JP2021067900A - 画素回路、及び、表示装置 - Google Patents

画素回路、及び、表示装置 Download PDF

Info

Publication number
JP2021067900A
JP2021067900A JP2019194927A JP2019194927A JP2021067900A JP 2021067900 A JP2021067900 A JP 2021067900A JP 2019194927 A JP2019194927 A JP 2019194927A JP 2019194927 A JP2019194927 A JP 2019194927A JP 2021067900 A JP2021067900 A JP 2021067900A
Authority
JP
Japan
Prior art keywords
potential
transistor
pixel circuit
drive transistor
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019194927A
Other languages
English (en)
Other versions
JP7253796B2 (ja
Inventor
哲郎 山本
Tetsuo Yamamoto
哲郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joled Inc
Original Assignee
Joled Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joled Inc filed Critical Joled Inc
Priority to JP2019194927A priority Critical patent/JP7253796B2/ja
Priority to US17/006,023 priority patent/US11270639B2/en
Priority to CN202010894453.9A priority patent/CN112735338B/zh
Priority to EP20193908.9A priority patent/EP3816979A1/en
Publication of JP2021067900A publication Critical patent/JP2021067900A/ja
Application granted granted Critical
Publication of JP7253796B2 publication Critical patent/JP7253796B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0465Improved aperture ratio, e.g. by size reduction of the pixel circuit, e.g. for improving the pixel density or the maximum displayable luminance or brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0254Control of polarity reversal in general, other than for liquid crystal displays
    • G09G2310/0256Control of polarity reversal in general, other than for liquid crystal displays with the purpose of reversing the voltage across a light emitting or modulating element within a pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】移動度補正を高速化することができる画素回路等を提供する。【解決手段】画素回路20は、映像信号に基づいて発光する画素回路20であって、発光素子(有機EL素子EL)と、発光素子に供給する電流を調整する駆動トランジスタTdと、映像信号が印加される信号線41と、駆動トランジスタTdとの間に接続される書き込みトランジスタT1とを備え、駆動トランジスタTdは、ゲート電極gと、ゲート電極gに対向する対向電極fと、ゲート電極gと対向電極fとの間に配置されるチャネルchとを有し、信号線41に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間に対向電極fに印加される電位は、発光素子の発光期間に対向電極fに印加される電位より、駆動トランジスタTdの抵抗値を低減させる。【選択図】図16

