JP2021011403A - Glass substrate for csp mirror, method for manufacturing the same, and csp mirror - Google Patents

Glass substrate for csp mirror, method for manufacturing the same, and csp mirror Download PDF

Info

Publication number
JP2021011403A
JP2021011403A JP2019126036A JP2019126036A JP2021011403A JP 2021011403 A JP2021011403 A JP 2021011403A JP 2019126036 A JP2019126036 A JP 2019126036A JP 2019126036 A JP2019126036 A JP 2019126036A JP 2021011403 A JP2021011403 A JP 2021011403A
Authority
JP
Japan
Prior art keywords
glass
glass substrate
mass percentage
content
sro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019126036A
Other languages
Japanese (ja)
Inventor
明 矢田
Akira Yada
明 矢田
浩司 牛久保
Koji Ushikubo
浩司 牛久保
慎吾 持田
Shingo Mochida
慎吾 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2019126036A priority Critical patent/JP2021011403A/en
Priority to CN201910700506.6A priority patent/CN112174518A/en
Publication of JP2021011403A publication Critical patent/JP2021011403A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3605Coatings of the type glass/metal/inorganic compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

To provide a glass substrate for CSP mirror that has high transparency, suppressed occurrence of white turbidity, and suppressed deterioration and peeling of a reflective layer.SOLUTION: The present invention relates to a glass substrate for CSP mirror, which is a glass substrate having, as a glass substrate, suppressed alkali diffusion, suppressed white turbidity phenomenon of the glass surface and suppressed deterioration and peeling of a reflective layer, and containing, in mass% representation on an oxide basis, SiO2: 60 to 75%, Al2O3: 0 to 3%, CaO: 0 to 15%, MgO: 0 to 12%, Na2O: 5 to 20%, K2O+SrO+BaO : 1.1 to 15%, and a total iron content in terms of Fe2O3: 0 to 0.06%.SELECTED DRAWING: None

Description

本発明は、CSPミラー用ガラス基板、その製造方法、及びCSPミラーに関する。 The present invention relates to a glass substrate for a CSP mirror, a method for manufacturing the same, and a CSP mirror.

近年、再生可能エネルギーにおける有力な方式の一つとして、集光型太陽熱発電(CSP)システムが注目されている。CSPシステムでは、太陽光をミラー(以下、「CSPミラー」と称する)で所定の位置に集光、蓄熱し、この熱を利用することにより発電が行なわれる。
一般に、CSPシステムに使用されるCSPミラーは、ガラス基板と、当該ガラス基板の一表面に配置された銀等を含む反射層とで構成される。CSPミラーを使用する際には、ガラス基板の側が太陽と面する様に配向される。
この状態でガラス基板に入射された太陽光は、反射層で反射され、再度ガラス基板の側から所定の方向に出射される。
In recent years, concentrating solar thermal power generation (CSP) systems have been attracting attention as one of the leading methods in renewable energy. In the CSP system, sunlight is collected and stored at a predetermined position by a mirror (hereinafter referred to as "CSP mirror"), and power is generated by using this heat.
Generally, a CSP mirror used in a CSP system is composed of a glass substrate and a reflective layer containing silver or the like arranged on one surface of the glass substrate. When using a CSP mirror, the side of the glass substrate is oriented so that it faces the sun.
The sunlight incident on the glass substrate in this state is reflected by the reflective layer and is emitted again from the side of the glass substrate in a predetermined direction.

たとえば、CSPミラー用ガラス基板には、可視光透過率(以下、Tvと記す。)および日射透過率(以下、Teと記す。)が充分に高いことが求められている。そのため、CSPミラーのベースとなるガラス基板には、着色成分(特に鉄)の含有量を極めて少なくしてTvおよびTeを高くしたソーダライムシリカガラスからなる高透過ガラス板(いわゆる白板ガラス)が用いられる。 For example, a glass substrate for a CSP mirror is required to have sufficiently high visible light transmittance (hereinafter referred to as Tv) and solar radiation transmittance (hereinafter referred to as Te). Therefore, for the glass substrate that is the base of the CSP mirror, a highly transparent glass plate (so-called white plate glass) made of soda lime silica glass in which the content of coloring components (particularly iron) is extremely low and Tv and Te are high is used. Be done.

特開2007−112710号公報JP-A-2007-112710

ところで、上記ガラス基板においては、経時的にガラス基板の表面に溶出したNaが、空気中或いはガラス表面で凝縮した水分に熱拡散を起こすことにより、ガラス表面が白濁することで透過率が低下することが知られている。
加えて、CSPミラーにおいては、長期間使用するうちにガラス基板と反射層の界面において反射層の劣化・剥離などの現象が生じることが知られている。
By the way, in the above glass substrate, Na + eluted on the surface of the glass substrate over time causes thermal diffusion to the moisture condensed in the air or on the glass surface, so that the glass surface becomes cloudy and the transmittance decreases. It is known to do.
In addition, it is known that in a CSP mirror, phenomena such as deterioration and peeling of the reflective layer occur at the interface between the glass substrate and the reflective layer after long-term use.

そこで本発明は、白濁の発生が抑えられ高透過であり、且つ、反射層の劣化・剥離が抑えられたCSPミラー用ガラス基板を提供する。 Therefore, the present invention provides a glass substrate for a CSP mirror in which the generation of white turbidity is suppressed, the transmission is high, and the deterioration / peeling of the reflective layer is suppressed.

本発明の一実施態様であるCSPミラー用ガラス基板は、下記酸化物基準の質量百分率表示で、
SiO :60〜75%、
Al :0〜3%、
CaO :0〜15%、
MgO :0〜12%、
NaO :5〜20%、
O+SrO+BaO :1.1〜15%、
Feに換算した全鉄:0〜0.06%、
を含むことを特徴とする。当該ガラス基板は、後述する各種耐候性試験における、透過率(Te,Tv)の低下が抑制されたガラス基板である。
The glass substrate for a CSP mirror according to an embodiment of the present invention is represented by the following oxide-based mass percentage.
SiO 2 : 60-75%,
Al 2 O 3 : 0-3%,
CaO: 0 to 15%,
MgO: 0-12%,
Na 2 O: 5 to 20%,
K 2 O + SrO + BaO: 1.1 to 15%,
Total iron converted to Fe 2 O 3 : 0 to 0.06%,
It is characterized by including. The glass substrate is a glass substrate in which a decrease in transmittance (Te, Tv) is suppressed in various weather resistance tests described later.

前記ガラス基板は、下記酸化物基準の質量百分率表示で、
SiO :60〜74%、
Al :0.3〜2.5%、
CaO :3〜12%、
MgO :1〜10%、
NaO :7〜17%、
O :0〜5%、
SrO :0〜5%、
BaO :0〜5%、
O+SrO+BaO :1.4〜12%、
Feに換算した全鉄:0〜0.05%、
を含むことが好ましい。
The glass substrate is displayed as a mass percentage based on the following oxides.
SiO 2 : 60-74%,
Al 2 O 3 : 0.3-2.5%,
CaO: 3-12%,
MgO: 1-10%,
Na 2 O: 7 to 17%,
K 2 O: 0-5%,
SrO: 0-5%,
BaO: 0-5%,
K 2 O + SrO + BaO: 1.4-12%,
Total iron converted to Fe 2 O 3 : 0-0.05%,
Is preferably included.

本発明の別の実施態様であるCSPミラー用ガラス基板は、下記酸化物基準の質量百分率表示で、
SiO :68〜75%、
Al :0〜2.5%、
CaO :0〜15%、
MgO :0〜12%、
NaO :5〜20%、
O :0.8〜5%、
SrO :0〜1%、
BaO :0〜1%、
O+SrO+BaO :1.1〜7%、
Feに換算した全鉄:0〜0.06%、
を含むことを特徴とする。
The glass substrate for a CSP mirror according to another embodiment of the present invention has the following oxide-based mass percentage display.
SiO 2 : 68-75%,
Al 2 O 3 : 0-2.5%,
CaO: 0 to 15%,
MgO: 0-12%,
Na 2 O: 5 to 20%,
K 2 O: 0.8 to 5%,
SrO: 0 to 1%,
BaO: 0 to 1%,
K 2 O + SrO + BaO: 1.1 to 7%,
Total iron converted to Fe 2 O 3 : 0 to 0.06%,
It is characterized by including.

前記ガラス基板は、下記酸化物基準の質量百分率表示で、
SiO :69〜74%、
Al :0.3〜2.3%、
CaO :3〜12%、
MgO :1〜10%、
NaO :7〜17%、
O :1.0〜4.5%、
SrO :0.1〜0.8%、
BaO :0.1〜0.8%、
O+SrO+BaO :1.5〜6%、
Feに換算した全鉄:0〜0.05%、
を含むことが好ましい。
The glass substrate is displayed as a mass percentage based on the following oxides.
SiO 2 : 69-74%,
Al 2 O 3 : 0.3 to 2.3%,
CaO: 3-12%,
MgO: 1-10%,
Na 2 O: 7 to 17%,
K 2 O: 1.0 to 4.5%,
SrO: 0.1 to 0.8%,
BaO: 0.1 to 0.8%,
K 2 O + SrO + BaO: 1.5-6%,
Total iron converted to Fe 2 O 3 : 0-0.05%,
Is preferably included.

本発明の別の実施態様であるCSPミラー用ガラス基板は、下記酸化物基準の質量百分率表示で、
SiO :69.3〜73%、
Al :0.5〜2.1%、
CaO :5〜10%、
MgO :3〜8%、
NaO :9〜15%、
O :1.3〜4.0%、
SrO :0.2〜0.7%、
BaO :0.2〜0.7%、
O+SrO+BaO :2〜5%、
Feに換算した全鉄:0〜0.03%、
を含むことを特徴とする。
The glass substrate for a CSP mirror according to another embodiment of the present invention has the following oxide-based mass percentage display.
SiO 2 : 69.3-73%,
Al 2 O 3 : 0.5-2.1%,
CaO: 5-10%,
MgO: 3-8%,
Na 2 O: 9 to 15%,
K 2 O: 1.3 to 4.0%,
SrO: 0.2-0.7%,
BaO: 0.2-0.7%,
K 2 O + SrO + BaO: 2-5%,
Total iron converted to Fe 2 O 3 : 0 to 0.03%,
It is characterized by including.

前記ガラス基板は、150℃における体積抵抗率(log(ρ[Ω・cm]))が、9.0〜12.0であることが好ましい。 The glass substrate preferably has a volume resistivity (log (ρ [Ω · cm])) at 150 ° C. of 9.0 to 12.0.

本発明の別の実施態様であるCSPミラー用ガラス基板の製造方法は、ガラス原料を溶融し、フロート法またはダウンドロー法で成形する、CSPミラー用ガラス基板の製造方法であって、
成形後の前記ガラス基板が、下記酸化物基準の質量百分率表示で、
SiO :60〜75%、
Al :0〜3%、
CaO :0〜15%、
MgO :0〜12%、
NaO :5〜20%、
O+SrO+BaO :1.1〜15%、
Feに換算した全鉄:0〜0.06%、
を含むことを特徴とする。
Another method of manufacturing a glass substrate for a CSP mirror, which is another embodiment of the present invention, is a method of manufacturing a glass substrate for a CSP mirror in which a glass raw material is melted and molded by a float method or a down draw method.
The glass substrate after molding is displayed as a mass percentage based on the following oxides.
SiO 2 : 60-75%,
Al 2 O 3 : 0-3%,
CaO: 0 to 15%,
MgO: 0-12%,
Na 2 O: 5 to 20%,
K 2 O + SrO + BaO: 1.1 to 15%,
Total iron converted to Fe 2 O 3 : 0 to 0.06%,
It is characterized by including.

本発明の別の実施態様であるCSPミラーは、上記CSPミラー用ガラス基板の一方の表面に、反射層と塗膜とをこの順で設けたことを特徴とする。 A CSP mirror according to another embodiment of the present invention is characterized in that a reflective layer and a coating film are provided on one surface of the glass substrate for the CSP mirror in this order.

本発明のCSPミラー用ガラス基板においては、各ガラス組成の含有量が特定範囲に調整されているため、ガラス表面の白濁が抑えられ高透過である。また、CSPミラーに用いた場合、反射層の劣化・剥離が抑えられたものとなる。
本発明のCSPミラー用ガラス基板の製造方法によれば、各ガラス組成の含有量を特定範囲に調整することによって、ガラス表面の白濁及び反射層の劣化・剥離が抑えられたCSPミラー用ガラス基板を製造できる。
本発明のCSPミラーにおいては、CSPミラーに用いるガラス基板の各ガラス組成の含有量が特定範囲に調整されているため、ガラス表面の白濁及び反射層の劣化・剥離が抑えられたものとなる。
In the glass substrate for a CSP mirror of the present invention, since the content of each glass composition is adjusted to a specific range, white turbidity on the glass surface is suppressed and high transmission is achieved. Further, when it is used for a CSP mirror, deterioration / peeling of the reflective layer is suppressed.
According to the method for producing a glass substrate for a CSP mirror of the present invention, by adjusting the content of each glass composition within a specific range, cloudiness of the glass surface and deterioration / peeling of the reflective layer are suppressed. Can be manufactured.
In the CSP mirror of the present invention, since the content of each glass composition of the glass substrate used for the CSP mirror is adjusted to a specific range, cloudiness of the glass surface and deterioration / peeling of the reflective layer are suppressed.

本発明のCSPミラー用ガラス基板(例2)と一般的高透過率ガラスの透過率の比較図である。It is a comparative diagram of the transmittance of the glass substrate for CSP mirror (Example 2) of this invention and the general high transmittance glass. 本発明のCSPミラー用ガラス基板(例2)と一般的高透過率ガラスについて、ガラス表面のDamp Heat試験(高温高湿試験(85℃、85%、250Hr、2,000hr))前後の日射透過率(Te)の低下率を示す比較図である。For the glass substrate for CSP mirror (Example 2) of the present invention and general high-transmittance glass, solar radiation transmission before and after the Damp Heat test (high temperature and high humidity test (85 ° C., 85%, 250 Hr, 2,000 hr)) on the glass surface. It is a comparative figure which shows the decrease rate of the rate (Te). 本発明のCSPミラー用ガラス基板(例2)と一般的高透過率ガラスについて、ガラス表面のサイクル試験(90℃/4h→−40℃/4h→40℃/100% 16h×40サイクル)後の日射透過率の劣化の程度を示す比較図である。The glass substrate for CSP mirror (Example 2) of the present invention and general high-transmittance glass are subjected to a cycle test (90 ° C / 4h → -40 ° C / 4h → 40 ° C / 100% 16h × 40 cycles) on the glass surface. It is a comparative figure which shows the degree of deterioration of the solar transmittance. 図4は、CSPミラーのDamp Heat(DH)試験及び塩水噴霧試験(キャス試験)の結果を示す写真図面である。図4(a)の写真図面は、例2のガラス板を用いて得られたCSPミラーのDH試験の結果を示し、図4(b)の写真図面は、一般的高透過率ガラスのガラス板を用いて得られたCSPミラーのDH試験の結果を示す。また図4(c)の写真図面は、例2のガラス板を用いて得られたCSPミラーの塩水噴霧試験(キャス試験)の結果を示し、図4(d)写真図面は、一般的高透過率ガラスのガラス板を用いて得られたCSPミラーの結果を示す。FIG. 4 is a photographic drawing showing the results of the Damp Heat (DH) test and the salt spray test (cass test) of the CSP mirror. The photographic drawing of FIG. 4 (a) shows the result of the DH test of the CSP mirror obtained by using the glass plate of Example 2, and the photographic drawing of FIG. 4 (b) is a glass plate of general high transmittance glass. The result of the DH test of the CSP mirror obtained by using. Further, the photographic drawing of FIG. 4 (c) shows the result of a salt spray test (cass test) of the CSP mirror obtained using the glass plate of Example 2, and the photographic drawing of FIG. 4 (d) is a general high transmittance. The result of the CSP mirror obtained by using the glass plate of the transmittance glass is shown. 本発明のCSPミラーの一実施態様を示す図である。It is a figure which shows one Embodiment of the CSP mirror of this invention.

<CSPミラー用ガラス基板>
本発明の一実施態様のCSPミラー用ガラス基板は、下記の組成(I)を有する。CSPミラー用ガラス基板は、下記の組成(II)を有することが好ましく、下記の組成(III)を有することがより好ましく、特に下記の組成(IV)を有することが好ましい。
以下本明細書において「CSPミラー用ガラス基板」は、単に「ガラス板」あるいは「ガラス基板」とも記す。
<Glass substrate for CSP mirror>
The glass substrate for a CSP mirror according to an embodiment of the present invention has the following composition (I). The glass substrate for a CSP mirror preferably has the following composition (II), more preferably the following composition (III), and particularly preferably the following composition (IV).
Hereinafter, in the present specification, the "glass substrate for CSP mirror" is also simply referred to as a "glass plate" or a "glass substrate".

(I)下記酸化物基準の質量百分率表示で、
SiO :60〜75%、
Al :0〜3%、
CaO :0〜15%、
MgO :0〜12%
NaO :5〜20%、
O+SrO+BaO :1.1〜15%、
Feに換算した全鉄:0〜0.06%、
を含む。
(I) In the following oxide-based mass percentage display,
SiO 2 : 60-75%,
Al 2 O 3 : 0-3%,
CaO: 0 to 15%,
MgO: 0-12%
Na 2 O: 5 to 20%,
K 2 O + SrO + BaO: 1.1 to 15%,
Total iron converted to Fe 2 O 3 : 0 to 0.06%,
including.

(II)下記酸化物基準の質量百分率表示で、
SiO :68〜75%、
Al :0〜2.5%、
CaO :0〜15%、
MgO :0〜12%、
NaO :5〜20%、
O :0.8〜5%、
SrO :0〜1%、
BaO :0〜1%、
O+SrO+BaO :1.1〜7%、
Feに換算した全鉄:0〜0.06%、
を含む。
(II) In the following oxide-based mass percentage display,
SiO 2 : 68-75%,
Al 2 O 3 : 0-2.5%,
CaO: 0 to 15%,
MgO: 0-12%,
Na 2 O: 5 to 20%,
K 2 O: 0.8 to 5%,
SrO: 0 to 1%,
BaO: 0 to 1%,
K 2 O + SrO + BaO: 1.1 to 7%,
Total iron converted to Fe 2 O 3 : 0 to 0.06%,
including.

(III)下記酸化物基準の質量百分率表示で、
SiO :69〜74%、
Al :0.3〜2.3%、
CaO :3〜12%、
MgO :1〜10%、
NaO :7〜17%、
O :1.0〜4.5%、
SrO :0.1〜0.8%、
BaO :0.1〜0.8%、
O+SrO+BaO :1.5〜6%、
Feに換算した全鉄:0〜0.05%、
を含む。
(III) In the following oxide-based mass percentage display,
SiO 2 : 69-74%,
Al 2 O 3 : 0.3 to 2.3%,
CaO: 3-12%,
MgO: 1-10%,
Na 2 O: 7 to 17%,
K 2 O: 1.0 to 4.5%,
SrO: 0.1 to 0.8%,
BaO: 0.1 to 0.8%,
K 2 O + SrO + BaO: 1.5-6%,
Total iron converted to Fe 2 O 3 : 0-0.05%,
including.

(IV)下記酸化物基準の質量百分率表示で、
SiO :69.3〜73%、
Al :0.5〜2.1%、
CaO :5〜10%、
MgO :3〜8%、
NaO :9〜15%、
O :1.3〜4.0%、
SrO :0.2〜0.7%、
BaO :0.2〜0.7%、
O+SrO+BaO :2〜5%、
Feに換算した全鉄:0〜0.03%、
を含む。
(IV) In the following oxide-based mass percentage display,
SiO 2 : 69.3-73%,
Al 2 O 3 : 0.5-2.1%,
CaO: 5-10%,
MgO: 3-8%,
Na 2 O: 9 to 15%,
K 2 O: 1.3 to 4.0%,
SrO: 0.2-0.7%,
BaO: 0.2-0.7%,
K 2 O + SrO + BaO: 2-5%,
Total iron converted to Fe 2 O 3 : 0 to 0.03%,
including.

本発明のガラス板は、上記のとおり、各ガラス組成の含有量が特定範囲に調整されているため、ガラス表面の白濁が抑えられ高透過である。また、CSPミラーに用いた場合、反射層の劣化・剥離が抑えられたものとなる。 As described above, the glass plate of the present invention has the content of each glass composition adjusted to a specific range, so that white turbidity on the glass surface is suppressed and high transparency is achieved. Further, when it is used for a CSP mirror, deterioration / peeling of the reflective layer is suppressed.

特に、本発明におけるガラス板は、酸化物基準の質量百分率表示で、KO、SrOおよびBaOの合計の含有量が、通常のソーダライムシリカガラス(通常の高透過ガラス板を含む)において含まれているこれらの合計の含有量(例えば、高透過ガラス板の場合には0.4%以下)よりも多い組成とされている。 In particular, the glass plate of the present invention, as represented by mass percentage based on oxides, K 2 O, the total content of SrO and BaO, contained in normal soda-lime-silica glass (including normal high transmittance glass sheet) The composition is higher than the total content of these (for example, 0.4% or less in the case of a highly transparent glass plate).

K/Na比が大きくなると、混合アルカリ効果によってガラス板の体積抵抗率が高くなる(すなわち、電気伝導度が低くなる)。また、アルカリ土類金属/Na比についても、K/Na比と同様な傾向が見られ、原子半径の大きいSr、Baの場合に特にこの傾向が顕著である。よって、KOの含有量(もしくはKO、SrOおよびBaOの合計の含有量)が、通常のソーダライムシリカガラス(通常の高透過ガラス板を含む)よりも多くなると、ガラス板の体積抵抗率が高くなる(すなわち、電気伝導度が低くなる)ため、銀等を含む反射層を被覆されたガラス板が長期間水分等に晒されても、ガラス板に含まれるNaが電気的に反射層に引き寄せられにくくなり、Naが反射層の表面まで拡散しにくくなる。よって、反射層の劣化・剥離が抑えられる。 As the K / Na ratio increases, the volume resistivity of the glass plate increases (that is, the electrical conductivity decreases) due to the mixed alkali effect. Further, the alkaline earth metal / Na ratio also has a tendency similar to that of the K / Na ratio, and this tendency is particularly remarkable in the case of Sr and Ba having a large atomic radius. Thus, the content of K 2 O (or K 2 O, the total content of SrO and BaO) is, the larger than normal soda-lime-silica glass (including normal high transmittance glass plate), the volume of the glass plates Since the resistance is high (that is, the electrical conductivity is low), even if the glass plate coated with the reflective layer containing silver or the like is exposed to moisture for a long period of time, Na + contained in the glass plate is electrically charged. It becomes difficult to be attracted to the reflective layer, and it becomes difficult for Na + to diffuse to the surface of the reflective layer. Therefore, deterioration / peeling of the reflective layer can be suppressed.

Oの含有量は、酸化物基準の質量百分率表示で、0〜5%であることが好ましい。KOの含有量が5%以下であれば、原料コストの上昇を抑えられ、また高温での粘性が上昇し溶解性が悪化することを防ぐことができる。
Oの含有量は、酸化物基準の質量百分率表示で、0.8%以上がより好ましく、1.0%以上がさらに好ましく、1.1%以上がさらに好ましく、1.3%以上が特に好ましい。また、KOの含有量は、酸化物基準の質量百分率表示で、4.5%以下がより好ましく、4.0%以下がさらに好ましい。
また、KOの含有量は、酸化物基準の質量百分率表示で、0.8〜5%がより好ましく、1.0〜4.5%がさらに好ましく、1.1〜4.5%がさらに好ましく、1.3〜4.0%が特に好ましい。
The K 2 O content, as represented by mass percentage based on oxides, is preferably 0 to 5%. When the content of K 2 O is 5% or less, it is possible to suppress an increase in raw material cost and prevent an increase in viscosity at a high temperature and deterioration of solubility.
The content of K 2 O is more preferably 0.8% or more, further preferably 1.0% or more, further preferably 1.1% or more, and 1.3% or more in terms of mass percentage based on oxides. Especially preferable. The content of K 2 O is, in mass percentage based on oxides, more preferably 4.5% or less, more preferably 4.0% or less.
The content of K 2 O is, in mass percentage based on oxides, more preferably from 0.8 to 5%, more preferably 1.0 to 4.5%, is from 1.1 to 4.5% More preferably, 1.3 to 4.0% is particularly preferable.

SrOの含有量は、酸化物基準の質量百分率表示で、0〜5%であることが好ましい。SrOの含有量が5%以下であれば、失透特性(すなわち、ガラス板の成形時に失透が生じにくいという特性)の悪化を防ぐことができる。
SrOの含有量は、酸化物基準の質量百分率表示で、0.1%以上がより好ましく、0.2%以上がさらに好ましい。また、SrOの含有量は、酸化物基準の質量百分率表示で、4%以下がより好ましく、2%以下がさらに好ましく、1%以下がさらに好ましく、0.8%以下がさらに好ましく、0.7%以下が特に好ましい。
また、SrOの含有量は、酸化物基準の質量百分率表示で、0〜4%がより好ましく、0〜2%がさらに好ましく、0〜1%がさらに好ましく、0.1〜0.8%がさらに好ましく、0.2〜0.7%が特に好ましい。
The content of SrO is preferably 0 to 5% in terms of mass percentage based on oxides. When the SrO content is 5% or less, deterioration of the devitrification property (that is, the property that devitrification is unlikely to occur during molding of the glass plate) can be prevented.
The content of SrO is more preferably 0.1% or more, still more preferably 0.2% or more in terms of mass percentage based on oxides. Further, the SrO content is more preferably 4% or less, further preferably 2% or less, further preferably 1% or less, further preferably 0.8% or less, and still more preferably 0.7, in terms of mass percentage based on the oxide. % Or less is particularly preferable.
Further, the content of SrO is more preferably 0 to 4%, further preferably 0 to 2%, further preferably 0 to 1%, and 0.1 to 0.8% in terms of mass percentage based on the oxide. More preferably, 0.2 to 0.7% is particularly preferable.

BaOの含有量は、酸化物基準の質量百分率表示で、0〜5%であることが好ましい。BaOの含有量が5%以下であれば、失透特性が悪化することを防ぐことができる。
BaOの含有量は、酸化物基準の質量百分率表示で、0.1%以上がより好ましく、0.2%以上がさらに好ましい。また、BaOの含有量は、酸化物基準の質量百分率表示で、4.5%以下がより好ましく、4%以下がさらに好ましく、1%以下がさらに好ましく、0.8%以下がさらに好ましく、0.7%以下が特に好ましい。
また、BaOの含有量は、酸化物基準の質量百分率表示で、0〜4.5%がより好ましく、0〜4%がさらに好ましく、0〜1%がさらに好ましく、0.1〜0.8%がさらに好ましく、0.2〜0.7%が特に好ましい。
The content of BaO is preferably 0 to 5% in terms of mass percentage based on oxides. When the BaO content is 5% or less, it is possible to prevent the devitrification characteristics from deteriorating.
The content of BaO is more preferably 0.1% or more, still more preferably 0.2% or more in terms of mass percentage based on oxides. The BaO content is more preferably 4.5% or less, further preferably 4% or less, further preferably 1% or less, further preferably 0.8% or less, and 0, in terms of mass percentage based on oxides. 0.7% or less is particularly preferable.
The BaO content is more preferably 0 to 4.5%, further preferably 0 to 4%, further preferably 0 to 1%, and 0.1 to 0.8 in terms of mass percentage based on oxides. % Is more preferable, and 0.2 to 0.7% is particularly preferable.

O、SrOおよびBaOの合計の含有量(以下、本明細書において、この合計量を「KO+SrO+BaO」とも記す。)は、酸化物基準の質量百分率表示で、1.1〜15%である。KO+SrO+BaOが15%を超えると、液相温度が上昇し失透特性が悪化する可能性が高くなる。
O+SrO+BaOは、酸化物基準の質量百分率表示で、1.4%以上が好ましく、1.5%以上がより好ましく、2%以上がさらに好ましい。また、KO+SrO+BaOは、酸化物基準の質量百分率表示で、13%以下が好ましく、12%以下がより好ましく、7%以下がさらに好ましく、6%以下がさらに好ましく、5%以下が特に好ましい。
また、KO+SrO+BaOは、酸化物基準の質量百分率表示で、1.4〜13%が好ましく、1.4〜12%がより好ましい。KO+SrO+BaOは、1.1〜7%、1.5〜6%、2〜5%であってもよい。
The total content of K 2 O, SrO and BaO (hereinafter, this total amount is also referred to as “K 2 O + SrO + BaO” in the present specification) is 1.1 to 15% in terms of oxide-based mass percentage. Is. If K 2 O + SrO + BaO exceeds 15%, the liquidus temperature rises and there is a high possibility that the devitrification characteristics deteriorate.
K 2 O + SrO + BaO is an oxide-based mass percentage display, preferably 1.4% or more, more preferably 1.5% or more, still more preferably 2% or more. Further, K 2 O + SrO + BaO is preferably 13% or less, more preferably 12% or less, further preferably 7% or less, further preferably 6% or less, and particularly preferably 5% or less in terms of mass percentage based on oxides.
Further, K 2 O + SrO + BaO is preferably 1.4 to 13%, more preferably 1.4 to 12% in terms of mass percentage based on oxides. K 2 O + SrO + BaO may be 1.1 to 7%, 1.5 to 6%, and 2 to 5%.

Feは、製造上不可避的に混入しうる着色成分である。
Feに換算した全鉄の含有量は、酸化物基準の質量百分率表示で、0〜0.06%である。Feに換算した全鉄の含有量が0.06%以下であれば、Tvの低下が抑えられる。
Feに換算した全鉄の含有量は、酸化物基準の質量百分率表示で、0.05%以下が好ましく、0.03%以下がより好ましく、0.01%以下がさらに好ましい。特に、この全鉄の含有量を0.01%以下とすることにより、ガラス板のTe(板厚4mm厚さ換算)を90%以上とすることが容易となり、またガラス板のTv(板厚4mm厚さ換算)を90%以上とすることが容易となり、好ましい。
また、Feに換算した全鉄の含有量は、酸化物基準の質量百分率表示で、0〜0.05%が好ましく、0〜0.03%がより好ましく、0〜0.01%がさらに好ましい。
Fe 2 O 3 is a coloring component that can be unavoidably mixed in during production.
The total iron content converted to Fe 2 O 3 is 0 to 0.06% in terms of oxide-based mass percentage. When the total iron content converted to Fe 2 O 3 is 0.06% or less, the decrease in Tv can be suppressed.
The total iron content converted to Fe 2 O 3 is preferably 0.05% or less, more preferably 0.03% or less, still more preferably 0.01% or less in terms of mass percentage based on oxides. In particular, by setting the total iron content to 0.01% or less, it becomes easy to set the Te (plate thickness 4 mm thickness conversion) of the glass plate to 90% or more, and the Tv (plate thickness) of the glass plate. (4 mm thickness conversion) can be easily set to 90% or more, which is preferable.
The total iron content converted to Fe 2 O 3 is preferably 0 to 0.05%, more preferably 0 to 0.03%, and 0 to 0.01% in terms of mass percentage based on oxides. Is even more preferable.

本明細書においては、全鉄の含有量を標準分析法にしたがってFeの量として表しているが、ガラス中に存在する鉄がすべて3価の鉄として存在しているわけではない。通常、ガラス中には2価の鉄が存在している。2価の鉄は主として波長1000〜1100nm付近に吸収のピークを有し、波長800nmよりも短い波長にも吸収を有し、3価の鉄は主として波長400nm付近に吸収のピークを有する。2価の鉄の増加は、1000nm前後の近赤外線領域の吸収の増加になり、これをTeで表現するとTeが低下することを意味する。そのため、Tv、Teについて着目した場合、Feに換算した全鉄の含有量を抑えることで、Tvの低下を抑え、2価の鉄よりも3価の鉄を多くすることで、Teの低下を抑える。したがって、Tv、Teの低下を抑える点では、全鉄量を減らし、Feに換算した全鉄中のFeに換算した2価の鉄の質量割合(以下、Redoxと記す。)を低く抑えることが好ましい。 In this specification, the total iron content is expressed as the amount of Fe 2 O 3 according to the standard analysis method, but not all the iron present in the glass exists as trivalent iron. Usually, divalent iron is present in the glass. Divalent iron mainly has an absorption peak near a wavelength of 1000 to 1100 nm, absorbs even at wavelengths shorter than 800 nm, and trivalent iron mainly has an absorption peak near a wavelength of 400 nm. An increase in divalent iron results in an increase in absorption in the near-infrared region around 1000 nm, which is expressed in Te as a decrease in Te. Therefore, when focusing on Tv and Te, by suppressing the content of total iron converted to Fe 2 O 3 , the decrease in Tv is suppressed, and by increasing the amount of trivalent iron rather than divalent iron, Te. Suppress the decline of. Therefore, Tv, in terms of suppressing the decrease of Te, reduce Zentetsuryou, mass percentage of divalent iron in terms of Fe 2 O 3 in the total iron in terms of Fe 2 O 3 (hereinafter referred to as Redox. ) Is preferably kept low.

ガラス板におけるRedoxは、35%以下が好ましい。Redoxが35%以下であれば、Teの低下が抑えられる。Redoxは、30%以下がより好ましい。 The Redox in the glass plate is preferably 35% or less. When Redox is 35% or less, the decrease in Te is suppressed. Redox is more preferably 30% or less.

SiOは、ガラスの主成分である。
SiOの含有量は、酸化物基準の質量百分率表示で、60〜75%である。SiOの含有量が60%未満では、ガラスの安定性が低下する。SiOの含有量が75%を超えると、ガラスの溶解温度が上昇し、溶解できなくなるおそれがある。
SiOの含有量は、酸化物基準の質量百分率表示で、62%以上であることが好ましく、68%以上であることがより好ましく、69%以上であることがさらに好ましく、69.3%以上であることが特に好ましい。また、SiOの含有量は、酸化物基準の質量百分率表示で、74%以下であることが好ましく、73%以下であることがさらに好ましく、72%以下であることが特に好ましい。
また、SiOの含有量は、酸化物基準の質量百分率表示で、60〜74%が好ましく、62〜73%がより好ましく、62〜72%がさらに好ましい。また、SiOの含有量は、68〜75%、好ましくは69〜75%、69〜74%、さらには69.3〜73%であってもよい。
SiO 2 is the main component of glass.
The content of SiO 2 is 60 to 75% in terms of mass percentage based on oxides. If the content of SiO 2 is less than 60%, the stability of the glass is lowered. If the content of SiO 2 exceeds 75%, the melting temperature of the glass rises and there is a risk that the glass cannot be melted.
The content of SiO 2 is preferably 62% or more, more preferably 68% or more, further preferably 69% or more, and 69.3% or more in terms of mass percentage based on oxides. Is particularly preferable. Further, the content of SiO 2 is preferably 74% or less, more preferably 73% or less, and particularly preferably 72% or less in terms of mass percentage based on the oxide.
Further, the content of SiO 2 is preferably 60 to 74%, more preferably 62 to 73%, still more preferably 62 to 72% in terms of mass percentage based on the oxide. Further, the content of SiO 2 may be 68 to 75%, preferably 69 to 75%, 69 to 74%, and further 69.3 to 73%.

Alは、耐候性を向上させる成分である。
Alの含有量は、酸化物基準の質量百分率表示で、0〜3%である。Alの含有量が3%を超えると、溶解性が著しく悪化する、もしくは体積抵抗が低くなりすぎる。
Alの含有量は、酸化物基準の質量百分率表示で、0.3%以上であることが好ましく、0.5%以上であることがより好ましい。また、Alの含有量は、酸化物基準の質量百分率表示で、2.8%以下であることが好ましく、2.5%以下であることがより好ましく、2.3%以下であることがさらに好ましく、2.1%以下であることが特に好ましい。
また、Alの含有量は、酸化物基準の質量百分率表示で、0〜2.8%が好ましく、0〜2.5%がより好ましく、0.3〜2.5%がさらに好ましい。また、Alの含有量は、0.3〜2.3%、好ましくは0.5〜2.1%であってもよい。
Al 2 O 3 is a component that improves weather resistance.
The content of Al 2 O 3 is 0 to 3% in terms of mass percentage based on oxides. If the content of Al 2 O 3 exceeds 3%, the solubility is significantly deteriorated or the volume resistance becomes too low.
The content of Al 2 O 3 is preferably 0.3% or more, and more preferably 0.5% or more in terms of mass percentage based on oxides. Further, the content of Al 2 O 3 is preferably 2.8% or less, more preferably 2.5% or less, and 2.3% or less in terms of mass percentage based on the oxide. It is more preferable, and it is particularly preferable that it is 2.1% or less.
The content of Al 2 O 3 is preferably 0 to 2.8%, more preferably 0 to 2.5%, and even more preferably 0.3 to 2.5% in terms of mass percentage based on oxides. .. Further, the content of Al 2 O 3 may be 0.3 to 2.3%, preferably 0.5 to 2.1%.

CaOは、ガラス原料の溶融を促進し、また、粘性、熱膨張係数等を調整する成分である。
CaOの含有量は、酸化物基準の質量百分率表示で、0〜15%である。CaOの含有量が15%を超えると、失透温度が上昇する。
CaOの含有量は、酸化物基準の質量百分率表示で、3%以上であることが好ましく、5%以上であることがより好ましい。また、CaOの含有量は、酸化物基準の質量百分率表示で、12%以下であることが好ましく、11%以下であることがより好ましく、10%以下であることがより好ましい。
また、CaOの含有量は、酸化物基準の質量百分率表示で、3〜12%が好ましく、3〜11%がより好ましい。また、5〜10%であってもよい。
CaO is a component that promotes melting of the glass raw material and adjusts viscosity, coefficient of thermal expansion, and the like.
The CaO content is 0 to 15% in terms of oxide-based mass percentage. When the CaO content exceeds 15%, the devitrification temperature rises.
The CaO content is preferably 3% or more, and more preferably 5% or more in terms of mass percentage based on oxides. The CaO content is preferably 12% or less, more preferably 11% or less, and even more preferably 10% or less in terms of mass percentage based on oxides.
The CaO content is preferably 3 to 12%, more preferably 3 to 11%, in terms of mass percentage based on oxides. Further, it may be 5 to 10%.

MgOは、ガラス原料の溶融を促進し、また、粘性、熱膨張係数等を調整する成分である。
MgOの含有量は、酸化物基準の質量百分率表示で、0〜12%である。MgOの含有量が12%を超えると、失透温度が上昇する。
MgOの含有量は、酸化物基準の質量百分率表示で、1%以上であることが好ましく、2%以上であることがより好ましく、3%以上であることがさらに好ましい。また、MgOの含有量は、酸化物基準の質量百分率表示で、10%以下であることが好ましく、8%以下であることがより好ましく、6%以下であることが好ましい。
また、MgOの含有量は、酸化物基準の質量百分率表示で、2〜12%が好ましく、2〜6%がより好ましい。また、MgOの含有量は、1〜10%、好ましくは3〜8%であってもよい。
MgO is a component that promotes melting of glass raw materials and adjusts viscosity, coefficient of thermal expansion, and the like.
The content of MgO is 0 to 12% in terms of mass percentage based on oxides. When the MgO content exceeds 12%, the devitrification temperature rises.
The content of MgO is preferably 1% or more, more preferably 2% or more, and further preferably 3% or more in terms of mass percentage based on oxides. The MgO content is preferably 10% or less, more preferably 8% or less, and preferably 6% or less in terms of mass percentage based on oxides.
Further, the content of MgO is preferably 2 to 12%, more preferably 2 to 6% in terms of mass percentage based on oxide. Further, the content of MgO may be 1 to 10%, preferably 3 to 8%.

NaOは、ガラス原料の溶融を促進する必須成分である。
NaOの含有量は、酸化物基準の質量百分率表示で、5〜20%である。NaOの含有量が5%未満では、ガラス原料の溶解が困難になる。NaOの含有量が20%を超えると、ガラス板の耐候性および安定性が悪化する。
NaOの含有量は、酸化物基準の質量百分率表示で、7%以上であることが好ましく、9%以上であることがより好ましい。また、NaOの含有量は、酸化物基準の質量百分率表示で、19%以下であることが好ましく、17%以下であることがより好ましく、15%以下であることがさらに好ましい。
また、NaOの含有量は、酸化物基準の質量百分率表示で、7〜19%が好ましく、7〜17%がより好ましく、9〜17%がさらに好ましい。さらに、NaOの含有量は、9〜15%であってもよい。
Na 2 O is an essential component that promotes the melting of glass raw materials.
The Na 2 O content is 5 to 20% in terms of oxide-based mass percentage. If the Na 2 O content is less than 5%, it becomes difficult to dissolve the glass raw material. If the Na 2 O content exceeds 20%, the weather resistance and stability of the glass plate deteriorate.
The Na 2 O content is preferably 7% or more, and more preferably 9% or more in terms of mass percentage based on oxides. The Na 2 O content is preferably 19% or less, more preferably 17% or less, and even more preferably 15% or less in terms of mass percentage based on oxides.
The Na 2 O content is preferably 7 to 19%, more preferably 7 to 17%, and even more preferably 9 to 17% in terms of mass percentage based on oxides. Further, the Na 2 O content may be 9 to 15%.

本発明のガラス板においては、必須ではないが、さらにTiO、ZrO、LiO、およびBを含んでもよい。
TiOが含有される場合、TiOの含有量は、酸化物基準の質量百分率表示で、0〜2%が好ましい。TiOの含有量が2%を超えると、ガラス板が着色し、TvおよびTeが低下する。
Although not essential, the glass plate of the present invention may further contain TiO 2 , ZrO 2 , Li 2 O, and B 2 O 3 .
When TiO 2 is contained, the content of TiO 2 is preferably 0 to 2% in terms of oxide-based mass percentage. When the content of TiO 2 exceeds 2%, the glass plate is colored and Tv and Te decrease.

ZrOは、ガラスの化学的な耐久性を向上させ、また、弾性率、硬度等の物理的な強度を向上させる成分である。
ZrOが含有される場合、ZrOの含有量は、酸化物基準の質量百分率表示で0〜3%が好ましい。ZrOの含有量が3%を超えると、溶融特性が悪化する、また、失透温度が上昇する。
ZrO 2 is a component that improves the chemical durability of glass and also improves the physical strength such as elastic modulus and hardness.
When ZrO 2 is contained, the content of ZrO 2 is preferably 0 to 3% in terms of oxide-based mass percentage. If the content of ZrO 2 exceeds 3%, the melting characteristics deteriorate and the devitrification temperature rises.

LiOは、ガラス原料の溶融を促進させ、溶解温度を低下させる成分である。
LiOが含有される場合、LiOの含有量は、酸化物基準の質量百分率表示で、0〜3%である。LiOの含有量が3%を超えると、ガラスの安定性が悪化する。また、原料コストが著しく上昇してしまう。
Li 2 O is a component that promotes the melting of the glass raw material and lowers the melting temperature.
If Li 2 O is contained, the content of Li 2 O, by mass percentage based on oxides, 0 to 3%. If the Li 2 O content exceeds 3%, the stability of the glass deteriorates. In addition, raw material costs will rise significantly.

は、ガラス原料の溶融を促進する成分であるが、ソーダライムシリカガラスに添加すると、揮発による脈理(ream)の生成、炉壁の侵食等の不都合が多く、製造上適さない。
が含有される場合、Bの含有量は、酸化物基準の質量百分率表示で、1%以下が好ましく、実質的に含有しないことがより好ましい。ここで、実質的に含有しないとは不純物程度の量が混入してもよいことを意味する。
B 2 O 3 is a component that promotes the melting of glass raw materials, but when added to soda lime silica glass, there are many inconveniences such as generation of veins (reams) due to volatilization and erosion of the furnace wall, which is not suitable for manufacturing. ..
When B 2 O 3 is contained, the content of B 2 O 3 is preferably 1% or less, more preferably substantially not contained, in terms of the mass percentage based on the oxide. Here, substantially not contained means that an amount of impurities may be mixed.

ガラス板は、清澄剤として用いたSOを含むことが好ましい。SOに換算した全硫黄の含有量は、酸化物基準の質量百分率表示で、0.01〜0.5%が好ましい。SOに換算した全硫黄の含有量が0.5%を超えると、溶融ガラスが冷却される過程でリボイルが発生し、泡品質が悪化するおそれがある。SOに換算した全硫黄の含有量が0.01%未満では、充分な清澄効果が得られない。
SOに換算した全硫黄の含有量は、酸化物基準の質量百分率表示で、0.05%以上がより好ましく、0.2%以上がさらに好ましい。また、SOに換算した全硫黄の含有量は、酸化物基準の質量百分率表示で、0.4%以下がさらに好ましい。
また、SOに換算した全硫黄の含有量は、酸化物基準の質量百分率表示で、0.05〜0.5%がより好ましく、0.2〜0.4%がさらに好ましい。
The glass plate preferably contains SO 3 used as a fining agent. The total sulfur content converted to SO 3 is preferably 0.01 to 0.5% in terms of mass percentage based on oxides. If the total sulfur content converted to SO 3 exceeds 0.5%, riboyl is generated in the process of cooling the molten glass, and the foam quality may deteriorate. If the total sulfur content converted to SO 3 is less than 0.01%, a sufficient clarification effect cannot be obtained.
The total sulfur content converted to SO 3 is more preferably 0.05% or more, still more preferably 0.2% or more in terms of mass percentage based on oxides. Further, the total sulfur content converted to SO 3 is more preferably 0.4% or less in terms of mass percentage based on oxides.
Further, the total sulfur content converted to SO 3 is more preferably 0.05 to 0.5% and further preferably 0.2 to 0.4% in terms of mass percentage based on the oxide.

ガラス板は、清澄剤として用いたSnOを含んでいてもよい。SnOに換算した全スズの含有量は、酸化物基準の質量百分率表示で、0〜1%が好ましい。 The glass plate may contain SnO 2 used as a fining agent. The total tin content converted to SnO 2 is preferably 0 to 1% in terms of oxide-based mass percentage.

ガラス板は、清澄剤として用いたSbを含んでいてもよい。Sbに換算した全アンチモンの含有量は、0〜0.5%が好ましい。Sbに換算した全アンチモンの含有量が0.5%を超えると、フロート法の場合、成形後のガラス板が白濁してしまう。Sbに換算した全アンチモンの含有量は、酸化物基準の質量百分率表示で、0〜0.1%が好ましい。 The glass plate may contain Sb 2 O 3 used as a fining agent. The total antimony content converted to Sb 2 O 3 is preferably 0 to 0.5%. If the total antimony content converted to Sb 2 O 3 exceeds 0.5%, the glass plate after molding becomes cloudy in the case of the float method. The total antimony content converted to Sb 2 O 3 is preferably 0 to 0.1% in terms of oxide-based mass percentage.

ガラス板は、着色成分である、S、NiO、MoO、CoO、Cr、V、またはMnOを実質的に含まないことが好ましい。S、NiO、MoO、CoO、Cr、V、またはMnOを実質的に含まないとは、S、NiO、MoO、CoO、Cr、V、またはMnOをまったく含まない、または、S、NiO、MoO、CoO、Cr、V、MnOを製造上不可避的に混入した不純物として含んでいてもよいことを意味する。S、NiO、MoO、CoO、Cr、V、またはMnOを実質的に含まなければ、Tv、Teの低下が抑えられる。 It is preferable that the glass plate is substantially free of the coloring components S, NiO, MoO 3 , CoO, Cr 2 O 3 , V 2 O 5 , or MnO. Substantially free of S, NiO, MoO 3 , CoO, Cr 2 O 3 , V 2 O 5 , or MnO means S, NiO, MoO 3 , CoO, Cr 2 O 3 , V 2 O 5 , or It means that it does not contain MnO at all, or may contain S, NiO, MoO 3 , CoO, Cr 2 O 3 , V 2 O 5 , and MnO as impurities inevitably mixed in the production. If S, NiO, MoO 3 , CoO, Cr 2 O 3 , V 2 O 5 , or MnO is not substantially contained, the decrease in Tv and Te is suppressed.

ガラス板のTe(4mm厚さ換算、すなわちガラス板の板厚を4mmとして換算。)は、80%以上が好ましく、82.7%以上がより好ましい。Teは、JIS R 3106(1998)(以下、単にJIS R 3106と記す。)にしたがい分光光度計により透過率を測定し算出された日射透過率である。
また、組成中の着色成分であるFe含有量が0.01%以下の場合は、Te(4mm厚さ換算)は90%以上が好ましく、91%以上がより好ましく、91.5%以上がさらに好ましい。
The Te of the glass plate (converted to 4 mm thickness, that is, converted to the plate thickness of the glass plate as 4 mm) is preferably 80% or more, more preferably 82.7% or more. Te is a solar radiation transmittance calculated by measuring the transmittance with a spectrophotometer according to JIS R 3106 (1998) (hereinafter, simply referred to as JIS R 3106).
When the content of Fe 2 O 3 which is a coloring component in the composition is 0.01% or less, Te (4 mm thickness conversion) is preferably 90% or more, more preferably 91% or more, and 91.5%. The above is more preferable.

ガラス板のTv(4mm厚さ換算)は、80%以上が好ましく、82%以上がより好ましい。Tvは、JIS R 3106にしたがい分光光度計により透過率を測定し算出された可視光透過率である。係数は標準の光A,2度視野の値を用いる。
また、組成中の着色成分であるFe含有量が0.01%以下の場合は、Tv(4mm厚さ換算)は90%以上が好ましく、91%以上がより好ましい。
The Tv (4 mm thickness conversion) of the glass plate is preferably 80% or more, more preferably 82% or more. Tv is a visible light transmittance calculated by measuring the transmittance with a spectrophotometer according to JIS R 3106. For the coefficient, the value of standard light A, 2 degree field of view is used.
When the content of Fe 2 O 3 which is a coloring component in the composition is 0.01% or less, Tv (4 mm thickness conversion) is preferably 90% or more, and more preferably 91% or more.

ガラス板の150℃における体積抵抗率(log(ρ[Ω・cm]))は、9.0〜12が好ましく、9.1〜12がより好ましい。ガラス板の150℃における体積抵抗率が9.0以上であれば、反射膜の腐食による劣化・剥離の抑制効果が見込まれる。
同様に、ガラス板の200℃における体積抵抗率(log(ρ[Ω・cm]))は、7.8〜12が好ましく、7.9〜11がより好ましい。ガラス板の200℃における体積抵抗率が7.8以上であれば、反射膜の腐食による劣化・剥離のより高い抑制効果が見込まれる。
ここで、ガラス板の体積抵抗率は、ASTM C657−78に準拠した方法で測定される。
The volume resistivity (log (ρ [Ω · cm])) of the glass plate at 150 ° C. is preferably 9.0 to 12, more preferably 9.1 to 12. If the volume resistivity of the glass plate at 150 ° C. is 9.0 or more, the effect of suppressing deterioration / peeling due to corrosion of the reflective film is expected.
Similarly, the volume resistivity (log (ρ [Ω · cm])) of the glass plate at 200 ° C. is preferably 7.8 to 12, more preferably 7.9 to 11. If the volume resistivity of the glass plate at 200 ° C. is 7.8 or more, a higher suppression effect of deterioration / peeling due to corrosion of the reflective film is expected.
Here, the volume resistivity of the glass plate is measured by a method according to ASTM C657-78.

<CSPミラー用ガラス基板の製造方法>
本発明のガラス基板は、ガラス原料を溶融し、フロート法またはダウンドロー法で成形することができる。具体的には、たとえば、下記の工程(i)〜(V)を順に経て製造される。
(i)目標とする組成になるように、各種のガラス母組成原料、カレット、清澄剤等を混合し、ガラス原料を調製する。
(ii)ガラス原料を溶融させて溶融ガラスとする。
(iii)溶融ガラスを清澄した後、フロート法またはダウンドロー法(フュージョン法)により所定の厚さのガラス板に成形する。
(iv)ガラス板を冷却する。
(V)ガラス板を所定の大きさに切断する。
<Manufacturing method of glass substrate for CSP mirror>
The glass substrate of the present invention can be formed by melting a glass raw material and using a float method or a downdraw method. Specifically, for example, it is manufactured through the following steps (i) to (V) in order.
(I) Prepare a glass raw material by mixing various glass mother composition raw materials, cullet, fining agent and the like so as to obtain a target composition.
(Ii) The glass raw material is melted to obtain molten glass.
(Iii) After the molten glass is clarified, it is formed into a glass plate having a predetermined thickness by a float method or a down draw method (fusion method).
(Iv) Cool the glass plate.
(V) Cut the glass plate to a predetermined size.

ガラス母組成原料としては、例えば、珪砂、ドロマイト、ソーダ灰等、通常のソーダライムシリカガラスの原料として用いられているものが挙げられる。
清澄剤としては、SO、SnO、またはSb等が挙げられる。
Examples of the glass matrix composition raw material include those used as a raw material for ordinary soda lime silica glass such as silica sand, dolomite, and soda ash.
Examples of the fining agent include SO 3 , SnO 2 , Sb 2 O 3, and the like.

ガラス原料の溶融は、たとえば、ガラス原料を連続的にガラス溶融炉(溶融窯)に供給し、重油、ガス、電気等により約1300〜1600℃に加熱することによって行われる。 The melting of the glass raw material is performed, for example, by continuously supplying the glass raw material to a glass melting furnace (melting kiln) and heating it to about 1300 to 1600 ° C. with heavy oil, gas, electricity or the like.

以上説明した本発明のガラス板にあっては、KO、SrOおよびBaOの合計の含有量が、酸化物基準の質量百分率表示で、1.1%以上であるため、ガラス板の体積抵抗率が高くなる(すなわち、電気伝導度が低くなる)。その結果、CSPミラーを長期間使用しても、ガラス板に含まれるNaが電気的に反射膜に引き寄せられにくくなり、Naが反射膜の表面まで拡散しにくくなる。よって、反射膜の劣化・剥離が抑えられる。
また、Feに換算した全鉄の含有量が、酸化物基準の質量百分率表示で、0〜0.06%であるため、Tvが充分に高くなる。
Or In the glass plate of the present invention described, K 2 O, the total content of SrO and BaO, because in mass percentage based on oxides, is 1.1% or more, the volume resistivity of the glass plate Higher rate (ie lower electrical conductivity). As a result, even if the CSP mirror is used for a long period of time, Na + contained in the glass plate is less likely to be electrically attracted to the reflective film, and Na + is less likely to be diffused to the surface of the reflective film. Therefore, deterioration / peeling of the reflective film can be suppressed.
Further, since the total iron content converted to Fe 2 O 3 is 0 to 0.06% in terms of the mass percentage based on the oxide, Tv is sufficiently high.

<CSPミラー>
本発明のCSPミラーは、上記ガラス板の一方の表面に、反射層と塗膜とをこの順で設けられる。
図5は、本発明のCSPミラーの一実施態様を示す断面図であり、ガラス基板12の一方の表面に、反射層14と塗膜16によってCSPミラー10を形成したものである。
反射層は、公知の金属膜を用いることができ、スプレーコート法、真空蒸着法、スパッタリング法、メッキ法等の方法で設けることができる。金属膜は、銀を含むことが好ましい。
また、塗膜は、公知の無機膜、有機膜を用いることができる。また、塗膜は、カーテン・フロー・コーターを用いた方法、ディッピング法、スプレーコート法、スピンコート法等の公知の方法で設けることができる。
<CSP mirror>
In the CSP mirror of the present invention, a reflective layer and a coating film are provided on one surface of the glass plate in this order.
FIG. 5 is a cross-sectional view showing an embodiment of the CSP mirror of the present invention, in which the CSP mirror 10 is formed on one surface of the glass substrate 12 by the reflective layer 14 and the coating film 16.
A known metal film can be used as the reflective layer, and the reflective layer can be provided by a method such as a spray coating method, a vacuum vapor deposition method, a sputtering method, or a plating method. The metal film preferably contains silver.
Further, as the coating film, a known inorganic film or organic film can be used. Further, the coating film can be provided by a known method such as a method using a curtain flow coater, a dipping method, a spray coating method, or a spin coating method.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例に限定されない。
〔例1〜31〕
例2〜31は実施例であり、例1は比較例である。
CSPミラー用ガラス基板(ガラス板)の各性能は、下記のようにして測定して求めた。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[Examples 1-31]
Examples 2-31 are examples, and example 1 is a comparative example.
Each performance of the glass substrate (glass plate) for the CSP mirror was measured and obtained as follows.

(Redox)
得られたガラス板のFe量は、蛍光X線測定によって求めた、Feに換算した全鉄の含有量(%=質量百分率)である。
Redoxの算出に必要なガラス板中の2価の鉄の量は、透過率測定によって得られた、波長1000nmの透過率から換算して求めた。ここでは、波長1000nmでの反射による影響を8%として差し引いた後に吸収係数に変換し、湿式分析法により事前に作成した検量線を元に2価の鉄の量を定量した。
(Redox)
The amount of Fe 2 O 3 in the obtained glass plate is the total iron content (% = mass percentage) converted to Fe 2 O 3 determined by fluorescent X-ray measurement.
The amount of divalent iron in the glass plate required for the calculation of Redox was obtained by converting from the transmittance at a wavelength of 1000 nm obtained by the transmittance measurement. Here, the effect of reflection at a wavelength of 1000 nm was subtracted as 8%, then converted to an absorption coefficient, and the amount of divalent iron was quantified based on a calibration curve prepared in advance by a wet analysis method.

(Tv)
得られたガラス板を4mm厚さに研磨し、JIS R 3106規定の可視光透過率(Tv)(A光源によるもの)を測定した。
(Tv)
The obtained glass plate was polished to a thickness of 4 mm, and the visible light transmittance (Tv) specified by JIS R 3106 (by A light source) was measured.

(Te)
得られたガラス板を4mm厚さに研磨し、JIS R 3106規定の日射透過率(Te)を測定した。
(Te)
The obtained glass plate was polished to a thickness of 4 mm, and the solar transmittance (Te) specified in JIS R 3106 was measured.

(体積抵抗率)
ガラス板の体積抵抗率は、ASTM C657−78に準拠した方法で測定した。ガラス板としては、約50mm×50mmの大きさを有し、両面を光学研磨して厚さ約4mmにしたものを用いた。該ガラス板の両面に、蒸着法で金属Al膜を形成して電極とし、100℃、150℃、200℃における体積抵抗率を測定した。また任意の点の体積抵抗値は、各温度における体積抵抗率(log(ρ[Ω・cm]))と絶対温度の逆数(1/T)の関係から求められる傾きAと切片Bを用いて、以下の予測式から求めた。
log(ρ[Ω・cm])=A/T+B
(Volume resistivity)
The volume resistivity of the glass plate was measured by a method according to ASTM C657-78. As the glass plate, a glass plate having a size of about 50 mm × 50 mm and having both sides optically polished to a thickness of about 4 mm was used. A metal Al film was formed on both sides of the glass plate by a vapor deposition method to form an electrode, and the volume resistivity at 100 ° C., 150 ° C., and 200 ° C. was measured. Further, the volume resistivity value at an arbitrary point is obtained by using the slope A and the intercept B obtained from the relationship between the volume resistivity (log (ρ [Ω · cm])) at each temperature and the reciprocal of the absolute temperature (1 / T). , Obtained from the following prediction formula.
log (ρ [Ω ・ cm]) = A / T + B

<ガラス板の白濁度合の評価>
(DH試験)
Damp Heatタイプの耐久性試験(以下、DH試験と記す。)によって、長期間使用した後の白濁(透過率の低下)に対する耐久性を見積もることができる。DH試験は、試験片を高温・高湿環境下に長時間暴露し、試験前後の透過率を比較することでガラス表面の白濁度合を評価する。
本試験では、あらかじめ透過率(Te)を測定した、ガラス試験片を温度85℃/相対湿度85%に設定した恒温恒湿層に入れ、250時間、2,000時間放置した後の透過率を測定し、低下率を比較した。
<Evaluation of white turbidity of glass plate>
(DH test)
By the Damp Heat type durability test (hereinafter referred to as DH test), the durability against white turbidity (decrease in transmittance) after long-term use can be estimated. In the DH test, the test piece is exposed to a high temperature and high humidity environment for a long time, and the degree of white turbidity of the glass surface is evaluated by comparing the transmittance before and after the test.
In this test, a glass test piece whose transmittance (Te) was measured in advance was placed in a constant temperature and humidity layer set at a temperature of 85 ° C. and a relative humidity of 85%, and the transmittance was measured after being left for 250 hours and 2,000 hours. It was measured and the rate of decrease was compared.

(熱サイクル試験)
Heat Cycleタイプの耐久性試験(以下、HC試験と記す。)によって、CSPミラーが使用される環境暴露下において長期間使用した後の白濁程度(透過率の低下)を見積もることができる。HC試験は、試験片を高温→低温→高湿といった条件下に長時間暴露し、これを繰り返した後で、試験前後の透過率を比較することでガラス表面の白濁度合を評価する。
本試験では、あらかじめ透過率(Te)を測定した、ガラス試験片を温度90℃にて4時間保持したのち、温度−40℃にて4時間保持し、次に温度40℃/湿度100%に16時間保持するというサイクルを40回繰り返し、その後の透過率を測定し、低下率を比較した。
(Thermodynamic cycle test)
By the Heat Cycle type durability test (hereinafter referred to as HC test), it is possible to estimate the degree of cloudiness (decrease in transmittance) after long-term use under environmental exposure in which the CSP mirror is used. In the HC test, the test piece is exposed to a condition of high temperature → low temperature → high humidity for a long time, and after repeating this, the degree of white turbidity of the glass surface is evaluated by comparing the transmittance before and after the test.
In this test, the glass test piece whose transmittance (Te) was measured in advance was held at a temperature of 90 ° C. for 4 hours, then held at a temperature of -40 ° C. for 4 hours, and then at a temperature of 40 ° C./100% humidity. The cycle of holding for 16 hours was repeated 40 times, and the transmittance was measured thereafter, and the rate of decrease was compared.

<CSPミラーにおける反射層の劣化・剥離の評価>
(DH試験)
作製したCSPミラーについて、上記と同様に、温度85℃/相対湿度85%に設定した恒温恒湿層に入れ、250時間、2,000時間放置し、ガラス基板表面に何らかの異常が発生しているか否かを目視で観察した。判定は、異常が認められない場合を合格とした。
(塩水噴霧試験(キャス試験))
JIS Z 2371(2015)に準拠して塩水(+塩化銅)噴霧試験(キャス試験)を行い、840時間後にガラス基板表面に何らかの異常が発生しているか否かを目視で観察した。判定は、異常が認められない場合を合格とした。
<Evaluation of deterioration / peeling of reflective layer in CSP mirror>
(DH test)
The produced CSP mirror is placed in a constant temperature and humidity layer set at a temperature of 85 ° C. and a relative humidity of 85% in the same manner as above, and left for 250 hours and 2,000 hours to see if any abnormality has occurred on the surface of the glass substrate. Whether or not it was visually observed. Judgment was passed when no abnormality was found.
(Salt spray test (cass test))
A salt water (+ copper chloride) spray test (cass test) was performed in accordance with JIS Z 2371 (2015), and after 840 hours, it was visually observed whether or not any abnormality had occurred on the surface of the glass substrate. Judgment was passed when no abnormality was found.

<ガラス板の製造>
例1〜31のガラス板は以下のように作製した。
表1〜5に示す組成となるように、珪砂、その他の各種のガラス母組成原料および清澄剤(SO)を混合し、ガラス原料を調製した。ガラス原料をるつぼに入れ、電気炉中にて1500℃で3時間加熱し、溶融ガラスとした。溶融ガラスをカーボン板上に流し出し、冷却した。両面を研磨し、厚さ4mmのガラス板を得た。
得られたガラス板について、分光光度計(日立製作所社製、U−4100)を用いて波長1nmごとに透過率を測定し、Redox、Tv、Te、体積抵抗率を求めた。また、DH試験、熱サイクル試験を行い、白濁度合を評価した。
波長1nmごとの透過率の測定結果は図1に示し(例2及び一般的高透過率ガラス)、Redox、Tv、Te、及び体積抵抗率の結果は表1〜5に示す(例1〜31)。また、DH試験の結果を図2に示し(例2及び一般的高透過率ガラス)、熱サイクル試験の結果を図3に示す(例2及び一般的高透過率ガラス)。
なお、表1〜5において、A[K]とBは、体積抵抗値を求めるに当たっての傾きAと切片B(無次元)を示す。また、「−」は未測定であることを示す。また、表1〜5に示される組成については、有効数字を四捨五入して記載しているため、各成分の含有量の合計が100%にならない場合がある。また、図1〜3における「一般的高透過率ガラス」には、通常のソーダライムシリカガラス(KO、SrOおよびBaOの合計の含有量が、0.4%以下のガラスを用いた。
<Manufacturing of glass plate>
The glass plates of Examples 1 to 31 were prepared as follows.
A glass raw material was prepared by mixing silica sand, various other glass mother composition raw materials, and a fining agent (SO 3 ) so as to have the compositions shown in Tables 1 to 5. The glass raw material was placed in a crucible and heated in an electric furnace at 1500 ° C. for 3 hours to obtain molten glass. The molten glass was poured onto a carbon plate and cooled. Both sides were polished to obtain a glass plate having a thickness of 4 mm.
The transmittance of the obtained glass plate was measured for each wavelength of 1 nm using a spectrophotometer (manufactured by Hitachi, Ltd., U-4100) to determine Redox, Tv, Te, and volume resistivity. In addition, a DH test and a thermal cycle test were performed to evaluate the degree of cloudiness.
The measurement results of the transmittance for each wavelength of 1 nm are shown in FIG. 1 (Example 2 and general high-transmittance glass), and the results of Redox, Tv, Te, and volume resistivity are shown in Tables 1 to 5 (Examples 1 to 31). ). The results of the DH test are shown in FIG. 2 (Example 2 and general high transmittance glass), and the results of the thermal cycle test are shown in FIG. 3 (Example 2 and general high transmittance glass).
In Tables 1 to 5, A [K] and B indicate the slope A and the intercept B (dimensionless) in obtaining the volume resistance value. In addition, "-" indicates that it has not been measured. Further, since the compositions shown in Tables 1 to 5 are listed by rounding off significant figures, the total content of each component may not be 100%. Further, the "general high transmittance glass" in FIGS. 1-3, usually soda-lime-silica glass (K 2 O, the total content of SrO and BaO, using a 0.4% or less of the glass.

O+SrO+BaOの合計の含有量が少ない一般的高透過率ガラスは、DH試験によって2,000時間後のガラス透過率の低下が3.23%となった。一方、KO、SrOおよびBaOの合計の含有量が、酸化物基準の質量百分率表示で1.1%以上である例2〜31では、DH試験によって2,000時間後のガラス透過率の低下が0.77%となった。以上から、本発明のガラス基板がガラス表面の白濁を長期間にわたって抑えられることがわかった(図2には、例2及び一般的高透過率ガラスのみ示す)。 In general high-transmittance glass having a small total content of K 2 O + SrO + BaO, the decrease in glass transmittance after 2,000 hours was 3.23% by the DH test. Meanwhile, K 2 O, the total content of SrO and BaO is, Example 2 to 31 is 1.1% or more by mass percentage based on oxides, the glass transmittance after 2,000 hours by DH test The decrease was 0.77%. From the above, it was found that the glass substrate of the present invention can suppress the white turbidity of the glass surface for a long period of time (FIG. 2 shows only Example 2 and general high transmittance glass).

O+SrO+BaOの合計の含有量が少ない一般的高透過率ガラスでは、HC試験によって40サイクル後のガラス透過率の低下が3.8%となった。一方、KO、SrOおよびBaOの合計の含有量が、酸化物基準の質量百分率表示で1.1%以上である例2〜31では、HC試験によって40サイクル後のガラス透過率の低下は認められなかった。以上から、本発明のガラス基板がガラス表面の白濁を長期間にわたって抑えられることがわかった(図3には、例2及び一般的高透過率ガラスのみ示す)。 In general high-transmittance glass having a small total content of K 2 O + SrO + BaO, the HC test showed a decrease in glass transmittance of 3.8% after 40 cycles. Meanwhile, K 2 O, the total content of SrO and BaO is, Example 2 to 31 is 1.1% or more by mass percentage based on oxides, reduction of the glass transmittance after 40 cycles by HC test I was not able to admit. From the above, it was found that the glass substrate of the present invention can suppress the white turbidity of the glass surface for a long period of time (FIG. 3 shows only Example 2 and general high transmittance glass).

<CSPミラーの作製>
例2のガラス板の一方の表面に対し、スプレー・コート法により銀を含む金属膜(反射層)を形成し、さらにカーテン・フロー・コーターにより裏面保護膜の塗膜を形成することにより、銀、銅及びバックペイントの3層構造を形成し、本発明のCSPミラーを作製した。
また、ガラス板として上記一般的高透過率ガラスを用いた点を除き、上記と同様にCSPミラーを作製した。
<Manufacturing of CSP mirror>
Silver is formed on one surface of the glass plate of Example 2 by a spray coating method to form a metal film (reflective layer) containing silver, and further by forming a coating film of a back surface protective film by a curtain flow coater. , Copper and back paint were formed to form the CSP mirror of the present invention.
Further, a CSP mirror was produced in the same manner as described above, except that the general high transmittance glass was used as the glass plate.

得られたCSPミラーについて、DH試験及び塩水噴霧試験(キャス試験)を行い、反射層の劣化・剥離を評価した(図4)。図4(a)の写真図面は、例2のガラス板を用いて得られたCSPミラーのDH試験の結果を示し、図4(b)の写真図面は、一般的高透過率ガラスのガラス板を用いて得られたCSPミラーのDH試験の結果を示す。また図4(c)の写真図面は、例2のガラス板を用いて得られたCSPミラーの塩水噴霧試験(キャス試験)の結果を示し、図4(d)写真図面は、一般的高透過率ガラスのガラス板を用いて得られたCSPミラーの結果を示す。
図4の(a)、(c)に示すように、例2のガラス板を用いて作製したCSPミラーは、DH試験及び塩水噴霧試験(キャス試験)を実施しても外観から異常は見られず、合格であった。一方、図4の(b)、(d)に示すように、一般的高透過率ガラスを用いて作製したCSPミラーはシケ(反射層劣化)が発生し、不合格であった(図4(d)は矢印で示す箇所)。
The obtained CSP mirror was subjected to a DH test and a salt spray test (cass test) to evaluate deterioration and peeling of the reflective layer (FIG. 4). The photographic drawing of FIG. 4 (a) shows the result of the DH test of the CSP mirror obtained by using the glass plate of Example 2, and the photographic drawing of FIG. 4 (b) is a glass plate of general high transmittance glass. The result of the DH test of the CSP mirror obtained by using. Further, the photographic drawing of FIG. 4 (c) shows the result of a salt spray test (cass test) of the CSP mirror obtained using the glass plate of Example 2, and the photographic drawing of FIG. 4 (d) is a general high transmittance. The result of the CSP mirror obtained by using the glass plate of the transmittance glass is shown.
As shown in FIGS. 4 (a) and 4 (c), the CSP mirror produced by using the glass plate of Example 2 showed no abnormality in appearance even when the DH test and the salt spray test (cass test) were performed. It was a pass. On the other hand, as shown in FIGS. 4 (b) and 4 (d), the CSP mirror manufactured using general high-transmittance glass was rejected due to shike (reflective layer deterioration) (FIG. 4 (FIG. 4). d) is the location indicated by the arrow).

本発明のガラス基板は、CSPミラー用高透過ガラス等として有用である。 The glass substrate of the present invention is useful as a highly transparent glass for CSP mirrors and the like.

