. As a result, the color tone emitted from the scaly substrate covered with a collection of gold fine particles changed depending on the material of the scaly substrate. On the other hand, as described in paragraph 64 of Example 9, the color tone of the paint pigment is based on the color tone based on the material of the scaly substrate, the color tone based on the metal elements constituting the metal fine particles, and the thickness of the collection of metal fine particles. The color tone is determined by three elements including the interference phenomenon in the reflected light based on the above. The present invention can be covered with metal fine particles regardless of the material of the scaly substrate, the metal elements constituting the metal fine particles are not limited, and the thickness of the metal fine particles can be freely changed. Therefore, the color tone of the paint pigment can be freely changed by combining the three elements.

本実施例は、19段落で説明した本発明の第六特徴手段と、21段落で説明した本発明の第七特徴手段に係わり、複合金属微粒子の集まりで覆われた鱗片状基材を製造する具体例であり、ガラスフレーク粉を金がコアを形成し、銅がシェルを形成する金と銅とからなる複合金属微粒子の集まりで覆う。ガラスフレーク粉は、実施例7におけるガラスフレーク粉を用いた。金の原料は実施例8で用いたテトラクロロ金(III)酸水素である。銅の原料は、実施例1で用いたオクチル酸銅である。なお、複合金属微粒子の表面は、実施例4と同様に酸化亜鉛微粒子で覆った。また、n−ブタノールは試薬1級品を用いた。
複合金属微粒子で覆われたガラスフレーク粉の集まりを製造する製作工程を図6に示す。最初に、実施例8に基づいて金微粒子で覆われたガラスフレーク粉を製作した(S60工程)。ただし、金の原料であるテトラクロロ金(III)酸水素の0.08モルを、1リットルのn−ブタノールに分散した。次に、オクチル酸銅の0.02モルを100ccのn−ブタノールに分散した(S61工程)。この分散液が入った容器に、金微粒子で覆われたガラスフレーク粉を投入して撹拌した(S62工程)。この容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した(S63工程)。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散した(S64工程)。この分散液を、ガラスフレーク粉が入った容器に入れて撹拌した(S65工程)。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した(S66工程)。さらに、容器を大気雰囲気からなる第一の熱処理炉に入れ、容器内の試料を290℃に昇温してオクチル酸銅を熱分解した(S67工程)。次に、容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した(S68工程)。この後、容器を加振機に設置して5分間容器に振動を加えた(S69工程)。最後に、容器内の試料を目合が41μmからなるメッシュフィルターを通し、本実施例の試料を得た(S70工程)。
次に、製作した2種類の試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。金微粒子で覆われたガラスフレーク粉の第一の試料と、金と銅とからなる複合金属微粒子で覆われたガラスフレーク粉の第二の試料との双方は、表面が40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、第一の試料の断面の画像から、粒状微粒子の集まりは約0.36μmの厚みを形成し、第二の試料の断面の画像から、粒状微粒子の集まりは約0.45μmの厚みを形成していた。次に、反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。第一及び第二の試料の双方とも濃淡が認められなかった。さらに、特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。第一の試料では金原子のみが存在し、第二の試料では銅原子のみが存在した。これらの結果から、第一の試料は金微粒子の集まりが0.36μmの厚みを形成してガラスフレーク粉を覆い、第二の試料は金がコアを形成し、銅がシェルを形成する金と銅とからなる複合金属微粒子が、0.45μmの厚みを形成してガラスフレーク粉を覆ったことが確認できた。
さらに、実施例4と同様に直流抵抗計を用いて、試料の電気抵抗を測った。第一の試料は金に近い体積固有抵抗を示し、第二の試料は金の抵抗値より低い値を示した。従って、本実施例で製作した金と銅とからなる複合金属微粒子の集まりで覆われたガラスフレーク粉は、導電性フィラーや塗料用顔料として用いることができる。
また、ガラスフレーク粉は、40nm〜60nmの大きさの範囲からなる粒状の複合金属微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れた輝きを発した。また、0.45μmの厚みからなる複合金属微粒子の集まりは、青色の可視光の波長に相当するため、複合金属微粒子の表面での反射光とガラスフレーク粉表面での反射光とが互いに干渉して増幅され、青の色調が相対的に強い反射光となる。さらに、金と銅とからなる複合金属微粒子は、金微粒子に比べると電子密度が少なく、銀微粒子に比べると電子密度が多い。このため、複合金属微粒子の色調は、金微粒子より短波長の色調を発し、銅微粒子より長波長の色調を発する。この結果、本実施例で製作したガラスフレーク粉は、藍色に近い深みのある彩度に優れた金属光沢を発する塗料用顔料として用いることができる。
This example relates to the sixth characteristic means of the present invention described in paragraph 19 and the seventh characteristic means of the present invention described in paragraph 21, and manufactures a scaly substrate covered with a collection of composite metal fine particles. In a specific example, the glass flake powder is covered with a collection of composite metal fine particles composed of gold and copper in which gold forms a core and copper forms a shell. The glass flake powder in Example 7 was used as the glass flake powder. The gold raw material is hydrogen tetrachlorogold (III) used in Example 8. The copper raw material is the copper octylate used in Example 1. The surface of the composite metal fine particles was covered with zinc oxide fine particles in the same manner as in Example 4. In addition, n-butanol was a reagent first grade product.
FIG. 6 shows a production process for producing a collection of glass flake powder covered with composite metal fine particles. First, glass flake powder covered with gold fine particles was produced based on Example 8 (step S60). However, 0.08 mol of hydrogen tetrachlorogold (III), which is a raw material of gold, was dispersed in 1 liter of n-butanol. Next, 0.02 mol of copper octylate was dispersed in 100 cc of n-butanol (step S61). Glass flake powder covered with gold fine particles was put into a container containing the dispersion and stirred (step S62). The container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was collected (step S63). Further, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol (step S64). This dispersion was placed in a container containing glass flake powder and stirred (step S65). Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered (step S66). Furthermore, the container was placed in a first heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 290 ° C. to thermally decompose copper octylate (step S67). Next, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate (step S68). Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes (step S69). Finally, the sample in the container was passed through a mesh filter having a mesh size of 41 μm to obtain a sample of this example (Step S70).
Next, the surface and cut surface of the two types of samples produced were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam was taken out and image processing was performed. Both the first sample of glass flake powder covered with gold fine particles and the second sample of glass flake powder covered with composite metal fine particles made of gold and copper have a surface size of 40 nm to 60 nm. It was evenly covered with granular fine particles. Further, from the cross-sectional image of the first sample, the aggregate of granular fine particles forms a thickness of about 0.36 μm, and from the cross-sectional image of the second sample, the aggregate of granular fine particles forms a thickness of about 0.45 μm. Was. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam, and the difference in material was observed depending on the density of the image. In both the first and second samples, no shading was observed. Further, the energy and intensity of characteristic X-rays were subjected to image processing, and the elements constituting the fine particles were analyzed. Only gold atoms were present in the first sample, and only copper atoms were present in the second sample. From these results, the first sample has a thickness of 0.36 μm and a glass flake powder is covered with a collection of gold fine particles, and the second sample is a gold with a core forming a gold and a copper forming a shell. It was confirmed that the composite metal fine particles made of copper formed a thickness of 0.45 μm and covered the glass flake powder.
Furthermore, the electrical resistance of the sample was measured using a DC resistance meter in the same manner as in Example 4. The first sample showed a volume resistivity close to that of gold, and the second sample showed a value lower than that of gold. Therefore, the glass flake powder covered with a collection of composite metal fine particles made of gold and copper produced in this example can be used as a conductive filler or a pigment for paint.
Further, since the glass flake powder was covered with granular composite metal fine particles having a size range of 40 nm to 60 nm, there was almost no white scattering of light and emitted a brilliant chroma. In addition, since the collection of composite metal fine particles having a thickness of 0.45 μm corresponds to the wavelength of blue visible light, the reflected light on the surface of the composite metal fine particles and the reflected light on the surface of the glass flake powder interfere with each other. As a result, the blue color tone becomes relatively strong reflected light. Furthermore, composite metal fine particles made of gold and copper have a lower electron density than gold fine particles and a higher electron density than silver fine particles. For this reason, the color tone of the composite metal fine particles emits a color tone with a shorter wavelength than that of the gold fine particles and a color tone with a longer wavelength than that of the copper fine particles. As a result, the glass flake powder produced in the present example can be used as a pigment for paints that emits a metallic luster that is excellent in saturation with a depth close to indigo.

