JP2021064785A - 不揮発性メモリ装置 - Google Patents

不揮発性メモリ装置 Download PDF

Info

Publication number
JP2021064785A
JP2021064785A JP2020169544A JP2020169544A JP2021064785A JP 2021064785 A JP2021064785 A JP 2021064785A JP 2020169544 A JP2020169544 A JP 2020169544A JP 2020169544 A JP2020169544 A JP 2020169544A JP 2021064785 A JP2021064785 A JP 2021064785A
Authority
JP
Japan
Prior art keywords
conductive layer
penetrating
active region
insulating layer
vertical structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020169544A
Other languages
English (en)
Inventor
敬和 尹
Kyunghwa Yun
敬和 尹
燦鎬 金
Chan-Ho Kim
燦鎬 金
東求 姜
Dong Ku Kang
東求 姜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190128221A external-priority patent/KR20210045538A/ko
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2021064785A publication Critical patent/JP2021064785A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region

Landscapes

  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】 本発明の目的は、積層された導電層のうち、一部の導電層に電圧をより強く印加する不揮発性メモリ装置を提供することにある。【解決手段】 本発明の不揮発性メモリ装置は、第1の活性領域及び第1の活性領域上に形成される素子を含む周辺回路と、周辺回路上の第2の活性領域と、第2の活性領域上に形成されるメモリセルを含むメモリブロックと、を備える。メモリブロックは、第1の絶縁層と第1の導電層とのペアを含む垂直構造物と、垂直構造物上の第2の絶縁層と、第2の絶縁層上の、第1の方向に沿って向き合って離隔される第2の導電層及び第3の導電層と、第2の方向に第2の導電層、第2の絶縁層及び垂直構造物を貫通する第1の垂直チャネルと、第2の方向に第3の導電層、第2の絶縁層及び垂直構造物を貫通する第2の垂直チャネルと、を含む。第2の導電層及び第3の導電層は、第2の導電層と第3の導電層との間で露出された第2の絶縁層の領域、垂直構造物及び第2の活性領域を貫通する第1の貫通ビアと連結される。【選択図】 図2