10 CSPミラー
12 ガラス基板
14 反射層
16 塗膜
10 CSP mirror 12 glass substrate 14 reflective layer 16 coating film

Claims (8)

下記酸化物基準の質量百分率表示で、
SiO :60〜75%、
Al :0〜3%、
CaO :0〜15%、
MgO :0〜12%、
NaO :5〜20%、
O+SrO+BaO :1.1〜15%、
Feに換算した全鉄:0〜0.06%、
を含むことを特徴とするCSPミラー用ガラス基板。
In the following oxide-based mass percentage display,
SiO 2 : 60-75%,
Al 2 O 3 : 0-3%,
CaO: 0 to 15%,
MgO: 0-12%,
Na 2 O: 5 to 20%,
K 2 O + SrO + BaO: 1.1 to 15%,
Total iron converted to Fe 2 O 3 : 0 to 0.06%,
A glass substrate for a CSP mirror, which comprises.
下記酸化物基準の質量百分率表示で、
SiO :60〜74%、
Al :0.3〜2.5%、
CaO :3〜12%、
MgO :1〜10%、
NaO :7〜17%、
O :0〜5%、
SrO :0〜5%、
BaO :0〜5%、
O+SrO+BaO :1.4〜12%、
Feに換算した全鉄:0〜0.05%、
を含む、請求項1に記載のCSPミラー用ガラス基板。
In the following oxide-based mass percentage display,
SiO 2 : 60-74%,
Al 2 O 3 : 0.3-2.5%,
CaO: 3-12%,
MgO: 1-10%,
Na 2 O: 7 to 17%,
K 2 O: 0-5%,
SrO: 0-5%,
BaO: 0-5%,
K 2 O + SrO + BaO: 1.4-12%,
Total iron converted to Fe 2 O 3 : 0-0.05%,
The glass substrate for a CSP mirror according to claim 1.
下記酸化物基準の質量百分率表示で、
SiO :68〜75%、
Al :0〜2.5%、
CaO :0〜15%、
MgO :0〜12%、
NaO :5〜20%、
O :0.8〜5%、
SrO :0〜1%、
BaO :0〜1%、
O+SrO+BaO :1.1〜7%、
Feに換算した全鉄:0〜0.06%、
を含むことを特徴とするCSPミラー用ガラス基板。
In the following oxide-based mass percentage display,
SiO 2 : 68-75%,
Al 2 O 3 : 0-2.5%,
CaO: 0 to 15%,
MgO: 0-12%,
Na 2 O: 5 to 20%,
K 2 O: 0.8 to 5%,
SrO: 0 to 1%,
BaO: 0 to 1%,
K 2 O + SrO + BaO: 1.1 to 7%,
Total iron converted to Fe 2 O 3 : 0 to 0.06%,
A glass substrate for a CSP mirror, which comprises.
下記酸化物基準の質量百分率表示で、
SiO :69〜74%、
Al :0.3〜2.3%、
CaO :3〜12%、
MgO :1〜10%、
NaO :7〜17%、
O :1.0〜4.5%、
SrO :0.1〜0.8%、
BaO :0.1〜0.8%、
O+SrO+BaO :1.5〜6%、
Feに換算した全鉄:0〜0.05%、
を含む、請求項3に記載のCSPミラー用ガラス基板。
In the following oxide-based mass percentage display,
SiO 2 : 69-74%,
Al 2 O 3 : 0.3 to 2.3%,
CaO: 3-12%,
MgO: 1-10%,
Na 2 O: 7 to 17%,
K 2 O: 1.0 to 4.5%,
SrO: 0.1 to 0.8%,
BaO: 0.1 to 0.8%,
K 2 O + SrO + BaO: 1.5-6%,
Total iron converted to Fe 2 O 3 : 0-0.05%,
The glass substrate for a CSP mirror according to claim 3.
下記酸化物基準の質量百分率表示で、
SiO :69.3〜73%、
Al :0.5〜2.1%、
CaO :5〜10%、
MgO :3〜8%、
NaO :9〜15%、
O :1.3〜4.0%、
SrO :0.2〜0.7%、
BaO :0.2〜0.7%、
O+SrO+BaO :2〜5%、
Feに換算した全鉄:0〜0.03%、
を含むことを特徴とするCSPミラー用ガラス基板。
In the following oxide-based mass percentage display,
SiO 2 : 69.3-73%,
Al 2 O 3 : 0.5-2.1%,
CaO: 5-10%,
MgO: 3-8%,
Na 2 O: 9 to 15%,
K 2 O: 1.3 to 4.0%,
SrO: 0.2-0.7%,
BaO: 0.2-0.7%,
K 2 O + SrO + BaO: 2-5%,
Total iron converted to Fe 2 O 3 : 0 to 0.03%,
A glass substrate for a CSP mirror, which comprises.
150℃における体積抵抗率(log(ρ[Ω・cm]))が、9.0〜12.0である、請求項1〜5のいずれか1項に記載のCSPミラー用ガラス基板。 The glass substrate for a CSP mirror according to any one of claims 1 to 5, wherein the volume resistivity (log (ρ [Ω · cm])) at 150 ° C. is 9.0 to 12.0. ガラス原料を溶融し、フロート法またはダウンドロー法で成形する、CSPミラー用ガラス基板の製造方法であって、
成形後の前記ガラス基板が、下記酸化物基準の質量百分率表示で、
SiO :60〜75%、
Al :0〜3%、
CaO :0〜15%、
MgO :0〜12%、
NaO :5〜20%、
O+SrO+BaO :1.1〜15%、
Feに換算した全鉄:0〜0.06%、
を含むことを特徴とする、CSPミラー用ガラス基板の製造方法。
A method for manufacturing a glass substrate for a CSP mirror, in which a glass raw material is melted and molded by a float method or a down draw method.
The glass substrate after molding is displayed as a mass percentage based on the following oxides.
SiO 2 : 60-75%,
Al 2 O 3 : 0-3%,
CaO: 0 to 15%,
MgO: 0-12%,
Na 2 O: 5 to 20%,
K 2 O + SrO + BaO: 1.1 to 15%,
Total iron converted to Fe 2 O 3 : 0 to 0.06%,
A method for manufacturing a glass substrate for a CSP mirror, which comprises the above.
請求項1〜6のいずれか1項に記載のCSPミラー用ガラス基板の一方の表面に、反射層と塗膜とをこの順で設けたCSPミラー。 A CSP mirror in which a reflective layer and a coating film are provided in this order on one surface of the glass substrate for a CSP mirror according to any one of claims 1 to 6.
JP2019126036A 2019-07-05 2019-07-05 Glass substrate for csp mirror, method for manufacturing the same, and csp mirror Pending JP2021011403A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019126036A JP2021011403A (en) 2019-07-05 2019-07-05 Glass substrate for csp mirror, method for manufacturing the same, and csp mirror
CN201910700506.6A CN112174518A (en) 2019-07-05 2019-07-31 Glass substrate for CSP mirror, method for manufacturing same, and CSP mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019126036A JP2021011403A (en) 2019-07-05 2019-07-05 Glass substrate for csp mirror, method for manufacturing the same, and csp mirror

Publications (1)

Publication Number Publication Date
JP2021011403A true JP2021011403A (en) 2021-02-04

Family

ID=73919443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019126036A Pending JP2021011403A (en) 2019-07-05 2019-07-05 Glass substrate for csp mirror, method for manufacturing the same, and csp mirror

Country Status (2)

Country Link
JP (1) JP2021011403A (en)
CN (1) CN112174518A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195381B (en) * 2021-12-16 2023-11-24 清远南玻节能新材料有限公司 Soda-lime silicate glass, reinforced glass, and preparation methods and applications thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof
JP2011522770A (en) * 2008-06-09 2011-08-04 ピルキントン グループ リミテッド Glass plate and glass composition for solar unit
JP2012036037A (en) * 2010-08-06 2012-02-23 Asahi Glass Co Ltd Outdoor glass tube
WO2012057232A1 (en) * 2010-10-27 2012-05-03 旭硝子株式会社 Glass plate and process for production thereof
WO2013047806A1 (en) * 2011-09-28 2013-04-04 旭硝子株式会社 Glass plate fitted with transparent electroconductive film and glass plate for forming transparent electroconductive film
WO2013168592A1 (en) * 2012-05-11 2013-11-14 旭硝子株式会社 Front glass plate for laminated body, and laminated body
JP2014224011A (en) * 2013-05-16 2014-12-04 旭硝子株式会社 Glass plate, and manufacturing method of glass plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522770A (en) * 2008-06-09 2011-08-04 ピルキントン グループ リミテッド Glass plate and glass composition for solar unit
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof
JP2012036037A (en) * 2010-08-06 2012-02-23 Asahi Glass Co Ltd Outdoor glass tube
WO2012057232A1 (en) * 2010-10-27 2012-05-03 旭硝子株式会社 Glass plate and process for production thereof
WO2013047806A1 (en) * 2011-09-28 2013-04-04 旭硝子株式会社 Glass plate fitted with transparent electroconductive film and glass plate for forming transparent electroconductive film
WO2013168592A1 (en) * 2012-05-11 2013-11-14 旭硝子株式会社 Front glass plate for laminated body, and laminated body
JP2014224011A (en) * 2013-05-16 2014-12-04 旭硝子株式会社 Glass plate, and manufacturing method of glass plate

Also Published As

Publication number Publication date
CN112174518A (en) 2021-01-05

Similar Documents

Publication Publication Date Title
JP5962663B2 (en) Glass plate with transparent conductive film
JP6368944B2 (en) Glass plate
JP4759106B2 (en) Glass use
KR20200123130A (en) Glass
JPWO2011068225A1 (en) Glass plate and method for producing the same
TW201335095A (en) Glass
JP2012148964A (en) Fluorophosphate glass
JP5668477B2 (en) Glass substrate and manufacturing method thereof
BR122020004049B1 (en) method of making glass in a float process
CN101248020A (en) Glass substrate with low infrared transmission for display screen
TW201307238A (en) High refractivity glass
US3326703A (en) Heat-absorbing glass
JP2021011403A (en) Glass substrate for csp mirror, method for manufacturing the same, and csp mirror
JP2013507322A (en) Method for producing glass plate containing antimony oxide
JP3867817B2 (en) Substrate glass
JP2010116277A (en) Glass
JP6206400B2 (en) Glass plate
JPH1025129A (en) Glass for substrate
JPH1025128A (en) Glass for substrate
WO2016182054A1 (en) Glass sheet
JP6044772B2 (en) Glass substrate with protective film
JPH08239237A (en) Ir-cutting hard glass and its production
JP2021001104A (en) Glass
JP2005239547A (en) Infrared-cutting hard glass
JP2004137147A (en) Glass composition and laminated glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307