本実施例は、実施例12における金と銅とからなる複合金属微粒子に対し、金がコアを形成し銀がシェルを形成する金と銀との複合金属微粒子によって、ガラスフレーク粉を覆う実施例である。ガラスフレーク粉は、実施例7におけるガラスフレーク粉を用いた。金の原料は実施例8で用いたテトラクロロ金(III)酸水素である。銀の原料は実施例6で用いたオクチル酸銀である。なお、複合金属微粒子の表面は、実施例4と同様に酸化亜鉛微粒子で覆った。n−ブタノールは試薬1級品を用いた。
複合金属微粒子で覆われたガラスフレーク粉の集まりを製造する製作工程を説明する。なお、本実施例の製造工程は、実施例12における製作工程において、金と銅とからなる複合金属微粒子が、金と銀との複合金属微粒子に置き換わった類似した製造工程であるため、製造工程の図示は省略した。最初に、実施例8に基づいて、金微粒子で覆われたガラスフレーク粉を製作した。ただし、金の原料であるテトラクロロ金(III)酸水素の0.08モルを、1リットルのn−ブタノールに分散した。次に、オクチル酸銀の0.02モルを100ccのn−ブタノールに分散し、この分散液が入った容器に、金微粒子で覆われたガラスフレーク粉を投入して撹拌した。この容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散し、この分散液を、ガラスフレーク粉が入った容器に入れて撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、容器を大気雰囲気からなる第一の熱処理炉に入れ、容器内の試料を290℃に昇温してオクチル酸銀を熱分解した。さらに、容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した。この後、容器を加振機に設置して5分間容器に振動を加えた。最後に、容器内の試料を目合が41μmからなるメッシュフィルターを通し、本実施例の試料を得た。
次に、製作した2種類の試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。金微粒子で覆われたガラスフレーク粉の第一の試料と、金と銀とからなる複合金属微粒子で覆われたガラスフレーク粉の第二の試料との双方は、表面が40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、第一の試料の断面の画像から、粒状微粒子の集まりは約0.36μmの厚みを形成し、第二の試料の断面の画像から、粒状微粒子の集まりは約0.45μmの厚みを形成していた。次に、反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。第一及び第二の試料の双方とも濃淡が認められなかった。さらに、特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。第一の試料では金原子のみが存在し、第二の試料では銀原子のみが存在した。これらの結果から、第一の試料は金微粒子の集まりが0.36μmの厚みを形成してガラスフレーク粉を覆い、第二の試料は金がコアを形成し、銀がシェルを形成する金と銀とからなる複合金属微粒子が、0.45μmの厚みを形成してガラスフレーク粉を覆ったことが確認できた。
さらに、実施例4と同様に直流抵抗計を用いて、試料の電気抵抗を測った。第一の試料は金に近い体積固有抵抗を示し、第二の試料は金の抵抗値より低い値を示した。従って、本実施例で製作した金と銀とからなる複合金属微粒子の集まりで覆われたガラスフレーク粉は、導電性フィラーや塗料の顔料として用いることかできる。
また、ガラスフレーク粉は、40nm〜60nmの大きさの範囲からなる粒状の複合金属微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れた輝きを発した。また、0.45μmの厚みからなる複合金属微粒子の集まりは、青色の可視光の波長に相当するため、複合金属微粒子の表面での反射光とガラスフレーク粉表面での反射光とが互いに干渉して増幅され、青の色調が相対的に強い反射光となる。さらに、金と銀とからなる複合金属微粒子は、金微粒子に比べると電子密度が少なく、銀微粒子に比べると電子密度が多い。このため、複合金属微粒子の色調は、金微粒子より短波長の色調を発し、銀微粒子より長波長の色調を発する。この結果、本実施例で製作したガラスフレーク粉は、深緑色に近い深みのある彩度に優れた金属光沢を発する塗料用顔料として用いることができる。
In this example, the glass flake powder is covered with the composite metal fine particles of gold and silver in which gold forms a core and silver forms a shell in contrast to the composite metal fine particles of gold and copper in Example 12. It is. The glass flake powder in Example 7 was used as the glass flake powder. The gold raw material is hydrogen tetrachlorogold (III) used in Example 8. The silver raw material is the silver octylate used in Example 6. The surface of the composite metal fine particles was covered with zinc oxide fine particles in the same manner as in Example 4. As n-butanol, a reagent first grade product was used.
A manufacturing process for manufacturing a collection of glass flake powder covered with composite metal fine particles will be described. Note that the manufacturing process of this example is a manufacturing process in which the composite metal fine particles made of gold and copper are replaced with the composite metal fine particles of gold and silver in the manufacturing process in Example 12. The illustration of is omitted. First, based on Example 8, glass flake powder covered with gold fine particles was produced. However, 0.08 mol of hydrogen tetrachlorogold (III), which is a raw material of gold, was dispersed in 1 liter of n-butanol. Next, 0.02 mol of silver octylate was dispersed in 100 cc of n-butanol, and glass flake powder covered with gold fine particles was put into a container containing the dispersion and stirred. The container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Furthermore, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol, and this dispersion was placed in a container containing glass flake powder and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Further, the container was placed in a first heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 290 ° C. to thermally decompose silver octylate. Furthermore, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate. Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes. Finally, the sample in the container was passed through a mesh filter having a mesh of 41 μm to obtain a sample of this example.
Next, the surface and cut surface of the two types of samples produced were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam was taken out and image processing was performed. Both the first sample of glass flake powder covered with gold fine particles and the second sample of glass flake powder covered with composite metal fine particles made of gold and silver have a surface size of 40 nm to 60 nm. It was evenly covered with granular fine particles. Further, from the cross-sectional image of the first sample, the aggregate of granular fine particles forms a thickness of about 0.36 μm, and from the cross-sectional image of the second sample, the aggregate of granular fine particles forms a thickness of about 0.45 μm. Was. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam, and the difference in material was observed depending on the density of the image. In both the first and second samples, no shading was observed. Further, the energy and intensity of characteristic X-rays were subjected to image processing, and the elements constituting the fine particles were analyzed. Only gold atoms were present in the first sample, and only silver atoms were present in the second sample. From these results, the first sample has a thickness of 0.36 μm and a glass flake powder is covered with a collection of gold fine particles, the second sample is gold with a gold core and silver with a shell. It was confirmed that the composite metal fine particles made of silver covered the glass flake powder with a thickness of 0.45 μm.
Furthermore, the electrical resistance of the sample was measured using a DC resistance meter in the same manner as in Example 4. The first sample showed a volume resistivity close to that of gold, and the second sample showed a value lower than that of gold. Therefore, the glass flake powder covered with a collection of composite metal fine particles made of gold and silver produced in this example can be used as a conductive filler or a pigment for paint.
Further, since the glass flake powder was covered with granular composite metal fine particles having a size range of 40 nm to 60 nm, there was almost no white scattering of light and emitted a brilliant chroma. In addition, since the collection of composite metal fine particles having a thickness of 0.45 μm corresponds to the wavelength of blue visible light, the reflected light on the surface of the composite metal fine particles and the reflected light on the surface of the glass flake powder interfere with each other. As a result, the blue color tone becomes relatively strong reflected light. Furthermore, composite metal fine particles composed of gold and silver have a lower electron density than gold fine particles and a higher electron density than silver fine particles. For this reason, the color tone of the composite metal fine particles emits a color tone having a shorter wavelength than that of the gold fine particles, and a color tone of a longer wavelength than that of the silver fine particles. As a result, the glass flake powder produced in the present example can be used as a pigment for paints that emits a metallic luster excellent in deep chroma close to dark green.