Description

本発明は、半導体装置に関し、より詳細には、電圧をもっと強く印加する不揮発性メモリ装置に関する。
不揮発性メモリ装置は、3次元構造を有し得る。3次元構造の不揮発性メモリ装置は、絶縁層と導電層とのペアが積層された構造を有する。導電層は、セルトランジスタとセルトランジスタに連結された配線であり得る。通常、導電層の導電率が高いほど、不揮発性メモリ装置の性能が向上する。
工程上の問題のために、不揮発性メモリ装置の導電層のうち、一部の導電層は、他の導電層よりも低い導電率を有する物質を含み得る。他の導電層よりも低い導電率を有する物質を有する、一部の導電層を採用した不揮発性メモリ装置の性能低下を防止するための新しい装置又は方法が求められている。
韓国登録特許第10−0582422号公報 米国特許第10249640号明細書 米国特許第10177224号明細書 米国特許第9099347号明細書 米国特許第10134747号明細書 米国特許第8822285号明細書 米国特許第8044448号明細書 米国特許第10290581号明細書 米国特許第8654587号明細書 米国特許第7679133号明細書 米国特許第8553466号明細書 米国特許第8559235号明細書 米国特許出願公開第2005/0254303号明細書 米国特許出願公開第2014/0027838号明細書 米国特許出願公開第2011/0233648号明細書
本発明は、上記従来技術に鑑みてなされたものであって、本発明の目的は、積層された導電層のうち、一部の導電層に電圧をより強く印加する不揮発性メモリ装置を提供することにある。
本発明の実施形態による不揮発性メモリ装置は、第1の活性領域及び第1の活性領域上に形成される素子を含む周辺回路と、周辺回路上の第2の活性領域及び第2の活性領域上に形成されるメモリセルを含むメモリブロックと、を備える。メモリブロックは、第2の活性領域上の、第1の方向に沿って延ばされて、第2の活性領域の上面と垂直な第2の方向に積層される第1の絶縁層と第1の導電層とのペアを有する垂直構造物と、垂直構造物上の第2の絶縁層と、第2の絶縁層上の、第1の方向に沿って向き合って離隔される第2の導電層及び第3の導電層と、第2の方向に第2の導電層、第2の絶縁層及び垂直構造物を貫通する第1の垂直チャネルと、第2の方向に第3の導電層、第2の絶縁層及び垂直構造物を貫通する第2の垂直チャネルと、を含む。第2の導電層及び第3の導電層は、第2の導電層と第3の導電層との間で露出された第2の絶縁層の領域、垂直構造物及び第2の活性領域を貫通する第1の貫通ビアと連結される。
本発明の実施形態による不揮発性メモリ装置は、第1の活性領域及び第1の活性領域上に形成される少なくとも3つのパストランジスタを含む周辺回路と、周辺回路上の第2の活性領域及び第2の活性領域上に形成されるメモリセルを含むメモリブロックと、を備える。メモリブロックは、第2の活性領域上の、第1の方向に沿って延ばされて、第2の活性領域の上面と垂直な第2の方向に積層される第1の絶縁層と第1の導電層とのペアを含む垂直構造物と、垂直構造物上の第2の絶縁層と、第2の絶縁層上の、第1の方向に沿って向き合って離隔される第2の導電層及び第3の導電層と、第2の方向に第2の導電層、第2の絶縁層及び垂直構造物を貫通する第1の垂直チャネルと、第2の方向に第3の導電層、第2の絶縁層及び垂直構造物を貫通する第2の垂直チャネルと、を含む。少なくとも3つのパストランジスタは、第2の活性領域を貫通する少なくとも3つの貫通ビアを介して第2の導電層及び第3の導電層に共通電圧を供給する。
本発明の実施形態による不揮発性メモリ装置は、第1の活性領域及び第1の活性領域上に形成される素子を含む周辺回路と、周辺回路上の第2の活性領域及び第2の活性領域上に形成されるメモリセルを含むメモリブロックと、を備える。メモリブロックは、第2の活性領域上の、第1の方向に沿って延ばされて、第2の活性領域の上面と垂直な第2の方向に積層される第1の絶縁層と第1の導電層とのペアを含む垂直構造物と、垂直構造物上の第2の絶縁層と、第2の絶縁層上の、第1の方向に沿って向き合って離隔される第2の導電層及び第3の導電層と、第2の絶縁層上の、第1の方向に沿って向き合って離隔され、第1の方向及び第2の方向に垂直な第3の方向に第2の導電層及び第3の導電層に平行な第4の導電層及び第5の導電層と、第2の絶縁層上の、第1の方向に沿って向き合って離隔され、第3の方向に第4の導電層及び第5の導電層に平行な第6の導電層及び第7の導電層と、第2の方向に垂直構造物を貫通する垂直チャネルと、を含む。第2の導電層及び第3の導電層は、第2の導電層と第3の導電層との間で露出された第2の絶縁層の領域、垂直構造物、及び第2の活性領域を貫通する第1の貫通ビアに連結され、第4の導電層及び第5の導電層は、第4の導電層と第5の導電層との間で露出された第2の絶縁層の領域、垂直構造物、及び第2の活性領域を貫通する第2の貫通ビアに連結され、第6の導電層及び第7の導電層は、第6の導電層と第7の導電層との間で露出された第2の絶縁層の領域、垂直構造物、第2の活性領域を貫通する第3の貫通ビアに連結される。
本発明によると、分離された2つの導電層間の貫通ビアを介して分離された2つの導電層に電圧が印加される。したがって、積層された導電層のうち、一部の導電層に電圧をより強く印加して性能の低下を防止する不揮発性メモリ装置が提供される。
本発明の実施形態による不揮発性メモリ装置を示す平面図である。 図1のI−I’ラインに沿った断面図である。 不揮発性メモリ装置の他の例による平面図を示す。 不揮発性メモリ装置のもう1つの例による平面図を示す。 図4の不揮発性メモリ装置のII−II’ラインに沿った断面図である。 図4のIII−III’ラインに沿った断面図である。 メモリブロックの断面図の他の例を示す。 不揮発性メモリ装置のもう1つの平面図である。 図8のIV−IV’ラインに沿った断面図を示す。 例としての貫通ビアの形態を示す。 図1の点線のボックスに対応する回路図の例を示す。 本発明の実施形態による不揮発性メモリ装置を示すブロック図である。
以下では、本発明の技術分野における通常の知識を有する者が本発明を容易に実施することができる程度に、本発明の実施形態が明確かつ詳細に記載されるだろう。
図1は、本発明の実施形態による不揮発性メモリ装置を示す平面図である。図2は、図1のI−I’ラインに沿った断面図である。図1及び図2を参照すると、不揮発性メモリ装置は、周辺回路100と、周辺回路100上のメモリブロック200と、を含み得る。例えば、不揮発性メモリ装置は、COP(Cell Over Peri)の構造を含み得る。
周辺回路100は、第1の活性領域110と、第1の活性領域110上の素子(120、130、140)と、を含み得る。第1の活性領域110は、半導体基板に形成され得る。素子(120、130,140)は、第1のパストランジスタ120、第2のパストランジスタ130、及び第3のパストランジスタ140を含み得る。
第1のパストランジスタ120は、ゲート121、絶縁膜122、第1のジャンクション123、及び第2のジャンクション124を含み得る。第2のパストランジスタ130は、ゲート131、絶縁膜132、第1のジャンクション133、及び第2のジャンクション134を含み得る。第3のパストランジスタ140は、ゲート141、絶縁膜142、第1のジャンクション143、及び第2のジャンクション144を含み得る。
第1のパストランジスタ120の第1のジャンクション123は、第1の周辺回路ビア181に連結され得る。第1の周辺回路ビア181は、図示されていない配線に連結され得る。第1のパストランジスタ120の第2のジャンクション124は、第1の貫通ビア311に連結され得る。例えば、第1の貫通ビア311は、THV(Through Hole Via)であり得る。
第2のパストランジスタ130の第1のジャンクション133は、第2の周辺回路ビア182に連結され得る。第2の周辺回路ビア182は、図示されていない配線に連結され得る。第2のパストランジスタ130の第2のジャンクション134は、第2の貫通ビア312に連結され得る。例えば、第2の貫通ビア312は、THV(Through Hole Via)であり得る。
第3のパストランジスタ140の第1のジャンクション143は、第3の周辺回路ビア183に連結され得る。第3の周辺回路を介して183は、図示されていない配線に連結され得る。第3のパストランジスタ140の第2のジャンクション144は、第3の貫通ビア313に連結され得る。例えば、第3の貫通ビア313は、THV(Through Hole Via)であり得る。
第1のパストランジスタ120のゲート121、第2のパストランジスタ130のゲート131、及び第3のパストランジスタ140のゲート141は、共通の配線に連結され得る。第1の周辺回路ビア181、第2の周辺回路ビア182、及び第3の周辺回路ビア183は、共通の配線に連結され得る。
すなわち、第1のパストランジスタ120、第2のパストランジスタ130、及び第3のパストランジスタ140は、共通の制御信号に応答して、共通配線の共通電圧をそれぞれ第1の貫通ビア311、第2の貫通ビア312、及び第3の貫通ビア313に伝達することができる。
例として、周辺回路100のコンポーネントのうち、第1の貫通ビア311、第2の貫通ビア312、及び第3の貫通ビア313に連結されたエレメントだけが図2に示されている。図2に図示されていない追加のコンポーネントが周辺回路100に追加され得る。
メモリブロック200のコンポーネントの特徴に応じて、第1の方向に沿って、第1〜第7の領域(R1〜R7)が区分され得る。しかし、第1〜第7の領域(R1〜R7)の区分は、説明の便宜のためであり、本発明の技術的思想と特徴を限定しない。
メモリブロック200は、第2の活性領域210と、第2の活性領域210上の垂直構造物と、を含み得る。垂直構造物は、第2の活性領域210上に順次に積層される第1の絶縁層211と第1の導電層221とのペア、第2の絶縁層212と第2の導電層222とのペア、第3の絶縁層213と第3の導電層223とのペア、第4の絶縁層214と第4の導電層224とのペア、第5の導電層225と第5の絶縁層215とのペアを含み得る。
垂直構造物は、第1の方向に沿って延在され得る。例として、第2の方向に沿って、垂直構造物が繰り返して存在することができる。垂直構造物の第2の方向の一方の側面に垂直構造物を他の垂直構造物又は他のコンポーネントと分離する第1のワードラインカット11(word line cut)が位置することができる。垂直構造物の第2の方向の他方の側面に垂直構造物を他の垂直構造物又は他のコンポーネントと分離する第2のワードラインカット12が位置することができる。
垂直構造物の上に第6の絶縁層216と第6の導電層226とのペアを提供することができる。第6の導電層226は、第1の方向に沿って互いに向き合って離隔される第1の部分導電層226a及び第2の部分導電層226bを含み得る。第1の部分導電層226a及び第2の部分導電層226bは、第1の方向に沿って互いに離隔されて、第4の領域(R4)で下に位置する第6の絶縁層216を露出することができる。第4の領域(R4)は、例えば、ストリング選択ラインステア(string selection line stair)であり得る。
第1の部分導電層226aは、第1の方向に沿って波形で進行する第1のストリング選択ラインカット13(string selection line cut)及び第2のストリング選択ラインカット14によって3つ(又は3つ以上)の導電層に分割される。第2の部分導電層226bは、第1の方向に沿って波形で進行する第3のストリング選択ラインカット15(string selection line cut)及び第4のストリング選択ラインカット16によって3つ(又は3つ以上)の導電層に分割される。すなわち、第6の導電層226に属する導電層の第2の方向に沿った境界は、第1の方向に沿って進行する波形を有し得る。
すなわち、観点によっては、第6の導電層226は、第1〜第4のストリング選択ラインカット(13〜16)及びストリング選択ラインステアによって分割された6つの導電層を含み得る。又は、第6の導電層226は、ストリング選択ラインのステアによって分割される第1の部分導電層226a及び第2の部分導電層226bを含み得る。なお、第6の導電層226は、第1〜第4のストリング選択ラインカット(13〜16)によって分割され、第1の方向に電気的に連結されて延在される3つの導電層(又は導電ライン)を含み得る。
第3の領域(R3)及び第5の領域(R5)で、垂直チャネル230は、第3の方向に第6の導電層226、第6の絶縁層216、及び垂直構造物を貫通することができる。垂直チャネル230は、第1〜第9の垂直チャネル(231〜239)を含み得る。垂直チャネルは、第1〜第6の導電層(221〜226)とともに第3の方向に積層されたセルトランジスタ(図10参照)を形成することができる。
例として、第1〜第6の導電層(221〜226)と垂直チャネル230との間に、酸化シリコン膜、窒化シリコン膜、及び酸化シリコン膜を含む情報貯蔵膜を形成することができる。第1〜第6の導電層(221〜226)は、第1の方向に沿って延在されてセルトランジスタを連結する配線(図10参照)とし得る。
例として、ストリング選択ラインカット(13、14、15又は16)は、最も近い垂直チャネルとの距離(第1の方向及び第2の方向の平面上の距離)をしきい値以上に維持するように、波形を有し得る。距離がしきい値以上に維持されると、不揮発性メモリ装置の製造時に不良(例えば、ストリング選択ラインカット(13、14、15又は16)と垂直チャネルとのショートなど)が発生することを防止する。
第2の領域(R2)及び第6の領域(R6)で、第1〜第6の絶縁層と第1〜第6の導電層とのペアは、第3の方向に沿ってステア(階段)の形態で減少する長さ(第1の方向の長さ)を有し得る。第2の領域(R2)及び第6の領域(R6)は、ワードラインステア(word line stair)とし得る。
第1の貫通ビア311は、第1の領域(R1)から第2の活性領域210を貫通して第3の方向に延び得る。第1の貫通ビア311は、第1の上部導電層271を介して第1の部分導電層226aに含まれている導電層のうち、第2の方向の1番目の導電層上の第1のメモリセルビア241と連結され得る。第2の貫通ビア312は、第7の領域(R7)から第2の活性領域210を貫通して第3の方向に延び得る。第2の貫通ビア312は、第2の上部導電層272を介して第2の部分導電層226bに含まれている導電層のうち、第2の方向の1番目の導電層上の第2のメモリセルビア242と連結され得る。
第3の貫通ビア313は、第4の領域(R4)から第6の絶縁層216、垂直構造物、及び第2の活性領域210を貫通して第3の方向に延び得る。第3の貫通ビア313は、第3の上部導電層273を介して第1の部分導電層226aに含まれている導電層のうち、第2の方向の1番目の導電層上の第3のメモリセルビア243、及び第2の部分導電層226bに含まれている導電層のうち、第2の方向の1番目の導電層上の第4のメモリセルビア244と連結され得る。
第4の貫通ビア314は、第1の領域(R1)から第2の活性領域210を貫通して第3の方向に延びる。第4の貫通ビア314は、第4の上部導電層274を介して第5の導電層225上の第5のメモリセルビア245と連結される。第5の貫通ビア315は、第7の領域(R7)から第2の活性領域210を貫通して第3の方向に延びる。第5の貫通ビア315は、第5の上部導電層275を介して第5の導電層225上の第6のメモリセルビア246と連結される。
第6の貫通ビア316は、第1の領域(R1)から第2の活性領域210を貫通して第6の上部導電層276を介して、第4の導電層224上の第7のメモリセルビア247と連結される。第7の貫通ビア317は、第7の領域(R7)から第2の活性領域210を貫通して第7の上部導電層277を介して、第4の導電層224上の第8のメモリセルビア248と連結される。
第8の貫通ビア318は、第1の領域(R1)から第2の活性領域210を貫通して第8の上部導電層278を介して第3の導電層223上の第9のメモリセルビア249と連結される。第9の貫通ビア319は、第7の領域(R7)から第2の活性領域210を貫通して第9の上部導電層279を介して第3の導電層223上の第10のメモリセルビア250と連結される。
第10の貫通ビア320は、第1の領域(R1)から第2の活性領域210を貫通して第3の方向に延びる。第10の貫通ビア320は、第10の上部導電層280を介して第1の部分導電層226aに含まれている導電層のうち、第2の方向の2番目の導電層上の第11のメモリセルビア251と連結される。第11の貫通ビア321は、第7の領域(R7)から第2の活性領域210を貫通して第3の方向に延びる。第11の貫通ビア321は、第11の上部導電層281を介して第2の部分導電層226bに含まれている導電層のうち、第2の方向の2番目の導電層上の第12のメモリセルビア252と連結される。
第12の貫通ビア322は、第4の領域(R4)から第6の絶縁層216、垂直構造物及び第2の活性領域210を貫通して第3の方向に延びる。第12の貫通ビア322は、第12の上部導電層282を介して第1の部分導電層226aに含まれている導電層のうち、第2の方向の2番目の導電層上の第13のメモリセルビア253、及び第2の部分導電層226bに含まれている導電層のうち、第2の方向の2番目の導電層上の第14のメモリセルビア254と連結される。
第13の貫通ビア323は、第1の領域(R1)から第2の活性領域210を貫通して第13の上部導電層283を介して第2の導電層222上の第15のメモリセルビア255と連結される。第14の貫通ビア324は、第7の領域(R7)から第2の活性領域210を貫通して第14の上部導電層284を介して第2の導電層222上の第16のメモリセルビア256と連結される。
第15の貫通ビア325は、第1の領域(R1)から第2の活性領域210を貫通して第15の上部導電層285を介して第1の導電層221上の第17のメモリセルビア257と連結される。第16の貫通ビア326は、第7の領域(R7)から第2の活性領域210を貫通して第16の上部導電層286を介して第1の導電層221上の第18のメモリセルビア258と連結される。
第17の貫通ビア327は、第1の領域(R1)から第2の活性領域210を貫通して第3の方向に延びる。第17の貫通ビア327は、第17の上部導電層287を介して第1の部分導電層226aに含まれている導電層のうち、第2の方向の3番目の導電層上の第19のメモリセルビア259と連結される。第18の貫通ビア328は、第7の領域(R7)から第2の活性領域210を貫通して第3の方向に延びる。第18の貫通ビア328は、第18の上部導電層288を介して第2の部分導電層226bに含まれている導電層のうち、第2の方向の3番目の導電層上の第20のメモリセルビア260と連結される。
第19の貫通ビア329は、第4の領域(R4)から第6の絶縁層216、垂直構造物及び第2の活性領域210を貫通して第3の方向に延びる。第19の貫通ビア329は、第19の上部導電層289を介して第1の部分導電層226aに含まれている導電層のうち、第2の方向の3番目の導電層上の第21のメモリセルビア261、及び第2の部分導電層226bに含まれている導電層のうち、第2の方向の3番目の導電層上の第22のメモリセルビア262と連結される。
第1〜第5の導電層(221〜225)と、第3の貫通ビア313、第12の貫通ビア322及び第19の貫通ビア329との間に第1の絶縁物質201が提供される。第1の絶縁物質201は、第1〜第6の絶縁層(211〜216)と同一であってもよいし、異なっていてもよい。
第3の領域(R3)及び第5の領域(R5)で、第6の導電層226の上に導電ライン340が提供される。図面が不必要に複雑になることを防止するために、2つの第1及び第2の導電ライン(341、342)が例として示される。例えば、2つの第1及び第2の導電ライン(341、342)は、垂直チャネル230の第2の方向の1つの列に対応することができる。
垂直チャネル230の第2の方向の1つの列において、1つの導電ライン(例えば、341)は、導電ラインビア351を介して奇数番目の垂直チャネルに連結される。垂直チャネル230の第2の方向の1つの列において、もう一つの導電ライン(例えば、342)は、導電ラインビア(図示せず)を介して偶数番目の垂直チャネルに連結される。
第2の方向に沿って延びる垂直チャネルの2つの列は、1つの垂直チャネルグループに区分され得る。垂直チャネルは、一つの垂直チャネルグループに属する2つの列に第2の方向に沿って交互に配置され得る。図1に示すように、一つの垂直チャネルグループに12個(又はそれ以上)の垂直チャネルが含まれる。
工程上の問題のために、第1〜第5の導電層(221〜225)は、第1のワードラインカット11及び第2のワードラインカット12を介してタングステンのような金属物質を注入することにより製造され得る。しかし、第6の導電層226を、金属物質を注入することにより製造しようとするとき、第1のストリング選択ラインカット13と第2のストリング選択ラインカット14との間の導電層は、金属物質を第1のストリング選択ラインカット13及び第2のストリング選択ラインカット14を介して注入することにより、製造しなければならない。
同様に、第3のストリング選択ラインカット15と第4のストリング選択ラインカット16との間の導電層は、金属物質を第3のストリング選択ラインカット15及び第4のストリング選択ラインカット16を介して注入することにより製造しなければならない。
第1〜第4のストリング選択ラインカット(13〜16)は、第1及び第2のワードラインカット(11,12)よりも、小さい幅(第1の方向の幅)を有する。したがって、金属物質は、第1〜第4のストリング選択ラインカット(13〜16)を介して正常に注入され得ない。第1〜第4のストリング選択ラインカット(13〜16)間の導電層は、正常には形成され得ない。
このような問題を解決するために、第6の導電層226は、ポリシリコンのような積層又は成長可能な物質を用いて製造され得る。しかし、ポリシリコンは、タングステンのような金属物質と比較して大幅に低い導電率を有する。したがって、メモリブロック200の性能が低下され得る。
本発明の実施形態による不揮発性メモリ装置は、第6の導電層226の性能が低下されることを防止するために、第4の領域(R4)のストリング選択ラインステアを介して第6の導電層226を、第1の部分導電層226a及び第2の部分導電層226bに分割する。第6の導電層226の長さが減少するため、第6の導電層226の抵抗が減少する。
なお、本発明の実施形態による不揮発性メモリ装置は、第1及び第2のワードラインカット(11,12)に垂直であり、そして第1〜第4のストリング選択ラインカット(13〜16)、第4の領域(R4)の垂直なストリング選択ラインステアから垂直構造物を貫通する貫通ビア(313、322、329)を介して第6の導電層226に、追加に電圧を印加する。第6の導電層226に、より強く電圧が印加されるほど、第6の導電層226の抵抗が増加することによって発生する性能の低下が補償される。
図1において、第1〜第19貫通ビア(311〜329)の具体的な位置が例示された。しかし、本発明の技術的思想は、図1に示された位置に限定されない。例えば、第1〜第19の貫通ビア(311〜329)の位置は、第2の方向に沿って調節されたり、代替されたりする。
なお、ストリング選択ラインカット(13、14、15又は16)及び第4の領域(R4)のストリング選択ラインステアによって分離された、第6の導電層226に属する導電層のいずれか1つの導電層に、第4の領域(R4)のストリング選択ラインステアを介して2つ以上の貫通ビアが電気的に(例えば、対応する上部導電層及び対応するメモリセルビアを介して)連結されてもよい。
図1及び図2において、第6の導電層226に第2の方向に沿って2つのストリング選択ラインカットが提供されるものとして説明された。しかし、第6の導電層226で第2の方向に沿って配置されるストリング選択ラインカットの数は、さらに増加することができる。
図3は、不揮発性メモリ装置の他の例による平面図を示す。図3の実施形態は、第1〜第4のストリング選択ラインカット(17〜20)と垂直ダミーチャネル300を除けば、図1及び図2を参照して説明されたものと同一である。したがって、重複する説明は省略され、図3を不必要に複雑にするコンポーネントも、また省略される。
図3を参照すると、第1のストリング選択ラインカット17、第2のストリング選択ラインカット18、第3のストリング選択ラインカット19、及び第4のストリング選択ラインカット20は、第1の方向に直線の形態に延在される。
第2の方向に延びる垂直チャネルの2つの列を含む垂直チャネルグループは、14個(又はそれ以上)の垂直チャネルを含み得る。各グループに属する垂直チャネルのうち、少なくとも一つは、第1のストリング選択ラインカット17又は第3のストリング選択ラインカット19と重なる垂直ダミーチャネルであり得る。各グループに属する垂直チャネルのうち、少なくとももう一つは、第2のストリング選択ラインカット18又は第4のストリング選択ラインカット20と重なる垂直ダミーチャネルであり得る。
垂直ダミーチャネルがストリング選択ラインカット(17、18、19又は20)の位置に重なるように垂直チャネルが配置されると、ストリング選択ラインカット(17、18、19又は20)とストリング選択ラインカット(17、18、19又は20)に最も近い垂直チャネル(垂直ダミーチャネルを除く)との間の距離がしきい値以上に維持される。したがって、ストリング選択ラインカット(17、18、19又は20)は、波形を有しなくてもよい。
図4は、不揮発性メモリ装置のもう1つの例による平面図を示す。図5は、図4の不揮発性メモリ装置のII−II’ラインに沿った断面図である。図6は、図4のIII−III’ラインに沿った断面図である。第4の領域(R4)のストリング選択ラインステアに対応する部分を除けば、図4、図5及び図6の不揮発性メモリ装置は、図1及び図2の不揮発性メモリ装置と同一である。したがって、重複する説明は省略される。
図4、図5及び図6を参照すると、第6の絶縁層216及び第5の導電層225は、第4の領域(R4)のストリング選択ラインステアで、第1の方向に沿って互いに向き合って離隔されるように分離され得る。第5の導電層225は、第1の部分導電層225a及び第2の部分導電層225bに分割され得る。
第4の領域(R4)のストリング選択ラインステアでは、第6の導電層226のための第3の貫通ビア313、第12の貫通ビア322、及び第19の貫通ビア329に加えて、第5の導電層225のための第20の貫通ビア330が提供され得る。第20の貫通ビア330は、第20の上部導電層290を介して第5の導電層225の第1の部分導電層225a上の第23のメモリセルビア263に連結され、第2の部分導電層225b上の第24のメモリセルビア264に連結される。第20の貫通ビア330と第1〜第4の導電層(221〜224)との間に第2の絶縁物質202が提供され得る。
周辺回路100は、第4の貫通ビア314に電圧を供給する第4のパストランジスタ150、第5の貫通ビア315に電圧を供給する第5のパストランジスタ160、及び第20の貫通ビア330に電圧を供給する第6のパストランジスタ170を含み得る。
第4のパストランジスタ150は、ゲート151、絶縁膜152、第1のジャンクション153、及び第2のジャンクション154を含み得る。第5のパストランジスタ160は、ゲート161、絶縁膜162、第1のジャンクション163、及び第2のジャンクション164を含み得る。第6のパストランジスタ170は、ゲート171、絶縁膜172、第1のジャンクション173、及び第2のジャンクション174を含み得る。
第4のパストランジスタ150の第1のジャンクション153は、第4の周辺回路ビア184に連結される。第4の周辺回路ビア184は、図示されていない配線に連結され得る。第4のパストランジスタ150の第2のジャンクション154は、第4の貫通ビア314に連結され得る。
第5のパストランジスタ160の第1のジャンクション163は、第5の周辺回路ビア185に連結される。第5の周辺回路ビア185は、図示されていない配線に連結される。第5のパストランジスタ160の第2のジャンクション164は、第5の貫通ビア315に連結される。
第6のパストランジスタ170の第1のジャンクション173は、第6の周辺回路ビア186に連結される。第6の周辺回路ビア186は、図示されていない配線に連結される。第6のパストランジスタ170の第2のジャンクション174は、第20の貫通ビア330に連結される。
第4のパストランジスタ150のゲート151、第5のパストランジスタ160のゲート161、及び第6のパストランジスタ170のゲート171は、共通の配線に連結される。第4の周辺回路ビア184、第5の周辺回路ビア185、及び第6の周辺回路186は、共通の配線に連結される。
すなわち、第4のパストランジスタ150、第5のパストランジスタ160、及び第6のパストランジスタ170は、共通の制御信号に応答して、共通配線の共通電圧をそれぞれ第4の貫通ビア314、第5の貫通ビア315、第20の貫通ビア330に伝達することができる。
第5の導電層225は、ストリング選択ラインカット(13、14、15又は16)によって分離されないため、第4の領域(R4)のストリング選択ラインステアに1つの貫通ビアが提供されることで、第5の導電層225に電圧を強く印加することが可能となる。しかし、第4の領域(R4)のストリング選択ラインステアに、第5の導電層225のための複数の貫通ビアが提供されて、第1の部分導電層225a及び第2の部分導電層225bと電気的に連結(たとえば、対応する上部導電層及び対応するメモリセルビアを介して)されてもよい。
図7は、メモリブロック200の断面図の他の例を示す。図7の断面図は、第3の貫通ビア313を除けば、図2のメモリブロック200の断面図と同一である。したがって、重複する参照記号は省略され、また重複する説明は省略される。
図7を参照すると、第1のワードラインステア(WLS1)と第2のワードラインのステア(WLS2)との間に垂直構造物が配置され得る。ワンペア(one pair)の絶縁層及び導電層は、1つの層(floor)を形成することができる。垂直構造物は、第1〜第5の層(F1〜F5)を形成することができる。垂直構造物上に、ストリング選択ラインステア(SSLS)が提供される第6の層(F6)が位置することができる。
ストリング選択ラインステア(SSLS)の第3の貫通ビア313は、第3の貫通ビア313を取り囲む絶縁膜(IL)によって、第1〜第5の層(F1〜F5)の導電層と電気的に絶縁され得る。例として、絶縁膜(IL)は、第3の方向に沿って第5の層(F5)と第3の上部導電層273との間の特定の位置までのみ第3の貫通ビア313を包み隠し得る。
例として、図4、図5及び図6を参照して説明されたように、複数の層から導電層が第1の方向に沿って互いに向き合って離隔されるようにストリング選択ラインステア(SSLS)を拡張することができる。
図8は、不揮発性メモリ装置のもう1つの例の平面図である。図9は、図8のIV−IV’ラインに沿った断面図を示す。図8及び図9は、2つのストリング選択ラインステア(SSLS1、SSLS2)と対応する貫通ビアと(313、331)が提供されることを除けば、図1及び図2のメモリブロック200と同一である。したがって、重複する参照記号は省略され、また重複する説明は省略される。
図8及び図9を参照すると、第6の層(F6)の導電層(例えば、第6の導電層226)は、第1のストリング選択ラインステア(SSLS1)及び第2のストリング選択ラインステア(SSLS2
)によって3つの部分導電層(226a、226b、226c)に区分される。すなわち、第6の層(F6)の導電層は、第1及び第2のストリング選択ラインステア(SSLS1、SSLS2)及びストリング選択ラインカット(13,14,15、16、21、22)によって9つの導電層に区分される。
第1のストリング選択ラインステア(SSLS1)に、図1及び図2の第4の領域(R4)と同様に、第3の貫通ビア313、第12の貫通ビア322、及び第19の貫通ビア329が提供される。第3の貫通ビア313、第12の貫通ビア322、及び第19の貫通ビア329は、各々対応する上部導電層とメモリセルビアを介して第1の部分導電層226aに属する導電層(ストリング選択ラインカット(13,14)によって分離された導電層)の中の対応する導電層、及び第2の部分導電層226bに属する導電層(ストリング選択ラインカット(15、16)によって分離された導電層)の中の対応する導電層に連結される。
第3の貫通ビア313、第12の貫通ビア322、及び第19の貫通ビア329の各々は、垂直構造物と第2の活性領域210を貫通して周辺回路100の対応するパストランジスタ(例えば、140)に電気的に連結され得る。
第2のストリング選択ラインステア(SSLS2)に第21の貫通ビア331、第22の貫通ビア332、第23の貫通ビア333が提供される。第21の貫通ビア331、第22の貫通ビア332、及び第23の貫通ビア333は、各々対応する上部導電層とメモリセルビアを介して第2の部分導電層226bに属する導電層(ストリング選択ラインカット(15,16)によって分離された導電層)の中の対応する導電層、及び第3の部分導電層に226cに属する導電層(ストリング選択ラインカット(21、22)によって分離された導電層)の中の対応する導電層に連結される。
第21の貫通ビア331、第22の貫通ビア332は、第23の貫通ビア333の各々は、垂直構造物と第2の活性領域210を貫通して周辺回路100の対応するパストランジスタ(例えば、180)に電気的に連結される。
図8及び図9を参照して説明されたように、第1の方向に沿って複数のストリング選択ラインステアが提供され得る。複数のストリング選択ラインステアが提供されるとき、ストリング選択ラインステア及びストリング選択ラインカットによって分離された各々の導電層は、2つのパストランジスタを介して電圧の供給を受けられる。
第6の層(F6)の導電層は、ストリング選択ラインカット(13,14,15、16、21、22)によって第2の方向に沿って互いに分離され、そして上部導電層及びメモリセルビアを介して電気的に連結されて、第1の方向に沿って延在される導電ラインとし得る。図1及び図2を参照して説明されたように、一つのストリング選択ラインステアが提供されるとき、導電ラインの各々は、3つのパストランジスタから電圧の供給を受ける。
図8及び図9を参照して説明されたように2つのストリング選択ラインステアが提供されるとき、導電ラインの各々は、4つのパストランジスタからの電圧を供給される。つまり、k個(kは正の整数)のストリング選択ラインステアが提供されるとき、導電ラインの各々は、(k+2)個のパストランジスタから電圧の供給を受けることができる。
例として、垂直構造物を貫通する垂直チャネルの総数は、n個であり得る。第2の方向に沿ってi個のストリング選択ラインカットが提供され、そして第1の方向に沿ってj個のストリング選択ラインステアが提供されるとき、ストリング選択ラインカット及びストリング選択ラインステアによって分離された各導電層に属する垂直チャネルの数(m)は、次式によって計算される。
Figure 2021064785
図4、図5及び図6を参照して説明されたように、特定の層からストリング選択ラインカットが提供されず、そしてストリング選択ラインステアが提供され得る。このとき、該当する層のストリング選択ラインカットによって分離された各導電層に属する垂直チャネルの数は、「n/(i+1)」であり得る。
垂直構造物がステア形を有するため、ストリング選択ラインステアによって分離された各導電層の第1の方向の長さは、ストリング選択ラインステアによって分離されていない各導電層の第1の方向の長さの「1/(i+1)」よりも小さくなり得る。
図10は、例としての貫通ビア400の形態を示す。図1、図2及び図10を参照すると、工程上の特徴により、貫通ビア(例えば、410又は420)は、第3の方向に進行すればするほど断面積(第1の方向及び第2の方向の平面に沿った断面積)が増加する。なお、一度に形成できるホール(hole)の深さが限定されるため、貫通ビア400は、複数の階層(410、420)を含み得る。複数の階層(410、420)の各々の断面積は、第3の方向に進行すればするほど増加することができる。
例として、貫通ビア400の形態は、第3の方向に延在される他の構造物、例えば、周辺回路ビア、垂直チャネル、メモリセルビアの少なくとも1つにも同様に適用される。
例として、92層の垂直構造物で、垂直チャネルの最上段の断面積は、最下段の断面積よりも25%程度大きい。一方、92層の垂直構造物内の最下段の導電層(例えば、221)の第1の方向の長さは、最上段の導電層(例えば、251)の第1の方向の長さよりも7%程度大きい。
垂直チャネルの断面積が増加すると、該当する層の導電層の断面積は、例えば、第2の方向及び第3の方向の平面上の断面積が減少する。断面積の減少は、導電層の導電率の低下をもたらす。垂直構造物の上層に向かうときの抵抗が増加する程度(垂直チャネルの断面積の増加に起因する抵抗の増加)は、垂直構造物の上層に向かうときの抵抗が減少する程度(導電層の第1の方向の長さの減少による抵抗の減少)よりも大きい。
このような抵抗の増加を補償して不揮発性メモリ装置の性能を向上させるために、図4、図5及び図6を参照して説明されたように、垂直構造物の上層部までストリング選択ラインステアを延長して抵抗を減らす構造が応用され得る。
図11は、図1の点線ボックス(DB)に対応する回路図の例を示す。図1、図2及び図11を参照すると、複数のセルストリング(CS)が第2の活性領域210上に配置され得る。複数のセルストリング(CS11、CS12、CS21、CS22、CS31、CS32)は、第2の活性領域210上(又は内に)に形成される共通ソースライン(CSL)に共通して連結され得る。
セルストリング(CS11、CS21、CS31)は、第1のビットライン(BL1)に連結され、セルストリング(CS12、CS22、CS32)は、第2のビットライン(BL2)に連結することができる。例えば、第1のビットライン(BL1)は、第1及び第2の導電ライン(341、342)のいずれか1つ(例えば、第1の導電ライン341)に対応し、第2のビットライン(BL2)は、第1及び第2の導電ライン(341、342)のいずれか他の1つ(例えば、第2の導電ライン342)に対応することができる。
セルストリング(CS11、CS21、CS31)は、第2の方向に沿って、奇数番目の垂直チャネル(234、236、238)に対応する。セルストリング(CS12、CS22、CS32)は、第2の方向に沿って偶数番目の垂直チャネル(235、237、239)に対応する。
垂直チャネル(234〜239)は、第2の方向に沿って一列に配置されているが、図面が不必要に複雑になることを防止するために、図12のセルストリング(CS11、CS12、CS21、CS22、CS31、CS32)は、多数の行と列で図示される。例として、ビットライン(BL1、BL2)が延びる方向は列方向であり、ストリング選択ライン(SSL1、SSL2、SSL3)が延びる方向は、行方向である。図11において、すなわち、垂直チャネル(234〜239)は、3つの行と2つの列で示される。
各行のセルストリングは、接地選択ライン(GSL)に共通に連結され、そして第1〜第3のストリング選択ライン(SSL1〜SSL3)のうち、対応するストリング選択ラインに連結され得る。各列のセルストリングは、第1及び第2のビットライン(BL1、BL2)のうち、対応するビットラインに連結され得る。
各セルストリングは、接地選択ライン(GSL)に連結される少なくとも一つの接地選択トランジスタ(GST)、複数のワードライン(WL1〜WL4)に各々連結される複数のメモリセルトランジスタ(MC1〜MC4)、及び対応するストリング選択ライン(SSL1、SSL2又はSSL3)に連結されるストリング選択トランジスタ(SST1、SST2又はSST3)を含み得る。
接地選択トランジスタ(GST)は、垂直チャネル(234〜239)及び第1の導電層221の中で、垂直チャネル(234〜239)に隣接した部分に対応することができる。接地選択ライン(GSL)は、第1の導電層221に対応することができる。同様に、第1〜第4のメモリセルトランジスタ(MC1〜MC4)とワードライン(WL1〜WL4)は、第2〜第5の導電層(222〜225)と垂直チャネル(234〜239)に対応することができる。
第1のストリング選択ライン(SSL1)は、第6の導電層226に属する導電層(第1〜第4のストリング選択ラインカット(13〜16)と、ストリング選択ラインステアによって分離された導電層)の中で第2及び第4のストリング選択ラインカット(14、16)によって分離された導電層(第2の方向に沿って3番目に位置した導電層)に対応することができる。
第2のストリング選択ライン(SSL2)は、第6の導電層226に属する導電層(第1〜第4のストリング選択ラインカット(13〜16)とストリング選択ラインステアによって分離された導電層)の中で、第1〜第4のストリング選択ラインカット(13〜16)によって分離された導電層(第2の方向に沿って2番目に位置した導電層)に対応することができる。
第3のストリング選択ライン(SSL3)は、第6の導電層226に属する導電層(第1〜第4のストリング選択ラインカット(13〜16)及びストリング選択ラインステアによって分離された導電層)の中で、第1及び第3のストリング選択ラインカット(13、15)によって分離された導電層(第2の方向に沿って、1番目に位置した導電層)に対応することができる。
図1〜図11において、1つのセルストリングに含まれるセルトランジスタの数が6個として例示された。しかし、1つのセルストリングに含まれるセルトランジスタの数は限定されない。垂直構造物の層数が増加するほど、1つのセルストリングに含まれるセルトランジスタの数が増加することができる。
なお、1つのセルストリングに属するセルトランジスタのうち、接地選択トランジスタ、メモリセルトランジスタ、又はストリングを選択トランジスタとして使用されるセルストリングの数は可変され得る。1つのセルストリングに属するセルトランジスタの中の一部は、データを貯蔵しないダミーメモリセルトランジスタとして使用され得る。
図12は、本発明の実施形態による不揮発性メモリ装置500を示すブロック図である。図12を参照すると、不揮発性メモリ装置500は、メモリセルアレイ510、パス回路部520、ブロックデコーダ530、行デコーダ540、ページバッファ550、データの入力及び出力回路560、バッファ570、並びに制御ロジック580を含む。
メモリセルアレイ510は、複数のメモリブロック(511、512)を含む。各メモリブロックは、複数のメモリセルを含む。例えば、各メモリブロックは、図1〜図11を参照して説明されたメモリブロック200を含み得る。メモリブロック200が第2の方向に沿って繰り返し提供され、複数のメモリブロック(511、512)に対応することができる。
図1、図2、図11及び図12を参照して説明されたように、各メモリブロック(例えば、511)は、接地選択ライン(GSL)、第1〜第4のワードライン(WL1〜WL4)、第1〜第3のストリング選択ライン(SSL1〜SSL3)に連結される。各メモリブロックは、複数のビットライン(BL)を介してページバッファ550に連結される。
図1及び図2の構造の例では、ビットライン(BL)は、第1〜第16ビットライン(BL1〜BL16)を含み得る。複数のメモリブロック(511、512)は、複数のビットライン(BL)に共通して連結され得る。例えば、第1及び第2の導電ライン(341、342)が第2の方向に延ばされて、複数のメモリブロックに共通して連結され得る。
例として、複数のメモリブロック(BLK1〜BLKz)の各々は、消去動作の単位であり得る。各メモリブロックに属するメモリセルは、同時に消去され得る。他の例としては、各メモリブロックは、複数のサブブロックに分割され得る。複数のサブブロックの各々は、消去動作の単位であり得る。
パス回路520は、複数のメモリブロック(511、512)に各々対応する複数のパス回路(521、522)を含み得る。例として、1つのメモリブロック511に対応する1つのパス回路521の構造が示されている。
接地選択ライン(GSL)及び第1〜第4のワードライン(WL1〜WL4)は、それぞれ、第1〜第5の導電層(221〜225)に対応する。接地選択ライン(GSL)及び第1〜第4のワードライン(WL1〜WL4)の各々は、両端のワードラインステアから2つの貫通ビアを介して2つのパストランジスタに連結される。つまり、パス回路521は、接地選択ライン(GSL)及び第1〜第4のワードライン(WL1〜WL4)の各々に対して、2つずつのパストランジスタを具備する。
第1〜第3のストリング選択ライン(SSL1〜SSL3)は、第6の導電層226に対応する。第1〜第3のストリング選択ライン(SSL1〜SSL3)の各々は、両端のワードラインステア及び中央のストリング選択ラインステアから3つの貫通ビアを介して3つのパストランジスタに連結される。つまり、パス回路521は、第1〜第3のストリング選択ライン(SSL1〜SSL3)の各々に対して、3つずつのパストランジスタを具備する。
ブロックデコーダ530は、ブロックワードライン(BLKWL、BLKWLs)に連結される。ブロックデコーダ530は、制御ロジック580の制御に応答して動作する。ブロックデコーダ530は、バッファ570から受信されるブロックアドレス(BA)をデコードする。ブロックデコーダ530は、ブロックワードライン(BLKWL、BLKWLs)の中でブロックアドレス(BA)が指すブロックワードライン(例えば、BLKWL)を活性化し、ブロックワードライン(BLKWL)に連結されたパス回路521のパストランジスタをターンオンする。
パス回路521のパストランジスタがターンオンされると、パス回路521に連結されたメモリブロック511の接地選択ライン(GSL)、第1〜第4のワードライン(WL1〜WL4)、及び第1〜第3のストリング選択ライン(SSL1〜SSL3)が行デコーダ540に連結される。
行デコーダ540は、パス回路521、接地選択ライン(GSL)、第1〜第4のワードライン(WL1〜WL4)、及び第1〜第3のストリング選択ライン(SSL1〜SSL3)を介してメモリブロック511に連結される。行デコーダ540は、制御ロジック580の制御に基づいて動作する。
行デコーダ540は、バッファ570から受信される行アドレス(RA)をデコードし、デコードされた行アドレスに基づいて接地選択ライン(GSL)、第1〜第4のワードライン(WL1〜WL4)、及び第1〜第3のストリング選択ライン(SSL1〜SSL3)に印加される電圧を制御することができる。
ページバッファ550は、第1〜第16のビットライン(BL1〜BL16)を介してメモリセルアレイ510に連結される。ページバッファ550は、データライン(DL)を介してデータの入力及び出力回路560に連結される。ページバッファ550は、制御ロジック580の制御に基づいて動作する。
書き込みの動作時に、ページバッファ550は、メモリセルトランジスタに書き込まれるデータを格納することができる。格納されたデータに基づいて、ページバッファ550は、第1〜第16のビットライン(BL1〜BL16)に電圧を印加することができる。読み取りの動作時、書き込みの動作時、又は消去動作の検証の読み取り時に、ページバッファ550は、第1〜第16のビットライン(BL1〜BL16)の電圧を検出して検出結果を格納することができる。
データの入力及び出力回路560は、複数のデータライン(DL)を介してページバッファ550と連結される。データの入力及び出力回路560は、バッファ570から列アドレス(CA)を受信することができる。データの入力及び出力回路560は、ページバッファ550によって読み取られたデータを列アドレス(CA)に応じて、バッファ570に出力することができる。データの入力及び出力回路560は、列アドレス(CA)に依存し、バッファ570から受信したデータをページバッファ550に伝達することができる。
バッファ570は、外部装置と第1のチャンネル(CH1)を介してコマンド(CMD)とアドレス(ADDR)を受信し、そしてデータ(DATA)を交換することができる。バッファ570は、制御ロジック580の制御に基づいて動作することができる。バッファ570は、コマンド(CMD)を制御ロジック580に伝達することができる。バッファ570は、アドレス(ADDR)のブロックアドレス(BA)をブロックデコーダ530に伝達し、行アドレス(RA)を行デコーダ540に伝達し、列アドレス(CA)を、データの入力及び出力回路560に伝達することができる。バッファ570は、データ(DATA)をデータ入力及び出力回路560と交換することができる。
制御ロジック580は、外部装置と第2のチャネル(CH2)を介して制御信号(CTRL)を交換することができる。制御ロジック580は、バッファ570にコマンド(CMD)、アドレス(ADDR)、及びデータ(DATA)をルーティングさせるように制御することができる。制御ロジック580は、バッファ570から受信されたコマンド(CMD)をデコードし、デコードされたコマンドに基づいて不揮発性メモリ装置500を制御することができる。
制御ロジック580は、電圧発生器580を含み得る。電圧発生器580は、接地選択ライン(GSL)、第1〜第4のワードライン(WL1〜WL4)、及び第1〜第3のストリング選択ライン(SSL1〜SSL3)に印加される多様な電圧を生成することができる。制御ロジック580は、電圧発生器580によって生成された多様な電圧を行デコーダ540に伝達することができる。
上述された内容は、本発明を実施するための具体的な実施形態である。本発明は、上述された実施形態だけでなく、単純に設計変更されたり、容易に変更したりできる実施形態も、また含む。なお、本発明は、実施形態を用いて容易に変形して実施することができる技術も含まれるはずである。したがって、本発明の範囲は、上述された実施形態に限定されてはならず、後述する特許請求の範囲だけでなく、この発明の特許請求の範囲と均等なものによって定められなければならないだろう。
110:第1の活性領域
120、130、140:パストランジスタ
121、131、141:ゲート
122、132、142:絶縁膜
123,133、143:第1のジャンクション
124、134、144:第2のジャンクション
181、182、183:周辺回路ビア
210:第2の活性領域
211〜215:第1〜第5の導電層
221〜225:第1〜第5の絶縁層
216:第6の絶縁層
226:第6の導電層
226a、226b:部分導電層
230、231〜239:垂直チャネル
241〜264:メモリセルビア
271〜290:上部導電層
311〜331:貫通ビア
341、342:導電ライン
351:導電ラインビア
11、12:ワードラインカット
13,14,15,16:ストリング選択ラインカット

Claims (20)

  1. 不揮発性メモリ装置であって、
    第1の活性領域及び前記第1の活性領域上に形成される素子を含む周辺回路と、前記周辺回路上の第2の活性領域を含むメモリブロックと、を備え、
    前記メモリブロックは、
    前記第2の活性領域上の、第1の方向に沿って延在され、前記第2の活性領域の上面と垂直な第2の方向に積層される第1の絶縁層と第1の導電層のペアを有する垂直構造物と、
    前記垂直構造物上の第2の絶縁層と、
    前記第2の絶縁層上の、前記第1の方向に沿って向き合って離隔される第2の導電層及び第3の導電層と、
    前記第2の方向に前記第2の導電層、前記第2の絶縁層及び前記垂直構造物を貫通する第1の垂直チャネルと、
    前記第2の方向に前記第3の導電層、前記第2の絶縁層及び前記垂直構造物を貫通する第2の垂直チャネルと、を含み、
    前記第2の導電層及び前記第3の導電層は、前記第2の導電層と前記第3の導電層との間で露出された前記第2の絶縁層の領域、前記垂直構造物及び前記第2の活性領域を貫通する第1の貫通ビアと連結される、
    不揮発性メモリ装置。
  2. 前記第1の貫通ビアは、前記周辺回路の前記素子のうち、少なくとも1つの素子に電気的に連結される、請求項1に記載の不揮発性メモリ装置。
  3. 前記第2の導電層は、前記第2の導電層の前記第1の貫通ビアが位置した側とは反対側で前記第2の活性領域を貫通する第2の貫通ビアと連結され、
    前記第3の導電層は、前記第3の導電層の前記第1の貫通ビアが位置した側とは反対側で前記第2の活性領域を貫通する第3の貫通ビアと連結される、請求項1又は2に記載の不揮発性メモリ装置。
  4. 前記メモリブロックは、
    前記第2の絶縁層上の、前記第1の方向と垂直な第3の方向に沿って前記第2の導電層と向き合って離隔される第4の導電層と、
    前記第2の絶縁層上の、前記第3の方向に沿って前記第3の導電層と向き合って離隔され、前記第1の方向に沿って前記第4の導電層と向き合って離隔される第5の導電層と、
    前記第2の方向に前記第4の導電層、前記第2の絶縁層、及び前記垂直構造物を貫通する第3の垂直チャネルと、
    前記第2の方向に前記第5の導電層、前記第2の絶縁層、及び前記垂直構造物を貫通する第4の垂直チャネルと、をさらに含み、
    前記第4の導電層及び前記第5の導電層は、前記第4の導電層と前記第5の導電層との間で露出された前記第2の絶縁層の領域で、前記垂直構造物及び前記第2の活性領域を貫通する第2の貫通ビアと連結される、請求項1に記載の不揮発性メモリ装置。
  5. 前記第4の導電層は、前記第4の導電層の前記第2の貫通ビアが位置した側とは反対側で前記第2の活性領域を貫通する第3の貫通ビアと連結され、
    前記第5の導電層は、前記第5の導電層の前記第2の貫通ビアが位置した側とは反対側で前記第2の活性領域を貫通する第4の貫通ビアと連結される、請求項4に記載の不揮発性メモリ装置。
  6. 前記第2の導電層及び前記第4の導電層が向き合う第1の境界、並びに前記第3の導電層及び前記第5の導電層が向き合う第2の境界は波形を有する、請求項4又は5に記載の不揮発性メモリ装置。
  7. 前記メモリブロックは、
    前記第2の導電層及び前記第4の導電層が向き合う第1の境界から前記第2の方向に前記第2の絶縁層及び前記垂直構造物を貫通する少なくとも1つの第1の垂直ダミーチャネルと、
    前記第3の導電層及び前記第5の導電層が向き合う第2の境界から前記第2の方向に前記第2の絶縁層及び前記垂直構造物を貫通する少なくとも1つの第2の垂直ダミーチャネルと、をさらに含む、請求項4又は5に記載の不揮発性メモリ装置。
  8. 前記メモリブロックは、
    前記第2の絶縁層上の、前記第3の方向に沿って前記第4の導電層と向き合って離隔される第6の導電層と、
    前記第2の絶縁層上の、前記第3の方向に沿って前記第5の導電層と向き合って離隔され、前記第1の方向に沿って前記第6の導電層と向き合って離隔される第7の導電層と、
    前記第2の方向に前記第6の導電層、前記第2の絶縁層、及び前記垂直構造物を貫通する第5の垂直チャネルと、
    前記第2の方向に前記第7の導電層、前記第2の絶縁層、及び前記垂直構造物を貫通する第6の垂直チャネルと、をさらに含み、
    前記第6の導電層及び前記第7の導電層は、前記第6の導電層と前記第7の導電層との間で露出された前記第2の絶縁層の領域、前記垂直構造物、及び前記第2の活性領域を貫通する第3の貫通ビアと連結される、請求項4に記載の不揮発性メモリ装置。
  9. 前記第6の導電層は、前記第6の導電層の前記第3の貫通ビアが位置した側とは反対側で前記第2の活性領域を貫通する第4の貫通ビアと連結され、
    前記第7の導電層は、前記第7の導電層の前記第3の貫通ビアが位置した側とは反対側で前記第2の活性領域を貫通する第5の貫通ビアと連結される、請求項8に記載の不揮発性メモリ装置。
  10. 前記第1の垂直チャネル、前記第3の垂直チャネル、及び前記第5の垂直チャネルは、前記第3の方向に沿って延びる複数のグループに分割され、
    前記複数のグループの各々は、前記第3の方向に沿って、2つの列に交互に配置される12個の垂直チャネルを含む、請求項8に記載の不揮発性メモリ装置。
  11. 前記第2の導電層と前記第4の導電層との第1の境界、及び前記第4の導電層と前記第6の導電層との第2の境界は、前記12個の垂直チャネルのうち、最も隣接した垂直チャネルとの距離をしきい値以上に維持するように波形を有する、請求項10に記載の不揮発性メモリ装置。
  12. 前記第1の垂直チャネル、前記第3の垂直チャネル、及び前記第5の垂直チャネルは、前記第3の方向に沿って延びる複数のグループに分割され、
    前記複数のグループの各々は、前記第3の方向に沿って、2つの列に交互に配置される14個の垂直チャネルを含む、請求項8に記載の不揮発性メモリ装置。
  13. 前記14個の垂直チャネルのうち、1つは、前記第2の導電層と前記第4の導電層との間の第1の境界に位置し、
    前記14個の垂直チャネルのうち、他の1つは、前記第4の導電層と前記第6の導電層との間の第2の境界に位置する、請求項12に記載の不揮発性メモリ装置。
  14. 前記第1の導電層は、タングステンを含み、前記第2の導電層及び前記第3の導電層は、ポリシリコンを含む、請求項1乃至13のいずれか一項に記載の不揮発性メモリ装置。
  15. 前記メモリブロックは、
    前記第2の導電層上の第3の絶縁層と、
    前記第3の絶縁層上の第4の導電層と、
    前記第3の導電層上の第4の絶縁層と、
    前記第4の絶縁層上の第5の導電層と、をさらに含み、
    前記第4の導電層及び前記第5の導電層は、前記第2の導電層と前記第3の導電層との間で露出された前記第2の絶縁層の領域、前記垂直構造物、及び前記第2の活性領域を貫通する第2の貫通ビアと連結される、請求項1に記載の不揮発性メモリ装置。
  16. 前記メモリブロックは、
    前記第2の絶縁層上の、前記第3の導電層と前記第1の方向に沿って向き合って離隔される第4の導電層と、
    前記第2の方向に前記第4の導電層、前記第2の絶縁層及び前記垂直構造物を貫通する第3の垂直チャネルと、をさらに含み、
    前記第3の導電層及び前記第4の導電層は、前記第3の導電層と前記第4の導電層との間で露出された前記第2の絶縁層の領域、前記垂直構造物、及び前記第2の活性領域を貫通する第2の貫通ビアと連結される、請求項1に記載の不揮発性メモリ装置。
  17. 不揮発性メモリ装置であって、
    第1の活性領域及び前記第1の活性領域上に形成される少なくとも3つのパストランジスタを含む周辺回路と、
    メモリブロックと、を備え、
    前記メモリブロックは、
    前記周辺回路上の第2の活性領域と、
    前記第2の活性領域上の、第1の方向に沿って延在され、前記第2の活性領域の上面と垂直な第2の方向に積層される第1の絶縁層と第1の導電層とのペアを有する垂直構造物と、
    前記垂直構造物上の第2の絶縁層と、
    前記第2の絶縁層上の、前記第1の方向に沿って向き合って離隔される第2の導電層及び第3の導電層と、
    前記第2の方向に前記第2の導電層、前記第2の絶縁層及び前記垂直構造物を貫通する第1の垂直チャネルと、
    前記第2の方向に前記第3の導電層、前記第2の絶縁層及び前記垂直構造物を貫通する第2の垂直チャネルと、を含み、
    前記少なくとも3つのパストランジスタは、前記第2の活性領域を貫通する少なくとも3つの貫通ビアを介して前記第2の導電層及び前記第3の導電層に共通電圧を供給する、不揮発性メモリ装置。
  18. 前記少なくとも3つの貫通ビアは、
    前記第2の導電層と前記第3の導電層との間の前記第2の絶縁層の露出された領域、前記垂直構造物、及び前記第2の活性領域を貫通する第1の貫通ビアと、
    前記第2の導電層の前記第1の貫通ビアが位置した側とは反対側で前記第2の活性領域を貫通する第2の貫通ビアと、
    前記第3の導電層の前記第1の貫通ビアが位置した側とは反対側で前記第2の活性領域を貫通する第3の貫通ビアを含む、請求項17に記載の不揮発性メモリ装置。
  19. 前記第2の導電層及び前記第3の導電層は、1つのストリング選択ラインであり、
    前記第2の導電層は、前記第1の垂直チャネルとともに前記ストリング選択ラインに連結された第1のストリング選択トランジスタを形成し、
    前記第3の導電層は、前記第2の垂直チャネルとともに前記ストリング選択ラインに連結された第2のストリング選択トランジスタを形成する、請求項17又は18に記載の不揮発性メモリ装置。
  20. 不揮発性メモリ装置であって、
    第1の活性領域、及び前記第1の活性領域上に形成される素子を含む周辺回路と、
    前記周辺回路上の第2の活性領域、及び前記第2の活性領域上に形成されるメモリセルを含むメモリブロックと、を備え、
    前記メモリブロックは、
    前記第2の活性領域上の、第1の方向に沿って延在され、前記第2の活性領域の上面と垂直な第2の方向に積層される第1の絶縁層と第1の導電層のペアを有する垂直構造物と、
    前記垂直構造物上の第2の絶縁層と、
    前記第2の絶縁層上の、前記第1の方向に沿って向き合って離隔される第2の導電層及び第3の導電層と、
    前記第2の絶縁層上の、前記第1の方向に沿って向き合って離隔され、前記第1の方向及び前記第2の方向と垂直な第3の方向に前記第2の導電層及び前記第3の導電層と平行な第4の導電層及び第5の導電層と、
    前記第2の絶縁層上の、前記第1の方向に沿って向き合って離隔され、前記第3の方向に前記第4の導電層及び前記第5の導電層と平行な第6の導電層及び第7の導電層と、
    前記第2の方向に前記垂直構造物を貫通する垂直チャネルと、を含み、
    前記第2の導電層及び前記第3の導電層は、前記第2の導電層と前記第3の導電層との間で露出された前記第2の絶縁層の領域、前記垂直構造物、及び前記第2の活性領域を貫通する第1の貫通ビアと連結され、
    前記第4の導電層及び前記第5の導電層は、前記第4の導電層と前記第5の導電層との間で露出された前記第2の絶縁層の領域、前記垂直構造物、及び前記第2の活性領域を貫通する第2の貫通ビアと連結され、
    前記第6の導電層及び前記第7の導電層は、前記第6の導電層と前記第7の導電層との間で露出された前記第2の絶縁層の領域、前記垂直構造物、及び前記第2の活性領域を貫通する第3の貫通ビアと連結される不揮発性メモリ装置。
JP2020169544A 2019-10-16 2020-10-07 不揮発性メモリ装置 Pending JP2021064785A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0128221 2019-10-16
KR1020190128221A KR20210045538A (ko) 2019-10-16 2019-10-16 불휘발성 메모리 장치
US16/878,756 US11430806B2 (en) 2019-10-16 2020-05-20 Nonvolatile memory device
US16/878,756 2020-05-20

Publications (1)

Publication Number Publication Date
JP2021064785A true JP2021064785A (ja) 2021-04-22

Family

ID=75486558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020169544A Pending JP2021064785A (ja) 2019-10-16 2020-10-07 不揮発性メモリ装置

Country Status (2)

Country Link
US (1) US20220352204A1 (ja)
JP (1) JP2021064785A (ja)

Also Published As

Publication number Publication date
US20220352204A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US11430806B2 (en) Nonvolatile memory device
TWI717680B (zh) 半導體記憶裝置
US11282827B2 (en) Nonvolatile memory device having stacked structure with spaced apart conductive layers
JP2019212687A (ja) 半導体メモリ
US10804293B2 (en) Nonvolatile memory device, vertical NAND flash memory device and SSD device including the same
JP2019212689A (ja) 半導体メモリ
JP2011061159A (ja) 不揮発性半導体記憶装置
CN112242401B (zh) 半导体存储装置
TWI777227B (zh) 半導體記憶裝置
TW202123436A (zh) 半導體記憶裝置及半導體記憶裝置之製造方法
TWI793430B (zh) 半導體記憶裝置
US20210327805A1 (en) Semiconductor memory device and erasing method of the semiconductor memory device
JP2019212691A (ja) 半導体メモリ
KR100315412B1 (ko) 불휘발성 반도체 메모리
TWI739331B (zh) 半導體記憶裝置
TW202131492A (zh) 半導體記憶裝置
TWI715416B (zh) 半導體記憶裝置
JP2021064785A (ja) 不揮発性メモリ装置
TWI762991B (zh) 半導體記憶裝置
WO2021181607A1 (ja) 半導体記憶装置
TWI796928B (zh) 半導體記憶裝置
TWI834083B (zh) 記憶體元件
TWI814385B (zh) 半導體記憶裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230808