JP2021067775A - Positioning apparatus, exposure apparatus, and method of producing article - Google Patents

Positioning apparatus, exposure apparatus, and method of producing article Download PDF

Info

Publication number
JP2021067775A
JP2021067775A JP2019192133A JP2019192133A JP2021067775A JP 2021067775 A JP2021067775 A JP 2021067775A JP 2019192133 A JP2019192133 A JP 2019192133A JP 2019192133 A JP2019192133 A JP 2019192133A JP 2021067775 A JP2021067775 A JP 2021067775A
Authority
JP
Japan
Prior art keywords
stage
plate
positioning device
wall portion
original plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019192133A
Other languages
Japanese (ja)
Other versions
JP7469864B2 (en
Inventor
将人 本間
Masato Honma
将人 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019192133A priority Critical patent/JP7469864B2/en
Priority to TW109134697A priority patent/TWI811569B/en
Priority to KR1020200134888A priority patent/KR20210047259A/en
Priority to CN202011134936.5A priority patent/CN112764319A/en
Publication of JP2021067775A publication Critical patent/JP2021067775A/en
Application granted granted Critical
Publication of JP7469864B2 publication Critical patent/JP7469864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7019Calibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide a technique advantageous for accurately measuring a position of a stage.SOLUTION: A positioning apparatus 10A for positioning a plate M includes: a stage 11 capable of transferring in a first direction while holding the plate M; and a measurement part 12 for emitting light in the first direction, and measuring a position of the stage 11 in the first direction on the basis of light reflected by a reflection member 13 provided on the upper face of the stage 11. The stage 11 has a wall part 17 for reducing intrusion of gas around the plate M into a light path of the measurement part 12 by transfer of the stage 11 in the first direction between the plate M and the reflection member 13 in the first direction, and the wall part 17 is constituted so that the upper end thereof is higher than the upper face of the plate M, and is disposed so as to be drawn apart from the reflection member 13.SELECTED DRAWING: Figure 2

Description

本発明は、プレートの位置決めを行う位置決め装置、それを含む露光装置、および物品の製造方法に関する。 The present invention relates to a positioning device for positioning a plate, an exposure device including the positioning device, and a method for manufacturing an article.

液晶パネルや半導体デバイスの製造工程(リソグラフィ工程)で用いられる装置の1つとして、原版と基板とを相対的に走査しながら基板を露光する露光装置が知られている。このような露光装置では、基板上にパターンを精度よく形成するため、原版や基板を保持するステージの位置決め精度の向上が要求されており、それにはステージの位置を精度よく計測することが必要である。 As one of the devices used in the manufacturing process (lithography process) of a liquid crystal panel or a semiconductor device, an exposure device that exposes a substrate while relatively scanning the original plate and the substrate is known. In such an exposure apparatus, in order to form a pattern on a substrate with high accuracy, it is required to improve the positioning accuracy of the stage for holding the original plate and the substrate, and it is necessary to measure the position of the stage with high accuracy. is there.

ステージの位置の計測には、一般にレーザ干渉計が用いられうるが、レーザ干渉計では、計測光路上における気体の温度や圧力、湿度等のゆらぎに起因する計測光路上の屈折率の変化が計測精度の低下(計測誤差)の要因になりうる。例えば、原版では、基板の露光中に照明されて温度が上昇するため、原版に生じた熱が、原版ステージの移動に伴って周囲に拡がって計測光路に侵入すると、原版ステージの位置の計測精度が低下しうる。また、原版の曇り防止のため、原版の配置空間を、その周囲より低湿度の気体(パージガス)で満たす場合がある。この場合においても、原版ステージの移動に伴って低湿度の気体が計測光路に侵入すると、原版ステージの位置の計測精度が低下しうる。 A laser interferometer can generally be used to measure the position of the stage, but the laser interferometer measures the change in the refractive index on the measurement optical path due to fluctuations in the temperature, pressure, humidity, etc. of the gas on the measurement optical path. It can cause a decrease in accuracy (measurement error). For example, in the original plate, the temperature rises due to illumination during the exposure of the substrate. Therefore, when the heat generated in the original plate spreads to the surroundings as the original plate stage moves and enters the measurement optical path, the measurement accuracy of the position of the original plate stage is increased. Can decrease. Further, in order to prevent fogging of the original plate, the arrangement space of the original plate may be filled with a gas (purge gas) having a lower humidity than the surroundings. Even in this case, if a low-humidity gas invades the measurement optical path as the original stage moves, the measurement accuracy of the position of the original stage may decrease.

特許文献1には、ステージの側面に設けられた反射ミラーに向けて光を射出し、反射ミラーで反射された光と参照光との干渉光を受けてステージの位置を検出する干渉計を備えた計測装置が開示されている。特許文献1で開示された計測装置では、気体吹き出し部からステージに向けて吹き出される気体を干渉計の光路へ整流して効率よく導くための構造体(整流板)が、当該光路の一部および反射ミラーを上下から挟み込むように設けられている。 Patent Document 1 includes an interferometer that emits light toward a reflection mirror provided on the side surface of the stage and receives interference light between the light reflected by the reflection mirror and reference light to detect the position of the stage. The measuring device is disclosed. In the measuring device disclosed in Patent Document 1, a structure (rectifying plate) for efficiently guiding the gas blown out from the gas blowing portion toward the stage by rectifying it to the optical path of the interferometer is a part of the optical path. And the reflection mirror is provided so as to sandwich it from above and below.

特開2012−209401号公報Japanese Unexamined Patent Publication No. 2012-209401

特許文献1で開示されたように反射ミラーおよび構造体がステージの側面に設けられた構成では、ステージの移動に伴ってステージ上(例えば原版上)の気体がステージの側面に流入することがある。この場合、ステージの側面の近傍における計測光路では、気体吹き出し部から吹き出されて構造体で導かれた気体とステージ上から流れてきた気体とで乱流(気体のゆらぎ)が生じてしまい、ステージの位置の計測精度が低下しうる。 In the configuration in which the reflection mirror and the structure are provided on the side surface of the stage as disclosed in Patent Document 1, gas on the stage (for example, on the original plate) may flow into the side surface of the stage as the stage moves. .. In this case, in the measurement optical path near the side surface of the stage, turbulence (gas fluctuation) occurs between the gas blown out from the gas blowing part and guided by the structure and the gas flowing from the stage, and the stage. The measurement accuracy of the position of is reduced.

そこで、本発明は、ステージの位置を精度よく計測するために有利な技術を提供することを目的とする。 Therefore, an object of the present invention is to provide an advantageous technique for accurately measuring the position of the stage.

上記目的を達成するために、本発明の一側面としての位置決め装置は、プレートの位置決めを行う位置決め装置であって、前記プレートを保持して第1方向に移動可能なステージと、前記第1方向に光を射出し、前記ステージの上面の上に設けられた反射部材で反射された光に基づいて、前記第1方向における前記ステージの位置を計測する計測部と、を含み、前記ステージは、前記第1方向への前記ステージの移動によって前記プレートの周囲の気体が前記計測部の光路に侵入することを低減するための壁部を、前記第1方向における前記プレートと前記反射部材との間に有し、前記壁部は、その上端が前記プレートの上面より高く構成され、且つ、前記プレートおよび前記反射部材から離間して配置されている、ことを特徴とする。 In order to achieve the above object, the positioning device as one aspect of the present invention is a positioning device that positions a plate, and includes a stage that holds the plate and can move in the first direction, and the first direction. The stage includes a measuring unit that emits light into the stage and measures the position of the stage in the first direction based on the light reflected by a reflecting member provided on the upper surface of the stage. A wall portion for reducing gas around the plate from entering the optical path of the measuring unit due to the movement of the stage in the first direction is provided between the plate and the reflecting member in the first direction. The wall portion is characterized in that its upper end is configured to be higher than the upper surface of the plate and is arranged away from the plate and the reflective member.

本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。 Further objects or other aspects of the invention will be manifested in the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、例えば、ステージの位置を精度よく計測するために有利な技術を提供することができる。 According to the present invention, for example, it is possible to provide an advantageous technique for accurately measuring the position of a stage.