本実施例は、実施例12におけるガラスフレーク粉に対し、実施例11で用いた鱗片状酸化鉄粉を鱗片状基材として用い、実施例12と同様に金と銅との複合金属微粒子で覆う。鱗片状酸化鉄粉は、実施11における酸化鉄粉を用いた。金の原料は実施例8で用いたテトラクロロ金(III)酸水素である。銅の原料は、実施例1で用いたオクチル酸銅である。なお、複合金属微粒子の表面は、実施例4と同様に酸化亜鉛微粒子で覆った。
複合金属微粒子で覆われた鱗片状酸化鉄粉の集まりを製造する製作工程を説明する。なお、本実施例の製造工程は、実施例12における製作工程において、ガラスフレーク粉が酸化鉄粉に置き換わった類似した製造工程であるため、製造工程の図示は省略した。最初に、実施例8に基づいて、金微粒子で覆われた酸化鉄粉を製作した。ただし、金の原料であるテトラクロロ金(III)酸水素の0.08モルを、1リットルのn−ブタノールに分散した。次に、オクチル酸銅の0.02モルを100ccのn−ブタノールに分散し、この分散液が入った容器に、金微粒子で覆われた酸化鉄粉を投入した。この容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散し、この分散液を酸化鉄粉が入った容器に入れて撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、容器を大気雰囲気からなる第一の熱処理炉に入れ、容器内の試料を290℃に昇温してオクチル酸銅を熱分解した。次に、容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した。この後、容器を加振機に設置して5分間振動を加えた。最後に、容器内の試料を目合が33μmからなるメッシュフィルターを5枚重ねたフィルターを通過させ、本実施例の試料を得た。
次に、製作した2種類の試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。金微粒子で覆われた酸化鉄粉の第一の試料と、金と銅とからなる複合金属微粒子で覆われた酸化鉄粉の第二の試料との双方は、表面が40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、第一の試料の断面の画像から、粒状微粒子の集まりは約0.36μmの厚みを形成し、第二の試料の断面の画像から、粒状微粒子の集まりは約0.45μmの厚みを形成していた。次に、反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。第一及び第二の試料の双方とも濃淡が認められなかった。さらに、特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。第一の試料では金原子のみが存在し、第二の試料では銅原子のみが存在した。これらの結果から、第一の試料は金微粒子の集まりが0.36μmの厚みを形成して酸化鉄粉を覆い、第二の試料は金がコアを形成し、銅がシェルを形成する金と銅とからなる複合金属微粒子が、0.45μmの厚みを形成して酸化鉄粉を覆ったことが確認できた。
さらに、実施例4と同様に直流抵抗計を用いて、試料の電気抵抗を測った。第一の試料は金に近い体積固有抵抗を示し、第二の試料は金の抵抗値より若干低い値を示した。なお、本実施例で製作した試料は、金に近い導電性と熱伝導性を有する酸化鉄粉となる。従って、本実施例で製作した金と銅とからなる複合金属微粒子の集まりで覆われた酸化鉄粉は、導電性フィラーや塗料の顔料として用いることができる。
また、鱗片状酸化鉄粉は、40nm〜60nmの大きさの範囲からなる粒状の複合金属微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れた輝きを発した。また、0.45μmの厚みからなる複合金属微粒子の集まりは、青色の可視光の波長に相当するため、複合金属微粒子の表面での反射光と酸化鉄粉表面での反射光とが互いに干渉して増幅され、青の色調が強い反射光となる。また、金と銅とからなる複合金属微粒子は、金微粒子に比べると電子密度が少なく、銅微粒子に比べると電子密度が多い。このため、複合金属微粒子の色調は、金微粒子より短波長の色調を発し、銅微粒子より長波長の色調を発する。また、鱗片状酸化鉄粉は、赤褐色の色調を持つ粉体である。この結果、鱗片状酸化鉄粉は、深緑に近い深みのある彩度に優れた金属光沢を発する塗料用顔料として用いることができる。
This example uses the scale-like iron oxide powder used in Example 11 as a scale-like substrate with respect to the glass flake powder in Example 12, and covers it with composite metal fine particles of gold and copper as in Example 12. . The scale-like iron oxide powder used the iron oxide powder in Example 11. The gold raw material is hydrogen tetrachlorogold (III) used in Example 8. The copper raw material is the copper octylate used in Example 1. The surface of the composite metal fine particles was covered with zinc oxide fine particles in the same manner as in Example 4.
A manufacturing process for manufacturing a collection of flaky iron oxide powders covered with composite metal fine particles will be described. In addition, since the manufacturing process of a present Example is a similar manufacturing process in which the glass flake powder replaced the iron oxide powder in the manufacturing process in Example 12, illustration of the manufacturing process was abbreviate | omitted. First, based on Example 8, iron oxide powder covered with gold fine particles was manufactured. However, 0.08 mol of hydrogen tetrachlorogold (III), which is a raw material of gold, was dispersed in 1 liter of n-butanol. Next, 0.02 mol of copper octylate was dispersed in 100 cc of n-butanol, and iron oxide powder covered with gold fine particles was put into a container containing the dispersion. The container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Furthermore, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol, and this dispersion was placed in a container containing iron oxide powder and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Furthermore, the container was placed in a first heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 290 ° C. to thermally decompose copper octylate. Next, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate. After that, the container was placed on a shaker and vibrated for 5 minutes. Finally, the sample in the container was passed through a filter in which five mesh filters having a mesh size of 33 μm were stacked, and the sample of this example was obtained.
Next, the surface and cut surface of the two types of samples produced were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam was taken out and image processing was performed. Both the first sample of iron oxide powder covered with gold fine particles and the second sample of iron oxide powder covered with composite metal fine particles made of gold and copper have a surface size of 40 nm to 60 nm. It was evenly covered with granular fine particles. Further, from the cross-sectional image of the first sample, the aggregate of granular fine particles forms a thickness of about 0.36 μm, and from the cross-sectional image of the second sample, the aggregate of granular fine particles forms a thickness of about 0.45 μm. Was. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam, and the difference in material was observed depending on the density of the image. In both the first and second samples, no shading was observed. Further, the energy and intensity of characteristic X-rays were subjected to image processing, and the elements constituting the fine particles were analyzed. Only gold atoms were present in the first sample, and only copper atoms were present in the second sample. From these results, the first sample has a thickness of 0.36 μm in which a collection of fine gold particles covers the iron oxide powder, the second sample has gold that forms a core, and copper that forms a shell. It was confirmed that the composite metal fine particles made of copper covered the iron oxide powder by forming a thickness of 0.45 μm.
Furthermore, the electrical resistance of the sample was measured using a DC resistance meter in the same manner as in Example 4. The first sample showed a volume resistivity close to that of gold, and the second sample showed a value slightly lower than that of gold. Note that the sample manufactured in this example is iron oxide powder having conductivity and thermal conductivity close to gold. Therefore, the iron oxide powder covered with a collection of composite metal fine particles made of gold and copper produced in this embodiment can be used as a conductive filler or a pigment for paint.
In addition, since the scaly iron oxide powder is covered with granular composite metal fine particles having a size range of 40 nm to 60 nm, there is almost no white scattering of light, and the brilliant color has excellent chromaticity. In addition, since the collection of composite metal fine particles having a thickness of 0.45 μm corresponds to the wavelength of blue visible light, the reflected light on the surface of the composite metal fine particles and the reflected light on the iron oxide powder surface interfere with each other. Amplified and reflected light with a strong blue color. Further, composite metal fine particles made of gold and copper have a lower electron density than gold fine particles, and a higher electron density than copper fine particles. For this reason, the color tone of the composite metal fine particles emits a color tone with a shorter wavelength than that of the gold fine particles and a color tone with a longer wavelength than that of the copper fine particles. Moreover, scaly iron oxide powder is a powder having a reddish brown color tone. As a result, the scaly iron oxide powder can be used as a pigment for paints that emits a metallic luster excellent in deep chroma close to dark green.