Description

本開示は、画素回路、及び、表示装置に関する。
自発光型表示装置に用いられる電気光学素子として、有機EL(Electro Luminescence)素子が知られている。有機EL素子は、有機薄膜に電界をかけると発光する現象を利用した電気光学素子であり、有機EL素子を流れる電流値を制御することで発色の階調を得ている。そのため、有機EL素子を用いる表示装置は、有機EL素子の電流量を制御するための駆動トランジスタと、駆動トランジスタの制御電圧を保持する保持容量(キャパシタ)とを含む画素回路が画素ごとに設けられている。
駆動トランジスタは、当該駆動トランジスタの特性バラツキにより有機EL素子の発光輝度などに影響を与えることがある。駆動トランジスタの特性バラツキは、閾値電圧のバラツキ、移動度のバラツキなどである。そこで、特許文献1には、駆動トランジスタの閾値電圧のバラツキを補正する閾値電圧補正、及び、駆動トランジスタの移動度のバラツキを補正する移動度補正を行う表示装置が開示されている。
特開2013−057947号公報
ところで、近年、表示装置の大型化又は高開口率化が進められている。表示装置が大型化又は高開口率化することで、各画素回路に含まれる有機EL素子の面積も大型化する。これに伴い、有機EL素子の容量は大きくなる。有機EL素子の容量が大きくなると、移動度補正に要する時間が長くなる。そのため、特許文献1の表示装置では、表示装置が大型化又は高開口率化すると、移動度補正に要する時間が長くなる課題がある。
そこで、本開示は、上記の課題に鑑みてなされたものであり、移動度補正を高速化することができる画素回路、及び、表示装置を提供することを目的とする。
上記目的を達成するために、本開示の一態様に係る画素回路は、映像信号に基づいて発光する画素回路であって、発光素子と、前記発光素子に供給する電流を調整する駆動トランジスタと、前記映像信号が印加される信号線と、前記駆動トランジスタとの間に接続される書き込みトランジスタとを備え、前記駆動トランジスタは、ゲート電極と、前記ゲート電極に対向する対向電極と、前記ゲート電極と前記対向電極との間に配置されるチャネルとを有し、前記信号線に前記映像信号が印加された状態で前記書き込みトランジスタが導通する書き込み期間に前記対向電極に印加される電位は、前記発光素子の発光期間に前記対向電極に印加される電位より、前記駆動トランジスタの抵抗値を低減させる。
また、上記目的を達成するために、本開示の一態様に係る表示装置は、前記画素回路と、前記信号線に前記映像信号を印加する水平セレクタと、前記書き込みトランジスタを制御するライトスキャナと、前記駆動トランジスタのソース電極又はドレイン電極に電位を印加する電源スキャナとを備える。
本開示の一態様に係る画素回路等によれば、移動度補正を高速化することができる。
図1は、従来技術の表示装置の概略構成を示す図である。 図2は、従来技術の画素回路を示す回路図である。 図3は、有機EL素子のI−V特性の経時変化を示す図である。 図4は、従来技術の表示装置の回路動作を説明するためのタイミングチャートである。 図5は、従来技術の表示装置の回路動作を説明するための第1図である。 図6は、従来技術の表示装置の回路動作を説明するための第2図である。 図7は、従来技術の表示装置の回路動作を説明するための第3図である。 図8は、従来技術の表示装置の回路動作を説明するための第4図である。 図9は、従来技術の表示装置の駆動トランジスタのソース電位の変化を示す第1図である。 図10は、従来技術の表示装置の回路動作を説明するための第5図である。 図11は、従来技術の表示装置の回路動作を説明するための第6図である。 図12は、従来技術の表示装置の駆動トランジスタのソース電位と移動度との関係を示す第2図である。 図13は、従来技術の表示装置の回路動作を説明するための第7図である。 図14は、従来技術の表示装置の回路動作を説明するための第8図である。 図15は、実施の形態1に係る表示装置の概略構成を示す図である。 図16は、実施の形態1に係る画素回路を示す回路図である。 図17は、従来技術の画素回路が有する駆動トランジスタの構造を示す模式的な断面図である。 図18は、実施の形態1に係る駆動トランジスタの構造を示す模式的な断面図である。 図19は、実施の形態1に係る表示装置の回路動作を説明するためのタイミングチャートである。 図20は、実施の形態2に係る表示装置の概略構成を示す図である。 図21は、実施の形態2に係る画素回路を示す回路図である。 図22は、実施の形態2に係る表示装置の回路動作を説明するためのタイミングチャートである。 図23は、実施の形態3に係る表示装置の概略構成を示す図である。 図24は、実施の形態3に係る画素回路を示す回路図である。 図25は、実施の形態4に係る表示装置の概略構成を示す図である。 図26は、実施の形態4に係る画素回路を示す回路図である。 図27は、実施の形態5に係る表示装置の概略構成を示す図である。 図28は、実施の形態5に係る画素回路を示す回路図である。 図29は、実施の形態5に係る表示装置の回路動作を説明するためのタイミングチャートである。 図30は、実施の形態5の変形例に係る画素回路を示す回路図である。 図31は、実施の形態6に係る表示装置の概略構成を示す図である。 図32は、実施の形態6に係る画素回路を示す回路図である。 図33は、実施の形態6に係る表示装置の回路動作を説明するためのタイミングチャートである。 図34は、実施の形態7に係る表示装置の概略構成を示す図である。 図35は、実施の形態7に係る画素回路を示す回路図である。 図36は、実施の形態7に係る表示装置の回路動作を説明するためのタイミングチャートである。
(本開示の基礎となった知見)
本開示の各実施の形態の説明に先立ち、本開示の基礎となった知見について説明する。
まずは、従来技術の表示装置の概略構成について、図1を参照しながら説明する。図1は、従来技術の表示装置901の概略構成を示す図である。
図1に示すように、本開示の前提となる表示装置901は、有機EL素子を含む複数の画素回路920が行列状に2次元配置されて構成される画素アレイ930と、水平セレクタ40と、電源スキャナ50と、ライトスキャナ60とを備える。水平セレクタ40、電源スキャナ50、及び、ライトスキャナ60は、画素アレイ930の周辺に配置される駆動回路部(駆動部)である。
表示装置901がカラー表示対応の場合は、カラー画像を形成する単位となる1つの画素(単位画素/ピクセル)は、複数のサブ画素回路から構成され、このサブ画素回路の各々が図1の画素回路920に相当することになる。より具体的には、カラー表示対応の表示装置901では、1つの画素は、例えば、青色(Blue:B)光を発する第一のサブ画素回路、赤色(Red;R)光を発する第二のサブ画素回路、緑色(Green;G)光を発する第三のサブ画素回路の3つのサブ画素回路から構成される。青色光は第一の発光色の光の一例であり、赤色光は第二の発光色の光の一例であり、緑色光は第三の発光色の光の一例である。
ただし、1つの画素としては、RGBの3原色のサブ画素回路の組み合わせに限定されず、3原色のサブ画素回路に更に1色又は複数色のサブ画素回路を加えて1つの画素を構成することも可能である。例えば、輝度向上のために白色(White;W)光を発光するサブ画素回路を加えて、1つの画素を構成したり、色再現範囲を拡大するために補色光を発する少なくとも1つのサブ画素回路を加えて1つの画素を構成したりすることも可能である。
また、画素アレイ930には、m行n列の画素の配列に対して、行方向(画素行の画素回路920の配列方向)に沿って電源線51と走査線61とが画素行ごとに配線されている。さらに、m行n列の画素回路920の配列に対して、列方向(画素列の画素回路920の配列方向)に沿って信号線41が画素列毎に配線されている。
複数の信号線41は、水平セレクタ40の対応する画素列の出力端にそれぞれ接続されている。複数の電源線51は、電源スキャナ50の対応する画素行の出力端にそれぞれ接続されている。複数の走査線61は、ライトスキャナ60の対応する画素行の出力端にそれぞれ接続されている。
水平セレクタ40(信号線駆動回路)は、信号供給源(図示せず)から供給される輝度情報に応じた映像信号の信号電圧Vsig(以下、信号電圧とも記載する)と基準電位Vofsとを選択的に出力する。ここで、基準電位Vofsは、映像信号の信号電圧Vsigの基準となる電圧(例えば、映像信号の黒レベルに相当する電圧)であり、後述する閾値補正動作の際に用いられる。
水平セレクタ40から出力される信号電圧Vsig及び基準電位Vofsは、信号線41を介して画素アレイ930の各画素回路920に対して、ライトスキャナ60による走査によって選択された画素行の単位で書き込まれる。すなわち、水平セレクタ40は、信号電圧Vsigを行(ライン)単位で書き込む線順次書き込みの駆動形態を採っている。
電源スキャナ50(電源供給走査回路)は、クロックパルスckに同期してスタートパルスspを順にシフトするシフトレジスタ回路等によって構成されている。この電源スキャナ50は、ライトスキャナ60による線順次走査に同期して、第一電位Vccと当該第一電位Vccよりも低い第二電位Vssとを切り替えて電源線51に供給する。後述するように、第一電位Vcc及び第二電位Vssの切り替え(電源電位の切り替え)によって、画素回路920の発光及び非発光(消光)の制御が行なわれる。
ライトスキャナ60(書き込み走査回路)は、クロックパルスckに同期してスタートパルスspを順にシフト(転送)するシフトレジスタ回路等によって構成されている。このライトスキャナ60は、画素アレイ930の各画素回路920への映像信号の信号電圧の書き込みに際して、走査線61に対して書き込み走査信号(書き込み電圧であり、以降においてオン信号とも記載する)を順次供給することによって画素アレイ930の各画素回路920を行単位で順番に走査(線順次走査)する。
次に、上記のような表示装置901が備える画素回路920について、図2を参照しながら説明する。図2は、従来技術の画素回路920を示す回路図である。
図2に示すように、画素回路920は、映像信号に対応する輝度で有機EL素子ELを発光させる回路であり、有機EL素子ELと、保持容量C1と、書き込みトランジスタT1と、駆動トランジスタT2とを有する。また、画素回路920は、さらに、保持容量C1に参照電圧を印加するための薄膜トランジスタである参照トランジスタ、有機EL素子ELの第一電極の電位を初期化するための薄膜トランジスタである初期化トランジスタなどを有していてもよい。
有機EL素子ELは、第一電極及び第二電極を有する発光素子である。図2に示す例では、第一電極及び第二電極は、それぞれ有機EL素子ELのアノード及びカソードである。有機EL素子ELの第二電極は、カソード電源線に接続される。カソード電源線には、カソード電位Vcatが供給される。有機EL素子ELは、発光素子の一例である。カソード電源線は、全画素回路920に対して共通に配線されている。
保持容量C1は、電圧を保持するための素子であり、駆動トランジスタT2のゲート電極gとソース電極sとの間に接続される。
書き込みトランジスタT1は、保持容量C1に映像信号に対応する電圧を印加するための薄膜トランジスタである。書き込みトランジスタT1のドレイン電極及びソース電極の一方に信号線41が接続され、他方に保持容量C1及び駆動トランジスタT2のゲート電極gが接続される。書き込みトランジスタT1のゲート電極には、走査線61が接続される。書き込みトランジスタT1は、例えば、オン信号に従ってオン状態となり、映像信号に対応する電圧を保持容量C1に保持させる。
駆動トランジスタT2は、有機EL素子ELの第一電極(アノード)と接続され、保持容量C1に保持された電圧に応じた電流を有機EL素子ELに供給する薄膜トランジスタである。駆動トランジスタT2のソース電極sが有機EL素子ELの第一電極に接続され、ドレイン電極dが電源線51に接続される。電源線51には、電源スキャナ50から第一電位Vcc又は第二電位Vssが選択的に供給される。
書き込みトランジスタT1及び駆動トランジスタT2として、例えば、Nチャネル型のTFT(Thin Film Transistor:薄膜トランジスタ)を用いることができるが、書き込みトランジスタT1及び駆動トランジスタT2の導電型の組み合わせはこれに限定されない。
また、有機EL素子ELの第一電極の電位及び電源線51から供給される電位の関係によっては、駆動トランジスタT2におけるソース電極s及びドレイン電極dの位置関係は図2に示す関係から変化し得る。
上記構成の画素回路920において、書き込みトランジスタT1は、ライトスキャナ60から走査線61を通してゲート電極に印加されるオン信号に応じて導通状態となる。これにより、書き込みトランジスタT1は、信号線41を通して水平セレクタ40から供給される、信号電圧Vsig又は基準電位Vofsをサンプリングして画素回路920内に書き込む。書き込みトランジスタT1によって書き込まれた信号電圧Vsig又は基準電位Vofsは、駆動トランジスタT2のゲート電極gに印加されるとともに保持容量C1に保持される。
駆動トランジスタT2は、電源線51からの電源電位が第一電位Vccにあるときには、図2に示すように、電源線51側がドレイン電極d、有機EL素子EL側がソース電極sとなって飽和領域で動作する。これにより、駆動トランジスタT2は、電源線51から電流の供給を受けて有機EL素子ELを電流駆動にて発光駆動する。より具体的には、駆動トランジスタT2は、飽和領域で動作することにより、保持容量C1に保持された信号電圧Vsigの電圧値に応じた電流値の駆動電流を有機EL素子ELに供給し、当該有機EL素子ELを電流駆動することによって発光させる。
駆動トランジスタT2は、さらに、電源線51からの電源電位が第一電位Vccから第二電位Vssに切り替わったときには、電源線51側がソース電極s、有機EL素子EL側がドレイン電極dとなってスイッチングトランジスタとして動作する。これにより、駆動トランジスタT2は、有機EL素子ELへの駆動電流の供給を停止し、有機EL素子ELを非発光状態にする。すなわち、駆動トランジスタT2は、有機EL素子ELの発光及び非発光を制御するトランジスタとしての機能を有する。
この駆動トランジスタT2のスイッチング動作により、有機EL素子ELが非発光状態となる期間(以降において、非発光期間とも記載する)を設けることで、有機EL素子ELの発光期間と非発光期間との割合(デューティ)を制御することができる。このデューティ制御により、1フレーム期間に亘って画素回路920が発光することに伴う残像ボケを低減することができるため、特に、動画の品位をより優れたものとすることができる。
電源スキャナ50から電源線51を通して選択的に供給される第一電位Vcc及び第二電位Vssのうち、第一電位Vccは、有機EL素子ELを発光駆動する駆動電流を駆動トランジスタT2に供給するための電源電位である。また、第二電位Vssは、有機EL素子ELに対して負バイアス(逆バイアス)をかけるための電源電位である。この第二電位Vssは、基準電位Vofsよりも低い電位、例えば、駆動トランジスタT2の閾値電圧をVthとするときVofs−Vthよりも低い電位に設定される。
ここで、有機EL素子ELのI−V特性(電流−電圧特性)の経時変化について、図3を参照しながら説明する。図3は、有機EL素子ELのI−V特性の経時変化を示す図である。
図3に示すように、有機EL素子ELは、経時変化により実線で示されるI−V特性から点線で示されるI−V特性へと変化する。駆動トランジスタT2の閾値電圧をVth、移動度をμ、実効チャネル幅(実効ゲート幅)をW、実効チャネル長(実効ゲート長)をL、単位ゲート容量をC、ゲートソース間の電圧をVgsとすると、ドレインソース間電流Idsは、
Ids=1/2×μ×W/L×C(Vgs−Vth) (式1)
で示される。なお、駆動トランジスタT2のドレインソース間電流Idsは、有機EL素子ELの駆動電流にほぼ相当する。以下では、便宜上、ドレインソース間電流Idsが有機EL素子ELの駆動電流に相当する例について説明する。また、駆動電流を駆動電流Idsとも記載する。
このとき、図2に示す画素回路920では、駆動トランジスタT2が一定のドレイン電流Idsを流そうとしても、図3に示すグラフから分かるように有機EL素子ELの印加電圧Vが大きくなるため、有機EL素子ELの第一電極(アノード)の電位(つまり、駆動トランジスタT2のソース電位Vs)が上昇する。このとき駆動トランジスタT2のゲートはフローティング状態であるため、ほぼ一定のゲートソース間電圧Vgsが維持されるように、ソース電位と共にゲート電位も上昇し、ドレイン電流Idsはほぼ一定に保たれる。このことが有機EL素子ELの発光輝度を変化させないように作用する。
しかしながら、画素回路920ごとに駆動トランジスタT2の閾値電圧Vth及び移動度μは異なっているため、式1に応じて、電流値にバラツキが生じ、発光輝度も画素回路920ごとに変化してしまう。そのため、駆動トランジスタT2を有する画素回路920においては、閾値電圧Vth及び移動度μのバラツキを抑えるため、それらの補正動作を行うことが求められる。補正動作については、後述する。
次に、上記の表示装置901の基本的な回路動作について、図4〜図14を参照しながら説明する。図4は、従来技術の表示装置901の回路動作を説明するためのタイミングチャートである。図4は、書き込みトランジスタT1のゲート電極の電位(走査線61の電位であり、高電位(ON)又は低電位(OFF))、電源線51の電位(Vcc又はVss)、信号線41の電位(Vsig又はVofs)、駆動トランジスタT2のゲート電極gの電位(図4中のT2ゲート)、及び、駆動トランジスタT2のソース電極sの電位(図4中のT2ソース)のそれぞれの変化を示している。
(前表示フレームの発光期間)
図4に示すタイミングチャートにおいて、時刻t1以前は、前の表示フレームにおける有機EL素子ELの発光期間である。この前表示フレームの発光期間では、電源線51の電位が第一電位Vcc(以下、「高電位Vcc」とも記載する)であり、また、書き込みトランジスタT1が非導通状態である。
このとき、駆動トランジスタT2は、飽和領域で動作するように設定されている。これにより、図5に示すように、駆動トランジスタT2のゲートソース間電圧Vgsに応じた駆動電流Ids(ドレインソース間電流)が、電源線51から駆動トランジスタT2を通して有機EL素子ELに供給される。従って、有機EL素子ELが駆動電流Idsの電流値に応じた輝度で発光する。なお、図5は、従来技術の表示装置901の回路動作を説明するための第1図である。また、このとき有機EL素子ELに流れる駆動電流Idsは、駆動トランジスタT2のゲートソース間電圧Vgsに応じて、式1により算出される値をとる。
(非発光期間)
時刻t1になると、線順次走査の新しい表示フレーム(現表示フレーム)に入る。そして、図6に示すように、電源線51の電位が高電位Vccから第二電位Vss(以下、「低電位Vss」とも記載する)に切り替わる。低電位Vssは、信号線41の基準電位Vofsに対してVofs−Vthよりも十分に低い電位であり、有機EL素子ELを消光させることができる電位である。なお、図6は、従来技術の表示装置901の回路動作を説明するための第2図である。
ここで、有機EL素子ELの閾値電圧をVthel、カソード電位をVcatとすると、低電位Vssが、
Vss<Vthel+Vcat (式2)
を満たす場合、駆動トランジスタT2のソース電位Vsが低電位Vssにほぼ等しくなるため、有機EL素子ELは逆バイアス状態となって消光する。そして、駆動トランジスタT2の電源線51側がソース電極sとなる。このとき、有機EL素子ELの第一電極(アノード)は、Vssに充電される。
(閾値補正準備期間)
次に、時刻t2で走査線61の電位が低電位側から高電位側に遷移する(OFF→ON)ことで、図7に示すように、書き込みトランジスタT1が導通状態となる。図7は、従来技術の表示装置901の回路動作を説明するための第3図である。
このとき、水平セレクタ40から信号線41に対して基準電位Vofsが供給された状態にあるため、駆動トランジスタT2のゲート電位Vgが基準電位Vofsになる。また、駆動トランジスタT2のソース電位Vsは、基準電位Vofsよりも十分に低い電位、すなわち、低電位Vssである。
このとき、駆動トランジスタT2のゲートソース間電圧Vgsは、Vofs−Vssとなる。ここで、Vofs−Vssが駆動トランジスタT2の閾値電圧Vthよりも大きくないと、後述する閾値補正動作を行うことができないため、
Vofs−Vss>Vth (式3)
となる電位関係に設定する必要がある。
このように、駆動トランジスタT2のゲート電位Vgを基準電位Vofsに固定し、かつ、ソース電位Vsを低電位Vssに固定して初期化する処理が、後述する閾値補正動作を行う前の準備(閾値補正準備)の処理である。従って、基準電位Vofs及び低電位Vssが、駆動トランジスタT2のゲート電位Vg及びソース電位Vsの各初期化電位となる。