露光装置の構成を示す概略図Schematic diagram showing the configuration of the exposure apparatus 第1実施形態の位置決め装置の構成を示す概略図The schematic diagram which shows the structure of the positioning apparatus of 1st Embodiment 第1実施形態の位置決め装置の効果を説明するための図The figure for demonstrating the effect of the positioning apparatus of 1st Embodiment. 壁部の変形例を示す図The figure which shows the deformation example of a wall part 第2実施形態の位置決め装置の構成を示す概略図The schematic diagram which shows the structure of the positioning apparatus of 2nd Embodiment 第3実施形態の位置決め装置の構成を示す概略図The schematic diagram which shows the structure of the positioning apparatus of 3rd Embodiment 第4実施形態の位置決め装置の構成を示す概略図The schematic diagram which shows the structure of the positioning apparatus of 4th Embodiment 第4実施形態の位置決め装置の変形例を示す概略図The schematic diagram which shows the modification of the positioning apparatus of 4th Embodiment

以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The following embodiments do not limit the invention according to the claims. Although a plurality of features are described in the embodiment, not all of the plurality of features are essential to the invention, and the plurality of features may be arbitrarily combined. Further, in the attached drawings, the same or similar configurations are designated by the same reference numbers, and duplicate explanations are omitted.

<第1実施形態>
[露光装置の構成]
本発明に係る第1実施形態について説明する。図1は、本実施形態の露光装置100の全体構成を示す概略図である。本実施形態の露光装置100は、原版Mと基板Wとを走査しながら基板Wを露光することにより原版Mのパターンを基板上に転写するステップ・アンド・スキャン方式の露光装置である。このような露光装置100は、走査露光装置やスキャナとも呼ばれる。本実施形態では、原版Mは、例えば石英製のマスク(レチクル)であり、基板Wにおける複数のショット領域の各々に転写されるべき回路パターンが形成されている。また、基板Wは、フォトレジストが塗布されたウェハであり、例えば単結晶シリコン基板等が用いられうる。
<First Embodiment>
[Structure of exposure equipment]
The first embodiment according to the present invention will be described. FIG. 1 is a schematic view showing the overall configuration of the exposure apparatus 100 of the present embodiment. The exposure apparatus 100 of the present embodiment is a step-and-scan type exposure apparatus that transfers the pattern of the original plate M onto the substrate by exposing the substrate W while scanning the original plate M and the substrate W. Such an exposure apparatus 100 is also called a scanning exposure apparatus or a scanner. In the present embodiment, the original plate M is, for example, a mask (reticle) made of quartz, and a circuit pattern to be transferred is formed in each of a plurality of shot regions on the substrate W. Further, the substrate W is a wafer coated with a photoresist, and for example, a single crystal silicon substrate or the like can be used.

露光装置100は、照明光学系IOと、原版Mを保持して移動可能な原版ステージ11と、投影光学系POと、基板Wを保持して移動可能な基板ステージ21と、制御部CNTとを含みうる。制御部CNTは、例えばCPUやメモリを有するコンピュータによって構成されるとともに、装置内の各部に電気的に接続され、装置全体の動作を統括して制御する。ここで、以下の説明では、照明光学系IOから射出されて原版Mに入射する光の光軸に平行な軸方向をZ軸方向とし、該光軸に垂直な面内において互いに直行する2つの軸方向をX軸方向およびY軸方向とする。 The exposure apparatus 100 includes an illumination optical system IO, an original plate stage 11 that holds and moves the original plate M, a projection optical system PO, a substrate stage 21 that holds and moves the substrate W, and a control unit CNT. Can include. The control unit CNT is composed of, for example, a computer having a CPU and a memory, and is electrically connected to each unit in the device to control the operation of the entire device in an integrated manner. Here, in the following description, the axial direction parallel to the optical axis of the light emitted from the illumination optical system IO and incident on the original plate M is the Z-axis direction, and the two are orthogonal to each other in the plane perpendicular to the optical axis. The axial directions are the X-axis direction and the Y-axis direction.

照明光学系IOは、水銀ランプ、ArFエキシマレーザ、KrFエキシマレーザなどの光源LSから射出された光を、例えば帯状や円弧状のスリット光に整形し、そのスリット光で原版Mの一部を照明する。原版Mの一部を透過した光は、当該原版Mの一部のパターンを反映したパターン光として投影光学系POに入射する。投影光学系POは、所定の投影倍率を有し、パターン光により原版Mのパターンを基板上(具体的には、基板上のレジスト)に投影する。原版Mおよび基板Wは、原版ステージ11および基板ステージ21によってそれぞれ保持されており、投影光学系POを介して光学的に共役な位置(投影光学系POの物体面および像面)にそれぞれ配置される。制御部CNTは、原版ステージ11および基板ステージ21を、互いに同期しながら投影光学系POの投影倍率に応じた速度比で相対的に走査する(本実施形態では、原版Mおよび基板Wの走査方向をY軸方向(第1方向)とする)。これにより、原版Mのパターンを基板上に転写することができる。 The illumination optical system IO shapes the light emitted from the light source LS such as a mercury lamp, ArF excimer laser, and KrF excimer laser into, for example, a band-shaped or arc-shaped slit light, and illuminates a part of the original plate M with the slit light. To do. The light transmitted through a part of the original plate M is incident on the projection optical system PO as the pattern light reflecting a part of the pattern of the original plate M. The projection optical system PO has a predetermined projection magnification, and projects the pattern of the original plate M onto the substrate (specifically, the resist on the substrate) by the pattern light. The original plate M and the substrate W are held by the original plate stage 11 and the substrate stage 21, respectively, and are arranged at optically conjugate positions (object plane and image plane of the projection optical system PO) via the projection optical system PO, respectively. To. The control unit CNT relatively scans the original plate stage 11 and the substrate stage 21 at a speed ratio corresponding to the projection magnification of the projection optical system PO while synchronizing with each other (in the present embodiment, the scanning directions of the original plate M and the substrate W). Is the Y-axis direction (first direction)). As a result, the pattern of the original plate M can be transferred onto the substrate.

[位置決め装置の構成]
次に、プレートの位置決めを行う位置決め装置について説明する。本実施形態では、プレートとして原版Mの位置決めを行う位置決め装置10について説明するが、プレートとして基板Wの位置決めを行う場合においても同様の構成の位置決め装置を適用することができる。
[Positioning device configuration]
Next, a positioning device for positioning the plate will be described. In the present embodiment, the positioning device 10 for positioning the original plate M as a plate will be described, but a positioning device having the same configuration can be applied even when the substrate W is positioned as a plate.

図2は、本実施形態の位置決め装置10Aの構成を示す概略図である。図2(a)は、位置決め装置10Aの側面図を示しており、図2(b)は、位置決め装置10Aの上面図を示している。位置決め装置10Aは、例えば、原版Mを保持して少なくともY軸方向(第1方向)に移動可能な原版ステージ11と、Y軸方向における原版ステージ11の位置を計測する計測部12とを含みうる。 FIG. 2 is a schematic view showing the configuration of the positioning device 10A of the present embodiment. FIG. 2A shows a side view of the positioning device 10A, and FIG. 2B shows a top view of the positioning device 10A. The positioning device 10A may include, for example, an original plate stage 11 that holds the original plate M and can move at least in the Y-axis direction (first direction), and a measuring unit 12 that measures the position of the original plate stage 11 in the Y-axis direction. ..

計測部12は、例えばレーザ干渉計で構成され、原版ステージ11に設けられた反射部材13(ミラー)に向けて光を射出し、当該反射部材13からの反射光と参照光との干渉に基づいて、Y軸方向における原版ステージ11の位置を計測することができる。図2に示す例では、複数(2個)の計測部12がX軸方向に離間して配置されている。このように複数の計測部12を用いることで、θ方向(Z軸周りの回転方向)における原版ステージ11の回転を計測することもできる。また、反射部材13は、原版ステージ11の上面Sの上に設けられうる。本実施形態の場合、反射部材13は、図2に示すように、原版ステージ11の上面Sから+Z方向に突出した支持部16によって支持される。ここで、原版ステージ11の上面Sとは、例えば、原版ステージ11において原版Mを保持する保持面を含む面のことである。 The measuring unit 12 is composed of, for example, a laser interferometer, emits light toward the reflecting member 13 (mirror) provided on the original stage 11, and is based on the interference between the reflected light from the reflecting member 13 and the reference light. Therefore, the position of the original plate stage 11 in the Y-axis direction can be measured. In the example shown in FIG. 2, a plurality of (two) measuring units 12 are arranged so as to be separated from each other in the X-axis direction. By using the plurality of measuring units 12 in this way, it is possible to measure the rotation of the original stage 11 in the θ direction (rotation direction around the Z axis). Further, the reflective member 13 may be provided on the upper surface S of the original plate stage 11. In the case of the present embodiment, as shown in FIG. 2, the reflective member 13 is supported by the support portion 16 projecting from the upper surface S of the original plate stage 11 in the + Z direction. Here, the upper surface S of the original plate stage 11 is, for example, a surface including a holding surface for holding the original plate M in the original plate stage 11.