本実施例は、実施例14における金と銅とからなる複合金属微粒子に対し、金がコアを形成し銀がシェルを形成する金と銀との複合金属微粒子によって、鱗片状酸化鉄粉を覆う。鱗片状酸化鉄粉は、実施例11における酸化鉄粉を用いた。金の原料は実施例8で用いたテトラクロロ金(III)酸水素である。銀の原料は、実施例6で用いたオクチル酸銀である。なお、複合金属微粒子の表面は、実施例4と同様に酸化亜鉛微粒子で覆った。
複合金属微粒子で覆われた鱗片状酸化鉄粉の集まりを製造する製作工程を説明する。なお、本実施例の製造工程は、実施例12における製作工程において、金と銅とからなる複合金属微粒子が、金と銀との複合金属微粒子に置き換わり、ガラスフレーク粉が酸化鉄粉に置き換わった類似した製造工程であるため、製造工程の図示は省略した。最初に、実施例4に基づいて、金微粒子で覆われた酸化鉄粉を製作した。ただし、金の原料であるテトラクロロ金(III)酸水素の0.08モルを、1リットルのn−ブタノールに分散した。次に、オクチル酸銀の0.02モルを100ccのn−ブタノールに分散し、この分散液が入った容器に、金微粒子で覆われた酸化鉄粉を投入した。この容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに、ナフテン酸亜鉛の0.1モルを1リットルのn−ブタノールに分散し、この分散液を酸化鉄粉が入った容器に入れて撹拌した。この後、容器を120℃に昇温してn−ブタノールを気化し、気化したn−ブタノールを回収した。さらに容器を大気雰囲気からなる第一の熱処理炉に入れ、容器内の試料を290℃に昇温してオクチル酸銀を熱分解した。次に、容器を大気雰囲気からなる第二の熱処理炉に入れ、容器内の試料を330℃に昇温してナフテン酸亜鉛を熱分解した。この後、容器を加振機に設置して5分間容器に振動を加えた。最後に、容器内の試料を目合が33μmからなるメッシュフィルターを5枚重ねたフィルターを通過させ、本実施例の試料を得た。
次に、製作した2種類の試料の表面と切断面とを、実施例1と同様に電子顕微鏡で観察した。最初に、反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行った。金微粒子で覆われた酸化鉄粉の第一の試料と、金と銀とからなる複合金属微粒子で覆われた酸化鉄粉の第二の試料との双方は、表面が40nm〜60nmの大きさからなる粒状の微粒子で満遍なく覆われていた。また、第一の試料の断面の画像から、粒状微粒子の集まりは約0.36μmの厚みを形成し、第二の試料の断面の画像から、粒状微粒子の集まりは約0.45μmの厚みを形成していた。次に、反射電子線の900V〜1kVの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって材質の違いを観察した。第一及び第二の試料の双方とも濃淡が認められなかった。さらに、特性X線のエネルギーとその強度を画像処理し、微粒子を構成する元素を分析した。第一の試料では金原子のみが存在し、第二の試料では銀原子のみが存在した。これらの結果から、第一の試料は金微粒子の集まりが0.36μmの厚みを形成して酸化鉄粉を覆い、第二の試料は金がコアを形成し、銀がシェルを形成する金と銀とからなる複合金属微粒子が、0.45μmの厚みを形成して酸化鉄粉を覆ったことが確認できた。
さらに、実施例1と同様に、試料の電気抵抗を測った。第一の試料は金に近い体積固有抵抗を示し、第二の試料は金の抵抗値より低い値を示した。従って、本実施例で製作した金と銀とからなる複合金属微粒子の集まりで覆われた酸化鉄粉は、導電性フィラーや塗料の顔料として用いることができる。
また、鱗片状酸化鉄粉は、40nm〜60nmの大きさの範囲からなる粒状の複合金属微粒子で覆われるため、光の白色散乱が殆どなく、彩度に優れた輝きを発した。また、0.45μmの厚みからなる複合金属微粒子の集まりは、青色の可視光の波長に相当するため、複合金属微粒子の表面での反射光と酸化鉄粉表面での反射光とが互いに干渉して増幅され、青の色調が強い反射光となる。さらに、金と銀とからなる複合金属微粒子は、金微粒子に比べると電子密度が少なく、銀微粒子に比べると電子密度が多い。このため、複合金属微粒子の色調は、金微粒子より短波長の色調を発し、銀微粒子より長波長の色調を発する。また、鱗片状酸化鉄粉は、赤褐色の色調を持つ粉体である。この結果、本実施例で製作した鱗片状酸化鉄粉は、実施例9における深緑より短波長側にあり、実施例9より深みのある彩度に優れた金属光沢を発する塗料用顔料として用いることができる。
なお、塗料用顔料について説明すれば、実施例12〜実施例15の4つの事例において、2種類の鱗片状基材を、同じ厚みからなる2種類の複合金属微粒子の集まりで覆った。この結果、鱗片状基材の材質と複合金属微粒子の構成に応じて、鱗片状基材が発する色調が変わった。いっぽう、実施例6〜実施例11の6つの実施例は、鱗片状基材を金属微粒子の集まりで覆った。これらの結果から、鱗片状微粒子を覆う微粒子の材質を、複合金属微粒子とすることで、鱗片状基材が発する色調の自由度が、複合金属を構成する金属元素の種類と金属元素の構成割合とに応じた色調に拡大できた。
以上に、本発明における実施例として15の実施例を説明したが、実施例はこれらに限定されない。なぜならば、第一に、鱗片状基材は金属化合物が熱分解される温度より高い耐熱性を持つため、鱗片状基材の材質は制限されない。第二に、鱗片状基材は様々な形状と粒度分布を持つ微細な粉体であるが、金属化合物のアルコール分散液に鱗片状基材の集まりが混合された懸濁液を昇温してアルコールを気化すれば、どのような形状と大きさの鱗片状基材であっても、鱗片状基材は金属化合物の被膜で覆われる。さらに、この金属化合物の熱分解で析出する微粒子が、鱗片状基材の大きさより3桁小さいため、どのような形状と大きさを持つ微細粉であっても、鱗片状基材を微粒子の集まりで覆うことができる。このため、鱗片状基材の大きさや形状の制約はない。第三に、微粒子の原料は、様々な物質からなるカルボン酸金属化合物、ないしは、様々な物質からなる金属錯イオンを有する無機塩を用いることができるため、微粒子の材質の制約は少ない。第四に、微粒子の用途に応じて、金属微粒子、複合金属微粒子、合金微粒子ないしは金属酸化物微粒子の集まりで鱗片状基材を覆うことができ、鱗片状基材は多種多様な性質を持つ、さらに、微粒子の集まりで覆われた鱗片状基材の集まりに、熱処理や圧縮、圧延などの様々な加工が可能であるため、鱗片状基材の用途は極めて広い。第五に、金属微粒子、複合金属微粒子ないしは合金微粒子は、互いに金属結合で微粒子の集まりを形成するため、鱗片状基材の表面に形成された微粒子の集まりは剥がれず、長期にわたって鱗片状基材の性質が変わらない。第六に、安価な金属化合物の熱分解で微粒子を析出させるため、また、鱗片状基材の表面を清浄化させる前処理が不要であるため、安価な製造費用で大量の鱗片状基材が様々な材質の微粒子で覆われる。従って、本発明は鱗片状基材の制約がなく、鱗片状基材を覆う微粒子の制約が少なく、かつ、多種多様な性質を持つ鱗片状基材が安価な製造費用で大量に製造できるため、従来の用途に限らず新たな用途を含めた広範囲な用途に、本発明に基づく微粒子の集まりで覆われた鱗片状基材を用いることができる。このため、本発明に係わる実施例は、前記した15の実施例に限定されない。
In this example, the scale-like iron oxide powder is covered with the composite metal fine particles of gold and silver in which gold forms a core and silver forms a shell with respect to the composite metal fine particles of gold and copper in Example 14. . As the flaky iron oxide powder, the iron oxide powder in Example 11 was used. The gold raw material is hydrogen tetrachlorogold (III) used in Example 8. The silver raw material is the silver octylate used in Example 6. The surface of the composite metal fine particles was covered with zinc oxide fine particles in the same manner as in Example 4.
A manufacturing process for manufacturing a collection of flaky iron oxide powders covered with composite metal fine particles will be described. In the manufacturing process of this example, in the manufacturing process in Example 12, the composite metal fine particles made of gold and copper were replaced with composite metal fine particles of gold and silver, and the glass flake powder was replaced with iron oxide powder. Since the manufacturing process is similar, the manufacturing process is not shown. First, based on Example 4, iron oxide powder covered with gold fine particles was manufactured. However, 0.08 mol of hydrogen tetrachlorogold (III), which is a raw material of gold, was dispersed in 1 liter of n-butanol. Next, 0.02 mol of silver octylate was dispersed in 100 cc of n-butanol, and iron oxide powder covered with gold fine particles was put into a container containing the dispersion. The container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Furthermore, 0.1 mol of zinc naphthenate was dispersed in 1 liter of n-butanol, and this dispersion was placed in a container containing iron oxide powder and stirred. Thereafter, the container was heated to 120 ° C. to vaporize n-butanol, and the vaporized n-butanol was recovered. Further, the container was placed in a first heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 290 ° C. to thermally decompose silver octylate. Next, the container was placed in a second heat treatment furnace comprising an atmospheric atmosphere, and the sample in the container was heated to 330 ° C. to thermally decompose zinc naphthenate. Thereafter, the container was placed on a shaker, and the container was vibrated for 5 minutes. Finally, the sample in the container was passed through a filter in which five mesh filters having a mesh size of 33 μm were stacked, and the sample of this example was obtained.
Next, the surface and cut surface of the two types of samples produced were observed with an electron microscope in the same manner as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam was taken out and image processing was performed. Both the first sample of iron oxide powder covered with gold fine particles and the second sample of iron oxide powder covered with composite metal fine particles made of gold and silver have a surface size of 40 nm to 60 nm. It was evenly covered with granular fine particles. Further, from the cross-sectional image of the first sample, the aggregate of granular fine particles forms a thickness of about 0.36 μm, and from the cross-sectional image of the second sample, the aggregate of granular fine particles forms a thickness of about 0.45 μm. Was. Next, image processing was performed by extracting energy between 900 V and 1 kV of the reflected electron beam, and the difference in material was observed depending on the density of the image. In both the first and second samples, no shading was observed. Further, the energy and intensity of characteristic X-rays were subjected to image processing, and the elements constituting the fine particles were analyzed. Only gold atoms were present in the first sample, and only silver atoms were present in the second sample. From these results, the first sample has a thickness of 0.36 μm in which a collection of fine gold particles covers the iron oxide powder, the second sample has gold that forms a core, and silver that forms a shell. It was confirmed that the composite metal fine particles made of silver covered the iron oxide powder by forming a thickness of 0.45 μm.
Furthermore, as in Example 1, the electrical resistance of the sample was measured. The first sample showed a volume resistivity close to that of gold, and the second sample showed a value lower than that of gold. Therefore, the iron oxide powder covered with a collection of composite metal fine particles made of gold and silver produced in this embodiment can be used as a conductive filler or a pigment for paint.
In addition, since the scaly iron oxide powder is covered with granular composite metal fine particles having a size range of 40 nm to 60 nm, there is almost no white scattering of light, and the brilliant color has excellent chromaticity. In addition, since the collection of composite metal fine particles having a thickness of 0.45 μm corresponds to the wavelength of blue visible light, the reflected light on the surface of the composite metal fine particles and the reflected light on the iron oxide powder surface interfere with each other. Amplified and reflected light with a strong blue color. Furthermore, composite metal fine particles composed of gold and silver have a lower electron density than gold fine particles and a higher electron density than silver fine particles. For this reason, the color tone of the composite metal fine particles emits a color tone having a shorter wavelength than that of the gold fine particles, and a color tone of a longer wavelength than that of the silver fine particles. Moreover, scaly iron oxide powder is a powder having a reddish brown color tone. As a result, the scaly iron oxide powder produced in this example is on the shorter wavelength side than the dark green in Example 9, and is used as a pigment for paints that emits a metallic luster that is deeper in saturation than in Example 9. Can do.
As for the pigment for coating, in four cases of Examples 12 to 15, two types of scale-like substrates were covered with a group of two types of composite metal fine particles having the same thickness. As a result, the color tone emitted from the scaly substrate changed depending on the material of the scaly substrate and the composition of the composite metal fine particles. On the other hand, in the six examples of Examples 6 to 11, the scaly substrate was covered with a collection of metal fine particles. From these results, by making the material of the fine particles covering the scaly fine particles into composite metal fine particles, the degree of freedom of the color tone emitted from the scaly base material depends on the type of metal element constituting the composite metal and the composition ratio of the metal element The color could be expanded according to
Although 15 examples have been described as examples in the present invention, the examples are not limited to these. This is because, first of all, since the scaly substrate has heat resistance higher than the temperature at which the metal compound is thermally decomposed, the material of the scaly substrate is not limited. Second, the scaly substrate is a fine powder with various shapes and particle size distributions, but the temperature of a suspension in which a collection of scaly substrates is mixed with an alcohol dispersion of a metal compound is increased. If the alcohol is vaporized, the scaly substrate of any shape and size is covered with the metal compound coating. Furthermore, since the fine particles deposited by pyrolysis of the metal compound are three orders of magnitude smaller than the size of the scale-like substrate, the fine particles having any shape and size can be collected from the scale-like substrate. Can be covered. For this reason, there is no restriction | limiting of the magnitude | size and shape of a scale-like base material. Third, since the raw material of the fine particles can be a metal carboxylate compound made of various substances or an inorganic salt having metal complex ions made of various substances, there are few restrictions on the material of the fine particles. Fourth, depending on the use of the fine particles, the scale-like substrate can be covered with a collection of metal fine particles, composite metal fine particles, alloy fine particles or metal oxide fine particles, and the scale-like substrate has various properties. Furthermore, since various processes such as heat treatment, compression, and rolling can be performed on a group of scaly substrates covered with a group of fine particles, the use of scaly substrates is extremely wide. Fifth, since the metal fine particles, composite metal fine particles or alloy fine particles form a collection of fine particles by metal bonding with each other, the collection of fine particles formed on the surface of the scale-like base material does not peel off, and the scale-like base material is used for a long time. The nature of is unchanged. Sixth, in order to precipitate fine particles by thermal decomposition of an inexpensive metal compound, and since no pretreatment for cleaning the surface of the scale-like substrate is necessary, a large amount of scale-like substrates can be produced at low cost. Covered with fine particles of various materials. Therefore, the present invention has no restrictions on the scaly base material, there are few restrictions on the fine particles covering the scaly base material, and a scaly base material having a wide variety of properties can be produced in large quantities at a low production cost. The scale-like substrate covered with the collection of fine particles according to the present invention can be used for a wide range of applications including new applications as well as conventional applications. For this reason, the embodiment according to the present invention is not limited to the 15 embodiments described above.