時刻t3で走査線61の電位が高電位側から低電位側に遷移する(ON→OFF)ことで、閾値補正準備期間が終了する。時刻t2から時刻t3までが閾値補正準備期間である。
(閾値補正期間)
次に、時刻t4で、書き込みトランジスタT1が導通している状態で、電源線51の電位が低電位Vssから高電位Vccに切り替わると、図8に示すように、有機EL素子ELの第一電極が駆動トランジスタT2のソース電極sとなり、駆動トランジスタT2に電流が流れる。これにより、駆動トランジスタT2のゲート電位Vgが基準電位Vofsに保たれた状態で閾値補正動作が開始される。すなわち、ゲート電位Vgから駆動トランジスタT2の閾値電圧Vthを減じた電位(Vofs−Vth)に向けて駆動トランジスタT2のソース電位Vsが上昇を開始する。なお、図8は、従来技術の表示装置901の回路動作を説明するための第4図である。
ここでは、便宜上、駆動トランジスタT2のゲート電位Vgの基準電位Vofs(初期化電位)を基準とし、当該基準電位Vofsから駆動トランジスタT2の閾値電圧Vthを減じた電位に向けてソース電位Vsを変化させる動作(処理)を閾値補正動作(閾値補正処理)と呼んでいる。この閾値補正動作が進むと、やがて、駆動トランジスタT2のゲートソース間電圧Vgsが駆動トランジスタT2の閾値電圧Vthに収束する。この閾値電圧Vthに相当する電圧は、保持容量C1に保持される。
なお、閾値補正動作を行う期間(図4中の閾値補正期間)において、電流が保持容量C1側に流れ、有機EL素子EL側には流れないようにするために、有機EL素子ELがカットオフ状態(ハイインピーダンス状態)となるようにカソード電源線のカソード電位Vcatを設定しておくこととする。
有機EL素子ELの等価回路は、図8に示すように、ダイオード及び等価容量Celで表される。そして、駆動トランジスタT2のソース電位をVelとすると、
Vel≦Vcat+Vthel (式4)
の関係が成り立つ限り、駆動トランジスタT2の電流は保持容量C1及び等価容量Celを充電するために使われる。例えば、有機EL素子ELのリーク電流が駆動トランジスタT2に流れる電流よりもかなり小さい限り、駆動トランジスタT2の電流は保持容量C1及び等価容量Celを充電するために使われる。なお、ソース電位Velは、有機EL素子ELの第一電極の電位でもある。
ソース電位Velの変化について、図9を参照しながら説明する。図9は、従来技術の表示装置901の駆動トランジスタT2のソース電位Velの変化を示す第1図である。図9は、閾値補正動作のときのソース電位Velの変化を模式的に示す図である。
図9に示すように、ソース電位Velは、時間とともに上昇する。ソース電位Velは、VssからVofs−Vthに向けて漸次的に上昇する。
次に、時刻t5で、走査線61の電位が低電位側に遷移する(ON→OFF)ことで、書き込みトランジスタT1が非導通状態となる。書き込みトランジスタT1は、時刻t4から第一期間経過した時刻t5に非導通状態となる。このとき、駆動トランジスタT2のゲート電極gが信号線41から電気的に切り離されることによってフローティング状態になる。しかし、ゲートソース間電圧Vgsが駆動トランジスタT2の閾値電圧Vthよりも大きいため、図10に示すように、電流(ドレイン電流Ids)が流れ、駆動トランジスタT2のゲート、ソース電位は上昇する。なお、このとき有機EL素子ELには逆バイアスがかかっているため、当該有機EL素子ELが発光することはない。なお、図10は、従来技術の表示装置901の回路動作を説明するための第5図である。
次に、時刻t6において、信号線41の電位が基準電位Vofsとなっている期間(例えば、基準電位Vofsとなったとき)に書き込みトランジスタT1を導通状態として、再度閾値補正動作を開始する。この動作を繰り返すことで、最終的に駆動トランジスタT2のゲートソース間電圧Vgsは、閾値電圧Vthという値をとる。このとき、駆動トランジスタT2のソース電位Velは、
Vel=Vofs−Vth≦Vcat+Vthel (式5)
となっている。
次に、時刻t7で、走査線61の電位が低電位側に遷移する(ON→OFF)ことで、書き込みトランジスタT1が非導通状態となる。書き込みトランジスタT1は、時刻t6から第二期間経過した時刻t7に非導通状態となる。
また、時刻t8から時刻t9までの期間においても、再度閾値補正動作が行われる。時刻t9は、閾値補正動作が終了する時刻であり、書き込みトランジスタT1が非導通状態となる。時刻t4から時刻t5まで、時刻t6から時刻t7まで、及び、時刻t8〜時刻t9までが閾値補正期間である。
このように、表示装置901は、閾値補正動作を書き込み動作及び移動度補正動作とともに行う1H期間に加えて、当該1H期間に先行する複数の水平期間に亘って分割して閾値補正動作を複数回実行する、いわゆる、分割閾値補正動作を行ってもよい。
この分割閾値補正動作によれば、高精細化に伴う多画素化によって1水平期間として割り当てられる時間が短くなったとしても、閾値補正期間として複数の水平期間に亘って十分な時間を確保することができる。従って、1水平期間として割り当てられる時間が短くなっても、閾値補正期間として十分な時間を確保できるため、閾値補正動作を確実に実行することができる。なお、閾値補正動作を行う回数は、上記に限定されず、例えば、1回だけであってもよい。
(書き込み及び移動度補正期間)
次に、時刻t10で、信号線41の電位が基準電位Vofsから映像信号の信号電圧Vsigに切り替わった状態で、走査線61の電位が高電位側に遷移する(OFF→ON)ことで、図11に示すように、書き込みトランジスタT1が導通状態になって映像信号の信号電圧Vsigがサンプリングされ、画素回路920内に書き込まれる。なお、図11は、従来技術の表示装置901の回路動作を説明するための第6図である。また、信号電圧Vsigは、映像信号の階調に応じた電圧である。
この書き込みトランジスタT1による信号電圧Vsigの書き込みにより、駆動トランジスタT2のゲート電位Vgが信号電圧Vsigになる。このとき、有機EL素子ELは、カットオフ状態にある。従って、映像信号の信号電圧Vsigに応じて電源線51から駆動トランジスタT2に流れる電流(ドレインソース間電流Ids)は、保持容量C1及び等価容量Celに流れ込む。これにより、保持容量C1及び等価容量Celの充電が開始される。
例えば、駆動トランジスタT2のソース電位Vsが有機EL素子ELの閾値電圧Vthelとカソード電位Vcatとの和を越えなければ、駆動トランジスタT2の電流は、保持容量C1及び等価容量Celを充電するのに使われる。
有機EL素子ELの等価容量Celが充電されることにより、駆動トランジスタT2のソース電位Vsが時間の経過とともに上昇していく。このとき、駆動トランジスタT2の閾値電圧Vthの画素回路920ごとのバラツキは閾値補正動作により既にキャンセルされており、駆動トランジスタT2のドレインソース間電流Idsは、当該駆動トランジスタT2の移動度μに依存したものとなる(式1参照)。これによって、駆動トランジスタT2のゲートソース間電圧Vgsは、移動度μを反映して小さくなり一定時間経過後に完全に移動度μを補正するゲートソース間電圧Vgsとなる。なお、駆動トランジスタT2の移動度μは、当該駆動トランジスタT2のチャネルを構成する半導体薄膜の移動度である。
図12は、従来技術の表示装置901の駆動トランジスタT2のソース電位Vsと移動度μとの関係を示す第2図である。図12は、移動度μのバラツキによるソース電位の変化を示す図である。
図12に示すように、移動度μが相対的に大きい駆動トランジスタT2を有する画素回路920では、駆動トランジスタT2の電流量が大きく、移動度μが相対的に小さい場合に比べて、ソース電位Vsの上昇は早くなる。また、移動度μが相対的に小さい駆動トランジスタT2を有する画素回路920では、駆動トランジスタT2の電流量が小さく、移動度μが相対的に大きい場合に比べて、ソース電位Vsの上昇は遅くなる。
例えば、移動度μにバラツキがある2つの画素回路920において、駆動トランジスタT2のゲート電極gに対して、同じレベルの信号電圧Vsigを書き込んだ場合について説明する。この場合、移動度補正を行わないと、移動度μの大きい画素回路920に流れるドレインソース間電流Idsと、移動度μの小さい画素回路920に流れるドレインソース間電流Idsとに、大きな差が生じる。これにより、移動度μの画素回路920ごとのバラツキに起因して、ドレインソース間電流Idsに大きな差が生じると、画像のユニフォーミティ(例えば、明るさの均一性)が損なわれる。
そこで、上記のように、移動度補正が行われる。以下で、移動度補正について、さらに説明する。
映像信号の信号電圧Vsigに対する保持容量C1の保持電圧の比率、すなわち、書き込みゲインが1(理想値)であると仮定すると、駆動トランジスタT2のソース電位VsがVofs−VthからΔVs上昇することで、駆動トランジスタT2のゲートソース間電圧VgsはVsig−Vofs+Vth−ΔVsとなる。ΔVsは、ソース電位Vsの上昇した電位を示す。
すなわち、駆動トランジスタT2のソース電位Vsの上昇分ΔVsは、保持容量C1に保持された電圧(Vsig−Vofs+Vth)から差し引かれるように、換言すれば、保持容量C1の充電電荷を放電するように作用する。さらに換言すれば、駆動トランジスタT2のソース電位Vsの上昇分ΔVsは、保持容量C1に対して負帰還がかけられたことになる。従って、ソース電位Vsの上昇分ΔVsは、負帰還の帰還量となる。
このように、駆動トランジスタT2に流れるドレインソース間電流Idsに応じた帰還量ΔVsでゲートソース間電圧Vgsに負帰還をかけることで、駆動トランジスタT2のドレインソース間電流Idsの移動度μに対する依存性を打ち消すことができる。この打ち消す動作が、駆動トランジスタT2の移動度μの画素回路920ごとのバラツキを補正する移動度補正動作である。
より具体的には、移動度μの大きな画素回路920で帰還量ΔVsの補正をかけると、ドレインソース間電流Idsは、第一電流値から第二電流値まで大きく降下する。一方、移動度μの小さな画素回路920の帰還量ΔVsは小さいため、ドレインソース間電流Idsは、第三電流値(<第一電流値)から第四電流値まで降下する。第二電流値と第四電流値とが等しくなるような期間、移動度補正を行うことで、移動度μの画素回路920ごとのバラツキが補正される。負帰還の帰還量ΔVsは、移動度補正動作の補正量とも言える。
また、駆動トランジスタT2のゲート電極gに書き込まれる映像信号の信号振幅(Vsig−Vofs)が高いほど、ドレインソース間電流Idsが大きくなるため、負帰還の帰還量ΔVsの絶対値も大きくなる。従って、発光輝度レベルに応じた移動度補正動作が行われる。
(発光期間)
次に、時刻t11で、走査線61の電位が低電位側に遷移する(ON→OFF)ことで、書き込みトランジスタT1が非導通状態となり、書き込み動作が終了する。これにより、駆動トランジスタT2のゲート電極gは、信号線41から電気的に切り離されるためにフローティング状態になる。時刻t10から時刻t11までが書き込み及び移動度補正期間である。
ここで、駆動トランジスタT2のゲート電極gがフローティング状態にあるときは、駆動トランジスタT2のゲートソース間に保持容量C1が接続されていることにより、駆動トランジスタT2のソース電位Vsの変動に連動してゲート電位Vgも変動する。すなわち、駆動トランジスタT2のソース電位Vs及びゲート電位Vgは、保持容量C1に保持されているゲートソース間電圧Vgsを保持したまま上昇する。そして、駆動トランジスタT2のソース電位Vsは、駆動トランジスタT2のドレインソース間電流Ids(飽和電流)に応じた有機EL素子ELの発光電圧まで上昇する。
このように、駆動トランジスタT2のゲート電位Vgがソース電位Vsの変動に連動して変動する動作がブートストラップ動作である。換言すれば、ブートストラップ動作は、保持容量C1に保持されたゲートソース間電圧Vgs、すなわち、保持容量C1の両端間電圧を保持したまま、ゲート電位Vg及びソース電位Vsが変動する動作である。
駆動トランジスタT2のゲート電極gがフローティング状態になり、それと同時に、駆動トランジスタT2のドレインソース間電流Idsが有機EL素子ELに流れ始めることにより、図13に示すように、当該電流Idsに応じて有機EL素子ELの第一電極(アノード)の電位が電位Vxまで上昇する。そして、有機EL素子ELの第一電極の電位Vx(例えば、図13中の点Bの電位)がVthel+Vcatを越えると、有機EL素子ELに駆動電流Idsが流れ始めるため有機EL素子ELが発光を開始する。なお、図13は、従来技術の表示装置901の回路動作を説明するための第7図である。
上記のような画素回路920において、有機EL素子ELは、発光時間が長くなると、つまり経時変化により、I−V特性が変化(劣化)してしまう。そのため、図13中の点Bの電位も変化する。しかしながら、駆動トランジスタT2のゲートソース間電圧Vgsは一定値に保たれているので、有機EL素子ELに流れる電流は変化しない。よって、有機EL素子ELのI−V特性が変化しても、一定の駆動電流Idsが常に流れ続け、有機EL素子ELの発光輝度が変化することはない。
ここで、信号書き込みにおける移動度補正動作について考える。上述の通り、移動度補正動作は、閾値補正動作終了後に駆動トランジスタT2に電流を流して各画素回路920における駆動トランジスタT2の移動度μのバラツキを補正するソース電位Vs(ゲートソース間電圧Vgs)となるまで、駆動トランジスタT2のソース電位Vsを一定時間上昇させる動作である。このとき、駆動トランジスタT2のソース電位Vsの増加は、駆動トランジスタT2を流れる電流と当該駆動トランジスタT2のソース電極sに接続されている容量とに依存する。
一般的に、表示装置901の発光は、有機EL素子ELに流れる電流量で決定され、その電流量は駆動トランジスタT2によって決定される。画素回路920における駆動トランジスタT2のサイズ(W/L比)は、駆動トランジスタT2のゲート電極gと、駆動トランジスタT2に隣接して配置される配線(例えば、図14では、信号線41)との間の寄生容量Cfによるカップリングノイズの影響を小さくするために、小さくすることが望ましい。しかしながら、駆動トランジスタT2のサイズが小さくなってしまうと移動度補正動作において、駆動トランジスタT2のソース電位Vsの増加が小さくなってしまい、移動度補正にかかる時間が長くなってしまう。なお、図14は、従来技術の表示装置901の回路動作を説明するための第8図である。
また、表示装置901が大型化すると、画素回路(画素)サイズが大きくなり、それだけ有機EL素子ELの面積も大きくなる。これにより、有機EL素子ELの等価容量Celも大きくなり、移動度補正にかかる時間が長くなってしまう。
このため、所定の期間(例えば、1H期間)内に移動度補正を行うことが困難となり、画像にはスジやムラといった表示異常が発生することがある。
そこで、本願発明者は、このような移動度補正動作を行う表示装置において、移動度補正(移動度補正動作)を高速化することができる画素回路、及び、表示装置について、鋭意検討を行い、以下に説明する画素回路等を創案した。
以下、本開示の実施の形態について、図面を用いて説明する。なお、以下に説明する実施の形態は、いずれも本開示における一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示における独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
また、本明細書において、数値、及び、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
(実施の形態1)
実施の形態1に係る画素回路及び表示装置について説明する。
[1−1.表示装置の構成]
まず、本実施の形態に係る表示装置の構成について図15を用いて説明する。図15は、本実施の形態に係る表示装置1の概略構成を示す図である。
図15に示すように、表示装置1は、発光素子を含む複数の画素回路20が行列状に2次元配置されて構成される画素アレイ30と、水平セレクタ40と、電源スキャナ50と、ライトスキャナ60とを備える。本実施の形態では、表示装置1は、シールドスキャナ70をさらに備える。水平セレクタ40、電源スキャナ50、ライトスキャナ60、及び、シールドスキャナ70は、画素アレイ30の周辺に配置される駆動回路部(駆動部)である。
表示装置1がカラー表示対応の場合は、カラー画像を形成する単位となる1つの画素(単位画素/ピクセル)は、複数のサブ画素回路から構成され、このサブ画素回路の各々が図15の画素回路20に相当することになる。より具体的には、カラー表示対応の表示装置1では、1つの画素は、例えば、青色光を発する第一のサブ画素回路、赤色光を発する第二のサブ画素回路、緑色光を発する第三のサブ画素回路の3つのサブ画素回路から構成される。青色光は第一の発光色の光の一例であり、赤色光は第二の発光色の光の一例であり、緑色光は第三の発光色の光の一例である。
ただし、1つの画素としては、RGBの3原色のサブ画素回路の組み合わせに限定されず、3原色のサブ画素回路に更に1色又は複数色のサブ画素回路を加えて1つの画素を構成することも可能である。例えば、輝度向上のために白色(White;W)光を発光するサブ画素回路を加えて、1つの画素を構成したり、色再現範囲を拡大するために補色光を発する少なくとも1つのサブ画素回路を加えて1つの画素を構成したりすることも可能である。
また、画素アレイ30には、m行n列の画素の配列に対して、行方向(画素行の画素回路20の配列方向)に沿って電源線51と走査線61とシールド線71とが画素行ごとに配線されている。さらに、m行n列の画素の配列に対して、列方向(画素列の画素回路20の配列方向)に沿って信号線41が画素列毎に配線されている。
画素回路20は、映像信号に基づいて発光する回路である。以下、本実施の形態に係る画素回路20について、図16を用いて説明する。図16は、本実施の形態に係る画素回路20を示す回路図である。
図16に示すように、画素回路20は、映像信号に対応する輝度で発光素子を発光させる回路であり、有機EL素子ELと、保持容量C1と、書き込みトランジスタT1と、駆動トランジスタTdとを備える。また、画素回路20は、さらに、保持容量C1に参照電圧を印加するための薄膜トランジスタである参照トランジスタ、有機EL素子ELの第一電極の電位を初期化するための薄膜トランジスタである初期化トランジスタなどを有していてもよい。
有機EL素子ELは、第一電極及び第二電極を有する発光素子の一例である。図16に示す例では、第一電極及び第二電極は、それぞれ有機EL素子ELのアノード及びカソードである。有機EL素子ELの第二電極は、カソード電源線に接続される。カソード電源線には、カソード電位Vcatが供給される。本実施の形態では、カソード電位Vcatは、0Vである。有機EL素子ELは、発光素子の一例である。カソード電源線は、全画素回路20に対して共通に配線されている。
保持容量C1は、電圧を保持するための素子であり、駆動トランジスタTdのゲート電極gとソース電極sとの間に接続される。
書き込みトランジスタT1は、保持容量C1に映像信号に対応する電圧を印加するための薄膜トランジスタである。書き込みトランジスタT1は、映像信号が印加される信号線41と、駆動トランジスタTdのゲート電極gとの間に接続される。より具体的には、書き込みトランジスタT1のドレイン電極及びソース電極の一方に信号線41が接続され、他方に保持容量C1及び駆動トランジスタTdのゲート電極gが接続される。書き込みトランジスタT1のゲート電極には、走査線61が接続される。書き込みトランジスタT1は、例えば、オン信号(つまり、高電位の信号)に従ってオン状態となり、映像信号に対応する電圧を保持容量C1に保持させる。
駆動トランジスタTdは、有機EL素子ELの第一電極(アノード)と接続され、保持容量C1に保持された電圧に応じた電流を有機EL素子ELに供給するNチャネル型の薄膜トランジスタである。駆動トランジスタTdは、ゲート電極gと、ゲート電極gに対向する対向電極fと、ゲート電極gと対向電極fとの間に配置されるチャネルとを有する。ここで、駆動トランジスタTdの構造について、図17及び図18を参照して、従来技術の画素回路920が有する駆動トランジスタT2の構造と比較しながら説明する。