位置決め装置10Aでは、計測部12から射出される光の光路(計測光路)12aにおいて気体の温度や湿度等のゆらぎ(雰囲気ゆらぎ)が生じると、それに起因して計測光路12aの屈折率が変化し、計測精度の低下(計測誤差)が生じることがある。そのため、本実施形態の位置決め装置10Aには、計測光路12aの雰囲気を安定化するための気体14aを吹き出す吹出部14が設けられうる。吹出部14は、例えば、計測部12の計測光路12aにおいてY軸方向に沿った気体の流れが形成されるように、原版ステージ11に向けて気体を吹き出すように構成されうる。吹出部14から吹き出される気体14aは、計測光路12aの雰囲気を安定化することに加えて、原版Mの曇りを防止したり、原版ステージ11を冷却したりするためにも用いられることがある。吹出部14から吹き出される気体14aとしては、例えば、クリーンエア、クリーンドライエア、窒素ガスなど、温度や湿度が所定範囲内に保たれた(調整された)クリーンな気体が用いられるとよい。 In the positioning device 10A, when fluctuations (atmosphere fluctuations) such as gas temperature and humidity occur in the optical path (measurement optical path) 12a of light emitted from the measurement unit 12, the refractive index of the measurement optical path 12a changes due to the fluctuation. , The measurement accuracy may decrease (measurement error). Therefore, the positioning device 10A of the present embodiment may be provided with a blowout portion 14 for blowing out the gas 14a for stabilizing the atmosphere of the measurement optical path 12a. The blowing unit 14 may be configured to blow gas toward the original stage 11 so that, for example, a gas flow along the Y-axis direction is formed in the measurement optical path 12a of the measuring unit 12. The gas 14a blown out from the blowing portion 14 may be used not only to stabilize the atmosphere of the measurement optical path 12a, but also to prevent fogging of the original plate M and to cool the original plate stage 11. .. As the gas 14a blown out from the blowing portion 14, for example, a clean gas such as clean air, clean dry air, and nitrogen gas whose temperature and humidity are kept within a predetermined range (adjusted) may be used.

ところで、原版Mは、基板Wの露光中に照明されて温度が上昇するため、原版Mに生じた熱が原版ステージ11の移動に伴って周囲に拡がり計測光路12aに侵入すると、計測部12による原版ステージ11の位置の計測精度が低下しうる。また、原版Mの曇り防止のため、原版Mの配置空間を、その周囲より低湿度の気体(パージガス)で満たす場合がある。この場合においても、原版ステージ11の移動に伴って低湿度の気体が計測光路に侵入すると、計測部12による原版ステージ11の位置の計測精度が低下しうる。なお、以下では、原版Mからの熱を帯びた気体と原版Mの配置空間に供給された気体(パージガス)とを総称して「原版Mの周囲気体」と呼ぶことがある。 By the way, since the original plate M is illuminated during the exposure of the substrate W and the temperature rises, when the heat generated in the original plate M spreads to the surroundings as the original plate stage 11 moves and enters the measurement optical path 12a, the measurement unit 12 causes the original plate M. The measurement accuracy of the position of the original stage 11 may decrease. Further, in order to prevent fogging of the original plate M, the arrangement space of the original plate M may be filled with a gas (purge gas) having a lower humidity than the surroundings. Even in this case, if a low-humidity gas invades the measurement optical path as the original plate stage 11 moves, the measurement accuracy of the position of the original plate stage 11 by the measurement unit 12 may decrease. In the following, the hot gas from the original plate M and the gas (purge gas) supplied to the arrangement space of the original plate M may be collectively referred to as "peripheral gas of the original plate M".

そこで、本実施形態の位置決め装置10Aでは、原版ステージ11の上面Sにおける反射部材13(支持部16)と原版Mとの間に壁部17が設けられる。このように壁部17を設けることにより、原版ステージ11の移動に伴って原版Mの周囲気体が移動して計測光路12aに侵入することを低減することができる。具体的には、図3に示すように、矢印Vに従って原版ステージ11が移動すると、原版Mの周囲気体は、計測光路12aに向かう方向(−X方向)へ移動を開始する。しかしながら、移動を開始した原版Mの周囲気体は、矢印Aに示すように壁部17にぶつかり、その移動方向(流れの向き)が、計測光路12aから離れる方向に変えられる。そのため、原版Mの周囲気体が計測光路12aに侵入することを低減(防止)することができる。 Therefore, in the positioning device 10A of the present embodiment, a wall portion 17 is provided between the reflective member 13 (support portion 16) on the upper surface S of the original plate stage 11 and the original plate M. By providing the wall portion 17 in this way, it is possible to reduce the movement of the ambient gas of the original plate M with the movement of the original plate stage 11 and the invasion of the measurement optical path 12a. Specifically, as shown in FIG. 3, when the original plate stage 11 moves according to the arrow V, the ambient gas of the original plate M starts moving in the direction (−X direction) toward the measurement optical path 12a. However, the ambient gas of the original plate M that has started to move collides with the wall portion 17 as shown by the arrow A, and the moving direction (flow direction) is changed to a direction away from the measurement optical path 12a. Therefore, it is possible to reduce (prevent) the invasion of the ambient gas of the original plate M into the measurement optical path 12a.

壁部17は、その高さ(Z軸方向)が原版Mの上面より高くなるように構成される。壁部17の高さは、高いほど、原版Mの周囲気体の移動方向を計測光路12aから離れる方向に誘導(変換)して当該周囲気体の流れと計測光路12aとの間の距離を増加させることができる。このように原版Mの周囲気体の流れと計測光路12aとの間の距離を増加させれば、原版Mの周囲気体が計測光路12aに侵入することを低減することができる。そして、この場合、吹出部14から吹き出された気体14aにより原版Mの周囲気体の流れを計測光路12aから更に離すことができるため、原版Mの周囲気体が計測光路12aに侵入することを更に低減することができる。 The wall portion 17 is configured so that its height (Z-axis direction) is higher than the upper surface of the original plate M. The higher the height of the wall portion 17, the more the moving direction of the ambient gas of the original plate M is guided (converted) in the direction away from the measurement optical path 12a, and the distance between the flow of the ambient gas and the measurement optical path 12a is increased. be able to. By increasing the distance between the flow of the ambient gas of the original plate M and the measurement optical path 12a in this way, it is possible to reduce the invasion of the ambient gas of the original plate M into the measurement optical path 12a. In this case, since the gas 14a blown out from the blowing portion 14 can further separate the flow of the ambient gas of the original plate M from the measurement optical path 12a, it is further reduced that the ambient gas of the original plate M invades the measurement optical path 12a. can do.

また、壁部17は、その幅(X軸方向の長さ)が原版Mの幅(X軸方向の長さ)以上であるとよい。壁部17の幅は、広いほど、移動する原版Mの周囲気体を計測光路12aから離れる方向に誘導して当該周囲気体の流れと計測光路12aとの間の距離を増加させることができる。なお、X軸方向は、原版ステージ11の上面Sと平行な面内で走査方向(X軸方向、第1方向)に垂直な方向(第2方向)と定義することができる。ここで、上記のように、壁部17の高さは高いほどよく、壁部17の幅は広いほどよいが、壁部17の高さおよび幅は、例えば原版ステージ11のサイズまたは原版ステージ11が移動可能な空間のサイズに応じて決定されうる。 Further, it is preferable that the width (length in the X-axis direction) of the wall portion 17 is equal to or larger than the width (length in the X-axis direction) of the original plate M. The wider the width of the wall portion 17, the more the ambient gas of the moving original plate M can be guided in the direction away from the measurement optical path 12a to increase the distance between the flow of the ambient gas and the measurement optical path 12a. The X-axis direction can be defined as a direction (second direction) perpendicular to the scanning direction (X-axis direction, first direction) in a plane parallel to the upper surface S of the original plate stage 11. Here, as described above, the higher the height of the wall portion 17, the better, and the wider the width of the wall portion 17, the better. However, the height and width of the wall portion 17 are, for example, the size of the original plate stage 11 or the original plate stage 11. Can be determined according to the size of the movable space.

壁部17は、Z軸方向から見て(平面視において)、矩形形状に限られるものではなく、原版Mの周囲気体の移動方向を変える効果を増加させることができる他の形状を有してもよい。図4(a)〜(d)は、壁部17の形状例を示している。図4(a)に示す壁部17は、X軸方向側の端部が原版Mから遠ざかる方向(+Y方向)に「L字」状に折れ曲がった形状を有している。図4(b)に示す壁部17は、X軸方向側の端部が原版Mに向かう方向(−Y方向)に「L字」状に折れ曲がった形状を有している。図4(c)に示す壁部17は、X軸方向側の端部が原版Mから遠ざかる方向(+Y方向)に「くの字」状に折れ曲がった形状を有している。図4(d)に示す壁部17は、X軸方向側の側面が傾斜した形状を有している(即ち、平面視での形状が台形形状を有している)。なお、壁部17の形状は、曲率を有していたり厚さが部分的に異なっていたり等、図4に示す形状に限定されるものではない。また、壁部17での空気抵抗により原版ステージ11の移動に影響を与える場合には、当該空気抵抗が所望値より小さくなるように壁部17を傾斜形状としてもよい。 The wall portion 17 is not limited to a rectangular shape when viewed from the Z-axis direction (in a plan view), and has another shape capable of increasing the effect of changing the moving direction of the ambient gas of the original plate M. May be good. 4 (a) to 4 (d) show an example of the shape of the wall portion 17. The wall portion 17 shown in FIG. 4A has a shape in which the end portion on the X-axis direction side is bent in an “L” shape in the direction away from the original plate M (+ Y direction). The wall portion 17 shown in FIG. 4B has a shape in which the end portion on the X-axis direction side is bent in an “L” shape in the direction (−Y direction) toward the original plate M. The wall portion 17 shown in FIG. 4C has a shape in which the end portion on the X-axis direction side is bent in a “dogleg” shape in the direction away from the original plate M (+ Y direction). The wall portion 17 shown in FIG. 4D has a shape in which the side surface on the X-axis direction side is inclined (that is, the shape in a plan view has a trapezoidal shape). The shape of the wall portion 17 is not limited to the shape shown in FIG. 4, such as having a curvature or having a partially different thickness. Further, when the air resistance at the wall portion 17 affects the movement of the original plate stage 11, the wall portion 17 may have an inclined shape so that the air resistance becomes smaller than a desired value.

一方、吹出部14から吹き出された気体14aの流れも、壁部17によって変化しうる。気体14aは、上述したように、計測光路12aの雰囲気を安定化して計測精度の低下を低減するために計測光路12aに供給される。そのため、計測光路12aにおいて部分的に気体14aの流れが変化してしまうと、その部分で屈折率が変化して計測精度が低下しうる。例えば、吹出部14から吹き出された気体14aが壁部17にぶつかると、壁部17の近傍では、気体14aの流れが変化しうる。また、壁部17の近傍の気体14aは、原版ステージ11の移動に伴って、壁部17により押し出されたり引っ張られたりするため、乱れた流れ(乱流)となることがある。このような気体14aの流れの変化や乱流が、計測光路12aで生じてしまうと、計測精度の低下が引き起こされうる。 On the other hand, the flow of the gas 14a blown out from the blowing portion 14 can also be changed by the wall portion 17. As described above, the gas 14a is supplied to the measurement optical path 12a in order to stabilize the atmosphere of the measurement optical path 12a and reduce a decrease in measurement accuracy. Therefore, if the flow of the gas 14a is partially changed in the measurement optical path 12a, the refractive index may change in that portion and the measurement accuracy may decrease. For example, when the gas 14a blown out from the blowing portion 14 hits the wall portion 17, the flow of the gas 14a may change in the vicinity of the wall portion 17. Further, the gas 14a in the vicinity of the wall portion 17 is pushed out or pulled by the wall portion 17 as the original stage 11 moves, so that the gas 14a may become a turbulent flow (turbulent flow). If such a change in the flow of the gas 14a or a turbulent flow occurs in the measurement optical path 12a, a decrease in measurement accuracy can be caused.

そのため、本実施形態の壁部17は、反射部材13(支持部16)からY軸方向に離間して配置されている。例えば、壁部17は、Y軸方向において、原版Mと反射部材13(支持部16)との中間位置より原版側(プレート側)に配置されるとよい。このように壁部17を反射部材13(支持部16)から離間して配置することにより、壁部17の近傍における気体14aの流れの変化や乱流が計測光路12aに与える影響を低減し、計測精度の低下を低減することができる。さらに、壁部17によって気体14aの流れが変化する方向は、計測光路12aから離れる方向となるため、このような変化後の気体14aの流れにより、壁部17を超えてきた原版Mの周囲気体を計測光路12aから遠ざける効果を増加させることができる。 Therefore, the wall portion 17 of the present embodiment is arranged so as to be separated from the reflective member 13 (support portion 16) in the Y-axis direction. For example, the wall portion 17 may be arranged on the original plate side (plate side) from the intermediate position between the original plate M and the reflective member 13 (support portion 16) in the Y-axis direction. By arranging the wall portion 17 away from the reflective member 13 (support portion 16) in this way, it is possible to reduce the influence of changes in the flow of the gas 14a and turbulent flow in the vicinity of the wall portion 17 on the measurement optical path 12a. It is possible to reduce the decrease in measurement accuracy. Further, since the direction in which the flow of the gas 14a is changed by the wall portion 17 is the direction away from the measurement optical path 12a, the ambient gas of the original plate M that has exceeded the wall portion 17 due to the flow of the gas 14a after such a change. The effect of keeping the gas from the measurement optical path 12a can be increased.

次に、原版Mと反射部材13(支持部16)との間に壁部17を設ける効果をシミュレーションで確認した結果について説明する。シミュレーションでは、原版Mのサイズを152mm×152mmとした。また、壁部17を、180mm幅(X軸方向の長さ)および26mm高さとし、原版ステージ11の上面Sにおける原版Mの端部から35mmの位置に設けた。この場合において、基板Wの露光中に原版Mの温度が1.4℃上昇したとき、壁部17を設けていない場合と比較して、原版Mの温度起因による計測光路12aのゆらぎが45%改善された結果となった。 Next, the result of confirming the effect of providing the wall portion 17 between the original plate M and the reflective member 13 (support portion 16) by simulation will be described. In the simulation, the size of the original plate M was set to 152 mm × 152 mm. Further, the wall portion 17 has a width of 180 mm (length in the X-axis direction) and a height of 26 mm, and is provided at a position 35 mm from the end portion of the original plate M on the upper surface S of the original plate stage 11. In this case, when the temperature of the original plate M rises by 1.4 ° C. during the exposure of the substrate W, the fluctuation of the measurement optical path 12a due to the temperature of the original plate M is 45% as compared with the case where the wall portion 17 is not provided. The result was improved.

上述したように、本実施形態の位置決め装置10Aでは、原版ステージ11の上面における原版Mと反射部材13との間に壁部17が設けられる。また、壁部17は、その上端が原版Mの上面より高く構成され、原版Mおよび反射部材13(支持部16)から離間して配置される。この構成により、露光中に原版Mに生じた熱や原版Mに対して供給されたパージガスなど、原版Mの周囲気体が計測部12の計測光路12aに侵入することを低減することができる。そのため、計測光路12aの雰囲気ゆらぎに起因する計測部12の計測誤差を低減し、原版Mを精度よく位置決めすることができる。ここで、本実施形態の構成において、計測部12および反射部材13の位置を入れ換えてもよい。つまり、本実施形態では原版ステージ11の上面Sに反射部材13を設けたが、原版ステージ11の上面Sに計測部12を設けてもよい。 As described above, in the positioning device 10A of the present embodiment, the wall portion 17 is provided between the original plate M and the reflective member 13 on the upper surface of the original plate stage 11. Further, the upper end of the wall portion 17 is formed higher than the upper surface of the original plate M, and the wall portion 17 is arranged apart from the original plate M and the reflective member 13 (support portion 16). With this configuration, it is possible to reduce the invasion of the ambient gas of the original plate M, such as the heat generated in the original plate M during the exposure and the purge gas supplied to the original plate M, into the measurement optical path 12a of the measurement unit 12. Therefore, the measurement error of the measurement unit 12 due to the atmospheric fluctuation of the measurement optical path 12a can be reduced, and the original plate M can be positioned accurately. Here, in the configuration of the present embodiment, the positions of the measuring unit 12 and the reflecting member 13 may be exchanged. That is, although the reflection member 13 is provided on the upper surface S of the original plate stage 11 in the present embodiment, the measuring unit 12 may be provided on the upper surface S of the original plate stage 11.

<第2実施形態>
本発明に係る第2実施形態について説明する。本実施形態は、第1実施形態を基本的に引き継ぐものであるが、計測部12の計測光路12aの一部を取り囲むカバー部材18を更に有する点で第1実施形態と異なる。以下に、カバー部材18を有する本実施形態の位置決め装置10Bについて説明する。
<Second Embodiment>
A second embodiment according to the present invention will be described. This embodiment basically inherits the first embodiment, but differs from the first embodiment in that it further includes a cover member 18 that surrounds a part of the measurement optical path 12a of the measurement unit 12. The positioning device 10B of the present embodiment having the cover member 18 will be described below.

図5は、本実施形態の位置決め装置10Bの構成を示す概略図である。図5(a)は、位置決め装置10Bの側面図を示しており、図5(b)は、位置決め装置10Bの上面図を示している。本実施形態の原版ステージ11は、その上面Sにおいて計測光路12aの一部を取り囲む(覆う)カバー部材18を有する。カバー部材18は、壁部17を超えてきた原版Mの周囲気体が計測光路12aに与える影響を更に低減するため、即ち、原版ステージ11上での気体の流れを整えて計測光路12aの雰囲気の安定化を図るために設けられうる。 FIG. 5 is a schematic view showing the configuration of the positioning device 10B of the present embodiment. FIG. 5A shows a side view of the positioning device 10B, and FIG. 5B shows a top view of the positioning device 10B. The original stage 11 of the present embodiment has a cover member 18 that surrounds (covers) a part of the measurement optical path 12a on the upper surface S thereof. The cover member 18 further reduces the influence of the ambient gas of the original plate M that has exceeded the wall portion 17 on the measurement optical path 12a, that is, arranges the gas flow on the original plate stage 11 to create an atmosphere of the measurement optical path 12a. It can be provided for stabilization.

本実施形態のカバー部材18は、カバー部材18と壁部17との間に隙間19が形成されるように、原版ステージ11の上面Sに配置されうる。このように壁部17から隙間19をあけてカバー部材18を配置することにより、吹出部14から吹き出されてカバー部材18を通過した気体14aを、当該隙間19から排出し、壁部17に沿って流すことができる。つまり、壁部17を超えて移動してきた原版Mの周囲気体を計測光路12aから遠ざける効果を更に増加させることができる。 The cover member 18 of the present embodiment may be arranged on the upper surface S of the original plate stage 11 so that a gap 19 is formed between the cover member 18 and the wall portion 17. By arranging the cover member 18 with a gap 19 from the wall portion 17 in this way, the gas 14a blown out from the blowout portion 14 and passing through the cover member 18 is discharged from the gap 19 and along the wall portion 17. Can be flushed. That is, the effect of keeping the ambient gas of the original plate M that has moved beyond the wall portion 17 away from the measurement optical path 12a can be further increased.

カバー部材18と壁部17との間の隙間19は、狭いほど、当該隙間19から排出される気体14aの流速を増加させ、原版Mの周囲気体を計測光路12aから遠ざける効果を増加させることができる。その一方で、隙間19を狭くすると、吹出部14から吹き出された気体14aがカバー部材18の内部で淀んでしまい、計測光路12aの雰囲気ゆらぎを引き起こすことがある。そのため、本実施形態のカバー部材18は、X軸方向側の側面に、内部を通過した気体を排出するための開口部18aを有する。開口部18aは、壁部17側に形成されるとよく、好ましくは、Y軸方向における反射部材13と壁部17との間に形成されるとよい。また、開口部18aは、Y軸方向において、可能な限り反射部材13から離れた位置に配置されることが好ましい。これは、原版Mの周囲気体が、壁部17を超えて開口部18aからカバー部材18の内部に侵入したとしても、計測光路12aに影響を与えることを低減するためである。 As the gap 19 between the cover member 18 and the wall portion 17 is narrower, the flow velocity of the gas 14a discharged from the gap 19 can be increased, and the effect of keeping the ambient gas of the original plate M away from the measurement optical path 12a can be increased. it can. On the other hand, if the gap 19 is narrowed, the gas 14a blown out from the blowout portion 14 may stagnate inside the cover member 18, causing fluctuations in the atmosphere of the measurement optical path 12a. Therefore, the cover member 18 of the present embodiment has an opening 18a on the side surface on the X-axis direction side for discharging the gas that has passed through the inside. The opening 18a is preferably formed on the wall 17 side, and preferably is formed between the reflective member 13 and the wall 17 in the Y-axis direction. Further, it is preferable that the opening 18a is arranged at a position as far as possible from the reflective member 13 in the Y-axis direction. This is to reduce the influence of the ambient gas of the original plate M on the measurement optical path 12a even if it penetrates the inside of the cover member 18 through the opening 18a beyond the wall portion 17.

ここで、カバー部材18は、壁部17と一体に構成されてもよい。この場合においても、当該一体構成の部材に対して、隙間19および開口部18aに対応する開口や切り欠き等が形成されうる。また、開口部18aは、カバー部材18と壁部17との間の隙間19の狭さに関わらずに形成されてもよい。さらに、本実施形態のカバー部材18は、図5に示すように、X軸方向に離間して配置された複数の反射部材13(計測光路12a)を取り囲むように構成されているが、それに限られず、複数の反射部材13の各々を個別に取り囲むように構成されてもよい。 Here, the cover member 18 may be integrally formed with the wall portion 17. Even in this case, an opening, a notch, or the like corresponding to the gap 19 and the opening 18a can be formed in the integrally configured member. Further, the opening 18a may be formed regardless of the narrowness of the gap 19 between the cover member 18 and the wall portion 17. Further, as shown in FIG. 5, the cover member 18 of the present embodiment is configured to surround a plurality of reflective members 13 (measurement optical paths 12a) arranged apart from each other in the X-axis direction, but is limited thereto. Instead, it may be configured to individually surround each of the plurality of reflective members 13.

上述したように、本実施形態の位置決め装置10Bは、壁部17に対して隙間19をあけて原版ステージ11の上面Sに設けられたカバー部材18を有する。また、カバー部材18は、X軸方向側の側面に形成された開口部18aを有してもよい。この構成により、吹出部14から吹き出されてカバー部材18を通過した気体14aを、当該隙間19から排出し、壁部17に沿って流すことができるため、原版Mの周囲気体が計測部12の計測光路12aに侵入することを更に低減することができる。 As described above, the positioning device 10B of the present embodiment has a cover member 18 provided on the upper surface S of the original stage 11 with a gap 19 with respect to the wall portion 17. Further, the cover member 18 may have an opening 18a formed on a side surface on the X-axis direction side. With this configuration, the gas 14a blown out from the blowout portion 14 and passed through the cover member 18 can be discharged from the gap 19 and flowed along the wall portion 17, so that the ambient gas of the original plate M can be discharged from the measurement unit 12. It is possible to further reduce the intrusion into the measurement optical path 12a.

<第3実施形態>
本発明に係る第3実施形態について説明する。本実施形態では、原版Mが配置される空間(以下、原版Mの配置空間)にパージガスを供給するように構成された位置決め装置10Cの構成例について説明する。なお、本実施形態は、特に言及されない限り、第1〜第2実施形態を基本的に引き継ぐものである。
<Third Embodiment>
A third embodiment according to the present invention will be described. In the present embodiment, a configuration example of the positioning device 10C configured to supply purge gas to the space in which the original plate M is arranged (hereinafter, the arrangement space of the original plate M) will be described. Unless otherwise specified, the present embodiment basically inherits the first and second embodiments.

図6は、本実施形態の位置決め装置10Cの構成を示す概略図である。図6(a)は、位置決め装置10Cの側面図を示しており、図6(b)は、位置決め装置10Cの上面図を示している。本実施形態の位置決め装置10Cは、例えば、原版Mの配置空間にパージガス(一例として低湿度の気体)を供給する場合に有用である。 FIG. 6 is a schematic view showing the configuration of the positioning device 10C of the present embodiment. FIG. 6A shows a side view of the positioning device 10C, and FIG. 6B shows a top view of the positioning device 10C. The positioning device 10C of the present embodiment is useful, for example, when supplying purge gas (as an example, a gas having low humidity) to the arrangement space of the original plate M.

本実施形態の位置決め装置10Cは、第1面部材31と第2面部材32との間を原版ステージ11が移動するように構成される。第1面部材31は、例えば照明光学系IOにより支持されてXY方向に広がる部材であり、第2面部材32は、例えば投影光学系POにより支持されてXY方向に広がる部材である。第1面部材31および第2面部材32は、原版ステージ11に対する隙間が可能な限り狭くなるように配置される。これにより、原版Mの配置空間に供給されたパージガス33が、第1面部材31と原版ステージ11との隙間、および、第2面部材32と原版ステージ11との隙間から抜け出すことを低減することができる。 The positioning device 10C of the present embodiment is configured such that the original plate stage 11 moves between the first surface member 31 and the second surface member 32. The first surface member 31 is, for example, a member supported by the illumination optical system IO and spreads in the XY direction, and the second surface member 32 is, for example, a member supported by the projection optical system PO and spreads in the XY direction. The first surface member 31 and the second surface member 32 are arranged so that the gap with respect to the original stage 11 is as narrow as possible. As a result, it is possible to reduce that the purge gas 33 supplied to the arrangement space of the original plate M escapes from the gap between the first surface member 31 and the original plate stage 11 and the gap between the second surface member 32 and the original plate stage 11. Can be done.

また、原版ステージ11は、反射部材13(支持部16)と、壁部17と、カバー部材18と、隙間規定部材34とを有する。反射部材13(支持部16)および壁部17は、第1〜第2実施形態で説明したように原版ステージ11の上面Sの上に設けられる。カバー部材18は、第2実施形態で説明したように、壁部17に対して隙間19が形成されるように原版ステージ11の上面Sに設けられ、X軸方向側の側面に開口部18aを有する。そして、本実施形態の場合、カバー部材18は、第1面部材31に対して狭隙間を形成するように壁部17と同じ高さに構成されうる。隙間規定部材34は、第1面部材31に対して狭隙間を形成するための部材であり、原版Mの配置空間を基準(中心)として壁部17およびカバー部材18の反対側(原版Mの配置空間の−Y方向側)に配置される。隙間規定部材34は、壁部17およびカバー部材18と同じ高さに構成されうる。 Further, the original stage 11 has a reflection member 13 (support portion 16), a wall portion 17, a cover member 18, and a gap defining member 34. The reflective member 13 (support portion 16) and the wall portion 17 are provided on the upper surface S of the original plate stage 11 as described in the first to second embodiments. As described in the second embodiment, the cover member 18 is provided on the upper surface S of the original plate stage 11 so that a gap 19 is formed with respect to the wall portion 17, and the opening 18a is provided on the side surface on the X-axis direction side. Have. Then, in the case of the present embodiment, the cover member 18 can be configured at the same height as the wall portion 17 so as to form a narrow gap with respect to the first surface member 31. The gap defining member 34 is a member for forming a narrow gap with respect to the first surface member 31, and is opposite to the wall portion 17 and the cover member 18 (of the original plate M) with respect to the arrangement space of the original plate M (center). It is arranged on the −Y direction side of the arrangement space). The gap defining member 34 may be configured at the same height as the wall portion 17 and the cover member 18.

このように、原版ステージ11を構成することにより、原版Mの配置空間に供給されたパージガス33が抜け出すことを低減することができる。また、壁部17と第1面部材31との隙間、および壁部17とカバー部材18との隙間を介してパージガス33が計測光路12aに侵入することを低減することができる。ここで、カバー部材18の開口部18aの面積(総面積)は、壁部17とカバー部材18との隙間の面積(総面積)より大きいことが好ましい。本実施形態の構成では、壁部17とカバー部材18との隙間から気体14aが排出されにくいため、カバー部材18の内部において気体14aが淀んでしまい、計測光路12aの雰囲気ゆらぎを引き起こしやすくなるからである。また、開口部18aは、Y軸方向において、反射部材13と壁部17との間に形成されるとよい。この場合、開口部18aは、Y軸方向において、可能な限り反射部材13から離れた位置に形成されることが好ましい。これは、反射部材13の近傍の計測光路12aにおいて、気体14aの急激な流速変化を抑え、計測光路12aの雰囲気ゆらぎを低減するためである。 By configuring the original plate stage 11 in this way, it is possible to reduce the escape of the purge gas 33 supplied to the arrangement space of the original plate M. Further, it is possible to reduce the invasion of the purge gas 33 into the measurement optical path 12a through the gap between the wall portion 17 and the first surface member 31 and the gap between the wall portion 17 and the cover member 18. Here, the area (total area) of the opening 18a of the cover member 18 is preferably larger than the area (total area) of the gap between the wall portion 17 and the cover member 18. In the configuration of the present embodiment, since the gas 14a is difficult to be discharged from the gap between the wall portion 17 and the cover member 18, the gas 14a stagnates inside the cover member 18 and easily causes the atmosphere fluctuation of the measurement optical path 12a. Is. Further, the opening 18a may be formed between the reflecting member 13 and the wall portion 17 in the Y-axis direction. In this case, the opening 18a is preferably formed at a position as far as possible from the reflective member 13 in the Y-axis direction. This is to suppress a sudden change in the flow velocity of the gas 14a in the measurement optical path 12a in the vicinity of the reflection member 13 and reduce the atmospheric fluctuation of the measurement optical path 12a.

<第4実施形態>
本発明に係る第5実施形態について説明する。本実施形態では、原版ステージ11が粗動ステージ11aと微動ステージ11bとを含むように構成された位置決め装置10Dの構成例について説明する。なお、本実施形態は、特に言及されない限り、第1実施形態を基本的に引き継ぐものである。また、本実施形態は、第2実施形態で説明したカバー部材18を含む構成、および/または、第3実施形態で説明した第1面部材31と第2面部材32とを含む構成を適用してもよい。
<Fourth Embodiment>
A fifth embodiment according to the present invention will be described. In the present embodiment, a configuration example of the positioning device 10D in which the original plate stage 11 is configured to include the coarse movement stage 11a and the fine movement stage 11b will be described. Unless otherwise specified, this embodiment basically inherits the first embodiment. Further, the present embodiment applies a configuration including the cover member 18 described in the second embodiment and / or a configuration including the first surface member 31 and the second surface member 32 described in the third embodiment. You may.

図7は、本実施形態の位置決め装置10Dの構成を示す概略図である。図7(a)は、位置決め装置10Dの側面図を示しており、図7(b)は位置決め装置10Dの上面図を示している。本実施形態の位置決め装置10Dにおける原版ステージ11は、粗動ステージ11aと微動ステージ11bとを含みうる。 FIG. 7 is a schematic view showing the configuration of the positioning device 10D of the present embodiment. FIG. 7A shows a side view of the positioning device 10D, and FIG. 7B shows a top view of the positioning device 10D. The original plate stage 11 in the positioning device 10D of the present embodiment may include a coarse movement stage 11a and a fine movement stage 11b.

粗動ステージ11aは、ベース41に対して少なくともY軸方向に相対移動するための駆動機構42(アクチュエータ)を有する。そして、Y軸方向における粗動ステージ11aの位置は、第2計測部43によって計測される。第2計測部43は、例えばレーザ干渉計で構成され、粗動ステージ11aに設けられた反射部材44に向けて光を射出し、当該反射部材44からの反射光と参照光との干渉に基づいて、Y軸方向における粗動ステージ11aの位置を計測することができる。図7では、第2計測部43の計測光路43aが示されている。ここで、本実施形態では、反射部材44は、粗動ステージ11aの側面に設けられているが、粗動ステージ11aの上面に設けられてもよい。 The coarse movement stage 11a has a drive mechanism 42 (actuator) for moving relative to the base 41 in at least the Y-axis direction. Then, the position of the coarse movement stage 11a in the Y-axis direction is measured by the second measuring unit 43. The second measuring unit 43 is composed of, for example, a laser interferometer, emits light toward the reflecting member 44 provided on the coarse motion stage 11a, and is based on the interference between the reflected light from the reflecting member 44 and the reference light. Therefore, the position of the coarse movement stage 11a in the Y-axis direction can be measured. In FIG. 7, the measurement optical path 43a of the second measurement unit 43 is shown. Here, in the present embodiment, the reflective member 44 is provided on the side surface of the roughing stage 11a, but may be provided on the upper surface of the roughing stage 11a.

また、微動ステージ11bは、原版Mを保持するとともに、粗動ステージ11aに対して少なくともY軸方向に相対移動するための駆動機構45(アクチュエータ)を有する。本実施形態の場合、反射部材13(支持部16)および壁部17は、微動ステージ11bの上面Sに設けられている。そして、壁部17は、反射部材13(支持部16)と原版Mとの間において、反射部材13および原版Mと離間するように微動ステージ11bによって支持されている。 Further, the fine movement stage 11b has a drive mechanism 45 (actuator) for holding the original plate M and moving relative to the coarse movement stage 11a at least in the Y-axis direction. In the case of the present embodiment, the reflection member 13 (support portion 16) and the wall portion 17 are provided on the upper surface S of the fine movement stage 11b. The wall portion 17 is supported between the reflective member 13 (support portion 16) and the original plate M by a fine movement stage 11b so as to be separated from the reflective member 13 and the original plate M.

ここで、壁部17は、図8に示すように、微動ステージ11bではなく、粗動ステージ11aによって支持されていてもよい。図8は、壁部17が粗動ステージ11aによって支持された構成の位置決め装置10Eの構成を示す概略図である。図8(a)は、位置決め装置10Eの側面図を示しており、図8(b)は位置決め装置10Eの上面図を示している。図8に示す位置決め装置10Eでは、壁部17は、支持部材46を介して粗動ステージ11aによって支持されている。具体的には、壁部17は、反射部材13(支持部16)と原版Mとの間において、反射部材13および原版Mと離間するように、支持部材46を介して粗動ステージ11bによって支持されている。 Here, as shown in FIG. 8, the wall portion 17 may be supported by the coarse movement stage 11a instead of the fine movement stage 11b. FIG. 8 is a schematic view showing the configuration of the positioning device 10E in which the wall portion 17 is supported by the roughing stage 11a. FIG. 8A shows a side view of the positioning device 10E, and FIG. 8B shows a top view of the positioning device 10E. In the positioning device 10E shown in FIG. 8, the wall portion 17 is supported by the coarse movement stage 11a via the support member 46. Specifically, the wall portion 17 is supported by the coarse-moving stage 11b between the reflective member 13 (support portion 16) and the original plate M via the support member 46 so as to be separated from the reflective member 13 and the original plate M. Has been done.

本実施形態の位置決め装置10D〜10Eの構成によっても、原版Mの周囲気体が計測部12の計測光路12aに侵入することを低減することができる。そのため、計測光路12aにおける雰囲気ゆらぎに起因する計測部12の計測誤差を低減し、原版Mを精度よく位置決めすることができる。 The configuration of the positioning devices 10D to 10E of the present embodiment also makes it possible to reduce the invasion of the ambient gas of the original plate M into the measurement optical path 12a of the measurement unit 12. Therefore, the measurement error of the measurement unit 12 due to the fluctuation of the atmosphere in the measurement optical path 12a can be reduced, and the original plate M can be positioned accurately.

<物品の製造方法の実施形態>
本発明の実施形態にかかる物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像(加工)する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of manufacturing method of goods>
The method for manufacturing an article according to the embodiment of the present invention is suitable for producing an article such as a microdevice such as a semiconductor device or an element having a fine structure, for example. The method for manufacturing an article of the present embodiment includes a step of forming a latent image pattern on a photosensitive agent applied to a substrate (a step of exposing a substrate) using the above-mentioned exposure apparatus, and a step of forming a latent image pattern in such a step. Includes the process of developing (processing) the substrate. Further, such a manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, flattening, etching, resist peeling, dicing, bonding, packaging, etc.). The method for producing an article of the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above embodiments, and various modifications and modifications can be made without departing from the spirit and scope of the invention. Therefore, a claim is attached to make the scope of the invention public.

10:位置決め装置、11:原版ステージ、12:計測部、13:反射部材、16:支持部、17:壁部、18:カバー部材 10: Positioning device, 11: Original stage, 12: Measuring part, 13: Reflective member, 16: Support part, 17: Wall part, 18: Cover member

Claims (13)

プレートの位置決めを行う位置決め装置であって、
前記プレートを保持して第1方向に移動可能なステージと、
前記第1方向に光を射出し、前記ステージの上面の上に設けられた反射部材で反射された光に基づいて、前記第1方向における前記ステージの位置を計測する計測部と、
を含み、
前記ステージは、前記第1方向への前記ステージの移動によって前記プレートの周囲の気体が前記計測部の光路に侵入することを低減するための壁部を、前記第1方向における前記プレートと前記反射部材との間に有し、
前記壁部は、その上端が前記プレートの上面より高く構成され、且つ、前記プレートおよび前記反射部材から離間して配置されている、ことを特徴とする位置決め装置。
A positioning device that positions the plate.
A stage that holds the plate and can move in the first direction,
A measuring unit that emits light in the first direction and measures the position of the stage in the first direction based on the light reflected by the reflecting member provided on the upper surface of the stage.
Including
The stage has a wall portion for reducing gas around the plate from entering the optical path of the measuring unit due to the movement of the stage in the first direction, and the plate and the reflection in the first direction. Have between the members
A positioning device characterized in that the upper end of the wall portion is formed higher than the upper surface of the plate and is arranged apart from the plate and the reflective member.
前記壁部は、前記第1方向において、前記プレートと前記反射部材との中間位置より前記プレート側に配置されている、ことを特徴とする請求項1に記載の位置決め装置。 The positioning device according to claim 1, wherein the wall portion is arranged on the plate side from an intermediate position between the plate and the reflective member in the first direction. 前記反射部材は、前記ステージの上面から突出した支持部によって支持され、
前記壁部は、前記支持部から離間して配置されている、ことを特徴とする請求項1又は2に記載の位置決め装置。
The reflective member is supported by a support portion protruding from the upper surface of the stage.
The positioning device according to claim 1 or 2, wherein the wall portion is arranged apart from the support portion.
前記ステージの上面は、前記プレートを保持する保持面を含む面である、ことを特徴とする請求項1乃至3のいずれか1項に記載の位置決め装置。 The positioning device according to any one of claims 1 to 3, wherein the upper surface of the stage is a surface including a holding surface for holding the plate. 前記ステージの上面と平行な面内で前記第1方向に垂直な第2方向において、前記壁部の長さは前記プレートの長さ以上である、ことを特徴とする請求項1乃至4のいずれか1項に記載の位置決め装置。 Any of claims 1 to 4, wherein the length of the wall portion is equal to or greater than the length of the plate in a second direction perpendicular to the first direction in a plane parallel to the upper surface of the stage. The positioning device according to item 1. 前記ステージは、前記計測部の光路の一部を取り囲むカバー部材を有し、
前記カバー部材と前記壁部との間には、前記カバー部材の内部から気体を排出するための隙間が形成されている、ことを特徴とする請求項1乃至5のいずれか1項に記載の位置決め装置。
The stage has a cover member that surrounds a part of the optical path of the measuring unit.
The invention according to any one of claims 1 to 5, wherein a gap is formed between the cover member and the wall portion for discharging gas from the inside of the cover member. Positioning device.
前記カバー部材は、その内部から気体を排出するための開口部を、前記第1方向と垂直な第2方向側の側面に有する、ことを特徴とする請求項6に記載の位置決め装置。 The positioning device according to claim 6, wherein the cover member has an opening for discharging gas from the inside thereof on a side surface on the side in the second direction perpendicular to the first direction. 前記カバー部材は、前記第1方向における前記反射部材と前記壁部との間に前記開口部を有する、ことを特徴とする請求項7に記載の位置決め装置。 The positioning device according to claim 7, wherein the cover member has the opening between the reflective member and the wall portion in the first direction. 前記ステージは、粗動ステージと、前記プレートを保持するとともに前記粗動ステージに対して相対移動する微動ステージとを含み、
前記壁部は、前記微動ステージによって支持されている、ことを特徴とする請求項1乃至8のいずれか1項に記載の位置決め装置。
The stage includes a coarse movement stage and a fine movement stage that holds the plate and moves relative to the coarse movement stage.
The positioning device according to any one of claims 1 to 8, wherein the wall portion is supported by the fine movement stage.
前記ステージは、粗動ステージと、前記プレートを保持するとともに前記粗動ステージに対して相対移動する微動ステージとを含み、
前記壁部は、前記粗動ステージによって支持されている、ことを特徴とする請求項1乃至8のいずれか1項に記載の位置決め装置。
The stage includes a coarse movement stage and a fine movement stage that holds the plate and moves relative to the coarse movement stage.
The positioning device according to any one of claims 1 to 8, wherein the wall portion is supported by the roughing stage.
前記計測部の光路において前記第1方向に沿った気体の流れが形成されるように、前記ステージに向けて気体を吹き出す吹出部を更に含む、ことを特徴とする請求項1乃至10のいずれか1項に記載の位置決め装置。 Any of claims 1 to 10, further comprising a blowout portion that blows gas toward the stage so that a gas flow along the first direction is formed in the optical path of the measurement portion. The positioning device according to item 1. 原版と基板とを走査しながら前記基板を露光する露光装置であって、
請求項1乃至11のいずれか1項に記載の位置決め装置を含み、
前記位置決め装置は、前記プレートして、前記原版および前記基板の少なくとも一方の位置決めを行う、ことを特徴とする露光装置。
An exposure apparatus that exposes the substrate while scanning the original plate and the substrate.
The positioning device according to any one of claims 1 to 11 is included.
The positioning device is an exposure device characterized in that the plate is used to position at least one of the master plate and the substrate.
請求項12に記載の露光装置を用いて基板を露光する工程と、
前記工程で露光を行われた前記基板を現像する工程と、を含み、
現像された前記基板から物品を製造することを特徴とする物品の製造方法。
A step of exposing a substrate using the exposure apparatus according to claim 12.
Including a step of developing the substrate exposed in the step.
A method for producing an article, which comprises producing the article from the developed substrate.
JP2019192133A 2019-10-21 2019-10-21 Positioning apparatus, exposure apparatus, and method for manufacturing article Active JP7469864B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019192133A JP7469864B2 (en) 2019-10-21 2019-10-21 Positioning apparatus, exposure apparatus, and method for manufacturing article
TW109134697A TWI811569B (en) 2019-10-21 2020-10-07 Positioning device, exposure device and manufacturing method of article
KR1020200134888A KR20210047259A (en) 2019-10-21 2020-10-19 Positioning apparatus, exposure apparatus, and method of manufacturing article
CN202011134936.5A CN112764319A (en) 2019-10-21 2020-10-21 Positioning device, exposure device, and method for manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192133A JP7469864B2 (en) 2019-10-21 2019-10-21 Positioning apparatus, exposure apparatus, and method for manufacturing article

Publications (2)

Publication Number Publication Date
JP2021067775A true JP2021067775A (en) 2021-04-30
JP7469864B2 JP7469864B2 (en) 2024-04-17

Family

ID=75637210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192133A Active JP7469864B2 (en) 2019-10-21 2019-10-21 Positioning apparatus, exposure apparatus, and method for manufacturing article

Country Status (4)

Country Link
JP (1) JP7469864B2 (en)
KR (1) KR20210047259A (en)
CN (1) CN112764319A (en)
TW (1) TWI811569B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283313A (en) * 1992-04-01 1993-10-29 Nikon Corp Apparatus for measuring stage position
JP2001160531A (en) * 1999-12-01 2001-06-12 Canon Inc Stage system
JP2004241478A (en) * 2003-02-04 2004-08-26 Nikon Corp Exposure method and apparatus, and device manufacturing method
JP2009141190A (en) * 2007-12-07 2009-06-25 Nikon Corp Exposure apparatus, exposure method, and method of manufacturing device
JP2010161116A (en) * 2009-01-06 2010-07-22 Canon Inc Positioning apparatus, aligner using the same, and process of fabricating device
JP2010238933A (en) * 2009-03-31 2010-10-21 Advanced Mask Inspection Technology Kk Xy stage device
JP2012209401A (en) * 2011-03-29 2012-10-25 Canon Inc Measurement apparatus, lithographic apparatus, and method of manufacturing device
JP2017111243A (en) * 2015-12-15 2017-06-22 キヤノン株式会社 Stage device, lithography device, and article manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137895A (en) * 1997-07-17 1999-02-12 Nikon Corp Inspection method for reflectance measuring sensor
JP4125315B2 (en) * 2005-10-11 2008-07-30 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP5679850B2 (en) * 2011-02-07 2015-03-04 キヤノン株式会社 Imprint apparatus and article manufacturing method
NL2015639A (en) * 2014-11-28 2016-09-20 Asml Netherlands Bv Encoder, position measurement system and lithographic apparatus.
JP6916616B2 (en) * 2016-12-13 2021-08-11 キヤノン株式会社 Lithography equipment, article manufacturing methods, and measuring equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283313A (en) * 1992-04-01 1993-10-29 Nikon Corp Apparatus for measuring stage position
JP2001160531A (en) * 1999-12-01 2001-06-12 Canon Inc Stage system
JP2004241478A (en) * 2003-02-04 2004-08-26 Nikon Corp Exposure method and apparatus, and device manufacturing method
JP2009141190A (en) * 2007-12-07 2009-06-25 Nikon Corp Exposure apparatus, exposure method, and method of manufacturing device
JP2010161116A (en) * 2009-01-06 2010-07-22 Canon Inc Positioning apparatus, aligner using the same, and process of fabricating device
JP2010238933A (en) * 2009-03-31 2010-10-21 Advanced Mask Inspection Technology Kk Xy stage device
JP2012209401A (en) * 2011-03-29 2012-10-25 Canon Inc Measurement apparatus, lithographic apparatus, and method of manufacturing device
JP2017111243A (en) * 2015-12-15 2017-06-22 キヤノン株式会社 Stage device, lithography device, and article manufacturing method

Also Published As

Publication number Publication date
JP7469864B2 (en) 2024-04-17
TW202117465A (en) 2021-05-01
TWI811569B (en) 2023-08-11
CN112764319A (en) 2021-05-07
KR20210047259A (en) 2021-04-29

Similar Documents

Publication Publication Date Title
US8964166B2 (en) Stage device, exposure apparatus and method of producing device
US7182794B2 (en) Correcting device, exposure apparatus, device production method, and device produced by the device production method
JP2000012453A (en) Aligner and its using method, exposure method, and manufacturing method of mask
JP3637639B2 (en) Exposure equipment
JP5472101B2 (en) Exposure apparatus and device manufacturing method
JP2001160531A (en) Stage system
JP7469864B2 (en) Positioning apparatus, exposure apparatus, and method for manufacturing article
JP2013083655A (en) Exposure equipment and manufacturing method for device
JP7299755B2 (en) Exposure apparatus and article manufacturing method
JP7385421B2 (en) Exposure device and article manufacturing method
WO2002047132A1 (en) X-ray projection exposure device, x-ray projection exposure method, and semiconductor device
JP2004273666A (en) Aligner
US10725388B2 (en) Exposure apparatus and method of manufacturing article
JP2012033922A (en) Exposure apparatus, and method for manufacturing device
JP2011066306A (en) Exposure apparatus, exposure method, and device manufacturing method
JP7033168B2 (en) Exposure equipment and manufacturing method of goods
TW202122929A (en) Illumination optical system, exposure device, and manufacturing method of article wherein the illumination optical system includes an optical integrator, an imaging optical system, and an adjustment unit
JPH1197339A (en) Aligner
JP2021015141A (en) Optical device, projection optical system, exposure device and method for producing article
JP2009281947A (en) Equipment and method for measuring position, system and method for forming pattern, system and method for exposure and method for manufacturing device
KR20080052374A (en) Positioning apparatus, exposure apparatus, and device manufacturing method
JP2009238922A (en) Exposure device, exposure method, and manufacturing method of device
JP2001007000A (en) Aligner
JPH1027747A (en) Exposure system
JPH09243324A (en) Laser interferometer type x-y positioning device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240405

R150 Certificate of patent or registration of utility model

Ref document number: 7469864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150