Claims (20)

微粒子の集まりで覆われた鱗片状基材を製造することにおいて、
熱処理で金属を析出する金属化合物をアルコールに分散してアルコール分散液を作成し、該アルコール分散液に鱗片状基材の集まりを投入して懸濁液を作成し、該懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記金属化合物で覆われた処理基材を作成する、さらに、該処理基材の集まりに、前記金属化合物が熱分解される熱処理を施す、これによって、前記鱗片状基材が金属微粒子の集まりで覆われるとともに、該金属微粒子の集まりを介して前記鱗片状基材同士が結合された鱗片状基材の集まりが製造されることを特徴とする、微粒子の集まりで覆われた鱗片状基材の製造。
In producing a scaly substrate covered with a collection of fine particles,
A metal compound that precipitates metal by heat treatment is dispersed in alcohol to prepare an alcohol dispersion, and a collection of scaly substrates is added to the alcohol dispersion to create a suspension, and the temperature of the suspension is increased. Vaporizing the alcohol to create a treated substrate in which the scaly substrate is covered with the metal compound, and further subjecting the group of treated substrates to a heat treatment in which the metal compound is thermally decomposed. In this way, the scaly substrate is covered with a collection of metal fine particles, and a collection of scaly substrates in which the scaly substrates are bonded via the collection of metal fine particles is produced. The production of a scaly substrate covered with a collection of fine particles.
請求項1における鱗片状基材を強磁性の鱗片状基材で構成し、金属微粒子を自発磁化を有する金属酸化物微粒子で構成する、これによって、前記金属酸化物微粒子が前記強磁性の鱗片状基材に磁気吸着し、該強磁性の鱗片状基材が前記金属酸化物微粒子の集まりで覆われるとともに、該磁気吸着した金属酸化物微粒子の集まりを介して前記強磁性の鱗片状基材同士が結合された新たな鱗片状基材の集まりが製造されることを特徴とする、請求項1に記載した金属微粒子の集まりを介して鱗片状基材同士が結合された鱗片状基材の集まりの製造に係わる新たな鱗片状基材の集まりの製造。  The scaly base material according to claim 1 is composed of a ferromagnetic scaly base material, and the metal fine particles are composed of metal oxide fine particles having spontaneous magnetization, whereby the metal oxide fine particles are formed into the ferromagnetic scaly shape. The ferromagnetic scaly base materials are magnetically adsorbed on the base material, and the ferromagnetic scaly base materials are covered with the collection of the metal oxide fine particles, and the ferromagnetic scaly base materials are connected to each other through the gathering of the magnetically adsorbed metal oxide fine particles. A group of scale-like substrates in which scale-like substrates are bonded to each other through a group of metal fine particles according to claim 1, wherein a group of new scale-like substrates to which is bonded is manufactured. Manufacture of a collection of new scaly substrates related to the manufacture of 請求項1における鱗片状基材が金属化合物で覆われた処理基材を、鱗片状基材が熱処理で金属を析出する第一の金属化合物と、該第一の金属化合物が金属を析出する熱処理温度より高い熱処理温度で金属酸化物を析出する第二の金属化合物とからなる2種類の金属化合物の2重構造で覆われた新たな処理基材とし、該新たな処理基材の集まりを、前記第一の金属化合物が熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う、これによって、金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが製造されることを特徴とする、請求項1に記載した金属微粒子の集まりを介して鱗片状基材同士が結合された鱗片状基材の集まりの製造に係わる新たな鱗片状基材の集まりの製造。  A treated substrate in which the scaly substrate in claim 1 is covered with a metal compound, a first metal compound in which the scaly substrate deposits metal by heat treatment, and a heat treatment in which the first metal compound deposits metal. A new treatment substrate covered with a double structure of two kinds of metal compounds consisting of a second metal compound that deposits a metal oxide at a heat treatment temperature higher than the temperature, Two heat treatments comprising a first heat treatment in which the first metal compound is thermally decomposed and a second heat treatment in which the second metal compound is thermally decomposed are continuously performed. A group of metal fine particles according to claim 1, wherein a new group of scaly substrates covered with a double structure of particles composed of a group of particles and a group of metal oxide particles is produced. Scales in which the scaly substrates are bonded together Producing a collection of new scaly substrates involved in the production of a collection of substrates. 請求項3における微粒子の2重構造で覆われた鱗片状基材の集まりに負荷を加え、該鱗片状基材から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、金属微粒子の集まりで覆われた新たな鱗片状基材が製造されることを特徴とする、請求項3に記載した微粒子の2重構造で覆われた鱗片状基材の集まりを用いた新たな鱗片状基材の製造。  A load is applied to the group of scaly substrates covered with the double structure of fine particles according to claim 3, the group of metal oxide fine particles is dropped from the scaly substrate, and the group of scaly substrates is individually separated. The flaky substrate is separated, and thereby a new flaky substrate covered with a collection of metal fine particles is produced. Production of a new scaly substrate using a collection of scaly substrates. 請求項4における金属微粒子の集まりで覆われた鱗片状基材を原料として用い、熱処理で新たな金属を析出する第一の金属化合物をアルコールに分散してアルコール分散液を作成し、該アルコール分散液に前記鱗片状基材の集まりを投入して第一の懸濁液を作成し、該第一の懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記第一の金属化合物で覆われた第一の処理基材を作成する、さらに、前記第一の金属化合物が金属を析出する熱処理温度より高い熱処理温度で金属酸化物を析出する第二の金属化合物をアルコールに分散してアルコール分散液を作成し、該アルコール分散液に前記第一の処理基材の集まりを投入して第二の懸濁液を作成し、該第二の懸濁液を昇温して前記アルコールを気化させ、前記第一の処理基材が前記第二の金属化合物で覆われた第二の処理基材を作成する、さらに、該第二の処理基材の集まりを、前記第一の金属化合物が熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う、これによって、複合金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが製造されることを特徴とする、請求項4に記載した金属微粒子の集まりで覆われた鱗片状基材を用いた新たな鱗片状基材の集まりの製造。  Using the scaly substrate covered with a collection of metal fine particles according to claim 4 as a raw material, a first metal compound that precipitates a new metal by heat treatment is dispersed in alcohol to prepare an alcohol dispersion, and the alcohol dispersion A collection of the scaly substrates is added to the liquid to form a first suspension, and the alcohol is vaporized by heating the first suspension, and the scaly substrate is the first suspension. The first metal substrate covered with the metal compound is prepared, and the second metal compound that precipitates the metal oxide at a heat treatment temperature higher than the heat treatment temperature at which the first metal compound precipitates the metal is alcohol. An alcohol dispersion is prepared by dispersing the first treatment substrate into the alcohol dispersion to create a second suspension, and the temperature of the second suspension is increased. Evaporating the alcohol, the first treatment substrate is Creating a second treated substrate covered with the second metal compound, and further collecting the second treated substrate with a first heat treatment in which the first metal compound is thermally decomposed; Two heat treatments including a second heat treatment in which the second metal compound is thermally decomposed are continuously performed, whereby double particles of fine particles composed of a collection of composite metal fine particles and a collection of metal oxide fine particles are obtained. A new scaly substrate using a scaly substrate covered with a collection of metal fine particles according to claim 4, characterized in that a new scaly substrate assembly covered with a structure is produced. Manufacturing of gatherings. 請求項5に記載した微粒子の2重構造で覆われた鱗片状基材の集まりに負荷を加え、該鱗片状基材から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、複合金属微粒子の集まりで覆われた新たな鱗片状基材が製造されることを特徴とする、請求項5に記載した微粒子の2重構造で覆われた鱗片状基材の集まりを用いた新たな鱗片状基材の製造。  A load is applied to the group of scaly substrates covered with the double structure of fine particles according to claim 5, and the group of metal oxide particles is dropped from the scaly substrate, and the group of scaly substrates is removed. 6. The fine particle double structure according to claim 5, wherein a new flaky substrate covered with a collection of composite metal fine particles is produced by separating into individual flaky substrates. Production of a new scaly substrate using a collection of covered scaly substrates. 請求項1および請求項3および請求項5における熱処理で金属を析出する金属化合物が、カルボン酸におけるカルボキシル基を構成する酸素イオンが金属イオンに共有結合する第1の特徴と、カルボン酸が飽和脂肪酸で構成される第2の特徴とからなる2つの特徴を兼備するカルボン酸金属化合物であることを特徴とする、請求項1および請求項3および請求項5に記載した熱処理で金属を析出する金属化合物。  The metal compound which deposits a metal by heat treatment in claim 1, claim 3 and claim 5, wherein the oxygen ion constituting the carboxyl group in the carboxylic acid is covalently bonded to the metal ion, and the carboxylic acid is a saturated fatty acid A metal that precipitates a metal by heat treatment according to claim 1, 3, and 5, wherein the metal is a carboxylic acid metal compound that has two characteristics consisting of the second characteristic consisting of Compound. 請求項1および請求項3および請求項5における熱処理で金属を析出する金属化合物が、無機物の分子ないしはイオンが配位子を構成し、該配位子が金属イオンに配位結合した金属錯イオンを有する無機塩であることを特徴とする、請求項1および請求項3および請求項5に記載した熱処理で金属を析出する金属化合物。  The metal compound which deposits a metal by the heat treatment in claim 1, claim 3 and claim 5 is a metal complex ion in which an inorganic molecule or ion constitutes a ligand and the ligand is coordinated to the metal ion. The metal compound which deposits a metal by the heat processing of Claim 1, 3 and 5 characterized by the above-mentioned. 