図17及び図18は、それぞれ、従来技術の画素回路920が有する駆動トランジスタT2、及び、本実施の形態に係る駆動トランジスタTdの構造を示す模式的な断面図である。図17に示すように、従来技術の画素回路920が有する駆動トランジスタT2は、ゲート電極gと、ドレイン電極dと、ソース電極sと、チャネルchとを有する。なお、図示しないが、各電極間は、絶縁層によって絶縁されている。また、ドレイン電極dとソース電極sとは、機能的に差異はなく、高電位側がドレイン電極d、低電位側がソース電極sとなる。これに対して、本実施の形態に係る駆動トランジスタTdは、駆動トランジスタT2と同様に、ゲート電極gと、ドレイン電極dと、ソース電極sと、チャネルchと有し、さらに、対向電極fを有する。対向電極fは、図17に示すように、チャネルchを挟んでゲート電極gと対向する位置に配置される。これにより、対向電極fにゲート電極gと同等の電位を印加することで、チャネルchに電子を発生させることができるため、対向電極fがゲート電極gと同様に機能する。つまり、駆動トランジスタTdは、ドレインソース間に二つの駆動トランジスタT2が並列に接続されているのと等価な回路として機能し得る。したがって、対向電極fに高電位を印加することで、低電位を印加する場合より、駆動トランジスタTdの抵抗値を低減できる。
なお、図18では、駆動トランジスタTdは、トップゲート型の薄膜トランジスタであるが、ボトムゲート型の薄膜トランジスタであってもよい。
駆動トランジスタTdのソース電極sが有機EL素子ELの第一電極に接続され、ドレイン電極dが電源線51に接続される。電源線51には、電源スキャナ50から第一電位Vcc又は第二電位Vssが選択的に供給される。対向電極fは、チャネルをシールドするシールド電極としても機能する。対向電極fには、シールドスキャナ70から、シールド線(電位印加線)71を介して高抵抗化電位Vh又は低抵抗化電位Vlが選択的に印加される。低抵抗化電位Vlは、対向電極fに印加されることで、高抵抗化電位Vhが対向電極fに印加される場合より、駆動トランジスタTdの抵抗値を低減させる電位である。ここで、駆動トランジスタTdの抵抗値とは、駆動トランジスタTdのチャネルの抵抗値を意味する。本実施の形態のように、駆動トランジスタTdがNチャネル型の薄膜トランジスタである場合には、低抵抗化電位Vlは、高抵抗化電位Vhより高い電位である。
書き込みトランジスタT1として、例えば、Nチャネル型のTFTを用いることができるが、書き込みトランジスタT1の導電型はこれに限定されない。
また、有機EL素子ELの第一電極の電位及び電源線51から供給される電位の関係によっては、駆動トランジスタTdにおけるソース電極s及びドレイン電極dの位置関係は図16に示す関係から変化し得る。
水平セレクタ40は、信号線41に映像信号を印加する駆動回路であり、上記従来技術の表示装置901が備える水平セレクタ40と同様の構成を有する。
電源スキャナ50は、画素回路20が有する駆動トランジスタTdのソース電極s又はドレイン電極dに電源線51を介して電位を印加する駆動回路であり、上記従来技術の表示装置901が備える電源スキャナ50と同様の構成を有する。
ライトスキャナ60は、走査線61に電位を印加することで、画素回路20が有する書き込みトランジスタT1を制御する駆動回路であり、上記従来技術の表示装置901が備えるライトスキャナ60と同様の構成を有する。
シールドスキャナ70(電位印加走査回路)は、クロックパルスckに同期してスタートパルスspを順にシフト(転送)するシフトレジスタ回路等によって構成されている。シールドスキャナ70は、信号線41に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間(つまり、移動度補正期間)に、駆動トランジスタTdの対向電極fに低抵抗化電位Vlを印加する。シールドスキャナ70は、有機EL素子ELの発光期間に、駆動トランジスタTdの対向電極fに高抵抗化電位Vhを印加する。シールドスキャナ70は、高抵抗化電位Vh及び低抵抗化電位Vlを、画素アレイ30の各画素回路20に行単位で順次印加する。
[1−2.回路動作]
次に、本実施の形態に係る表示装置1の回路動作について、図19を用いて説明する。図19は、本実施の形態に係る表示装置1の回路動作を説明するためのタイミングチャートである。図19は、書き込みトランジスタT1のゲート電極の電位(走査線61の電位であり、高電位(ON)又は低電位(OFF))、電源線51の電位(Vcc又はVss)、シールド線71の電位(Vh又はVl)、信号線41の電位(Vsig又はVofs)のそれぞれの変化を示している。本実施の形態では、電位Vcc及びVssは、それぞれ、20V程度及び−5V程度であり、高抵抗化電位Vh及び低抵抗化電位Vlは、それぞれ、−5V程度及び10V程度であり、電位Vofsは、0Vである。
図19に示すように、本実施の形態に係る表示装置1は、シールド線71が追加されている点以外は、従来技術の表示装置901と同様の動作を行う。本実施の形態に係る表示装置1においても、従来技術の表示装置901と同様に、非発光期間に閾値補正を行い、閾値補正を行った後に、信号電圧Vsigの画素回路20への書き込みと、移動度補正とを行う。
本実施の形態では、信号線41に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間(つまり時刻t10から時刻t11までの期間)において、駆動トランジスタTdの対向電極fに低抵抗化電位Vlが印加され、有機EL素子ELの発光期間において、対向電極fに高抵抗化電位Vhが印加される。これにより、書き込み及び移動度補正期間において、駆動トランジスタTdの抵抗値が低減されるため、駆動トランジスタTdに流れるドレインソース間電流を増大させることができる。このため、より短時間でソース電位Vsを上昇させることができる。つまり、移動度補正を高速化できる。したがって、表示装置1において、画像にスジやムラといった表示異常が発生すること、つまり、画像のバラツキが発生することを抑制できる。
なお、駆動トランジスタTdの抵抗値を低減することで、駆動トランジスタTdのゲート電極gの電位変動に対して敏感に動作する。このため、駆動トランジスタTdがカップリングノイズなどのノイズの影響を受けやすくなる。これに伴い、表示装置1が表示する画像にノイズが発生し得る。しかしながら、本実施の形態に係る画素回路20では、駆動トランジスタTdは、書き込み及び移動度補正期間にだけ駆動トランジスタTdの抵抗値が低減されるため、それ以外の期間におけるノイズの影響を抑制できる。
[1−3.効果など]
以上のように、本実施の形態に係る画素回路20は、映像信号に基づいて発光する画素回路20であって、有機EL素子ELと、有機EL素子ELに供給する電流を調整する駆動トランジスタTdと、映像信号が印加される信号線41と、駆動トランジスタTdとの間に接続される書き込みトランジスタT1とを備える。駆動トランジスタTdは、ゲート電極gと、ゲート電極gに対向する対向電極fと、ゲート電極gと対向電極fとの間に配置されるチャネルchとを有し、信号線41に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間に対向電極fに印加される電位は、有機EL素子ELの発光期間に対向電極fに印加される電位より、駆動トランジスタTdの抵抗値を低減させる。
このように本実施の形態に係る画素回路20では、書き込み及び移動度補正期間において、駆動トランジスタTdの対向電極fに低抵抗化電位Vlが印加され、有機EL素子ELの発光期間において、対向電極fに高抵抗化電位Vhが印加される。これにより、書き込み及び移動度補正期間において、駆動トランジスタTdの抵抗値が低減されるため、駆動トランジスタTdに流れるドレインソース間電流を増大させることができる。このため、より短時間でソース電位Vsを上昇させることができる。つまり、移動度補正を高速化できる。したがって、複数の画素回路20を備える表示装置1において、複数の画素回路20における移動度のバラツキに起因する、画像のバラツキ(つまり、不均一性)を低減できる。
また、画素回路20では、少なくとも発光期間においては、対向電極fに高抵抗化電位Vhが印加されることから、発光期間における駆動トランジスタTdの抵抗値を低減できる。したがって、書き込み及び移動度補正期間以外の期間におけるノイズの影響を抑制できる。
また、本実施の形態に係る表示装置は、画素回路20と、信号線41に映像信号を印加する水平セレクタ40と、書き込みトランジスタT1を制御するライトスキャナ60と、駆動トランジスタTdのソース電極s又はドレイン電極dに電位を印加する電源スキャナ50とを備える。
これにより、画素回路20において駆動トランジスタTdの移動度補正を高速化できるため、十分に移動度補正を行うことができる。したがって、表示装置1が複数の画素回路を備える場合に、複数の画素回路20における移動度のバラツキに起因する画像のバラツキ(つまり、不均一性)を低減できる。
(実施の形態2)
実施の形態2に係る画素回路及び表示装置について説明する。本実施の形態に係る表示装置は、主に、シールドスキャナ70を用いない点において、実施の形態1に係る表示装置1と相違する。以下、本実施の形態に係る画素回路及び表示装置について、実施の形態1に係る画素回路20及び表示装置1との相違点を中心に説明する。
[2−1.表示装置の構成]
まず、本実施の形態に係る表示装置の構成について図20を用いて説明する。図20は、本実施の形態に係る表示装置1aの概略構成を示す図である。
図20に示すように、表示装置1aは、発光素子を含む複数の画素回路20aが行列状に2次元配置されて構成される画素アレイ30aと、水平セレクタ40と、電源スキャナ50と、ライトスキャナ60とを備える。水平セレクタ40、電源スキャナ50、及びライトスキャナ60は、それぞれ、実施の形態1に係る水平セレクタ40、電源スキャナ50、及びライトスキャナ60と同様の構成を有する。
また、画素アレイ30aには、m行n列の画素の配列に対して、行方向(画素行の画素回路20aの配列方向)に沿って電源線51と走査線61とが画素行ごとに配線されている。さらに、m行n列の画素の配列に対して、列方向(画素列の画素回路20aの配列方向)に沿って信号線41が画素列毎に配線されている。
画素回路20aは、映像信号に基づいて発光する回路である。以下、本実施の形態に係る画素回路20aについて、図21を用いて説明する。図21は、本実施の形態に係る画素回路20aを示す回路図である。
図21に示すように、画素回路20aは、実施の形態1に係る画素回路20と同様に、有機EL素子ELと、保持容量C1と、書き込みトランジスタT1と、駆動トランジスタTdとを備える。
本実施の形態に係る画素回路20aは、駆動トランジスタTdの対向電極fが、走査線61に接続されている点において、実施の形態1に係る画素回路20と相違する。本実施の形態では、対向電極fに印加される電位は、書き込みトランジスタT1のゲート電位と等しい。
[2−2.回路動作]
次に、本実施の形態に係る表示装置1aの回路動作について、図22を用いて説明する。図22は、本実施の形態に係る表示装置1aの回路動作を説明するためのタイミングチャートである。図22は、図19と同様に、書き込みトランジスタT1のゲート電極の電位、電源線51の電位、及び、信号線41の電位のそれぞれの変化を示している。
図22に示すように、本実施の形態に係る書き込みトランジスタT1のゲート電極の電位、電源線51の電位、及び、信号線41の電位は、実施の形態1と同様に変化する。
本実施の形態では、駆動トランジスタTdの対向電極fに、書き込みトランジスタT1のゲート電極の電位と等しい電位が印加されているため、書き込み及び移動度補正期間において、高電位が印加され、発光期間において、低電位が印加される。つまり、本実施の形態においても、書き込み及び移動度補正期間に対向電極fに印加される電位は、発光期間に対向電極fに印加される電位より、駆動トランジスタTdの抵抗値を低減させる。
したがって、本実施の形態に係る画素回路20aにおいても、実施の形態1に係る画素回路20と同様に、移動度補正を高速化できる。したがって、複数の画素回路20aを備える表示装置1aにおいて、複数の画素回路20aにおける移動度のバラツキに起因する、画像のバラツキ(つまり、不均一性)を低減できる。
また、書き込み及び移動度補正期間以外の期間において、対向電極fに高電位が印加される期間は閾値補正を行う(又は閾値補正準備を行う)期間だけに限定されている。このため、対向電極fに常に高電位が印加される場合より、書き込み及び移動度補正期間以外の期間におけるノイズの影響を抑制できる。
[2−3.効果など]
以上のように、本実施の形態に係る画素回路20aにおいては、対向電極fの電位は、書き込みトランジスタT1のゲート電位と等しい。
このような構成においても、実施の形態1に係る画素回路20と同様に、移動度補正の高速化及びノイズの低減を実現できる。また、本実施の形態に係る画素回路20aにおいては、実施の形態1に係る画素回路20で用いたシールドスキャナ70及びシールド線71が不要であるため、実施の形態1に係る画素回路20より構成を簡素化できる。したがって、表示装置1aの額縁部分に収容される駆動回路部を簡素化することで、表示装置1aを狭額縁化できる。
(実施の形態3)
実施の形態3に係る画素回路及び表示装置について説明する。本実施の形態に係る表示装置は、主に、駆動トランジスタTdの対向電極fに、印加電位切替用のトランジスタが接続されている点において、実施の形態1に係る画素回路20及び表示装置1と相違する。以下、本実施の形態に係る画素回路及び表示装置について、実施の形態1に係る画素回路20及び表示装置1との相違点を中心に説明する。
[3−1.表示装置の構成]
まず、本実施の形態に係る表示装置の構成について図23を用いて説明する。図23は、本実施の形態に係る表示装置101の概略構成を示す図である。
図23に示すように、表示装置101は、発光素子を含む複数の画素回路120が行列状に2次元配置されて構成される画素アレイ130と、水平セレクタ40と、電源スキャナ50と、ライトスキャナ60と、シールドスキャナ170とを備える。水平セレクタ40、電源スキャナ50、及びライトスキャナ60は、それぞれ、実施の形態1に係る水平セレクタ40、電源スキャナ50、及びライトスキャナ60と同様の構成を有する。
本実施の形態に係るシールドスキャナ170(電位印加走査回路)は、クロックパルスckに同期してスタートパルスspを順にシフト(転送)するシフトレジスタ回路等によって構成されている。シールドスキャナ170は、信号線41に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間(つまり、移動度補正期間)に、シールド線171にHighレベルの電位を印加する。シールドスキャナ170は、有機EL素子ELの発光期間に、シールド線171にLowレベルの電位を印加する。シールドスキャナ170は、Highレベル又はLowレベルの電位を、画素アレイ130の各画素回路120に行単位で順次印加する。
また、画素アレイ130には、m行n列の画素の配列に対して、行方向(画素行の画素回路120の配列方向)に沿って電源線51と走査線61とシールド線171とが画素行ごとに配線されている。さらに、m行n列の画素の配列に対して、列方向(画素列の画素回路120の配列方向)に沿って信号線41が画素列毎に配線されている。
画素回路120は、映像信号に基づいて発光する回路である。以下、本実施の形態に係る画素回路120について、図24を用いて説明する。図24は、本実施の形態に係る画素回路120を示す回路図である。
図24に示すように、画素回路120は、実施の形態1に係る画素回路20と同様に、有機EL素子ELと、保持容量C1と、書き込みトランジスタT1と、駆動トランジスタTdとを備える。本実施の形態では、画素回路120は、対向電極fに接続される一対のスイッチングトランジスタをさらに備える。本実施の形態では、一対のスイッチングトランジスタは、ゲートを共有するNチャネルトランジスタT3及びPチャネルトランジスタT4を含む。
NチャネルトランジスタT3は、ドレイン電極が駆動トランジスタTdのゲート電極gに接続され、ソース電極が駆動トランジスタTdの対向電極fに接続され、ゲート電極がシールド線171に接続される。
PチャネルトランジスタT4は、ソース電極が駆動トランジスタTdの対向電極fに接続され、ドレイン電極が駆動トランジスタTdのソース電極sに接続され、ゲート電極がシールド線171に接続される。
本実施の形態では、駆動トランジスタTdのゲート電位の方がソース電位より高いため(図4参照)、NチャネルトランジスタT3は、PチャネルトランジスタT4より高電位の点に接続されていると言える。
[3−2.回路動作]
次に、本実施の形態に係る表示装置101の回路動作について説明する。本実施の形態に係る書き込みトランジスタT1のゲート電極の電位、電源線51の電位、及び、信号線41の電位は、図19に示されるタイミングチャートと同様に変化する。また、シールドスキャナ170からシールド線171に印加される電位は、図19に示されるシールド線の電位と同様のタイミングで変化するが、その電位の値は異なる。シールドスキャナ170からシールド線171に印加される電圧は、時刻t10直前までは、Lowレベルであり、時刻t10から時刻t11の直後まではHighレベルである。ここで、Highレベルの電位は、NチャネルトランジスタT3及びPチャネルトランジスタT4のゲート電極に印加された場合に、NチャネルトランジスタT3を導通させ、かつ、PチャネルトランジスタT4を非導通とするのに十分な程度に高い電位である。また、Lowレベルの電位は、NチャネルトランジスタT3及びPチャネルトランジスタT4のゲート電極に印加された場合に、NチャネルトランジスタT3を非導通とし、かつ、PチャネルトランジスタT4を導通させるのに十分な程度に低い電位である。
したがって、本実施の形態では、時刻t10から時刻t11までの期間において、NチャネルトランジスタT3が導通し、PチャネルトランジスタT4が非導通となる。これに伴い、駆動トランジスタTdの対向電極fには、ゲート電極gと同じ電位が印加される。一方、それ以外の期間において、NチャネルトランジスタT3が非導通となり、PチャネルトランジスタT4が導通する。これに伴い、駆動トランジスタTdの対向電極fには、ソース電極sと同じ電位が印加される。ここで、駆動トランジスタTdのゲート電位は、ソース電位より高いため、本実施の形態においても実施の形態1と同様に、書き込み期間に対向電極fに印加される電位は、発光期間に対向電極fに印加される電位より、駆動トランジスタTdの抵抗値を低減させる。したがって、本実施の形態に係る画素回路120においても、実施の形態1と同様の効果が奏される。
さらに、本実施の形態では、低抵抗化電位として、駆動トランジスタTdのゲート電位が印加されるため、移動度補正において、信号電圧Vsigに対応した電流が流れる。したがって、信号電圧Vsigが低い場合には、駆動トランジスタTdには信号電圧Vsigに対応した値となるため、過剰に移動度補正が行われることを抑制できる。
[3−3.効果など]
以上のように、本実施の形態に係る画素回路120においては、書き込み期間に対向電極fに印加される電位は、駆動トランジスタTdのゲート電位であり、発光期間に対向電極fに印加される電位は、書き込み期間における駆動トランジスタTdの抵抗値よりも駆動トランジスタTdの抵抗値を増大させる電位である。より具体的には、発光期間に対向電極fに印加される電位は、駆動トランジスタTdのソース電位である。
このような構成においても、実施の形態1に係る画素回路20と同様の効果が奏される。また、本実施の形態では、書き込み期間に対向電極fに印加される電位が、駆動トランジスタTdのゲート電位であるため、移動度補正において、信号電圧Vsigに対応した電流が流れる。したがって、信号電圧Vsigが低い場合には、駆動トランジスタTdには信号電圧Vsigに対応した値となるため、過剰に移動度補正が行われることを抑制できる。
本実施の形態に係る画素回路120においては、NチャネルトランジスタT3が、駆動トランジスタTdのゲート電極gと対向電極fとの間に接続され、PチャネルトランジスタT4が、駆動トランジスタTdのソース電極sと対向電極fとの間に接続された。しかしながら、本実施の形態の画素回路120の回路構成は、これに限定されない。例えば、画素回路120においては、Pチャネルトランジスタが、駆動トランジスタTdのゲート電極gと対向電極fとの間に接続され、Nチャネルトランジスタが、駆動トランジスタTdのソース電極sと対向電極fとの間に接続されてもよい。つまり、画素回路120において、NチャネルトランジスタT3及びPチャネルトランジスタT4の接続位置を入れ替えてもよい。この場合、シールドスキャナ170からシールド線171に印加する電位を反転させれば、つまり、時刻t10の直前までHighレベルの電位をシールド線171に印加し、時刻t10から時刻t11までLowレベルの信号をシールド線171に印加すれば、画素回路120と同様に動作する画素回路が得られる。
また、本実施の形態に係る画素回路120において、対向電極fに接続される一対のスイッチングトランジスタをさらに備え、対向電極fに印加される電位は、一対のスイッチングトランジスタのオン及びオフによって選択されてもよい。