請求項3および請求項5における熱処理で金属酸化物を析出する金属化合物が、カルボン酸におけるカルボキシル基を構成する酸素イオンが金属イオンに配位結合する第1の特徴と、カルボン酸が飽和脂肪酸で構成される第2の特徴とからなる2つの特徴を兼備するカルボン酸金属化合物であることを特徴とする、請求項3および請求項5に記載した熱処理で金属酸化物を析出する金属化合物。  The metal compound that deposits a metal oxide by heat treatment in claim 3 and claim 5 is characterized in that the oxygen ion constituting the carboxyl group in the carboxylic acid is coordinated to the metal ion, and the carboxylic acid is a saturated fatty acid. The metal compound which deposits a metal oxide by the heat treatment according to claim 3 and 5, wherein the metal compound is a carboxylic acid metal compound having two characteristics including the second characteristic. 請求項3における鱗片状基材が2種類の金属化合物の2重構造で覆われた処理基材を、鱗片状基材が熱処理で複数種類の金属が同時に析出する複数種類の金属化合物からなる第一の金属化合物と、該第一の金属化合物が複数種類の金属を同時に析出する熱処理温度より高い熱処理温度で金属酸化物を析出する金属化合物からなる第二の金属化合物とからなる2重構造で覆われた新たな処理基材とし、該新たな処理基材の集まりを、前記第一の金属化合物が熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う、これによって、合金微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた新たな鱗片状基材の集まりが製造されることを特徴とする、請求項3に記載した微粒子の2重構造で覆われた鱗片状基材の集まりの製造に係わる新たな微粒子の2重構造で覆われた鱗片状基材の集まりの製造。  The treatment substrate in which the scaly substrate in claim 3 is covered with a double structure of two types of metal compounds, and the scaly substrate comprises a plurality of types of metal compounds in which a plurality of types of metals are simultaneously deposited by heat treatment. A double structure comprising one metal compound and a second metal compound comprising a metal compound that deposits a metal oxide at a heat treatment temperature higher than the heat treatment temperature at which the first metal compound simultaneously precipitates a plurality of types of metals. A new treated base material covered is formed, and the group of the new treated base materials is subjected to a first heat treatment in which the first metal compound is pyrolyzed and a second heat in which the second metal compound is pyrolyzed. In this way, two heat treatments consisting of the above heat treatment are continuously performed, whereby a new collection of scaly substrates covered with a double structure of fine particles consisting of a collection of alloy fine particles and a collection of metal oxide fine particles is formed. Characterized by being manufactured Producing a collection of scale-like base material covered with a double structure of the new particles according to the production of a collection of scale-like base material covered with a double structure of the microparticles as claimed in claim 3. 請求項10における微粒子の2重構造で覆われた鱗片状基材の集まりに負荷を加え、該鱗片状基材から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、合金微粒子の集まりで覆われた新たな鱗片状基材が製造されることを特徴とする、請求項10に記載した微粒子の2重構造で覆われた鱗片状基材の集まりを用いた新たな鱗片状基材の製造。  A load is applied to the group of scaly substrates covered with the double structure of fine particles according to claim 10, the group of metal oxide fine particles is dropped from the scaly substrate, and the group of scaly substrates is individually separated. 11. Covered with a double structure of fine particles according to claim 10, characterized in that it separates into a flaky substrate, thereby producing a new flaky substrate covered with a collection of alloy fine particles. Production of a new scaly substrate using a collection of scaly substrates. 請求項10における複数種類の金属化合物は、同一のカルボン酸で構成される第1の特徴と、カルボン酸のカルボキシル基を構成する酸素イオンが異なる金属イオンに共有結合する第2の特徴と、カルボン酸が飽和脂肪酸で構成される第3の特徴とからなる3つの特徴を兼備する複数種類のカルボン酸金属化合物であることを特徴とする、請求項10に記載した複数種類の金属化合物。  The plurality of types of metal compounds according to claim 10 are characterized in that the first characteristic constituted by the same carboxylic acid, the second characteristic in which oxygen ions constituting the carboxyl group of the carboxylic acid are covalently bonded to different metal ions, 11. The plurality of types of metal compounds according to claim 10, wherein the acids are a plurality of types of carboxylic acid metal compounds having three characteristics including a third characteristic composed of saturated fatty acids. 微粒子の集まりで覆われた鱗片状基材を製造する第1の製造方法は、熱処理で金属を析出する金属化合物をアルコールに分散してアルコール分散液を作成する第1の工程と、該アルコール分散液に鱗片状基材の集まりを投入して懸濁液を作成する第2の工程と、該懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記金属化合物で覆われた処理基材を作成する第3の工程と、該処理基材の集まりに、前記金属化合物が熱分解される熱処理を施す第4の工程とからなり、これら4つの工程を連続して実施することで、前記鱗片状基材が金属微粒子の集まりで覆われるとともに、該金属微粒子の集まりを介して前記鱗片状基材同士が結合された鱗片状基材の集まりが製造される製造方法であることを特徴とする、微粒子の集まりで覆われた鱗片状基材を製造する第1の製造方法。  A first production method for producing a scaly substrate covered with a collection of fine particles includes a first step of dispersing a metal compound that precipitates a metal by heat treatment in alcohol to form an alcohol dispersion, and the alcohol dispersion. A second step of adding a collection of scaly substrates to the liquid to create a suspension; elevating the temperature of the suspension to vaporize the alcohol; and covering the scaly substrate with the metal compound. A third step of creating a treated substrate, and a fourth step of subjecting the group of the treated substrates to a heat treatment in which the metal compound is thermally decomposed. In the manufacturing method, the scaly substrate is covered with a collection of metal fine particles, and a collection of scaly substrates in which the scaly substrates are bonded through the collection of metal fine particles. A collection of fine particles characterized by being First method of manufacturing a cracking flaky substrate. 微粒子の集まりで覆われた鱗片状基材を製造する第2の製造方法は、請求項13の第1の製造方法において、鱗片状基材として強磁性の鱗片状基材を用い、金属化合物として熱処理で自発磁化を有する金属酸化物を析出する金属化合物を用い、請求項13の第1の製造方法に記載した4つの工程を連続して実施する、これによって、前記強磁性の鱗片状基材が磁気吸着した金属酸化物微粒子の集まりで覆われるとともに、該磁気吸着した金属酸化物微粒子の集まりを介して前記強磁性の鱗片状基材同士が結合された鱗片状基材の集まりが製造される製造方法であることを特徴とする、微粒子の集まりで覆われた鱗片状基材を製造する第2の製造方法。  A second production method for producing a scaly substrate covered with a collection of fine particles uses a ferromagnetic scaly substrate as a scaly substrate in the first production method according to claim 13, and uses a metal compound as a metal compound. Using the metal compound which precipitates the metal oxide which has spontaneous magnetization by heat processing, it implements four processes described in the 1st manufacturing method of Claim 13 continuously, Thereby, the said ferromagnetic scaly base material Are covered with a group of magnetically adsorbed metal oxide fine particles, and a group of scale-like base materials are produced in which the ferromagnetic scale-like base materials are bonded to each other through the group of magnetically adsorbed metal oxide fine particles. A second production method for producing a scaly substrate covered with a collection of fine particles, which is a production method. 微粒子の集まりで覆われた鱗片状基材を製造する第3の製造方法は、熱処理で金属を析出する第一の金属化合物をアルコールに分散してアルコール分散液を作成する第1の工程と、該アルコール分散液に鱗片状基材の集まりを投入して第一の懸濁液を作成する第2の工程と、該第一の懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記第一の金属化合物で覆われた第一の処理基材を作成する第3の工程と、前記第一の金属化合物が金属を析出する熱処理温度より高い熱処理温度で金属酸化物を析出する第二の金属化合物をアルコールに分散してアルコール分散液を作成する第4の工程と、該アルコール分散液に前記第一の処理基材の集まりを投入して第二の懸濁液を作成する第5の工程と、該第二の懸濁液を昇温して前記アルコールを気化させ、前記第一の処理基材が前記第二の金属化合物で覆われた第二の処理基材を作成する第6の工程と、該第二の処理基材の集まりに、前記第一の金属化合物が熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う第7の工程とからなり、これら7つの工程を連続して実施することで、金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた鱗片状基材の集まりが製造される製造方法であることを特徴とする、微粒子の集まりで覆われた鱗片状基材を製造する第3の製造方法。  A third production method for producing a scaly substrate covered with a collection of fine particles includes a first step of dispersing an first metal compound that precipitates a metal by heat treatment in an alcohol to create an alcohol dispersion, A second step of adding a collection of scaly substrates to the alcohol dispersion to create a first suspension; elevating the temperature of the first suspension to vaporize the alcohol; and A metal oxide at a heat treatment temperature higher than a heat treatment temperature at which the first metal compound precipitates a metal, and a third step of creating a first treated substrate in which the shaped substrate is covered with the first metal compound A fourth step of preparing an alcohol dispersion by dispersing a second metal compound that precipitates in alcohol, and adding a collection of the first treatment base materials to the alcohol dispersion to form a second suspension And a second step of heating the second suspension Vaporizing the coal, creating a second treated substrate in which the first treated substrate is covered with the second metal compound, and a collection of the second treated substrates, And a seventh step of successively performing two heat treatments including a first heat treatment in which the first metal compound is thermally decomposed and a second heat treatment in which the second metal compound is thermally decomposed. A manufacturing method in which a collection of scaly substrates covered with a double structure of fine particles composed of a collection of metal fine particles and a collection of metal oxide fine particles is produced by continuously performing these seven steps. A third production method for producing a scaly substrate covered with a collection of fine particles, which is characterized in that it exists. 微粒子の集まりで覆われた鱗片状基材を製造する第4の製造方法は、請求項15の第3の製造方法で製造した鱗片状基材の集まりに負荷を加えて、該鱗片状基材から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、金属微粒子の集まりで覆われた鱗片状基材が製造される製造方法であることを特徴とする、微粒子の集まりで覆われた鱗片状基材を製造する第4の製造方法。  In a fourth production method for producing a scaly substrate covered with a collection of fine particles, a load is applied to the assembly of scaly substrates produced by the third production method according to claim 15, and the scaly substrate is produced. A method for producing a scaly substrate covered with a collection of metal fine particles by removing a collection of metal oxide fine particles from the substrate and separating the scaly substrate assembly into individual scaly substrates. A fourth production method for producing a scaly substrate covered with a collection of fine particles, which is characterized in that: 微粒子の集まりで覆われた鱗片状基材を製造する第5の製造方法は、請求項16の第4の製造方法で製造した金属微粒子の集まりで覆われた鱗片状基材を原料として用い、熱処理で新たな金属を析出する第一の金属化合物をアルコールに分散してアルコール分散液を作成する第1の工程と、該アルコール分散液に前記鱗片状基材の集まりを投入して第一の懸濁液を作成する第2の工程と、該第一の懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記第一の金属化合物で覆われた第一の処理基材を作成する第3の工程と、前記第一の金属化合物が金属を析出する熱処理温度より高い熱処理温度で金属酸化物を析出する第二の金属化合物を、アルコールに分散してアルコール分散液を作成する第4の工程と、該アルコール分散液に前記第一の処理基材の集まりを投入して第二の懸濁液を作成する第5の工程と、該第二の懸濁液を昇温して前記アルコールを気化させ、前記第一の処理基材が前記第二の金属化合物で覆われた第二の処理基材を作成する第6の工程と、該第二の処理基材の集まりに、前記第一の金属化合物が熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う第7の工程とからなり、これら7つの工程を連続して実施することで、複合金属微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた鱗片状基材の集まりが製造される製造方法であることを特徴とする、微粒子の集まりで覆われた鱗片状基材を製造する第5の製造方法。  A fifth production method for producing a scaly substrate covered with a collection of fine particles uses, as a raw material, a scaly substrate covered with a collection of metal fine particles produced by the fourth production method of claim 16. A first step of dispersing a first metal compound that precipitates a new metal by heat treatment in an alcohol to form an alcohol dispersion; and adding a collection of scaly substrates to the alcohol dispersion to form a first A second step of creating a suspension, and a first treatment in which the first suspension is heated to vaporize the alcohol and the scaly substrate is covered with the first metal compound. A third step of creating a base material, and an alcohol dispersion liquid in which a second metal compound that precipitates a metal oxide at a heat treatment temperature higher than the heat treatment temperature at which the first metal compound precipitates metal is dispersed in alcohol. And a fourth step of preparing the alcohol dispersion A fifth step of adding a collection of the first treated substrates to create a second suspension; elevating the temperature of the second suspension to vaporize the alcohol; and In the sixth step of creating a second treated substrate in which the treated substrate is covered with the second metal compound, the first metal compound is pyrolyzed in a collection of the second treated substrate. A first heat treatment and a second heat treatment in which the second metal compound is thermally decomposed and the second heat treatment is continuously performed. These seven steps are continuously performed. Fine particles characterized by being a manufacturing method for producing a collection of scaly substrates covered with a double structure of fine particles composed of a collection of composite metal fine particles and a collection of metal oxide fine particles. The 5th manufacturing method which manufactures the scale-like base material covered with gathers of. 微粒子の集まりで覆われた鱗片状基材を製造する第6の製造方法は、請求項17の第5の製造方法で製造した鱗片状基材の集まりに負荷を加えて、該鱗片状基材から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、複合金属微粒子の集まりで覆われた鱗片状基材が製造される製造方法であることを特徴とする、微粒子の集まりで覆われた鱗片状基材を製造する第6の製造方法。  A sixth production method for producing a scaly substrate covered with a collection of fine particles applies a load to the assembly of scaly substrates produced by the fifth production method of claim 17, and the scaly substrate Production of metal oxide fine particles from the substrate, and separating the scale-like substrate into individual scale-like substrates, thereby producing a scale-like substrate covered with a collection of composite metal fine particles A sixth production method for producing a scaly substrate covered with a collection of fine particles, which is a method. 微粒子の集まりで覆われた鱗片状基材を製造する第7の製造方法は、熱処理で複数種類の金属を同時に析出する複数種類の金属化合物を、アルコールに分散してアルコール分散液を作成する第1の工程と、該アルコール分散液に鱗片状基材の集まりを投入して第一の懸濁液を作成する第2の工程と、該第一の懸濁液を昇温して前記アルコールを気化させ、前記鱗片状基材が前記複数種類の金属化合物で覆われた第一の処理基材を作成する第3の工程と、前記複数種類の金属化合物が複数種類の金属を同時に析出する熱処理温度より高い熱処理温度で金属酸化物を析出する第二の金属化合物をアルコールに分散してアルコール分散液を作成する第4の工程と、該アルコール分散液に前記第一の処理基材の集まりを投入して第二の懸濁液を作成する第5の工程と、該第二の懸濁液を昇温して前記アルコールを気化させ、前記第一の処理基材が前記第二の金属化合物で覆われた第二の処理基材を作成する第6の工程と、該第二の処理基材の集まりに、前記複数種類の金属化合物が同時に熱分解される第一の熱処理と、前記第二の金属化合物が熱分解される第二の熱処理とからなる2回の熱処理を連続して行う第7の工程とからなり、これら7つの工程を連続して実施することで、合金微粒子の集まりと金属酸化物微粒子の集まりとからなる微粒子の2重構造で覆われた鱗片状基材の集まりが製造される製造方法であることを特徴とする、微粒子の集まりで覆われた鱗片状基材を製造する第7の製造方法。  A seventh production method for producing a scaly substrate covered with a collection of fine particles is a method in which an alcohol dispersion is prepared by dispersing a plurality of types of metal compounds in which a plurality of types of metals are simultaneously deposited by heat treatment in alcohol. 1 step, a second step in which a collection of scaly substrates is added to the alcohol dispersion to create a first suspension, and the alcohol is heated by raising the temperature of the first suspension. A third step of vaporizing and producing a first treated substrate in which the scaly substrate is covered with the plurality of types of metal compounds; and a heat treatment in which the plurality of types of metal compounds simultaneously deposit a plurality of types of metals. A fourth step in which a second metal compound that precipitates a metal oxide at a heat treatment temperature higher than the temperature is dispersed in an alcohol to form an alcohol dispersion; To create a second suspension Fifth step and raising the temperature of the second suspension to vaporize the alcohol, thereby creating a second treated substrate in which the first treated substrate is covered with the second metal compound A sixth heat treatment, a first heat treatment in which the plurality of types of metal compounds are pyrolyzed simultaneously in the second group of treated substrates, and a second heat in which the second metal compounds are pyrolyzed. The seventh step of continuously performing two heat treatments consisting of heat treatment, and by performing these seven steps in succession, the fine particles comprising the collection of alloy fine particles and the collection of metal oxide fine particles A seventh production method for producing a scaly substrate covered with a collection of fine particles, which is a production method for producing a collection of scaly substrates covered with a double structure. 微粒子の集まりで覆われた鱗片状基材を製造する第8の製造方法は、請求項19の第7の製造方法で製造した鱗片状基材の集まりに負荷を加えて、該鱗片状基材から金属酸化物微粒子の集まりを脱落させ、前記鱗片状基材の集まりを個々の鱗片状基材に分離する、これによって、合金微粒子の集まりで覆われた鱗片状基材が製造される製造方法であることを特徴とする、微粒子の集まりで覆われた鱗片状基材を製造する第8の製造方法。  An eighth production method for producing a scaly substrate covered with a collection of fine particles applies a load to the assembly of scaly substrates produced by the seventh production method according to claim 19, and the scaly substrate A method for producing a scaly substrate covered with a collection of alloy fine particles, by removing a collection of metal oxide fine particles from the substrate and separating the scaly substrate collection into individual scaly substrates. An eighth production method for producing a scaly substrate covered with a collection of fine particles, characterized in that:
JP2014054081A 2014-02-27 2014-02-27 Method for producing scaly substrate covered with a collection of fine particles Expired - Fee Related JP6395248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054081A JP6395248B2 (en) 2014-02-27 2014-02-27 Method for producing scaly substrate covered with a collection of fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054081A JP6395248B2 (en) 2014-02-27 2014-02-27 Method for producing scaly substrate covered with a collection of fine particles