また、本実施の形態に係る画素回路120において、一対のスイッチングトランジスタは、ゲートを共有するNチャネルトランジスタ及びPチャネルトランジスタを含んでもよい。
(実施の形態4)
実施の形態4に係る画素回路及び表示装置について説明する。本実施の形態に係る表示装置は、主に、シールドスキャナ170を用いない点において、実施の形態3に係る表示装置101aと相違する。以下、本実施の形態に係る画素回路及び表示装置について、実施の形態3に係る画素回路120及び表示装置101との相違点を中心に説明する。
[4−1.表示装置の構成]
まず、本実施の形態に係る表示装置の構成について図25を用いて説明する。図25は、本実施の形態に係る表示装置101aの概略構成を示す図である。
図25に示すように、表示装置101aは、発光素子を含む複数の画素回路120aが行列状に2次元配置されて構成される画素アレイ130aと、水平セレクタ40と、電源スキャナ50と、ライトスキャナ60とを備える。水平セレクタ40、電源スキャナ50、及びライトスキャナ60は、それぞれ、実施の形態1に係る水平セレクタ40、電源スキャナ50、及びライトスキャナ60と同様の構成を有する。
また、画素アレイ130aには、m行n列の画素の配列に対して、行方向(画素行の画素回路120aの配列方向)に沿って電源線51と走査線61とが画素行ごとに配線されている。さらに、m行n列の画素の配列に対して、列方向(画素列の画素回路120aの配列方向)に沿って信号線41が画素列毎に配線されている。
画素回路120aは、映像信号に基づいて発光する回路である。以下、本実施の形態に係る画素回路120aについて、図26を用いて説明する。図26は、本実施の形態に係る画素回路120aを示す回路図である。
図26に示すように、画素回路120aは、実施の形態3に係る画素回路120と同様に、有機EL素子ELと、保持容量C1と、書き込みトランジスタT1と、駆動トランジスタTdと、NチャネルトランジスタT3と、PチャネルトランジスタT4とを備える。
本実施の形態に係る画素回路120aは、NチャネルトランジスタT3及びPチャネルトランジスタT4のゲート電極が、走査線61に接続されている点において、実施の形態3に係る画素回路120と相違する。本実施の形態では、NチャネルトランジスタT3及びPチャネルトランジスタT4のゲート電極に印加される電位は、書き込みトランジスタT1のゲート電位と等しい。
[4−2.回路動作]
次に、本実施の形態に係る表示装置101aの回路動作について説明する。本実施の形態に係る書き込みトランジスタT1のゲート電極の電位、電源線51の電位、及び、信号線41の電位は、実施の形態3と同様に変化する。
本実施の形態では、NチャネルトランジスタT3及びPチャネルトランジスタT4のゲート電極に、書き込みトランジスタT1のゲート電極の電位と等しい電位が印加されているため、書き込み及び移動度補正期間において、高電位が印加され、発光期間において、低電位が印加される。したがって、書き込み及び移動度補正期間において、NチャネルトランジスタT3を導通させ、かつ、PチャネルトランジスタT4を非導通とすることができる。また、発光期間において、NチャネルトランジスタT3を非導通とし、かつ、PチャネルトランジスタT4を導通させることができる。
つまり、本実施の形態に係る画素回路120aは、実施の形態3に係る画素回路120と同様に駆動トランジスタTdの対向電極fの電位を変動させることができる。
したがって、本実施の形態に係る画素回路120aにおいても、実施の形態3に係る画素回路120と同様の効果が奏される。
[4−3.効果など]
以上のように、本実施の形態に係る画素回路120aにおいては、Nチャネルトランジスタ及びPチャネルトランジスタのゲート電位は、書き込みトランジスタT1のゲート電位と等しい。
このような構成においても、実施の形態3に係る画素回路120と同様の効果が奏される。また、本実施の形態に係る画素回路120aにおいては、実施の形態3に係る画素回路120で用いたシールドスキャナ170及びシールド線171が不要であるため、実施の形態3に係る画素回路120より構成を簡素化できる。したがって、表示装置101aの額縁部分に収容される駆動回路部を簡素化することで、表示装置101aを狭額縁化できる。
(実施の形態5)
実施の形態5に係る画素回路及び表示装置について説明する。本実施の形態に係る画素回路は、主に、Pチャネルトランジスタを用いない点において、実施の形態3に係る画素回路120と相違する。以下、本実施の形態に係る画素回路及び表示装置について、実施の形態3に係る画素回路120及び表示装置101との相違点を中心に説明する。
[5−1.表示装置の構成]
まず、本実施の形態に係る表示装置の構成について図27を用いて説明する。図27は、本実施の形態に係る表示装置201の概略構成を示す図である。
図27に示すように、表示装置201は、発光素子を含む複数の画素回路220が行列状に2次元配置されて構成される画素アレイ230と、水平セレクタ40と、電源スキャナ50と、ライトスキャナ60と、第1シールドスキャナ270と、第2シールドスキャナ280とを備える。水平セレクタ40、電源スキャナ50、及びライトスキャナ60は、それぞれ、実施の形態1に係る水平セレクタ40、電源スキャナ50、及びライトスキャナ60と同様の構成を有する。
本実施の形態に係る第1シールドスキャナ270(電位印加走査回路)は、クロックパルスckに同期してスタートパルスspを順にシフト(転送)するシフトレジスタ回路等によって構成されている。第1シールドスキャナ270は、信号線41に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間(つまり、移動度補正期間)に、第1シールド線271にHighレベルの電位を印加する。第1シールドスキャナ270は、有機EL素子ELの発光期間に、第1シールド線271にLowレベルの電位を印加する。第1シールドスキャナ270は、Highレベル又はLowレベルの電位を、画素アレイ230の各画素回路220に行単位で順次印加する。
本実施の形態に係る第2シールドスキャナ280(電位印加走査回路)は、クロックパルスckに同期してスタートパルスspを順にシフト(転送)するシフトレジスタ回路等によって構成されている。第2シールドスキャナ280は、信号線41に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間(つまり、移動度補正期間)に、第2シールド線281にLowレベルの電位を印加する。第2シールドスキャナ280は、有機EL素子ELの発光期間に、第2シールド線281にHighレベルの電位を印加する。第2シールドスキャナ280は、Lowレベル又はHighレベルの電位を、画素アレイ230の各画素回路220に行単位で順次印加する。
また、画素アレイ230には、m行n列の画素の配列に対して、行方向(画素行の画素回路220の配列方向)に沿って電源線51と走査線61と第1シールド線271及び第2シールド線281とが画素行ごとに配線されている。さらに、m行n列の画素の配列に対して、列方向(画素列の画素回路220の配列方向)に沿って信号線41が画素列毎に配線されている。
画素回路220は、映像信号に基づいて発光する回路である。以下、本実施の形態に係る画素回路220について、図28を用いて説明する。図28は、本実施の形態に係る画素回路220を示す回路図である。
図28に示すように、画素回路220は、実施の形態3に係る画素回路120と同様に、有機EL素子ELと、保持容量C1と、書き込みトランジスタT1と、駆動トランジスタTdとを備える。本実施の形態では、画素回路120は、対向電極fに接続される一対のスイッチングトランジスタをさらに備える。本実施の形態では、一対のスイッチングトランジスタは、二つのNチャネルトランジスタT3及びT5を含む。
NチャネルトランジスタT3は、ソース電極が駆動トランジスタTdのゲート電極gに接続され、ソース電極が駆動トランジスタTdの対向電極fに接続され、ゲート電極が第1シールド線271に接続される。
NチャネルトランジスタT5は、ドレイン電極が駆動トランジスタTdの対向電極fに接続され、ソース電極が駆動トランジスタTdのソース電極sに接続され、ゲート電極が第2シールド線281に接続される。
[5−2.回路動作]
次に、本実施の形態に係る表示装置201の回路動作について図29を用いて説明する。図29は、本実施の形態に係る表示装置201の回路動作を説明するためのタイミングチャートである。図29は、書き込みトランジスタT1のゲート電極の電位、電源線51の電位、第1シールド線271の電位、第2シールド線281の電位、及び、信号線41の電位のそれぞれの変化を示している。
図29に示すように、本実施の形態に係る表示装置201では、書き込みトランジスタT1のゲート電極の電位、電源線51の電位、及び、信号線41の電位の変化は、実施の形態3に係る表示装置101と同様である。本実施の形態では、第1シールド線271及び第2シールド線281の電位の変化が、実施の形態3に係る表示装置101と相違する。
第1シールドスキャナ270から第1シールド線271に印加される電圧は、時刻t10直前までは、Lowレベルであり、時刻t10から時刻t11の直後まではHighレベルである。ここで、Highレベルの電位は、NチャネルトランジスタT3のゲート電極に印加された場合に、NチャネルトランジスタT3を導通させるのに十分な程度に高い電位である。また、Lowレベルの電位は、NチャネルトランジスタT3のゲート電極に印加された場合に、NチャネルトランジスタT3を非導通とするのに十分な程度に低い電位である。
第2シールドスキャナ280から第2シールド線281に印加される電圧は、時刻t10直前までは、Highレベルであり、時刻t10から時刻t11の直後まではLowレベルである。ここで、Highレベルの電位は、NチャネルトランジスタT5のゲート電極に印加された場合に、NチャネルトランジスタT5を導通させるのに十分な程度に高い電位である。また、Lowレベルの電位は、NチャネルトランジスタT5のゲート電極に印加された場合に、NチャネルトランジスタT5を非導通とするのに十分な程度に低い電位である。
したがって、本実施の形態では、時刻t10から時刻t11までの期間において、NチャネルトランジスタT3が導通し、NチャネルトランジスタT5が非導通となる。これに伴い、駆動トランジスタTdの対向電極fには、ゲート電極gと同じ電位が印加される。一方、それ以外の期間において、NチャネルトランジスタT3が非導通となり、NチャネルトランジスタT5が導通する。これに伴い、駆動トランジスタTdの対向電極fには、ソース電極sと同じ電位が印加される。ここで、駆動トランジスタTdのゲート電位は、ソース電位より高いため、本実施の形態においても実施の形態3と同様に、書き込み期間に対向電極fに印加される電位は、発光期間に対向電極fに印加される電位より、駆動トランジスタTdの抵抗値を低減させる。したがって、本実施の形態に係る画素回路220においても、実施の形態3と同様の効果が奏される。
さらに、本実施の形態に係る画素回路220では、Pチャネルトランジスタが不要であるため、Pチャネルトランジスタの実現が困難な半導体材料も利用可能である。
[5−3.変形例]
次に、本実施の形態の変形例に係る画素回路について、図30を用いて説明する。図30は、本変形例に係る画素回路220aを示す回路図である。
図30に示すように、画素回路220aは、本実施の形態に係る画素回路220と同様に、有機EL素子ELと、保持容量C1と、書き込みトランジスタT1と、駆動トランジスタTdと、NチャネルトランジスタT3と、NチャネルトランジスタT5とを備える。
本変形例に係る画素回路220aは、NチャネルトランジスタT5のソース電極が走査線61に接続されている点において、本実施の形態に係る画素回路220と相違し、その他の点において一致する。
本変形例に係る画素回路220aのように、NチャネルトランジスタT5のソース電極は、必ずしも、駆動トランジスタTdのソース電極sに接続されていなくてもよい。NチャネルトランジスタT5のソース電極は、有機EL素子ELの発光期間に駆動トランジスタTdのソース電位が取り得る電位より低い電位が印加されればよい。走査線61の電位(≒0V)は、発光期間において、駆動トランジスタTdのソース電位(>0V)より低い。したがって、本変形例に係る画素回路220aにおいても、本実施の形態に係る画素回路220と同様の効果が奏される。
(実施の形態6)
実施の形態6に係る画素回路及び表示装置について説明する。本実施の形態に係る画素回路は、主に、駆動トランジスタとしてPチャネルトランジスタを用いている点において、実施の形態1に係る画素回路と相違する。以下、本実施の形態に係る画素回路及び表示装置について、実施の形態1に係る画素回路20及び表示装置1との相違点を中心に説明する。
[6−1.表示装置の構成]
まず、本実施の形態に係る表示装置の構成について図31を用いて説明する。図31は、本実施の形態に係る表示装置301の概略構成を示す図である。
図31に示すように、表示装置301は、発光素子を含む複数の画素回路320が行列状に2次元配置されて構成される画素アレイ330と、水平セレクタ340と、電源スキャナ350と、ライトスキャナ60と、シールドスキャナ370とを備える。水平セレクタ340、電源スキャナ350、ライトスキャナ60、及び、シールドスキャナ370は、画素アレイ330の周辺に配置される駆動回路部(駆動部)である。
画素アレイ330には、m行n列の画素の配列に対して、行方向(画素行の画素回路320の配列方向)に沿って電源線351と走査線61とシールド線371とが画素行ごとに配線されている。さらに、m行n列の画素の配列に対して、列方向(画素列の画素回路320の配列方向)に沿って信号線341が画素列毎に配線されている。
画素回路320は、映像信号に基づいて発光する回路である。以下、本実施の形態に係る画素回路320について、図32を用いて説明する。図32は、本実施の形態に係る画素回路320を示す回路図である。
図32に示すように、画素回路320は、映像信号に対応する輝度で発光素子を発光させる回路であり、有機EL素子ELと、保持容量C1と、書き込みトランジスタT1と、駆動トランジスタTdpとを備える。また、画素回路320は、さらに、保持容量C1に参照電圧を印加するための薄膜トランジスタである参照トランジスタ、有機EL素子ELの第二電極の電位を初期化するための薄膜トランジスタである初期化トランジスタなどを有していてもよい。
有機EL素子ELは、実施の形態1に係る有機EL素子ELと同様に第一電極及び第二電極を有する発光素子の一例である。第一電極及び第二電極は、それぞれ有機EL素子ELのアノード及びカソードである。有機EL素子ELの第一電極は、アノード電源線に接続される。アノード電源線には、第一電位Vccが供給される。本実施の形態では、アノード電位Vccは、20V程度である。アノード電源線は、全画素回路320に対して共通に配線されている。有機EL素子ELの第二電極は、駆動トランジスタTdpのソース電極s及び保持容量C1に接続される。
保持容量C1は、電圧を保持するための素子であり、駆動トランジスタTdpのゲート電極gとソース電極sとの間に接続される。
書き込みトランジスタT1は、保持容量C1に映像信号に対応する電圧を印加するための薄膜トランジスタである。書き込みトランジスタT1は、映像信号が印加される信号線341と、駆動トランジスタTdpのゲート電極gとの間に接続される。より具体的には、書き込みトランジスタT1のドレイン電極及びソース電極の一方に信号線341が接続され、他方に保持容量C1及び駆動トランジスタTdpのゲート電極gが接続される。書き込みトランジスタT1のゲート電極には、走査線61が接続される。書き込みトランジスタT1は、例えば、オン信号(つまり、高電位の信号)に従ってオン状態となり、映像信号に対応する電圧を保持容量C1に保持させる。
駆動トランジスタTdpは、有機EL素子ELの第二電極(カソード)と接続され、保持容量C1に保持された電圧に応じた電流を有機EL素子ELに供給するPチャネル型の薄膜トランジスタである。駆動トランジスタTdpは、ゲート電極gと、ゲート電極gに対向する対向電極fと、ゲート電極gと対向電極fとの間に配置されるチャネルとを有する。駆動トランジスタTdpのソース電極sが有機EL素子ELの第二電極に接続され、ドレイン電極dが電源線351に接続される。電源線351には、電源スキャナ350からカソード電位Vcat又は第三電位Vddが選択的に供給される。対向電極fは、チャネルをシールドするシールド電極としても機能する。対向電極fには、シールドスキャナ370から、シールド線(電位印加線)371を介して高抵抗化電位Vh又は低抵抗化電位Vlが選択的に印加される。低抵抗化電位Vlは、対向電極fに印加されることで、高抵抗化電位Vhが対向電極fに印加される場合より、駆動トランジスタTdpの抵抗値を低減させる電位である。本実施の形態のように、駆動トランジスタTdpがPチャネル型の薄膜トランジスタである場合には、低抵抗化電位Vlは、高抵抗化電位Vhより低い電位である。
書き込みトランジスタT1として、例えば、Nチャネル型のTFTを用いることができるが、書き込みトランジスタT1の導電型はこれに限定されない。
また、有機EL素子ELの第二電極の電位及び電源線351から供給される電位の関係によっては、駆動トランジスタTdpにおけるソース電極s及びドレイン電極dの位置関係は図32に示す関係から変化し得る。
水平セレクタ340(信号線駆動回路)は、信号線341に映像信号を印加する駆動回路である。水平セレクタ340は、信号供給源(図示せず)から供給される輝度情報に応じた映像信号の信号電圧Vsigと基準電位Vofsとを選択的に出力する。ここで、基準電位Vofsは、映像信号の信号電圧Vsigの基準となる電圧(例えば、映像信号の黒レベルに相当する電圧)である。
水平セレクタ340から出力される信号電圧Vsig及び基準電位Vofsは、信号線341を介して画素アレイ330の各画素回路320に対して、ライトスキャナ60による走査によって選択された画素行の単位で書き込まれる。すなわち、水平セレクタ340は、信号電圧Vsigを行単位で書き込む線順次書き込みの駆動形態を採っている。
電源スキャナ350(電源供給走査回路)は、クロックパルスckに同期してスタートパルスspを順にシフトするシフトレジスタ回路等によって構成されている。電源スキャナ350は、ライトスキャナ60による線順次走査に同期して、カソード電位Vcatと当該カソード電位Vcatよりも高い第三電位Vddとを切り替えて電源線351に供給する。後述するように、カソード電位Vcat及び第三電位Vddの切り替え(電源電位の切り替え)によって、画素回路320の発光及び非発光(消光)の制御が行なわれる。
ライトスキャナ60は、走査線61に電位を印加することで、画素回路20が有する書き込みトランジスタを制御する駆動回路であり、上記従来技術の表示装置901が備えるライトスキャナ60と同様の構成を有する。
シールドスキャナ370(電位印加走査回路)は、クロックパルスckに同期してスタートパルスspを順にシフト(転送)するシフトレジスタ回路等によって構成されている。シールドスキャナ370は、信号線341に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間(つまり、移動度補正期間)に、駆動トランジスタTdpの対向電極fに低抵抗化電位Vlを印加する。シールドスキャナ370は有機EL素子ELの発光期間に、駆動トランジスタTdpの対向電極fに高抵抗化電位Vhを印加する。シールドスキャナ370は、高抵抗化電位Vh及び低抵抗化電位Vlを、画素アレイ330の各画素回路20に行単位で順次印加する。
[6−2.回路動作]
次に、本実施の形態に係る表示装置301の回路動作について、図33を用いて説明する。図33は、本実施の形態に係る表示装置301の回路動作を説明するためのタイミングチャートである。図33は、書き込みトランジスタT1のゲート電極の電位(走査線61の電位であり、高電位(ON)又は低電位(OFF))、電源線351の電位(Vcat又はVdd)、シールド線371の電位(Vh又はVl)、信号線341の電位(Vsig又はVofs)のそれぞれの変化を示している。本実施の形態では、電位Vcat及びVddは、それぞれ、0V程度及び25V程度であり、高抵抗化電位Vh及び低抵抗化電位Vlは、それぞれ、25V程度及び10V程度であり、電位Vofsは、20V程度である。
(前表示フレームの発光期間)
図33に示すタイミングチャートにおいて、時刻t1以前は、前の表示フレームにおける有機EL素子ELの発光期間である。この前表示フレームの発光期間では、電源線351の電位がカソード電位Vcatであり、また、書き込みトランジスタT1が非導通状態である。
このとき、駆動トランジスタTdpは、飽和領域で動作するように設定されている。これにより、駆動トランジスタTdpのゲートソース間電圧Vgsに応じた駆動電流(ドレインソース間電流)が、アノード電源線から有機EL素子ELに供給される。従って、有機EL素子ELが駆動電流の電流値に応じた輝度で発光する。
(非発光期間)
時刻t1になると、線順次走査の新しい表示フレーム(現表示フレーム)に入る。そして、電源線351の電位がカソード電位Vcatから第三電位Vddに切り替わる。第三電位Vddは、アノード電位Vccに対して、有機EL素子ELを消光させることができる程度に十分に高い電位である。
(閾値補正準備期間)
次に、時刻t2で走査線61の電位が低電位側から高電位側に遷移する(OFF→ON)ことで、書き込みトランジスタT1が導通状態となる。
このとき、水平セレクタ340から信号線341に対して基準電位Vofsが供給された状態にあるため、駆動トランジスタTdpのゲート電位Vgが基準電位Vofsになる。また、駆動トランジスタTdpのソース電位Vsは、基準電位Vofsよりも十分に高い電位、すなわち、第三電位Vddである。
このとき、駆動トランジスタTdpのゲートソース間電圧Vgsは、Vofs−Vddとなる。ここで、Vofs−Vddが駆動トランジスタTdpの閾値電圧Vthよりも小さくないと、後述する閾値補正動作を行うことができないため、
Vofs−Vdd<Vth (式6)
となる電位関係に設定する必要がある。
このように、駆動トランジスタTdpのゲート電位Vgを基準電位Vofsに固定し、かつ、ソース電位Vsを第三電位Vddに固定して初期化する処理が、後述する閾値補正動作を行う前の準備(閾値補正準備)の処理である。従って、基準電位Vofs及び第三電位Vddが、駆動トランジスタTdpのゲート電位Vg及びソース電位Vsの各初期化電位となる。
時刻t3で走査線61の電位が高電位側から低電位側に遷移する(ON→OFF)ことで、閾値補正準備期間が終了する。時刻t2から時刻t3までが閾値補正準備期間である。
(閾値補正期間)
次に、時刻t4で、書き込みトランジスタT1が導通している状態で、電源線351の電位が第三電位Vddからカソード電位Vcatに切り替わると、有機EL素子ELの第二電極が駆動トランジスタTdpのソース電極sとなり、駆動トランジスタTdpに電流が流れる。これにより、駆動トランジスタTdpのゲート電位Vgが基準電位Vofsに保たれた状態で閾値補正動作が開始される。すなわち、ゲート電位Vgから駆動トランジスタTdpの閾値電圧|Vth|を加えた電位(Vofs+|Vth|)に向けて駆動トランジスタTdpのソース電位Vsが下降を開始する。
ここでは、便宜上、駆動トランジスタTdpのゲート電位Vgの基準電位Vofs(初期化電位)を基準とし、当該基準電位Vofsから駆動トランジスタTdpの閾値電圧|Vth|を加えた電位に向けてソース電位Vsを変化させる動作(処理)を閾値補正動作(閾値補正処理)と呼んでいる。この閾値補正動作が進むと、やがて、駆動トランジスタTdpのゲートソース間電圧Vgsが駆動トランジスタTdpの閾値電圧Vthに収束する。この閾値電圧Vthに相当する電圧は、保持容量C1に保持される。
なお、閾値補正動作を行う期間において、電流が保持容量C1側に流れ、有機EL素子EL側には流れないようにするために、有機EL素子ELがカットオフ状態(ハイインピーダンス状態)となるようにアノード電源線のアノード電位Vccを設定しておくこととする。
次に、時刻t5で、走査線61の電位が低電位側に遷移する(ON→OFF)ことで、書き込みトランジスタT1が非導通状態となる。書き込みトランジスタT1は、時刻t4から第一期間経過した時刻t5に非導通状態となる。このとき、駆動トランジスタTdpのゲート電極gが信号線341から電気的に切り離されることによってフローティング状態になる。しかし、ゲートソース間電圧Vgsが駆動トランジスタTdpの閾値電圧Vthよりも小さいため、電流(ドレイン電流Ids)が流れ、駆動トランジスタTdpのゲート、ソース電位はそれぞれ下降する。
次に、時刻t6において、信号線341の電位が基準電位Vofsとなっている期間(例えば、基準電位Vofsとなったとき)に書き込みトランジスタT1を導通状態として、再度閾値補正動作を開始する。この動作を繰り返すことで、最終的に駆動トランジスタTdpのゲートソース間電圧Vgsは、閾値電圧Vthという値をとる。
次に、時刻t7で、走査線61の電位が低電位側に遷移する(ON→OFF)ことで、書き込みトランジスタT1が非導通状態となる。書き込みトランジスタT1は、時刻t6から第二期間経過した時刻t7に非導通状態となる。
また、時刻t8から時刻t9までの期間においても、再度閾値補正動作が行われる。時刻t9は、閾値補正動作が終了する時刻であり、書き込みトランジスタT1が非導通状態となる。時刻t4から時刻t5まで、時刻t6から時刻t7まで、及び、時刻t8から時刻t9までが閾値補正期間である。
このように、表示装置301は、閾値補正動作を書き込み動作及び移動度補正動作とともに行う1H期間に加えて、当該1H期間に先行する複数の水平期間に亘って分割して閾値補正動作を複数回実行する、いわゆる、分割閾値補正動作を行ってもよい。
この分割閾値補正動作によれば、高精細化に伴う多画素化によって1水平期間として割り当てられる時間が短くなったとしても、閾値補正期間として複数の水平期間に亘って十分な時間を確保することができる。従って、1水平期間として割り当てられる時間が短くなっても、閾値補正期間として十分な時間を確保できるため、閾値補正動作を確実に実行することができる。なお、閾値補正動作を行う回数は、上記に限定されず、例えば、1回だけであってもよい。
(書き込み及び移動度補正期間)
次に、時刻t10で、信号線341の電位が基準電位Vofsから映像信号の信号電圧Vsigに切り替わった状態で、走査線61の電位が高電位側に遷移する(OFF→ON)ことで、書き込みトランジスタT1が導通状態になって映像信号の信号電圧Vsigがサンプリングされ、画素回路320内に書き込まれる。また、信号電圧Vsigは、映像信号の階調に応じた電圧であり、基準電位Vofsより低い。
この書き込みトランジスタT1による信号電圧Vsigの書き込みにより、駆動トランジスタTdpのゲート電位Vgが信号電圧Vsigになる。このとき、有機EL素子ELは、カットオフ状態にある。従って、映像信号の信号電圧Vsigに応じて電源線351から駆動トランジスタTdpに流れる電流(ドレインソース間電流Ids)は、保持容量C1及び有機EL素子ELの等価容量Celから流れ出す。これにより、保持容量C1及び等価容量Celの放電が開始される。
有機EL素子ELの等価容量Celが放電されることにより、駆動トランジスタTdpのソース電位Vsが時間の経過とともに下降していく。このとき、駆動トランジスタTdpの閾値電圧Vthの画素回路320ごとのバラツキは閾値補正動作により既にキャンセルされており、駆動トランジスタTdpのドレインソース間電流Idsは、当該駆動トランジスタTdpの移動度μに依存したものとなる。これによって、駆動トランジスタTdpのゲートソース間電圧Vgsは、移動度μを反映して小さくなり一定時間経過後に完全に移動度μを補正するゲートソース間電圧Vgsとなる。なお、駆動トランジスタTdpの移動度μは、当該駆動トランジスタTdpのチャネルを構成する半導体薄膜の移動度である。
本実施の形態では、信号線341に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間(つまり時刻t10から時刻t11までの期間)において、駆動トランジスタTdpの対向電極fに低抵抗化電位Vlが印加され、有機EL素子ELの発光期間において、対向電極fに高抵抗化電位Vhが印加される。これにより、書き込み及び移動度補正期間において、駆動トランジスタTdpの抵抗値が低減されるため、駆動トランジスタTdpに流れるドレインソース間電流を増大させることができる。このため、より短時間でソース電位Vsを下降させることができる。つまり、移動度補正を高速化できる。
なお、本実施の形態に係る画素回路320では、駆動トランジスタTdは、書き込み及び移動度補正期間にだけ駆動トランジスタTdpの抵抗値が低減されるため、それ以外の期間におけるノイズの影響を抑制できる。
(発光期間)
次に、時刻t11で、走査線61の電位が低電位側に遷移する(ON→OFF)ことで、書き込みトランジスタT1が非導通状態となり、書き込み動作が終了する。これにより、駆動トランジスタTdpのゲート電極gは、信号線341から電気的に切り離されるためにフローティング状態になる。時刻t10から時刻t11までが書き込み及び移動度補正期間である。
ここで、駆動トランジスタTdpのゲート電極gがフローティング状態にあるときは、駆動トランジスタTdpのゲートソース間に保持容量C1が接続されていることにより、駆動トランジスタTdpのソース電位Vsの変動に連動してゲート電位Vgも変動する。すなわち、駆動トランジスタTdpのソース電位Vs及びゲート電位Vgは、保持容量C1に保持されているゲートソース間電圧Vgsを保持したまま下降する。そして、駆動トランジスタTdpのソース電位Vsは、駆動トランジスタTdpのドレインソース間電流(飽和電流)に応じた有機EL素子ELの発光電圧まで下降する。
以上のように、駆動トランジスタTdpとしてPチャネルトランジスタを用いた画素回路320を備える表示装置301においても、駆動トランジスタTdとしてNチャネルトランジスタを用いた画素回路20を備える係る表示装置1と同様の効果が奏される。
(実施の形態7)
実施の形態7に係る画素回路及び表示装置について説明する。本実施の形態に係る表示装置は、主に、駆動トランジスタTdpの対向電極fに、印加電位切替用のトランジスタが接続されている点において、実施の形態6に係る画素回路320及び表示装置301と相違する。以下、本実施の形態に係る画素回路及び表示装置について、実施の形態6に係る画素回路320及び表示装置301との相違点を中心に説明する。
[7−1.表示装置の構成]
まず、本実施の形態に係る表示装置の構成について図34を用いて説明する。図34は、本実施の形態に係る表示装置401の概略構成を示す図である。
図34に示すように、表示装置401は、発光素子を含む複数の画素回路420が行列状に2次元配置されて構成される画素アレイ430と、水平セレクタ340と、電源スキャナ350と、ライトスキャナ60と、シールドスキャナ470とを備える。水平セレクタ340、電源スキャナ350、及びライトスキャナ60は、それぞれ、実施の形態6に係る水平セレクタ340、電源スキャナ350、及びライトスキャナ60と同様の構成を有する。
本実施の形態に係るシールドスキャナ470(電位印加走査回路)は、クロックパルスckに同期してスタートパルスspを順にシフト(転送)するシフトレジスタ回路等によって構成されている。シールドスキャナ470は、信号線341に映像信号が印加された状態で書き込みトランジスタT1が導通する書き込み期間(つまり、移動度補正期間)に、シールド線471にHighレベルの電位を印加する。シールドスキャナ470は、有機EL素子ELの発光期間に、シールド線471にLowレベルの電位を印加する。シールドスキャナ470は、Highレベル又はLowレベルの電位を、画素アレイ430の各画素回路420に行単位で順次印加する。
また、画素アレイ430には、m行n列の画素の配列に対して、行方向(画素行の画素回路420の配列方向)に沿って電源線351と走査線61とシールド線471とが画素行ごとに配線されている。さらに、m行n列の画素の配列に対して、列方向(画素列の画素回路420の配列方向)に沿って信号線341が画素列毎に配線されている。
画素回路420は、映像信号に基づいて発光する回路である。以下、本実施の形態に係る画素回路420について、図35を用いて説明する。図35は、本実施の形態に係る画素回路420を示す回路図である。
図35に示すように、画素回路420は、実施の形態6に係る画素回路320と同様に、有機EL素子ELと、保持容量C1と、書き込みトランジスタT1と、駆動トランジスタTdpとを備える。本実施の形態では、画素回路420は、対向電極fに接続される一対のスイッチングトランジスタをさらに備える。本実施の形態では、一対のスイッチングトランジスタは、ゲートを共有するPチャネルトランジスタT6及びNチャネルトランジスタT7を含む。
PチャネルトランジスタT6は、ソース電極が駆動トランジスタTdpのソース電極sに接続され、ドレイン電極が駆動トランジスタTdpの対向電極fに接続され、ゲート電極がシールド線471に接続される。
NチャネルトランジスタT7は、ソース電極が駆動トランジスタTdpのゲート電極gに接続され、ドレイン電極が駆動トランジスタTdpの対向電極fに接続され、ゲート電極がシールド線471に接続される。
[7−2.回路動作]
次に、本実施の形態に係る表示装置401の回路動作について、図36を用いて説明する。図36は、本実施の形態に係る表示装置401の回路動作を説明するためのタイミングチャートである。図36は、図33と同様に、書き込みトランジスタT1のゲート電極の電位、電源線351の電位、シールド線471の電位、及び、信号線341の電位のそれぞれの変化を示している。
本実施の形態に係る書き込みトランジスタT1のゲート電極の電位、電源線351の電位、及び、信号線341の電位は、図33に示されるタイミングチャートと同様に変化する。また、シールドスキャナ470からシールド線471に印加される電圧は、時刻t10直前までは、Lowレベルであり、時刻t10から時刻t11の直後まではHighレベルである。ここで、Highレベルの電位は、PチャネルトランジスタT6及びNチャネルトランジスタT7のゲート電極に印加された場合に、PチャネルトランジスタT6を非導通とし、かつ、NチャネルトランジスタT7を導通させるのに十分な程度に高い電位である。また、Lowレベルの電位は、PチャネルトランジスタT6及びNチャネルトランジスタT7のゲート電極に印加された場合に、PチャネルトランジスタT6を導通させ、かつ、NチャネルトランジスタT7を非導通とするのに十分な程度に低い電位である。
したがって、本実施の形態では、時刻t10から時刻t11までの期間において、PチャネルトランジスタT6が非導通となり、NチャネルトランジスタT7が導通する。これに伴い、駆動トランジスタTdpの対向電極fには、ゲート電極gと同じ電位が印加される。一方、それ以外の期間において、PチャネルトランジスタT6が導通し、NチャネルトランジスタT7が非導通となる。これに伴い、駆動トランジスタTdpの対向電極fには、ソース電極sと同じ電位が印加される。ここで、駆動トランジスタTdpのゲート電位は、ソース電位より低いため、本実施の形態においても実施の形態6と同様に、書き込み期間に対向電極fに印加される電位は、発光期間に対向電極fに印加される電位より、駆動トランジスタTdpの抵抗値を低減させる。したがって、本実施の形態に係る画素回路420においても、実施の形態6と同様の効果が奏される。
さらに、本実施の形態では、低抵抗化電位として、駆動トランジスタTdpのゲート電位が印加されるため、移動度補正において、信号電圧Vsigに対応した電流が流れる。したがって、信号電圧Vsigが低い場合には、駆動トランジスタTdpには信号電圧Vsigに対応した値となるため、過剰に移動度補正が行われることを抑制できる。
[7−3.変形例]
本実施の形態に係る画素回路420においては、PチャネルトランジスタT6が、駆動トランジスタTdpのソース電極sと対向電極fとの間に接続され、NチャネルトランジスタT7が、駆動トランジスタTdpのゲート電極gと対向電極fとの間に接続された。しかしながら、本実施の形態の画素回路420の回路構成は、これに限定されない。例えば、画素回路420においては、Nチャネルトランジスタが、駆動トランジスタTdpのソース電極sと対向電極fとの間に接続され、Pチャネルトランジスタが、駆動トランジスタTdpのゲート電極gと対向電極fとの間に接続されてもよい。つまり、画素回路420において、PチャネルトランジスタT6及びNチャネルトランジスタT7の接続位置を入れ替えてもよい。この場合、シールドスキャナ470からシールド線471に印加する電位を反転させれば、つまり、時刻t10の直前までHighレベルの電位をシールド線471に印加し、時刻t10から時刻t11までLowレベルの信号をシールド線471に印加すれば、画素回路420と同様に動作する画素回路が得られる。
また、本実施の形態に係る表示装置401において、シールドスキャナ470を用いる構成に変えて、PチャネルトランジスタT6及びNチャネルトランジスタT7のゲート電極に走査線61を接続してもよい。これにより、書き込み及び移動度補正期間において、PチャネルトランジスタT6及びNチャネルトランジスタT7のゲート電極に高電位が印加され、発光期間において、低電位が印加される。つまり、本変形例においても、書き込み及び移動度補正期間に対向電極fに印加される電位は、発光期間に対向電極fに印加される電位より、駆動トランジスタTdの抵抗値を低減させることができる。
(その他の実施の形態)
以上、本開示に係る画素回路等について、各実施の形態に基づいて説明したが、本開示に係る画素回路等は、上記各実施の形態に限定されるものではない。各実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、各実施の形態に対して本開示の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記各実施の形態に係る画素回路等を内蔵した各種機器も本開示に含まれる。
例えば、上記各実施の形態では、低抵抗化電位Vlは、書き込み及び移動度補正期間の所定時間前から所定時間後まで印加されるが、低抵抗化電位Vlの印加期間はこれに限定されない。低抵抗化電位Vlは、移動度補正期間の少なくとも一部において印加されればよい。例えば、低抵抗化電位Vlは、移動度補正期間にわたって印加されて、それ以外の期間において、印加されなくてもよい。また、高抵抗化電位Vhは、有機EL素子ELの発光期間の一部において、印加されていてもよい。
また、上記各実施の形態では、画素アレイに含まれるすべての画素回路において、移動度補正を高速化したが、一部の画素回路だけにおいて移動度補正を高速化してもよい。例えば、青色光を発する画素回路だけにおいて、移動度補正を高速化してもよい。青色光を発する有機EL素子は、一般に、緑色光又は赤色光を発する有機EL素子より、発光層の膜厚が小さいため、容量成分が大きい。このため、青色光を発する有機EL素子を有する画素回路だけにおいて、移動度補正を高速化し、他の画素回路において移動度補正を高速化しなくてもより。例えば、青色光を発する有機EL素子を有する画素回路だけに、上記各実施の形態に係る画素回路を適用し、他の画素回路に、従来技術の画素回路920を適用してもよい。言い換えると、青色光を発する有機EL素子を有する画素回路だけに、上記各実施の形態に係る画素回路を適用し、他の画素回路において、駆動トランジスタが対向電極を備えなくてもよい。これにより、各画素回路の移動度補正に要する時間の差を低減できる。
また、上記各実施の形態では、画素回路が有する発光素子の一例として有機EL素子を用いる例を示したが、発光素子は、有機EL素子に限定されない。発光素子は、例えば、QLED(Quantum−dot Light Emitting Diode)であってもよい。QLEDは、光を発する発光部を有し、当該発光部が量子ドットを含んでもよい。また、QLEDは、光を発する発光部と、当該発光部が発する光を波長変換する波長変換部を有し、当該波長変換部が量子ドットを含んでもよい。
本開示は、有機ELフラットパネルディスプレイに有用であり、特に、大画面のディスプレイにおいて用いるのに最適である。
1、1a、101、101a、201、301、401、901 表示装置
20、20a、120、120a、220、220a、320、420、920 画素回路
30、30a、130、130a、230、330、430、930 画素アレイ
40、340 水平セレクタ
41、341 信号線
50、350 電源スキャナ
51、351 電源線
60 ライトスキャナ
61 走査線
70、170、370、470 シールドスキャナ
71、171、371、471 シールド線
270 第1シールドスキャナ
271 第1シールド線
280 第2シールドスキャナ
281 第2シールド線
C1 保持容量
ch チャネル
Cel 等価容量
Cf 寄生容量
d ドレイン電極
EL 有機EL素子
f 対向電極
g ゲート電極
s ソース電極
T1 書き込みトランジスタ
T2、Td、Tdp 駆動トランジスタ
T3、T5、T7 Nチャネルトランジスタ
T4、T6 Pチャネルトランジスタ
Vcat カソード電位
Vcc 第一電位
Vdd 第三電位
Vsig 信号電圧
Vofs 基準電位
Vs ソース電位
Vss 第二電位
μ 移動度

Claims (8)

  1. 映像信号に基づいて発光する画素回路であって、
    発光素子と、
    前記発光素子に供給する電流を調整する駆動トランジスタと、
    前記映像信号が印加される信号線と、前記駆動トランジスタとの間に接続される書き込みトランジスタとを備え、
    前記駆動トランジスタは、
    ゲート電極と、
    前記ゲート電極に対向する対向電極と、
    前記ゲート電極と前記対向電極との間に配置されるチャネルとを有し、
    前記信号線に前記映像信号が印加された状態で前記書き込みトランジスタが導通する書き込み期間に前記対向電極に印加される電位は、前記発光素子の発光期間に前記対向電極に印加される電位より、前記駆動トランジスタの抵抗値を低減させる
    画素回路。
  2. 前記書き込み期間に前記対向電極に印加される電位は、前記駆動トランジスタのゲート電位であり、
    前記発光期間に前記対向電極に印加される電位は、前記書き込み期間よりも前記駆動トランジスタの抵抗値を増大させる電位である
    請求項1に記載の画素回路。
  3. 前記対向電極に接続される一対のスイッチングトランジスタをさらに備え、
    前記対向電極に印加される電位は、前記一対のスイッチングトランジスタのオン及びオフによって選択される
    請求項1又は2に記載の画素回路。
  4. 前記一対のスイッチングトランジスタは、
    ゲートを共有するNチャネルトランジスタ及びPチャネルトランジスタを含む
    請求項3に記載の画素回路。
  5. 前記Nチャネルトランジスタ及び前記Pチャネルトランジスタのゲート電位は、前記書き込みトランジスタのゲート電位と等しい
    請求項4に記載の画素回路。
  6. 前記発光素子は、有機EL(Electro Luminescence)素子である
    請求項1〜5のいずれか1項に記載の画素回路。
  7. 前記有機EL素子は青色光を発する
    請求項6に記載の画素回路。
  8. 請求項1〜7のいずれか1項に記載の画素回路と、
    前記信号線に前記映像信号を印加する水平セレクタと、
    前記書き込みトランジスタを制御するライトスキャナと、
    前記駆動トランジスタのソース電極又はドレイン電極に電位を印加する電源スキャナとを備える
    表示装置。
JP2019194927A 2019-10-28 2019-10-28 画素回路、及び、表示装置 Active JP7253796B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019194927A JP7253796B2 (ja) 2019-10-28 2019-10-28 画素回路、及び、表示装置
US17/006,023 US11270639B2 (en) 2019-10-28 2020-08-28 Pixel circuit and display device
CN202010894453.9A CN112735338B (zh) 2019-10-28 2020-08-31 像素电路和显示设备
EP20193908.9A EP3816979A1 (en) 2019-10-28 2020-09-01 Pixel circuit and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019194927A JP7253796B2 (ja) 2019-10-28 2019-10-28 画素回路、及び、表示装置

Publications (2)

Publication Number Publication Date
JP2021067900A true JP2021067900A (ja) 2021-04-30
JP7253796B2 JP7253796B2 (ja) 2023-04-07

Family

ID=72322392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019194927A Active JP7253796B2 (ja) 2019-10-28 2019-10-28 画素回路、及び、表示装置

Country Status (4)

Country Link
US (1) US11270639B2 (ja)
EP (1) EP3816979A1 (ja)
JP (1) JP7253796B2 (ja)
CN (1) CN112735338B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057344A (ko) * 2020-10-29 2022-05-09 엘지디스플레이 주식회사 표시장치 및 그 구동방법
KR20230130193A (ko) * 2022-03-02 2023-09-12 삼성디스플레이 주식회사 화소 및 화소를 포함하는 표시 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251205A (ja) * 2008-04-04 2009-10-29 Sony Corp 表示装置と電子機器
JP2010060816A (ja) * 2008-09-03 2010-03-18 Canon Inc 画素回路、発光表示装置及びそれらの駆動方法
JP2011112724A (ja) * 2009-11-24 2011-06-09 Sony Corp 表示装置およびその駆動方法ならびに電子機器
US20120249510A1 (en) * 2011-03-29 2012-10-04 Jankovic Nebojsa D Method and circuit for compensating pixel drift in active matrix displays
JP2013003569A (ja) * 2011-06-22 2013-01-07 Sony Corp 画素回路、表示装置、電子機器、及び、画素回路の駆動方法
KR20140080728A (ko) * 2012-12-14 2014-07-01 엘지디스플레이 주식회사 Oled 표시 장치 및 그의 구동 방법
KR20140080729A (ko) * 2012-12-14 2014-07-01 엘지디스플레이 주식회사 Oled 표시 장치 및 그의 구동 방법
JP2015132816A (ja) * 2013-12-12 2015-07-23 株式会社半導体エネルギー研究所 発光装置
US20160042694A1 (en) * 2014-08-07 2016-02-11 Samsung Display Co., Ltd. Pixel circuit and organic light-emitting diode display including the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929891B2 (ja) * 2006-07-19 2012-05-09 ソニー株式会社 表示装置
JP5176522B2 (ja) 2007-12-13 2013-04-03 ソニー株式会社 自発光型表示装置およびその駆動方法
JP2010266490A (ja) * 2009-05-12 2010-11-25 Sony Corp 表示装置
JP2011112723A (ja) * 2009-11-24 2011-06-09 Sony Corp 表示装置およびその駆動方法ならびに電子機器
JP2011112722A (ja) * 2009-11-24 2011-06-09 Sony Corp 表示装置およびその駆動方法ならびに電子機器
JP5560206B2 (ja) * 2010-04-05 2014-07-23 パナソニック株式会社 有機el表示装置及びその制御方法
KR101403409B1 (ko) * 2010-04-28 2014-06-03 한국전자통신연구원 반도체 장치 및 그 제조 방법
JP5519408B2 (ja) 2010-05-31 2014-06-11 シチズンホールディングス株式会社 メモリ性液晶装置
JP5842263B2 (ja) * 2011-06-08 2016-01-13 株式会社Joled 表示素子、表示装置、及び、電子機器
JP6099336B2 (ja) 2011-09-14 2017-03-22 株式会社半導体エネルギー研究所 発光装置
JP5423859B2 (ja) 2012-10-15 2014-02-19 ソニー株式会社 自発光型表示装置およびその駆動方法
CN104732927B (zh) * 2015-04-09 2017-10-03 京东方科技集团股份有限公司 一种像素电路及其驱动方法和显示装置
US9666655B2 (en) * 2015-05-05 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Display device
JP6787675B2 (ja) 2016-02-25 2020-11-18 株式会社ジャパンディスプレイ 表示装置及び表示装置の駆動方法
KR102484382B1 (ko) 2018-03-09 2023-01-04 삼성디스플레이 주식회사 유기 발광 표시 장치
CN109767730A (zh) * 2019-03-29 2019-05-17 上海天马微电子有限公司 一种像素驱动电路、显示面板及显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251205A (ja) * 2008-04-04 2009-10-29 Sony Corp 表示装置と電子機器
JP2010060816A (ja) * 2008-09-03 2010-03-18 Canon Inc 画素回路、発光表示装置及びそれらの駆動方法
JP2011112724A (ja) * 2009-11-24 2011-06-09 Sony Corp 表示装置およびその駆動方法ならびに電子機器
US20120249510A1 (en) * 2011-03-29 2012-10-04 Jankovic Nebojsa D Method and circuit for compensating pixel drift in active matrix displays
JP2013003569A (ja) * 2011-06-22 2013-01-07 Sony Corp 画素回路、表示装置、電子機器、及び、画素回路の駆動方法
KR20140080728A (ko) * 2012-12-14 2014-07-01 엘지디스플레이 주식회사 Oled 표시 장치 및 그의 구동 방법
KR20140080729A (ko) * 2012-12-14 2014-07-01 엘지디스플레이 주식회사 Oled 표시 장치 및 그의 구동 방법
JP2015132816A (ja) * 2013-12-12 2015-07-23 株式会社半導体エネルギー研究所 発光装置
US20160042694A1 (en) * 2014-08-07 2016-02-11 Samsung Display Co., Ltd. Pixel circuit and organic light-emitting diode display including the same

Also Published As

Publication number Publication date
CN112735338A (zh) 2021-04-30
EP3816979A1 (en) 2021-05-05
CN112735338B (zh) 2024-05-24
US20210125556A1 (en) 2021-04-29
JP7253796B2 (ja) 2023-04-07
US11270639B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP5287210B2 (ja) 表示装置および電子機器
JP4930501B2 (ja) 表示装置および電子機器
KR101564983B1 (ko) El 표시 패널 모듈, el 표시 패널, 집적회로 장치, 전자기기 및 구동 제어 방법
JP4640443B2 (ja) 表示装置、表示装置の駆動方法および電子機器
US9305490B2 (en) Pixel selection control method, driving circuit, display apparatus and electronic instrument
TWI407409B (zh) A display device, a driving method of a display device, and an electronic device
KR20090117625A (ko) 표시장치, 표시장치의 구동방법 및 전자기기
JP2009169071A (ja) 表示装置
JP2010008521A (ja) 表示装置
JP4640442B2 (ja) 表示装置、表示装置の駆動方法および電子機器
JP2010281914A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2009244526A (ja) 表示装置
KR20090041331A (ko) 표시장치 및 전자기기
KR20100070304A (ko) 표시 장치, 표시 장치의 구동 방법 및 전자 기기
JP7316655B2 (ja) 画素回路、及び、表示装置
JP2011135523A (ja) 駆動回路および表示装置
JP2010145446A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2010145581A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2012022168A (ja) 有機el表示装置、有機el表示装置の製造方法、及び、電子機器
JP7253796B2 (ja) 画素回路、及び、表示装置
JP2009128404A (ja) 表示装置、表示装置の駆動方法および電子機器
JP5494032B2 (ja) 表示装置、表示装置の駆動方法、及び、電子機器
JP2010152223A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2009251545A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2009282191A (ja) 表示装置、表示装置の駆動方法および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R151 Written notification of patent or utility model registration

Ref document number: 7253796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113