Publications (3)

Publication Number Publication Date
JP2015161027A true JP2015161027A (en) 2015-09-07
JP2015161027A5 JP2015161027A5 (en) 2017-04-06
JP6395248B2 JP6395248B2 (en) 2018-09-26

Family

ID=54184338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054081A Expired - Fee Related JP6395248B2 (en) 2014-02-27 2014-02-27 Method for producing scaly substrate covered with a collection of fine particles

Country Status (1)

Country Link
JP (1) JP6395248B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075385A (en) * 2015-10-14 2017-04-20 小林 博 Manufacture of aggregate of pellets of synthetic resin covered with aggregate of particulates of metal or alloy and manufacture of compact of synthetic resin having properties of metal or alloy
JP2017095340A (en) * 2015-11-20 2017-06-01 小林 博 Production of molded body comprising ceramic particle aggregates having properties of metal or alloy
JP2019029503A (en) * 2017-07-31 2019-02-21 小林 博 Method for manufacturing anisotropic rare earth magnet
CN110461505A (en) * 2017-03-31 2019-11-15 东邦钛株式会社 The manufacturing method of metal powder
JP2020026540A (en) * 2018-08-09 2020-02-20 小林 博 Method of forming thin film made of metal emitting arbitrary hue

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003876A (en) * 2012-06-20 2014-01-09 Hiroshi Kobayashi Manufacturing of contact strip and method for manufacturing contact strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003876A (en) * 2012-06-20 2014-01-09 Hiroshi Kobayashi Manufacturing of contact strip and method for manufacturing contact strip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075385A (en) * 2015-10-14 2017-04-20 小林 博 Manufacture of aggregate of pellets of synthetic resin covered with aggregate of particulates of metal or alloy and manufacture of compact of synthetic resin having properties of metal or alloy
JP2017095340A (en) * 2015-11-20 2017-06-01 小林 博 Production of molded body comprising ceramic particle aggregates having properties of metal or alloy
CN110461505A (en) * 2017-03-31 2019-11-15 东邦钛株式会社 The manufacturing method of metal powder
CN110461505B (en) * 2017-03-31 2022-07-08 东邦钛株式会社 Method for producing metal powder
JP2019029503A (en) * 2017-07-31 2019-02-21 小林 博 Method for manufacturing anisotropic rare earth magnet
JP2020026540A (en) * 2018-08-09 2020-02-20 小林 博 Method of forming thin film made of metal emitting arbitrary hue
JP7190123B2 (en) 2018-08-09 2022-12-15 博 小林 METHOD FOR FORMING A METAL FILM WHICH CAUSES AN INTERFERENCE PHENOMENA EMITTING ANY COLOR

Also Published As

Publication number Publication date
JP6395248B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6430556B2 (en) Magnetic material, inductor element, magnetic ink and antenna device
Lv et al. A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials
JP2015161027A (en) Production of scaly base material covered with the assembly of fine particle and production method therefor
JP2015161027A5 (en)
JP2014201831A (en) Modification of property of part, substrate or material
KR20090103951A (en) Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
Wang et al. Construction of string-bead-like spatial conductive network derived from CoFe Prussian blue analogue and carbon nanotube composite for excellent electromagnetic wave absorption
WO2011007442A1 (en) Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
JP6715450B2 (en) Production method for producing a suspension in which individual nanoparticles of a metal or a metal oxide are surrounded by a liquid organic compound and dispersed in the organic compound
KR101467993B1 (en) Graphene―magnetic metal composite for absorbing electromagnetic wave and the preparation method thereof
WO2015129781A1 (en) Metal nanowire-forming composition, metal nanowire, and method for producing same
CN1658748A (en) Manufacturing method of compound electromagnetic shield magnet of nanocry stal magnetically soft alloy powder polymer
Rayar et al. EMI shielding applications of PANI-Ferrite nanocomposite materials: A review
Jung et al. Ultrasonic spray pyrolysis for air-stable copper particles and their conductive films
JP2007194402A (en) Magnetic multilayer nanoparticle, its manufacturing method, and magnetic material using the same
JP6675130B2 (en) Production method for producing a paste in which fine particles made of any material of a metal, an alloy, and a metal oxide are dispersed in a liquid-phase organic compound as a number of moles larger than the number of moles of the organic compound
Du et al. FeCo/Graphene nanocomposites for applications as electromagnetic wave-absorbing materials
JP2016175055A5 (en)
Kumari et al. Cu–Ni alloy decorated graphite layers for EMI suppression
JP2008121043A5 (en)
KR102151390B1 (en) Method of nano particle-graphene composite and the nano particle-graphene composite manufactured by the same
JP2016160531A (en) Production of assembly of fine particles dispersed in organic compound and production method thereof
Yin et al. Broadband electromagnetic dissipation superiority of hierarchical ZnO flakes co-decorated with CoFe/CoFe2O4 and rGO
JP2015025190A (en) Production of foam metal and production method
JP2016160531A5 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180824

R150 Certificate of patent or registration of utility model

Ref document number: 6395248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees