WO2016182054A1 - Glass sheet - Google Patents

Glass sheet Download PDF

Info

Publication number
WO2016182054A1
WO2016182054A1 PCT/JP2016/064258 JP2016064258W WO2016182054A1 WO 2016182054 A1 WO2016182054 A1 WO 2016182054A1 JP 2016064258 W JP2016064258 W JP 2016064258W WO 2016182054 A1 WO2016182054 A1 WO 2016182054A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
glass
less
main surface
tin
Prior art date
Application number
PCT/JP2016/064258
Other languages
French (fr)
Japanese (ja)
Inventor
和田 直哉
雄介 荒井
博之 土屋
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201680026825.8A priority Critical patent/CN107531540A/en
Publication of WO2016182054A1 publication Critical patent/WO2016182054A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to a glass plate.
  • an edge light type display device using a low power consumption light source such as an LED is known.
  • a light guide plate having two main surfaces facing each other and a light source arranged to face one end face of the light guide plate are used.
  • the “end face” of the light guide plate means four side surfaces that connect the two main surfaces of the light guide plate to each other. Of the four side surfaces, the end surface facing the light source is particularly referred to as an “incident end surface”.
  • the edge light system In the edge light system, light from the light source is incident on the incident end face of the light guide plate. Thereafter, the light incident on the light guide plate is emitted from one main surface (referred to as “exit main surface”). Therefore, the edge light system has a feature that the light incident direction and the light emitting direction in the light guide plate are perpendicular to each other.
  • an acrylic plate is used as a light guide plate of such an edge light type display device.
  • acrylic plates have problems from the viewpoints of scratch resistance, rigidity, heat resistance, and water resistance. Therefore, it is desired to use a glass plate that hardly causes such a problem as a light guide plate.
  • light guide plates used for digital signage, illumination, and the like.
  • a glass plate as a light guide plate for an edge light type display device or the like.
  • a glass plate produced by the float process has a thin colored layer on one main surface. This is because when a glass plate is formed from molten glass, impurities (for example, iron) in the molten tin react with components (for example, sulfur) in the molten glass on the surface that comes into contact with the molten tin, and coloring components This is because.
  • impurities for example, iron
  • components for example, sulfur
  • Color shift is a problem in various displays, digital signage, lighting, etc.
  • those with relatively large dimensions have become mainstream as seen in liquid crystal televisions and the like. Accordingly, since the propagation distance of light becomes longer as the display device and the light guide plate become larger, such a problem is expected to become more prominent in the future.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a glass plate in which the color shift between incident light and emitted light is significantly suppressed.
  • a glass plate having first and second main surfaces and formed on molten tin,
  • the first main surface is a side in contact with the molten tin, and has a tin-containing layer.
  • the first and second fractured sections which are taken from the central portion of the glass plate in a size of 50 mm length ⁇ 50 mm width and face each other are arithmetic.
  • sample A having an average roughness Ra ⁇ 0.03 ⁇ m, the average value of internal transmittance in the wavelength range of 400 nm to 700 nm at a length of 50 mm in the normal direction from the first fractured surface is 85%.
  • the difference between the maximum value and the minimum value in the wavelength range of 400 to 700 nm of the absorbance Ap of the tin-containing layer is 0.0007 or less, A glass plate is provided in which the maximum value of the absorbance Ap in the wavelength range of 400 nm to 700 nm is 0.0010 or less.
  • 4 is a graph showing an example of the measurement results of the reflectances Ra and Rb obtained on each main surface of the glass plate 1.
  • 3 is a graph showing an example of the measurement results of the reflectances Ra and Rb obtained on the main surfaces of the respective glass plates 2.
  • 4 is a graph showing an example of the measurement results of the reflectances Ra and Rb obtained on the main surfaces of the glass plates 3, respectively.
  • 3 is a graph showing the wavelength dependence of internal transmittances T 1i and T 2i in first and second polished samples collected from a glass plate 1.
  • 4 is a graph showing the wavelength dependence of the first reference reflectance R r and the second reference reflectance R t in the first and second polished samples collected from the glass plate 1.
  • 3 is a graph showing the wavelength dependence of internal transmittances T 1i and T 2i in first and second polished samples collected from a glass plate 2.
  • 6 is a graph showing the wavelength dependence of the first reference reflectance R r and the second reference reflectance R t in the first and second polished samples collected from the glass plate 2. It is the graph which showed the wavelength dependence of the light absorbency Ap of the tin content layer in the glass plate.
  • 4 is a graph showing the wavelength dependence of internal transmittances T 1i and T 2i in first and second polished samples collected from a glass plate 3.
  • FIG. 1 is a schematic exploded perspective view of a general edge light type display device.
  • the edge light type display device 10 usually includes a light source group 20, a light guide plate 30, and a display element 40.
  • the light source group 20 has one or more light sources 21 arranged in a line.
  • Each light source 21 may be a directional light source such as a light emitting diode (LED) or a laser diode.
  • the light guide plate 30 has first and second main surfaces 32A and 32B and four end faces 34A to 34D connecting the main surfaces.
  • the first main surface 32A of the light guide plate 30 has some scattering structure (not shown) such as a plurality of dots containing scattering particles, a plurality of dots not containing scattering particles, a plurality of convex lenses, and an uneven shape on the main surface. May be applied) and is also referred to as “scattering main surface”.
  • the second main surface 32B of the light guide plate 30 is on the emission side, and is also referred to as “emission main surface”.
  • the first main surface 32 ⁇ / b> A of the light guide plate 30 is the back side of the display device 10, and the second main surface 32 ⁇ / b> B is the front side of the display device 10.
  • the end face 34 ⁇ / b> A of the light guide plate 30 faces the light source group 20 and serves as an incident surface of the display device 10. Therefore, the end surface 34A of the light guide plate 30 is also referred to as an “incident end surface”.
  • the display element 40 is composed of, for example, a liquid crystal or a microcapsule containing black or white particles, and can form an image. Display element 40 is arranged to face second main surface 32 ⁇ / b> B of light guide plate 30.
  • the display device 10 having such a configuration operates as follows. First, light is irradiated from each light source 21 constituting the light source group 20 toward the incident end face 34 ⁇ / b> A of the light guide plate 30, and the light enters the light guide plate 30.
  • the incident light (incident light) propagates inside the light guide plate 30 while being reflected by each inner surface of the light guide plate 30, and the propagation direction is changed by some scattering structure formed on the first main surface 32A of the light guide plate 30.
  • the light is emitted from the second main surface 32B of the light guide plate 30.
  • the light emitted from the light guide plate 30 is then applied to the display element 40. As a result, the image formed by the display element 40 is displayed outside, and the viewer of the display device 10 can recognize the image formed by the display element 40.
  • FIG. 2 shows a schematic perspective view of a glass plate according to an embodiment of the present invention.
  • a glass plate (hereinafter referred to as “first glass plate”) 100 includes a first main surface 120 and a second main surface 122, and first to And fourth end faces 132 to 138.
  • the first main surface 120 is the side in contact with the molten tin when the first glass plate 100 is formed, and thus has a thin tin-containing layer (not shown).
  • a glass plate produced by the float process has a thin colored layer on one main surface.
  • a glass plate having such a colored layer is applied to the light guide plate 30 of the display device 10, there is a high possibility that a considerable amount of light is absorbed during propagation.
  • a specific wavelength portion during light propagation is selectively absorbed, light having a color different from the color of the incident light is emitted, which increases the possibility of so-called color shift.
  • the propagation distance of light becomes longer as the display device 10 and the light guide plate 30 become larger, such a problem may become more prominent in the future.
  • the first glass plate 100 is cut in a direction perpendicular to the first main surface 120, and is sampled in a size of 50 mm in length and 50 mm in width from the center portion of the first glass plate 100.
  • the first fractured surface has a length of 50 mm in the normal direction from the first fractured surface.
  • the average value T ave (hereinafter referred to as “average internal transmittance T ave ”) of the internal transmittance T in in the wavelength range of 400 nm to 700 nm is 85% or more.
  • the difference between the maximum value and the minimum value in the wavelength range of 400 nm to 700 nm of the absorbance Ap of the tin-containing layer is 0.0007 or less, and in the wavelength range of 400 nm to 700 nm of the absorbance Ap.
  • the maximum value is 0.0010 or less.
  • Such a first glass plate 100 has sufficiently high transparency over a relatively long optical path length perpendicular to the first split section.
  • the first glass plate 100 is sufficiently suppressed in coloring on the first main surface 120 having the tin-containing layer. For this reason, in the 1st glass plate 100, although it has a tin content layer in the 1st main surface 120, light absorption and the wavelength dependence of absorption can be controlled significantly.
  • the first glass plate 100 when used for the light guide plate 30 of the display device 10, for example, light can be propagated from the incident end face over the optical path length without much attenuation. .
  • the problem of color misregistration between incident light incident from the incident end face (for example, the first end face 132) and outgoing light emitted from the second main surface 122 is significantly suppressed. Is possible.
  • the reflectivity of the first main surface 120 is high due to the penetration of tin. Therefore, when the first glass plate 100 is used for the light guide plate 30 of the display device 10, the first main surface 120 is used as the back side of the display device 10 (that is, as the scattering main surface). More can be taken out from the opposing second main surface 122, which is preferable.
  • the reflectance of the second main surface 122 is lowered due to a decrease in alkali components due to the influence of the molding atmosphere. Therefore, when the first glass plate 100 is used for the light guide plate 30 of the display device 10, the second main surface 122 is used as the front surface side of the display device 10 (that is, as the emission main surface), thereby The reflection component can be reduced and more can be extracted from the second main surface 122, which is preferable.
  • a sample having a size of 50 mm in length and 50 mm in width is collected by cleaving from a substantially central portion of the target glass plate in a direction perpendicular to the first main surface of the glass plate.
  • the arithmetic average roughness Ra of the first and second fractured surfaces facing each other of this sample is 0.03 ⁇ m or less. If the arithmetic average roughness Ra is larger than 0.03 ⁇ m, the first and second fractured surfaces are polished with free abrasive grains of colloidal silica or cerium oxide.
  • 50 mm spectrometer capable of measuring in length e.g., UH4150: Hitachi High-Technologies Corporation
  • the slit or the like smaller than the thickness of the beam width of the incident light And measure.
  • n A [1+ ⁇ B 1 ⁇ 2 / ( ⁇ 2 ⁇ C 1 ) ⁇ + ⁇ B 2 ⁇ 2 / ( ⁇ 2 ⁇ C 2 ) ⁇ + ⁇ B 3 ⁇ 2 / ( ⁇ 2 ⁇ C 3 ) ⁇ ] 0.5 (1)
  • is a wavelength.
  • the average internal transmittance T ave is 85% or more. In this case, when the first glass plate 100 is used as the light guide plate, more light can be extracted from the light guide plate.
  • the average internal transmittance T ave is preferably 90% or more, more preferably 92% or more, further preferably 95% or more, still more preferably 96% or more, 97% More preferably, it is 98% or more.
  • FIG. 3 is a diagram for explaining a method of preparing a first polished sample for measuring absorbance.
  • FIG. 4 is a diagram for explaining a method for preparing a second polished sample for measuring absorbance.
  • first and second samples are collected from a substantially central portion of the glass plate to be evaluated.
  • FIG. 3 schematically shows a cross section of the first sample 110-1.
  • FIG. 4 schematically shows a cross section of the second sample 110-2.
  • the first sample 110-1 has a first main surface 120A and a second main surface 122A.
  • the first main surface 120A and the second main surface 122A correspond to the first main surface and the second main surface of the original glass plate, respectively.
  • the first main surface 120 ⁇ / b> A is a tin contact surface when the glass plate is formed, and has a tin-containing layer 150.
  • the first main surface 120A side is polished by about 100 ⁇ m
  • the second main surface 122A side is polished by about 100 ⁇ m.
  • a first polishing surface 123A is newly formed on the first main surface 120A side
  • a second polishing surface 124A is newly formed on the second main surface 122A side.
  • Both the first polishing surface 123A and the second polishing surface 124A are in a mirror state with an arithmetic average roughness Ra of 0.04 ⁇ m or less.
  • the obtained sample 110-1 is referred to as a first polished sample 110A. Note that since the first main surface 120A is polished, the tin-containing layer 150 does not exist on the first polishing surface 123A.
  • the second sample 110-2 has a third main surface 120B and a fourth main surface 122B.
  • Third main surface 120B and fourth main surface 122B correspond to the first main surface and the second main surface of the original glass plate, respectively.
  • the third main surface 120 ⁇ / b> B is a tin contact surface when the glass plate is formed, and has a tin-containing layer 150.
  • the second sample 110-2 only the side of the fourth main surface 122B is polished by about 200 ⁇ m.
  • the sample 110-2 is polished so that the plate thickness of the sample 110-2 matches the plate thickness of the sample 110-1.
  • a fourth polishing surface 127B is newly formed on the fourth main surface 122B side.
  • the fourth polished surface 127B is in a mirror state with an arithmetic average roughness Ra of 0.04 ⁇ m or less.
  • the obtained sample 110-2 is referred to as a second polished sample 110B.
  • the first polishing surface 123A is roughened with abrasive grains having a particle size of # 80, and a black body paint is applied uniformly, and the wavelength in the range of 400 nm to 700 nm from the second polishing surface 124A side.
  • the reflectance (referred to as the first reference reflectance) R r of the second polished surface 124A is measured.
  • a spectroscopic measuring device capable of measuring the absolute reflectance is used. Note that the reflectance of the first polished surface 123A may be represented by R r .
  • the fourth polished surface 127B is roughened with abrasive grains having a particle size of # 80, and further a black body paint is applied uniformly, and then the third main surface 120B side has a wavelength in the range of 400 nm to 700 nm.
  • reflectance of the third main surface 120B (referred to as a second reference reflectance) measuring the R t.
  • a spectroscopic measuring device capable of measuring the absolute reflectance is used. Note that the reflectivity of the fourth polished surface 127B may be represented by R r .
  • the difference between the maximum value and the minimum value in the wavelength range of 400 nm to 700 nm of the absorbance Ap of the tin-containing layer is 0.0007 or less.
  • the difference between the maximum value and the minimum value of the absorbance Ap in the wavelength range of 400 nm to 700 nm is preferably 0.0006 or less, more preferably 0.0005 or less, and particularly preferably 0.0003 or less.
  • the maximum value of the absorbance Ap in the wavelength range of 400 nm to 700 nm is 0.0010 or less.
  • the maximum value of the absorbance Ap in the wavelength range of 400 nm to 700 nm is preferably 0.0008 or less, more preferably 0.0006 or less, and particularly preferably 0.0003 or less.
  • the average value of the reflectance R a (%) in the wavelength range of 400 nm to 700 nm on the first main surface 120 of the first glass plate 100 is expressed as R a. ave (hereinafter referred to as “first average reflectance R a.ave ”) (%), and the average value of the reflectance R b (%) in the wavelength range of 400 nm to 700 nm on the second main surface 122 is defined as R b .
  • ave hereinafter referred to as “second average reflectance R b.ave ” (%), the first average reflectance R a. ave (%) is the second average reflectance R b. ave (%) and the first average reflectance R a. ave (%) and the second average reflectance R b.
  • the difference ⁇ R of ave (%) is preferably larger than 0.25%.
  • the difference ⁇ R is larger than 0.25%
  • the first main surface 120 is the back side of the display device 10. (Ie, as a scattering main surface), and the light that collides with the first main surface 120 is reflected inside, and the amount of light emitted from the second main surface 122 side is increased. it can. Accordingly, the light extraction efficiency is increased.
  • the difference ⁇ R is more preferably greater than 0.27%, and particularly preferably greater than 0.30%.
  • the particle size of the second main surface 122 is set in order to prevent reflection from the second main surface 122 facing the surface to be measured. It is necessary to roughen with # 80 abrasive grains and to apply a black body paint uniformly. In this state, the reflectance R a (%) on the first main surface 120 is measured using a spectroscopic measurement apparatus capable of measuring absolute reflectance.
  • the particle size of the first main surface 120 is set to prevent reflection from the first main surface 120 facing the surface to be measured. It is necessary to roughen with # 80 abrasive grains and to apply a black body paint uniformly. In this state, the reflectance R b (%) on the second main surface 122 is measured using a spectroscopic measurement device capable of measuring absolute reflectance.
  • the dimension of the first glass plate 100 is not particularly limited as long as it has the above-described characteristics.
  • the glass plate 100 may have a large dimension in which at least one side has a length of 20 cm or more.
  • the thickness of the glass plate 100 does not affect the brightness of the light guide plate. However, when the thickness is less than 0.2 mm, the rigidity is not sufficient, and when the thickness is greater than 5 mm, the glass becomes heavy. Absent.
  • the shape of the glass plate 100 is not particularly limited, and the glass plate 100 may be, for example, a rectangular shape or a disk shape.
  • the rectangular glass plate 100 has four end surfaces, whereas the disk-shaped glass plate 100 has one end surface.
  • the first main surface 120 of the first glass plate 100 has a tin-containing layer 150.
  • the tin-containing layer 150 is formed by contacting molten tin when the first glass plate 100 is formed.
  • the thickness of the tin-containing layer 150 is determined by measuring the depth of the layer into which the tin component has penetrated by secondary ion mass spectrometry.
  • the thickness of the tin-containing layer 150 is usually 10 ⁇ m or less, and is often about 5 ⁇ m to 9 ⁇ m.
  • the maximum value of the concentration of iron oxide converted to Fe 2 O 3 is 0.2% by mass or less. It is preferable. In this case, since there is little iron which is a cause of coloring in the tin content layer 150, coloring can be restrained small. In the depth region of 10 ⁇ m from the surface of first main surface 120, the concentration of iron oxide converted to Fe 2 O 3 often becomes higher as the surface is closer. The concentration distribution of iron oxide converted to Fe 2 O 3 is measured by secondary ion mass spectrometry.
  • the maximum value of the tin oxide concentration converted to SnO 2 is preferably larger than 1.0 mass%.
  • the reflectance of the main surface 120 can be increased, and the first average reflectance R a. ave (%) is the second average reflectance R b. ave (%) and the first average reflectance R a. ave (%) and the second average reflectance R b. It is easy to make the difference ⁇ R of ave (%) larger than 0.25%. Therefore, when the first glass plate 100 is used as the light guide plate, the light extraction efficiency is increased.
  • the maximum value of the tin oxide concentration converted to SnO 2 is preferably 1.1% by mass or more, and is 1.2% by mass or more. It is more preferable that the content is 1.5% by mass or more.
  • composition of glass plate 100 The composition of the first glass plate 100 (excluding the portion of the tin-containing layer 150) is not particularly limited as long as it has the above-described characteristics, but the following three types (glass composition A, glass composition B, and glass composition C) A typical example of such a glass is (having glass).
  • SiO 2 is 60 to 80%
  • Al 2 O 3 is 0.5 to 7%
  • MgO is 0 to 10%
  • CaO is 0 to 0% by mass percentage on an oxide basis.
  • redox iron represented by the content of divalent iron ions in terms of Fe 2 O 3 to the content of total iron in terms of Fe 2 O 3 is preferably 40% or less.
  • the refractive index at room temperature of d-line (wavelength: 587.6 nm) of helium in the glass is 1.45 to 1.60. Specific examples include compositions 1 to 5 in Table 6.
  • the oxide-based mass percentage display is 45 to 80% SiO 2 , Al 2 O 3 is more than 7% and 30% or less, and B 2 O 3 is 0 to 15%.
  • MgO 0-15%, CaO 0-6%, SrO 0-5%, BaO 0-5%, Na 2 O 7-20%, K 2 O 0-10%, ZrO 2 It preferably contains 0 to 10% and 5 to 100 ppm by mass of Fe 2 O 3 .
  • redox iron represented by the content of divalent iron ions in terms of Fe 2 O 3 to the content of total iron in terms of Fe 2 O 3 is preferably 40% or less.
  • the refractive index at room temperature of d-line (wavelength: 587.6 nm) of helium in the glass is, for example, 1.45 to 1.60.
  • the glass composition is easy to ion exchange and easy to chemically strengthen. Specific examples include compositions 6 to 12 in Table 6.
  • SiO 2 is 45 to 70%
  • Al 2 O 3 is 10 to 30%
  • B 2 O 3 is 0 to 15%
  • CaO, SrO and BaO in a total of 5 to 30%
  • Li 2 O, Na 2 O and K 2 O in a total of 0% or more and less than 3%
  • Fe 2 O 3 in a content of 5 to 100 ppm by mass preferable.
  • redox iron represented by the content of divalent iron ions in terms of Fe 2 O 3 to the content of total iron in terms of Fe 2 O 3 is preferably 40% or less.
  • the refractive index at room temperature of d-line (wavelength: 587.6 nm) of helium in the glass is, for example, 1.45 to 1.60. Specific examples include compositions 13 to 15 in Table 6.
  • composition range of each component of the glass composition of the glass plate of the present invention having the above-described components will be described below.
  • SiO 2 is a main component of glass.
  • the content of SiO 2 is preferably 60% or more, more preferably 63% or more in the glass composition A in terms of the oxide-based mass percentage.
  • composition B it is preferably 45% or more, more preferably 50% or more
  • glass composition C it is preferably 45% or more, more preferably 50% or more.
  • the SiO 2 content facilitates dissolution and makes the foam quality good, and also keeps the iron content in the glass low and makes the optical properties good. Is preferably 80% or less, more preferably 75% or less.
  • the glass composition B preferably 80% or less, more preferably 70% or less, and in the glass composition C, preferably 70% or less. More preferably, it is 65% or less.
  • Al 2 O 3 is an essential component that can reduce the amount of intrusion of tin and suppress coloring in the tin-containing layer to a small level. In the glass of the present invention, it is preferable to reduce the coloration as much as possible.
  • the content of Al 2 O 3 is preferably 0.5% or more, more preferably 2% or more, and particularly preferably 3
  • the glass composition B it is preferably more than 7%, more preferably 8% or more, particularly preferably 10% or more, and in the glass composition C, preferably 10% or more, more preferably 11%. Above, especially preferably 13% or more.
  • the content of Al 2 O 3 is preferably 7% or less, more preferably 6% or less in the glass composition A, and preferably 30% or less, more preferably 23% or less in the glass composition B. In the glass composition C, it is preferably 30% or less, more preferably 20% or less.
  • B 2 O 3 is a component that promotes melting of the glass raw material and improves mechanical properties and weather resistance, but it does not cause inconveniences such as generation of striae due to volatilization and furnace wall erosion.
  • the content of B 2 O 3 is preferably 5% or less, more preferably 3% or less.
  • the content is preferably 15% or less, more preferably 12%. It is as follows.
  • Alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity, and the like. Therefore, in the glass composition A, the content of Na 2 O is preferably 3% or more, more preferably 8% or more. In the glass composition B, the content of Na 2 O is preferably 7% or more, more preferably 10% or more. However, the content of Na 2 O is preferably 20% or less in the glass compositions A and B in order to maintain the clarity during melting and maintain the foam quality of the produced glass, and 15% More preferably, the glass composition C is 3% or less, more preferably 1% or less in the glass composition C.
  • the content of K 2 O is preferably 10% or less, more preferably 7% or less in the glass compositions A and B, and preferably 2% or less, more preferably 1% in the glass composition C. % Or less.
  • Li 2 O is an optional component, but in order to facilitate vitrification, to keep the iron content contained as an impurity derived from the raw material low, and to keep the batch cost low, in glass compositions A, B and C , Li 2 O can be contained at 2% or less.
  • the total content of these alkali metal oxides maintains the clarification at the time of melting, and in order to maintain the foam quality of the produced glass, in the glass compositions A and B In the glass composition C, it is preferably 0% to 2%, more preferably 0% to 1%.
  • Alkaline earth metal oxides such as MgO, CaO, SrO, and BaO are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity, and the like.
  • MgO has the effect of lowering the viscosity during glass melting and promoting the melting. Moreover, since there exists an effect
  • CaO is a component that promotes melting of the glass raw material and adjusts viscosity, thermal expansion, and the like, and therefore can be contained in the glass compositions A, B, and C.
  • the content of CaO is preferably 3% or more, more preferably 5% or more.
  • the glass composition A is preferably 20% or less, more preferably 10% or less, and the glass composition B is preferably 6% or less, more preferably 4% or less.
  • SrO has the effect of increasing the thermal expansion coefficient and lowering the high temperature viscosity of the glass.
  • SrO can be contained in the glass compositions A, B and C.
  • the SrO content in the glass compositions A and C is preferably 15% or less, more preferably 10% or less, and in the glass composition B It is preferably 5% or less, and more preferably 3% or less.
  • BaO like SrO, has the effect of increasing the coefficient of thermal expansion and lowering the high temperature viscosity of the glass. In order to obtain the above effect, BaO can be contained. However, in order to keep the thermal expansion coefficient of the glass low, it is preferably 15% or less in the glass compositions A and C, more preferably 10% or less, and 5% or less in the glass composition B. Of these, 3% or less is more preferable.
  • the total content of these alkaline earth metal oxides is preferably 10 in the glass composition A in order to keep the coefficient of thermal expansion low, good devitrification properties, and maintain strength.
  • % To 30% more preferably 13% to 27%.
  • the glass composition B preferably 1% to 15%, more preferably 3% to 10%
  • the glass composition C preferably 5%.
  • % To 30% more preferably 10% to 20%.
  • ZrO 2 is an optional component
  • the glass compositions A, B and C are 10% or less, preferably 5%. You may make it contain below. However, if it exceeds 10%, the glass tends to be devitrified, which is not preferable.
  • the amount of Fe 2 O 3 refers to the total iron oxide amount in terms of Fe 2 O 3.
  • the total amount of iron oxide is preferably 5 to 50 ppm by mass, more preferably 5 to 30 ppm by mass. If the total iron oxide content is less than 5 ppm by mass, the infrared absorption of the glass becomes extremely poor, it is difficult to improve the meltability, and it takes a great deal of cost to purify the raw materials. Absent.
  • the total iron oxide content exceeds 100 ppm by mass, the tin-containing layer is unfavorably colored, and the average internal transmittance in the wavelength range of 400 nm to 700 nm is lowered.
  • Reducing the content of divalent iron ions is important for improving the average internal transmittance in the wavelength range of 400 nm to 700 nm and reducing the absorbance Ap of the tin-containing layer.
  • Redox iron represented by the content of divalent iron ions in terms of Fe 2 O 3 to the content of total iron in terms of Fe 2 O 3 is preferably 40% or less, 35% or less More preferably, it is more preferably 30% or less, still more preferably 20% or less, still more preferably 15% or less, and most preferably 10% or less.
  • the glass of the glass plate of the present invention may contain SO 3 as a refining agent but, SO 3 in the tin-containing layer, in combination with iron is likely to be colored source.
  • the SO 3 content is preferably 0.50% or less in terms of mass percentage. 0.40% or less is more preferable, 0.30% or less is more preferable, 0.25% or less is more preferable, and 0.20% or less is still more preferable.
  • the SO 3 content is an amount obtained by converting the amount of all sulfur ions such as S 4+ and S 2 ⁇ present in the glass into SO 3 .
  • the redox of sulfur represented by the ratio of the S 2 -content in the total sulfur ion content in the tin-containing layer is preferably low in order to reduce the absorbance Ap of the tin-containing layer.
  • the sulfur redox in the tin-containing layer should be 99% or less. Preferably, it is 98% or less, more preferably 97% or less, even more preferably 95% or less, and still more preferably 90% or less.
  • the glass of the glass plate of the present invention may contain one or more of Sb 2 O 3, SnO 2 and As 2 O 3 as an oxidizing agent and a clarifying agent.
  • the content of Sb 2 O 3 , SnO 2 or As 2 O 3 is preferably 0 to 0.5% in terms of mass percentage. 0.2% or less is more preferable, 0.1% or less is more preferable, and it is further more preferable not to contain substantially.
  • Sb 2 O 3 , SnO 2 and As 2 O 3 act as an oxidizing agent for glass, they may be added within the above range depending on the purpose of adjusting the amount of Fe 2+ in the glass. However, As 2 O 3 is not positively contained from the environmental viewpoint.
  • the glass of the glass plate of the present invention may contain NiO.
  • NiO functions also as a coloring component
  • the content of NiO is preferably 10 mass ppm or less with respect to the total amount of the glass composition described above.
  • NiO is preferably 1.0 ppm by mass or less, more preferably 0.5 ppm by mass or less, from the viewpoint of not reducing the internal transmittance of the glass plate at a wavelength of 400 to 700 nm.
  • the glass of the glass plate of the present invention may contain Cr 2 O 3 .
  • Cr 2 O 3 also functions as a coloring component, so the content of Cr 2 O 3 is 10 ppm by mass or less with respect to the total amount of the glass composition described above.
  • Cr 2 O 3 is preferably 1.0 mass ppm or less, and preferably 0.5 mass ppm or less from the viewpoint of not reducing the average internal transmittance in the wavelength range of 400 nm to 700 nm. More preferred.
  • the glass of the glass plate of the present invention may contain MnO 2 .
  • MnO 2 When MnO 2 is contained, MnO 2 also functions as a component that absorbs visible light. Therefore, the content of MnO 2 is preferably 50 ppm by mass or less with respect to the total amount of the glass composition described above.
  • MnO 2 is preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less, from the viewpoint of not reducing the average value of internal transmittance in the wavelength range of 400 nm to 700 nm. More preferably, it is more preferably 1 ppm by mass or less.
  • the glass of the glass plate of the present invention may contain TiO 2 .
  • TiO 2 When TiO 2 is contained, TiO 2 also functions as a component that absorbs visible light. Therefore, the content of TiO 2 is preferably 1000 ppm by mass or less with respect to the total amount of the glass composition described above. The content of TiO 2 is more preferably 500 ppm by mass or less, and particularly preferably 100 ppm by mass or less, from the viewpoint of not reducing the average value of internal transmittance in the wavelength range of 400 nm to 700 nm.
  • Glass of the glass plate of the present invention may contain CeO 2.
  • CeO 2 has the effect of reducing the redox of iron, and can reduce the absorption of glass at a wavelength of 400 to 700 nm.
  • the CeO 2 content is preferably 1000 ppm by mass or less with respect to the total amount of the glass composition described above. Further, the CeO 2 content is more preferably 500 ppm by mass or less, further preferably 400 ppm by mass or less, particularly preferably 300 ppm by mass or less, and 250 ppm by mass or less. Most preferred.
  • the glass of the glass plate of the present invention may contain at least one component selected from the group consisting of CoO, V 2 O 5 and CuO. When these components are contained, they also function as a component that absorbs visible light. Therefore, the content of the components is preferably 10 mass ppm or less with respect to the total amount of the glass composition described above. In particular, it is preferable that these components are not substantially contained so as not to lower the average value of the internal transmittance in the wavelength range of 400 nm to 700 nm.
  • first manufacturing method (About the manufacturing method of the glass plate by one Embodiment of this invention) Next, an example of a glass plate manufacturing method (hereinafter referred to as “first manufacturing method”) according to an embodiment of the present invention having the above-described features will be briefly described.
  • FIG. 5 shows a schematic flow of the first manufacturing method.
  • the first manufacturing method is: (1) a step (step S110) of manufacturing a molten glass by melting a glass raw material; (2) transporting molten glass on a float bath to form a glass ribbon (step S120); (3) a step of cooling the glass ribbon (step S130).
  • a glass raw material is prepared by mixing predetermined raw material components. Moreover, this glass raw material is heated and a molten glass is manufactured.
  • the molten glass is prepared so as not to contain iron components (particularly Fe 2+ ) as impurities as much as possible. For this reason, a high-purity glass raw material is used. Further, the mixing process and the dissolving process are performed in an atmosphere with a high cleanliness.
  • the glass ribbon has a uniform thickness while moving on the molten tin.
  • ⁇ Coloring in the tin-containing layer of the glass can be effectively suppressed by combining any one or more of the following devices.
  • metallic impurities especially iron
  • metallic impurities can be a coloring factor on the molten tin surface of the glass
  • cooling the molten tin tin with a water tube will cause iron or an alloy of tin and iron or other materials around the water tube.
  • Metal impurities may be precipitated and metal impurities such as iron may be removed from the molten tin.
  • iron or an alloy of tin and iron or other metal impurities may be precipitated by inserting an electrode into molten tin and reducing the metal impurities such as iron from the molten tin.
  • an induction magnetic field may be generated locally, and tin containing a large amount of metal impurities such as iron may be collected around the area where the magnetic field is applied.
  • the metal impurities may be removed from the molten tin by causing the impurity glass to absorb the metal impurities in the molten tin.
  • some or all of the molten tin may be replaced with tin with a low content of metal impurities.
  • the flow rate, concentration and concentration distribution of gas such as hydrogen and nitrogen may be adjusted for the purpose of controlling the reduction degree of the bath atmosphere.
  • Increasing the hydrogen gas flow rate and concentration is preferable because it has the effect of reducing the absorbance Ap of the tin-containing layer.
  • the moving speed of the ribbon may be increased to 200 m / h or more so that the glass ribbon passes over the molten tin in a short time. Thereby, the penetration
  • iron in the molten tin it is preferable to reduce the amount of impurities such as iron in the molten tin as much as possible.
  • the iron content in tin specifically, it is preferably 200 mass ppm or less, preferably 150 mass ppm or less, more preferably 100 mass ppm or less, and 50 mass ppm or less. It is particularly preferable to do this.
  • Step S130 Thereafter, the glass ribbon is gradually cooled to a predetermined temperature. Moreover, a glass plate is obtained by cleaving the glass ribbon.
  • the glass plate by one Embodiment of this invention can be manufactured according to the above process.
  • the characteristics of the glass plate according to the embodiment of the present invention have been described by taking as an example the case where the glass plate according to the embodiment of the present invention is applied as a light guide plate of a display device.
  • the glass plate according to the present invention can be applied to various uses other than the light guide plate of the display device.
  • the glass plate according to the present invention is characterized by a low content of contaminants and a high transmittance, and thus can be applied to various surface emitting devices for illumination, cover glasses for solar cells, and the like.
  • the present invention can also be applied to building exterior materials, interior materials, furniture, and the like that require high design properties.
  • Examples 1 and 2 are examples
  • Example 3 is a comparative example.
  • glass plate 1 A glass plate having a thickness of 2.3 mm (referred to as “glass plate 1”) was produced by the method shown in FIG.
  • Example 2 A glass plate having a thickness of 2.5 mm was produced in the same manner as in Example 1. However, in Example 2, the glass plate was produced by changing the composition of the raw glass from that in Example 1. Other manufacturing conditions are the same as in Example 1. The obtained glass plate is referred to as a glass plate 2.
  • Example 3 A glass plate having a thickness of 2.0 mm was produced in the same manner as in Example 1. However, in Example 3, the glass composition was changed from that in Example 1 to produce a glass plate. Other manufacturing conditions are the same as in Example 1. The obtained glass plate is referred to as a glass plate 3.
  • the surface on the side in contact with the tin bath at the time of molding the glass is referred to as a first main surface, and the surface on the side opposite to the first main surface. Is referred to as the second main surface.
  • Table 2 below collectively shows the compositions of glass plates 1 to 3 and iron redox (Fe-Redox). In addition, these compositions are obtained by analyzing the glass plate after manufacture.
  • Figure 6 shows an example of the internal transmittance T in at 50mm length obtained in the glass plate 1 and glass plate 2.
  • FIG. 7 shows an example of the internal transmittance T in with a length of 50 mm obtained in the glass plate 3.
  • Table 3 below collectively shows the average internal transmittance T ave calculated for each glass plate 1 to 3 in a wavelength range of 400 nm to 700 nm at a length of 50 mm.
  • the average internal transmittance T ave at a length of 50 mm is 85% or more. It was found that good permeability was obtained. In addition, since the glass plate 3 has a high iron redox, the average internal transmittance T ave is less than 92%.
  • FIG. 8 an example of the measurement result of reflectivity Ra and Rb obtained in each main surface of the glass plate 1 is shown.
  • FIG. 9 an example of the measurement result of reflectivity Ra and Rb obtained in each main surface of the glass plate 2 is shown.
  • FIG. 10 shows an example of the measurement results of the reflectances R a and R b obtained on the main surfaces of the glass plates 3.
  • Table 4 shows the first average reflectivity Ra calculated for each of the glass plates 1 to 3 . ave , second average reflectance R b. ave and the difference ⁇ R between the two are collectively shown.
  • the first average reflectance R a. ave (%) is the second average reflectance R b. ave (%) and the first average reflectance R a. ave (%) and the second average reflectance R b.
  • the difference ⁇ R in ave (%) is larger than 0.25%, and it was confirmed that it is suitable for the use like the light guide plate 30 of the display device 10 shown in FIG.
  • first, two first and second samples were collected from a substantially central portion of each glass plate.
  • the side of the first main surface (corresponding to the first main surface of the glass plate) was polished by about 100 ⁇ m, and the side of the second main surface 122A was polished by about 100 ⁇ m. Thereby, the tin-containing layer on the first main surface was removed.
  • a first polishing surface was newly formed on the first main surface side, and a second polishing surface was newly formed on the second main surface side. Both the first polishing surface and the second polishing surface were polished until the arithmetic average roughness Ra reached a mirror surface state of 0.04 ⁇ m or less.
  • This first sample is referred to as a first polished sample.
  • the side of the fourth main surface (corresponding to the second main surface of the glass plate) was polished by about 200 ⁇ m, and the plate thickness was aligned with that of the first sample.
  • Each of the fourth main surfaces was polished until the arithmetic average roughness Ra reached a mirror surface state of 0.04 ⁇ m or less. As a result, a fourth polished surface was newly formed on the fourth main surface side.
  • This second sample is referred to as a second polished sample.
  • the thicknesses of the first sample and the second sample in the glass plate 1 were both 2.071 mm.
  • the thicknesses of the first sample and the second sample in the glass plate 2 were all 2.304 mm.
  • the thicknesses of the first sample and the second sample in the glass plate 3 were all 1.773 mm.
  • the first transmittance T 1 was measured in the wavelength range of 400 nm to 700 nm from the second polishing surface side.
  • the second transmittance T 2 was measured in the wavelength range of 400 nm to 700 nm from the fourth polishing surface side using the second polishing sample.
  • the first polishing surface is roughened with abrasive grains of particle size # 80, and further after applying a black body paint uniformly, from the second polishing surface side,
  • the reflectance (first reference reflectance R r ) of the second polished surface was measured in the wavelength range of 400 nm to 700 nm.
  • the fourth polishing surface is roughened with abrasive grains of particle size # 80, and further a black body paint is applied uniformly, and then from the third main surface side,
  • the reflectance of the third main surface (second reference reflectance R t ) was measured in the wavelength range of 400 nm to 700 nm.
  • a spectroscopic measurement device LAMBDA 950: manufactured by Perkin Elmer
  • an absolute reflectance measurement accessory was used.
  • a spectrophotometer U-4100: manufactured by Hitachi High-Technologies Corporation was used for measuring the transmittance.
  • the obtained transmittances T 1 and T 2 were converted into internal transmittances T 1i and T 2i by the above-described equations (4) and (5).
  • the absorbance Ap of the tin-containing layer was calculated from the above-described equations (6) to (8).
  • FIG. 11 shows the wavelength dependence of the internal transmittances T 1i and T 2i in the glass plate 1.
  • FIG. 12 shows the wavelength dependence of the first reference reflectance R r and the second reference reflectance R t in the glass plate 1.
  • FIG. 13 the wavelength dependence of the light absorbency Ap of the tin content layer in the glass plate 1 is shown.
  • FIG. 14 shows the wavelength dependence of the internal transmittances T 1i and T 2i in the glass plate 2.
  • FIG. 15 shows the wavelength dependency of the first reference reflectance R r and the second reference reflectance R t in the glass plate 2.
  • FIG. 16 the wavelength dependence of the light absorbency Ap of the tin content layer in the glass plate 2 is shown.
  • FIG. 17 shows the wavelength dependence of the internal transmittances T 1i and T 2i in the glass plate 3.
  • FIG. 18 shows the wavelength dependence of the first reference reflectance R r and the second reference reflectance R t in the glass plate 3.
  • FIG. 19 shows the wavelength dependence of the absorbance Ap of the tin-containing layer in the glass plate 3.
  • Table 5 shows the maximum value (Ap Max), the minimum value (Ap Min), and the maximum value-minimum value of the absorbance Ap of the tin-containing layer obtained in each glass plate in the wavelength range of 400 nm to 700 nm. (Ap Max -Ap Min) and the average value of absorbance Ap are collectively shown.
  • the difference between the maximum value and the minimum value in the wavelength range of 400 nm to 700 nm of the absorbance Ap of the tin-containing layer is 0.00048 and 0.00024, respectively. It was found to be small.
  • the difference between the maximum value and the minimum value of the absorbance Ap of the tin-containing layer was 0.00085, which was large.
  • the iron redox was as high as 50.0%. Therefore, the difference between the maximum value and the minimum value of the absorbance Ap was large.
  • the maximum values of absorbance Ap of the tin-containing layer in the wavelength range of 400 nm to 700 nm were 0.00055 and 0.00028, respectively.
  • the maximum absorbance Ap of the tin-containing layer in the wavelength range of 400 nm to 700 nm was 0.00120.
  • the iron redox was as high as 50.0%, and thus the maximum value of the absorbance Ap was increased.
  • the incident light of the specific wavelength is less absorbed by the tin-containing layer present on the first main surface. For this reason, in the glass plate 1 and the glass plate 2, the problem that a color shift arises between incident light and an emitted light can be suppressed significantly.
  • Table 6 shows the maximum iron oxide concentration (Fe 2 O 3 Max) converted to Fe 2 O 3 in the depth region of 10 ⁇ m from the first main surface of each glass plate, and 1 shows the maximum value (SnO 2 Max) of the concentration of tin oxide converted to SnO 2 in a depth region of 10 ⁇ m from the main surface of 1. These were measured by secondary ion mass spectrometry.
  • the maximum value of the iron oxide concentration in terms of Fe 2 O 3 up to a depth of 10 ⁇ m from the surface is 0.2 mass% or less, and 10 ⁇ m from the surface. It was found that the maximum value of the tin oxide concentration up to a depth of 1.0 was greater than 1.0 mass%.
  • the total iron content converted to Fe 2 O 3 is 100 mass ppm or less, the iron redox is 40% or less, and the SO 3 content is 0.50 mass% or less.
  • Al 2 O 3 content is 0.5% by mass or more, and the maximum concentration of iron oxide converted to Fe 2 O 3 from the surface to a depth of 10 ⁇ m is 0.2% by mass or less.
  • the glass plate 1 and glass plate 2 definitive from the surface to a depth of 10 [mu] m, the maximum value of the concentration of tin oxide in terms of SnO 2 is larger than 1.0 mass%, R a. ave (%) and R b. The difference in ave (%) is larger than 0.25%. Therefore, it was confirmed that the glass plate 1 and the glass plate 2 are suitable for a use like the light guide plate 30 of the display apparatus 10 shown in FIG.
  • Display apparatus 20 Light source group 21 Light source 30 Light guide plate 32A 1st main surface 32B 2nd main surface 34A-34D End surface 40 Display element 100 1st glass plate 110-1 1st sample 110-2 2nd sample 110A First polishing sample 110B Second polishing sample 120 First main surface 120A First main surface 120B Third main surface 122 Second main surface 122A Second main surface 122B Fourth main surface 123A First 1 polishing surface 124A 2nd polishing surface 127B 4th polishing surface 132 1st end surface 134 2nd end surface 136 3rd end surface 138 4th end surface 150 Tin content layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a glass sheet which has first and second main surfaces and which is formed on molten tin, the first main surface being the side which has been in contact with the molten tin and having a tin-containing layer. In a sample A which is obtained from a center portion of the glass sheet with dimensions of a length of 50 mm and a breadth of 50 mm by cleaving the glass sheet in a direction perpendicular to the first main surface such that first and second cleavage surfaces opposing each other have an arithmetic average roughness of Ra≤0.03 μm, an average value of internal transmittance in a wavelength range of 400 to 700 nm at a length of 50 mm from the first cleavage surface in a normal direction is 85% or more. The difference between the maximum value and the minimum value of an absorbance Ap of the tin-containing layer in the wavelength range of 400 to 700 nm is 0.0007 or less, and the maximum value of the absorbance Ap in the wavelength range of 400 to 700 nm is 0.0010 or less.

Description

ガラス板Glass plate
 本発明は、ガラス板に関する。 The present invention relates to a glass plate.
 従来、LEDなどの低消費電力光源を使用したエッジライト方式の表示装置が知られている。エッジライト方式の表示装置では、相互に対向する2つの主表面を有する導光板と、該導光板の一つの端面に対向して配置された光源とが使用される。ここで、導光板の「端面」とは、導光板の2つの主表面を相互に接続する4つの側面を意味する。また、4つの側面のうち、光源と面する端面を、特に、「入射端面」と称する。 Conventionally, an edge light type display device using a low power consumption light source such as an LED is known. In the edge light type display device, a light guide plate having two main surfaces facing each other and a light source arranged to face one end face of the light guide plate are used. Here, the “end face” of the light guide plate means four side surfaces that connect the two main surfaces of the light guide plate to each other. Of the four side surfaces, the end surface facing the light source is particularly referred to as an “incident end surface”.
 エッジライト方式では、光源からの光は、導光板の入射端面に入射される。その後、導光板に入射した光は、一つの主表面(「出射主表面」という)から出射される。従って、エッジライト方式では、導光板における光の入射方向と出射方向が相互に垂直な関係にあるという特徴がある。 In the edge light system, light from the light source is incident on the incident end face of the light guide plate. Thereafter, the light incident on the light guide plate is emitted from one main surface (referred to as “exit main surface”). Therefore, the edge light system has a feature that the light incident direction and the light emitting direction in the light guide plate are perpendicular to each other.
 一般に、このようなエッジライト方式の表示装置の導光板として、アクリル板が用いられている。しかしながら、アクリル板は、耐擦傷性、剛性、耐熱性、および耐水性の観点から問題がある。そのため、そのような問題が生じ難いガラス板を、導光板として使用することが要望されている。デジタルサイネージや照明等に利用される導光板についても、同様の要望がある。 Generally, an acrylic plate is used as a light guide plate of such an edge light type display device. However, acrylic plates have problems from the viewpoints of scratch resistance, rigidity, heat resistance, and water resistance. Therefore, it is desired to use a glass plate that hardly causes such a problem as a light guide plate. There is a similar demand for light guide plates used for digital signage, illumination, and the like.
 前述のように、エッジライト方式の表示装置等の導光板として、ガラス板を使用することが要望されている。 As described above, it is desired to use a glass plate as a light guide plate for an edge light type display device or the like.
 しかしながら、一般に、フロート法で製造されたガラス板は、一方の主表面に、薄い着色層を有する。これは、溶融ガラスからガラス板を成形する際に、溶融スズと接触する表面では、溶融スズ中の不純物(例えば鉄)と、溶融ガラス中の成分(例えば硫黄)とが反応して、着色成分が生じるためである。 However, in general, a glass plate produced by the float process has a thin colored layer on one main surface. This is because when a glass plate is formed from molten glass, impurities (for example, iron) in the molten tin react with components (for example, sulfur) in the molten glass on the surface that comes into contact with the molten tin, and coloring components This is because.
 そして、このような着色層を有するガラス板を導光板に適用した場合、入射光のうち相当の量が伝播中に吸収されてしまう可能性が高くなる。また、光の伝播中にある特定の波長の部分が選択的に吸収されると、入射光の色とは異なる色の光が出射され、いわゆる色ずれの生じる可能性が高くなる。 When a glass plate having such a colored layer is applied to the light guide plate, there is a high possibility that a considerable amount of incident light is absorbed during propagation. Further, when a specific wavelength portion during light propagation is selectively absorbed, light having a color different from the color of the incident light is emitted, which increases the possibility of so-called color shift.
 各種ディスプレイや、デジタルサイネージ、照明等において、色ずれは問題である。特に、最近の表示装置の分野では、液晶テレビなどに見られるように、比較的大きな寸法のものが主流になってきている。従って、表示装置さらには導光板の大型化にともない、光の伝播距離が長くなるため、このような問題は、今後より顕著になるものと予想される。 Color shift is a problem in various displays, digital signage, lighting, etc. In particular, in the recent field of display devices, those with relatively large dimensions have become mainstream as seen in liquid crystal televisions and the like. Accordingly, since the propagation distance of light becomes longer as the display device and the light guide plate become larger, such a problem is expected to become more prominent in the future.
 本発明は、このような背景に鑑みなされたものであり、本発明では、入射光と出射光の色ずれが有意に抑制されたガラス板を提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide a glass plate in which the color shift between incident light and emitted light is significantly suppressed.
 本発明では、第1および第2の主表面を有し、溶融スズ上で成形されたガラス板であって、
 前記第1の主表面は、前記溶融スズと接触した側であり、スズ含有層を有し、
 前記第1の主表面に垂直な方向で割断することにより、当該ガラス板の中心部分から、縦50mm×横50mmの寸法で採取され、相互に対向する第1および第2の割断面が、算術平均粗さRa≦0.03μmとなるようにされたサンプルAにおいて、前記第1の割断面から法線方向の50mm長での、波長400nm~700nmの範囲における内部透過率の平均値が85%以上であり、
 前記スズ含有層の吸光度Apの波長400~700nmの範囲における最大値と最小値の差が0.0007以下であり、
 前記吸光度Apの波長400nm~700nmの範囲における最大値は、0.0010以下である、ガラス板が提供される。
In the present invention, a glass plate having first and second main surfaces and formed on molten tin,
The first main surface is a side in contact with the molten tin, and has a tin-containing layer.
By cleaving in the direction perpendicular to the first main surface, the first and second fractured sections which are taken from the central portion of the glass plate in a size of 50 mm length × 50 mm width and face each other are arithmetic. In sample A having an average roughness Ra ≦ 0.03 μm, the average value of internal transmittance in the wavelength range of 400 nm to 700 nm at a length of 50 mm in the normal direction from the first fractured surface is 85%. That's it,
The difference between the maximum value and the minimum value in the wavelength range of 400 to 700 nm of the absorbance Ap of the tin-containing layer is 0.0007 or less,
A glass plate is provided in which the maximum value of the absorbance Ap in the wavelength range of 400 nm to 700 nm is 0.0010 or less.
 本発明では、入射光と出射光の色ずれが有意に抑制されたガラス板を提供できる。 In the present invention, it is possible to provide a glass plate in which the color shift between incident light and outgoing light is significantly suppressed.
一般的なエッジライト方式の表示装置の構成を概略的に示した図である。It is the figure which showed schematically the structure of the display device of a general edge light system. 本発明の一実施形態によるガラス板の模式的な斜視図である。It is a typical perspective view of the glass plate by one Embodiment of this invention. 吸光度測定用の第1の研磨サンプルの調製方法を説明するための図である。It is a figure for demonstrating the preparation method of the 1st grinding | polishing sample for an absorbance measurement. 吸光度測定用の第2の研磨サンプルの調製方法を説明するための図である。It is a figure for demonstrating the preparation method of the 2nd grinding | polishing sample for a light absorbency measurement. 本発明の一実施形態によるガラス板の製造方法の一例の概略的なフローを示した図である。It is the figure which showed the schematic flow of an example of the manufacturing method of the glass plate by one Embodiment of this invention. ガラス板1およびガラス板2において得られた50mm長での内部透過率Tinの一例を示したグラフである。Is a graph showing an example of the internal transmittance T in at 50mm length obtained in the glass plate 1 and glass plate 2. ガラス板3において得られた50mm長での内部透過率Tinの一例を示したグラフである。Is a graph showing an example of the internal transmittance T in at 50mm length obtained in the glass plate 3. ガラス板1のぞれぞれの主表面において得られた反射率RおよびRの測定結果の一例を示したグラフである。4 is a graph showing an example of the measurement results of the reflectances Ra and Rb obtained on each main surface of the glass plate 1. ガラス板2のぞれぞれの主表面において得られた反射率RおよびRの測定結果の一例を示したグラフである。3 is a graph showing an example of the measurement results of the reflectances Ra and Rb obtained on the main surfaces of the respective glass plates 2. ガラス板3のぞれぞれの主表面において得られた反射率RおよびRの測定結果の一例を示したグラフである。4 is a graph showing an example of the measurement results of the reflectances Ra and Rb obtained on the main surfaces of the glass plates 3, respectively. ガラス板1から採取した第1および第2の研磨サンプルにおける、内部透過率T1iおよびT2iの波長依存性を示したグラフである。3 is a graph showing the wavelength dependence of internal transmittances T 1i and T 2i in first and second polished samples collected from a glass plate 1. ガラス板1から採取した第1および第2の研磨サンプルにおける、第1参照反射率Rおよび第2参照反射率Rの波長依存性を示したグラフである。4 is a graph showing the wavelength dependence of the first reference reflectance R r and the second reference reflectance R t in the first and second polished samples collected from the glass plate 1. ガラス板1におけるスズ含有層の吸光度Apの波長依存性を示したグラフである。It is the graph which showed the wavelength dependence of the light absorbency Ap of the tin content layer in the glass plate. ガラス板2から採取した第1および第2の研磨サンプルにおける、内部透過率T1iおよびT2iの波長依存性を示したグラフである。3 is a graph showing the wavelength dependence of internal transmittances T 1i and T 2i in first and second polished samples collected from a glass plate 2. ガラス板2から採取した第1および第2の研磨サンプルにおける、第1参照反射率Rおよび第2参照反射率Rの波長依存性を示したグラフである。6 is a graph showing the wavelength dependence of the first reference reflectance R r and the second reference reflectance R t in the first and second polished samples collected from the glass plate 2. ガラス板2におけるスズ含有層の吸光度Apの波長依存性を示したグラフである。It is the graph which showed the wavelength dependence of the light absorbency Ap of the tin content layer in the glass plate. ガラス板3から採取した第1および第2の研磨サンプルにおける、内部透過率T1iおよびT2iの波長依存性を示したグラフである。4 is a graph showing the wavelength dependence of internal transmittances T 1i and T 2i in first and second polished samples collected from a glass plate 3. ガラス板3から採取した第1および第2の研磨サンプルにおける、第1参照反射率Rおよび第2参照反射率Rの波長依存性を示したグラフである。4 is a graph showing the wavelength dependence of the first reference reflectance R r and the second reference reflectance R t in the first and second polished samples collected from the glass plate 3. ガラス板3におけるスズ含有層の吸光度Apの波長依存性を示したグラフである。It is the graph which showed the wavelength dependence of the light absorbency Ap of the tin content layer in the glass plate.
 以下、図面を参照して、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1には、一般的なエッジライト方式の表示装置の概略的な分解斜視図を示す。 FIG. 1 is a schematic exploded perspective view of a general edge light type display device.
 図1に示すように、通常、エッジライト方式の表示装置10は、光源群20と、導光板30と、表示素子40とを有する。 As shown in FIG. 1, the edge light type display device 10 usually includes a light source group 20, a light guide plate 30, and a display element 40.
 光源群20は、一列に配置された1つ以上の光源21を有する。各光源21は、発光ダイオード(LED)またはレーザダイオードのような、指向性光源であっても良い。 The light source group 20 has one or more light sources 21 arranged in a line. Each light source 21 may be a directional light source such as a light emitting diode (LED) or a laser diode.
 導光板30は、第1および第2の主表面32Aおよび32Bと、該主表面同士を接続する4つの端面34A~34Dを有する。導光板30の第1の主表面32Aは、該主表面上に散乱粒子を含有する複数のドット、散乱粒子を含有しない複数のドット、複数の凸レンズ、凹凸形状等の何らかの散乱構造(図示されていない)が付与されてよく、「散乱主表面」とも称される。導光板30の第2の主表面32Bは、出射側となり、「出射主表面」とも称される。導光板30の第1の主表面32Aは、表示装置10の背面側となり、第2の主表面32Bは、表示装置10の前面側となる。導光板30の端面34Aは、光源群20と対面しており、表示装置10の入射表面となる。従って、導光板30の端面34Aは、「入射端面」とも称される。 The light guide plate 30 has first and second main surfaces 32A and 32B and four end faces 34A to 34D connecting the main surfaces. The first main surface 32A of the light guide plate 30 has some scattering structure (not shown) such as a plurality of dots containing scattering particles, a plurality of dots not containing scattering particles, a plurality of convex lenses, and an uneven shape on the main surface. May be applied) and is also referred to as “scattering main surface”. The second main surface 32B of the light guide plate 30 is on the emission side, and is also referred to as “emission main surface”. The first main surface 32 </ b> A of the light guide plate 30 is the back side of the display device 10, and the second main surface 32 </ b> B is the front side of the display device 10. The end face 34 </ b> A of the light guide plate 30 faces the light source group 20 and serves as an incident surface of the display device 10. Therefore, the end surface 34A of the light guide plate 30 is also referred to as an “incident end surface”.
 表示素子40は、例えば、液晶、または黒色もしくは白色の粒子を内包するマイクロカプセルなどで構成され、画像を形成できる。表示素子40は、導光板30の第2の主表面32Bと対面するように配置される。 The display element 40 is composed of, for example, a liquid crystal or a microcapsule containing black or white particles, and can form an image. Display element 40 is arranged to face second main surface 32 </ b> B of light guide plate 30.
 このような構成の表示装置10は、以下のように作動する。まず、光源群20を構成する各光源21から、導光板30の入射端面34Aに向かって光が照射され、該光が導光板30に入射する。入射した光(入射光)は、導光板30の各内面で反射されながら導光板30の内部を伝播し、導光板30の第1の主表面32A上に形成された何らかの散乱構造によって伝播方向を変えた結果、導光板30の第2の主表面32Bから出射される。導光板30から出射された光は、その後表示素子40に照射される。その結果、表示素子40で形成された画像が外部に表示され、表示装置10の視認者が表示素子40で形成された画像を認識できる。 The display device 10 having such a configuration operates as follows. First, light is irradiated from each light source 21 constituting the light source group 20 toward the incident end face 34 </ b> A of the light guide plate 30, and the light enters the light guide plate 30. The incident light (incident light) propagates inside the light guide plate 30 while being reflected by each inner surface of the light guide plate 30, and the propagation direction is changed by some scattering structure formed on the first main surface 32A of the light guide plate 30. As a result, the light is emitted from the second main surface 32B of the light guide plate 30. The light emitted from the light guide plate 30 is then applied to the display element 40. As a result, the image formed by the display element 40 is displayed outside, and the viewer of the display device 10 can recognize the image formed by the display element 40.
 図2には、本発明の一実施形態によるガラス板の概略的な斜視図を示す。 FIG. 2 shows a schematic perspective view of a glass plate according to an embodiment of the present invention.
 図2に示すように、本発明の一実施形態によるガラス板(以下、「第1のガラス板」と称する)100は、第1の主表面120および第2の主表面122と、第1~第4の端面132~138とを有する。 As shown in FIG. 2, a glass plate (hereinafter referred to as “first glass plate”) 100 according to an embodiment of the present invention includes a first main surface 120 and a second main surface 122, and first to And fourth end faces 132 to 138.
 第1の主表面120は、第1のガラス板100が成形された際に、溶融スズと接触した側であり、そのため、薄いスズ含有層(図示されていない)を有する。 The first main surface 120 is the side in contact with the molten tin when the first glass plate 100 is formed, and thus has a thin tin-containing layer (not shown).
 ここで、前述のように、表示装置10の導光板30として、アクリル板に代えて、ガラス板を適用することが要望されている。 Here, as described above, it is desired to apply a glass plate as the light guide plate 30 of the display device 10 instead of the acrylic plate.
 しかしながら、一般に、フロート法で製造されたガラス板は、一方の主表面に、薄い着色層を有する。このような着色層を有するガラス板を表示装置10の導光板30に適用した場合、光の相当の量が伝播中に吸収されてしまう可能性が高くなる。また、光の伝播中にある特定の波長の部分が選択的に吸収されると、入射光の色とは異なる色の光が出射され、いわゆる色ずれの生じる可能性が高くなる。特に、表示装置10さらには導光板30の大型化にともない、光の伝播距離が長くなるため、このような問題は、今後より顕著になるおそれがある。 However, in general, a glass plate produced by the float process has a thin colored layer on one main surface. When a glass plate having such a colored layer is applied to the light guide plate 30 of the display device 10, there is a high possibility that a considerable amount of light is absorbed during propagation. Further, when a specific wavelength portion during light propagation is selectively absorbed, light having a color different from the color of the incident light is emitted, which increases the possibility of so-called color shift. In particular, since the propagation distance of light becomes longer as the display device 10 and the light guide plate 30 become larger, such a problem may become more prominent in the future.
 これに対して、第1のガラス板100では、第1の主表面120に垂直な方向で割断することにより、第1のガラス板100の中心部分から、縦50mm×横50mmの寸法で採取され、相互に対向する第1および第2の割断面が、算術平均粗さRa≦0.03μmとなるようにされたサンプルAにおいて、前記第1の割断面から法線方向の50mm長での、波長400nm~700nmの範囲における内部透過率Tinの平均値Tave(以下、「平均内部透過率Tave」という)が85%以上であるという特徴を有する。 On the other hand, in the first glass plate 100, the first glass plate 100 is cut in a direction perpendicular to the first main surface 120, and is sampled in a size of 50 mm in length and 50 mm in width from the center portion of the first glass plate 100. In the sample A in which the first and second fractured surfaces facing each other have an arithmetic average roughness Ra ≦ 0.03 μm, the first fractured surface has a length of 50 mm in the normal direction from the first fractured surface. The average value T ave (hereinafter referred to as “average internal transmittance T ave ”) of the internal transmittance T in in the wavelength range of 400 nm to 700 nm is 85% or more.
 また、第1のガラス板100では、スズ含有層の吸光度Apの波長400nm~700nmの範囲における最大値と最小値の差が0.0007以下であり、前記吸光度Apの波長400nm~700nmの範囲における最大値は、0.0010以下であるという特徴を有する。 Further, in the first glass plate 100, the difference between the maximum value and the minimum value in the wavelength range of 400 nm to 700 nm of the absorbance Ap of the tin-containing layer is 0.0007 or less, and in the wavelength range of 400 nm to 700 nm of the absorbance Ap. The maximum value is 0.0010 or less.
 このような第1のガラス板100は、前記第1の割断面に垂直な、比較的長い光路長にわたって、十分に高い透明性を有する。 Such a first glass plate 100 has sufficiently high transparency over a relatively long optical path length perpendicular to the first split section.
 また、第1のガラス板100は、スズ含有層を有する第1の主表面120において、着色が十分に抑制されている。このため、第1のガラス板100では、第1の主表面120にスズ含有層を有するにも関わらず、光の吸収、および吸収の波長依存性を有意に抑制できる。 In addition, the first glass plate 100 is sufficiently suppressed in coloring on the first main surface 120 having the tin-containing layer. For this reason, in the 1st glass plate 100, although it has a tin content layer in the 1st main surface 120, light absorption and the wavelength dependence of absorption can be controlled significantly.
 このような特徴により、第1のガラス板100を、例えば表示装置10の導光板30に使用した場合、入射端面から、光路長にわたって、光をあまり減衰させることなく、伝播させることが可能になる。また、入射端面(例えば、第1の端面132)から入射される入射光と、第2の主表面122から出射される出射光の間で、色ずれが生じるという問題を、有意に抑制することが可能になる。 With such a feature, when the first glass plate 100 is used for the light guide plate 30 of the display device 10, for example, light can be propagated from the incident end face over the optical path length without much attenuation. . In addition, the problem of color misregistration between incident light incident from the incident end face (for example, the first end face 132) and outgoing light emitted from the second main surface 122 is significantly suppressed. Is possible.
 第1の主表面120の反射率は、スズが侵入することにより、高くなっている。そのため、第1のガラス板100を表示装置10の導光板30に使用する場合、第1の主表面120を表示装置10の背面側として(すなわち、散乱主要面として)使用することにより、光を対向する第2の主表面122からより多く取り出すことができ、好ましい。 The reflectivity of the first main surface 120 is high due to the penetration of tin. Therefore, when the first glass plate 100 is used for the light guide plate 30 of the display device 10, the first main surface 120 is used as the back side of the display device 10 (that is, as the scattering main surface). More can be taken out from the opposing second main surface 122, which is preferable.
 また、第2の主表面122の反射率は、成形雰囲気の影響でアルカリ成分が減少することにより、低くなっている。そのため、第1のガラス板100を表示装置10の導光板30に使用する場合、第2の主表面122を表示装置10の前面側として(すなわち、出射主要面として)使用することにより、光の反射成分を減らし、第2の主表面122からより多く取り出すことができ、好ましい。 Also, the reflectance of the second main surface 122 is lowered due to a decrease in alkali components due to the influence of the molding atmosphere. Therefore, when the first glass plate 100 is used for the light guide plate 30 of the display device 10, the second main surface 122 is used as the front surface side of the display device 10 (that is, as the emission main surface), thereby The reflection component can be reduced and more can be extracted from the second main surface 122, which is preferable.
 (ガラス板の内部透過率Tinおよび平均内部透過率Tave
 ここで、本願におけるガラス板の内部透過率Tinおよび平均内部透過率Taveの評価方法について説明する。
(Internal transmittance T in and average internal transmittance T ave of the glass plate)
Here, a method for evaluating the internal transmittance T in and the average internal transmittance T ave of the glass plate in the present application will be described.
 まず、対象となるガラス板の略中央部分から、ガラス板の第1の主表面に垂直な方向で割断することにより、縦50mm×横50mmの寸法のサンプルを採取する。 First, a sample having a size of 50 mm in length and 50 mm in width is collected by cleaving from a substantially central portion of the target glass plate in a direction perpendicular to the first main surface of the glass plate.
 次に、このサンプルの相互に対向する第1および第2の割断面の算術平均粗さRaが、0.03μm以下となっていることを確認する。もし、算術平均粗さRaが0.03μmより大きい場合、第1および第2の割断面をコロイダルシリカまたは酸化セリウムの遊離砥粒で研磨する。 Next, it is confirmed that the arithmetic average roughness Ra of the first and second fractured surfaces facing each other of this sample is 0.03 μm or less. If the arithmetic average roughness Ra is larger than 0.03 μm, the first and second fractured surfaces are polished with free abrasive grains of colloidal silica or cerium oxide.
 次に、このサンプルAにおいて、第1の割断面に対して、該第1の割断面の法線方向で、50mm長での、波長400nm~700nmの範囲における透過率Tを測定する。透過率Tの測定においては、50mm長での測定が可能な分光測定装置(たとえば、UH4150:日立ハイテクノロジーズ社製)を使用し、スリット等によって、入射光のビーム幅を板厚よりも狭くして測定する。 Next, in the sample A, the first fractured face, the normal direction of the first split section, at 50mm length, measuring the transmittance T A in the wavelength range of 400 nm ~ 700 nm. In the measurement of the transmittance T A, 50 mm spectrometer capable of measuring in length (e.g., UH4150: Hitachi High-Technologies Corporation) was used, the slit or the like, smaller than the thickness of the beam width of the incident light And measure.
 次に、Vブロック法によって、サンプルAの、g線(435.8nm)、F線(486.1nm)、e線(546.1nm)、d線(587.6nm)、C線(656.3nm)の各波長における屈折率を、精密屈折計により室温で測定する。それらの値にフィットするようにSellmeierの分散式(以下の(1)式)の各係数B、B、B、C、C、Cを最小二乗法によって決定することにより、サンプルAの屈折率nを得る:
 
=[1+{Bλ/(λ-C)}+{Bλ/(λ-C)}+{Bλ/(λ-C)}]0.5     (1)式
 
なお、(1)式において、λは波長である。
 
 サンプルAの該第1および該第2の割断面における反射率Rを、以下の理論式((2)式)によって求める:
 
=(1-n/(1+n  (2)式
 
 次に、(3)式を用いて、サンプルAの50mm長での透過率Tから、反射の影響を除外することにより、サンプルAにおける、該第1の割断面から法線方向の50mm長での内部透過率Tinを得る:
 
in=[-(1-R+{(1-R+4T 0.5
                      /(2T )    (3)式
 
 各波長で得られた内部透過率Tinを測定波長域にわたって平均化することにより、ガラス板の平均内部透過率Taveが算定される。
Next, the g-line (435.8 nm), F-line (486.1 nm), e-line (546.1 nm), d-line (587.6 nm), C-line (656.3 nm) of sample A by the V-block method. ) Is measured at room temperature with a precision refractometer. By determining each coefficient B 1 , B 2 , B 3 , C 1 , C 2 , C 3 of the Sellmeier's dispersion formula (formula (1) below) to fit those values by the least square method, Obtain the refractive index n A of sample A:

n A = [1+ {B 1 λ 2 / (λ 2 −C 1 )} + {B 2 λ 2 / (λ 2 −C 2 )} + {B 3 λ 2 / (λ 2 −C 3 )}] 0.5 (1) Formula
In the equation (1), λ is a wavelength.

The reflectance R A at the first and second fractured surfaces of the sample A is determined by the following theoretical formula (formula (2)):

R A = (1-n A ) 2 / (1 + n A ) 2 (2) Formula
Next, (3) using the formula, the transmittance T A at 50mm length sample A, by excluding the influence of reflection, the sample A, 50mm length in the normal direction from the first split section Get the internal transmittance T in at:

T in = [− (1−R A ) 2 + {(1−R A ) 4 + 4T A 2 R A 2 } 0.5 ]
/ (2T A R A 2 ) (3) formula
By averaging the internal transmittance T in obtained at each wavelength over the measurement wavelength range, the average internal transmittance of the glass plate T ave is calculated.
 第1のガラス板100において、平均内部透過率Taveは、85%以上である。この場合に、第1のガラス板100を導光板として用いたとき、より多くの光を導光板から取り出すことができる。平均内部透過率Taveは、90%以上であることが好ましく、92%以上であることがより好ましく、95%以上であることがさらに好ましく、96%以上であることがよりさらに好ましく、97%以上であることがいっそう好ましく、98%以上であることが最も好ましい。 In the first glass plate 100, the average internal transmittance T ave is 85% or more. In this case, when the first glass plate 100 is used as the light guide plate, more light can be extracted from the light guide plate. The average internal transmittance T ave is preferably 90% or more, more preferably 92% or more, further preferably 95% or more, still more preferably 96% or more, 97% More preferably, it is 98% or more.
 (スズ含有層の吸光度Ap)
 ここで、図3および図4を参照して、本願におけるスズ含有層の吸光度Apの測定方法について説明する。図3は、吸光度測定用の第1の研磨サンプルの調製方法を説明するための図である。また、図4は、吸光度測定用の第2の研磨サンプルの調製方法を説明するための図である。
(Absorbance Ap of tin-containing layer)
Here, with reference to FIG. 3 and FIG. 4, the measuring method of the light absorbency Ap of the tin content layer in this application is demonstrated. FIG. 3 is a diagram for explaining a method of preparing a first polished sample for measuring absorbance. FIG. 4 is a diagram for explaining a method for preparing a second polished sample for measuring absorbance.
 まず、被評価対象のガラス板の略中央部分から、第1および第2の2つのサンプルが採取される。 First, first and second samples are collected from a substantially central portion of the glass plate to be evaluated.
 図3には、第1のサンプル110-1の断面を模式的に示す。また、図4には、第2のサンプル110-2の断面を模式的に示す。 FIG. 3 schematically shows a cross section of the first sample 110-1. FIG. 4 schematically shows a cross section of the second sample 110-2.
 図3に示すように、第1のサンプル110-1は、第1の主表面120Aと、第2の主表面122Aとを有する。第1の主表面120Aおよび第2の主表面122Aは、それぞれ、もとのガラス板の第1の主表面および第2の主表面に相当する。なお、第1の主表面120Aは、ガラス板の成形の際のスズ接触面であり、スズ含有層150を有する。 As shown in FIG. 3, the first sample 110-1 has a first main surface 120A and a second main surface 122A. The first main surface 120A and the second main surface 122A correspond to the first main surface and the second main surface of the original glass plate, respectively. The first main surface 120 </ b> A is a tin contact surface when the glass plate is formed, and has a tin-containing layer 150.
 この第1のサンプル110-1において、第1の主表面120Aの側を100μm程度研磨し、第2の主表面122Aの側を100μm程度研磨する。これにより、第1の主表面120Aの側に、新たに第1の研磨表面123Aが形成され、第2の主表面122Aの側に、新たに第2の研磨表面124Aが形成される。 In the first sample 110-1, the first main surface 120A side is polished by about 100 μm, and the second main surface 122A side is polished by about 100 μm. As a result, a first polishing surface 123A is newly formed on the first main surface 120A side, and a second polishing surface 124A is newly formed on the second main surface 122A side.
 第1の研磨表面123Aおよび第2の研磨表面124Aは、いずれも算術平均粗さRaが0.04μm以下の鏡面状態とされる。得られたサンプル110-1を、第1の研磨サンプル110Aと称する。なお、第1の主表面120Aが研磨されたため、第1の研磨表面123Aには、スズ含有層150は存在しない。 Both the first polishing surface 123A and the second polishing surface 124A are in a mirror state with an arithmetic average roughness Ra of 0.04 μm or less. The obtained sample 110-1 is referred to as a first polished sample 110A. Note that since the first main surface 120A is polished, the tin-containing layer 150 does not exist on the first polishing surface 123A.
 一方、図4に示すように、第2のサンプル110-2は、第3の主表面120Bと、第4の主表面122Bとを有する。第3の主表面120Bおよび第4の主表面122Bは、それぞれ、もとのガラス板の第1の主表面および第2の主表面に相当する。なお、第3の主表面120Bは、ガラス板の成形の際のスズ接触面であり、スズ含有層150を有する。 On the other hand, as shown in FIG. 4, the second sample 110-2 has a third main surface 120B and a fourth main surface 122B. Third main surface 120B and fourth main surface 122B correspond to the first main surface and the second main surface of the original glass plate, respectively. The third main surface 120 </ b> B is a tin contact surface when the glass plate is formed, and has a tin-containing layer 150.
 この第2のサンプル110-2において、第4の主表面122Bの側のみ、200μm程度研磨する。ここで、サンプル110-2は、該サンプル110-2の板厚がサンプル110-1の板厚と一致するように研磨する。これにより、第4の主表面122Bの側に、新たに第4の研磨表面127Bが形成される。第4の研磨表面127Bは、算術平均粗さRaが0.04μm以下の鏡面状態とされる。得られたサンプル110-2を、第2の研磨サンプル110Bと称する。次に、このようにして得られた第1の研磨サンプル110Aを用いて、第2の研磨表面124Aの側から、波長400nm~700nmの範囲で、第1の透過率Tを測定する。 In the second sample 110-2, only the side of the fourth main surface 122B is polished by about 200 μm. Here, the sample 110-2 is polished so that the plate thickness of the sample 110-2 matches the plate thickness of the sample 110-1. As a result, a fourth polishing surface 127B is newly formed on the fourth main surface 122B side. The fourth polished surface 127B is in a mirror state with an arithmetic average roughness Ra of 0.04 μm or less. The obtained sample 110-2 is referred to as a second polished sample 110B. Next, using the first polishing samples 110A obtained in this way, from the side of the second polishing surface 124A, in the wavelength range of 400 nm ~ 700 nm, measuring a first transmittance T 1.
 次に、第1の研磨表面123Aを粒度#80の砥粒で粗面化し、さらに黒体塗料を均一に塗布した上で、第2の研磨表面124Aの側から、波長400nm~700nmの範囲で、第2の研磨表面124Aの反射率(第1参照反射率という)Rを測定する。反射率の測定においては、絶対反射率測定が可能な分光測定装置を用いる。なお、第1の研磨表面123Aの反射率は、Rで代表して良い。 Next, the first polishing surface 123A is roughened with abrasive grains having a particle size of # 80, and a black body paint is applied uniformly, and the wavelength in the range of 400 nm to 700 nm from the second polishing surface 124A side. Then, the reflectance (referred to as the first reference reflectance) R r of the second polished surface 124A is measured. In the measurement of the reflectance, a spectroscopic measuring device capable of measuring the absolute reflectance is used. Note that the reflectance of the first polished surface 123A may be represented by R r .
 次に、第2の研磨サンプル110Bを用いて、第4の研磨表面127Bの側から、波長400nm~700nmの範囲で、第2の透過率Tを測定する。 Next, using a second polishing sample 110B, from the side of the fourth polishing surface 127B, in the wavelength range of 400 nm ~ 700 nm, measuring a second transmittance T 2.
 次に、第4の研磨表面127Bを粒度#80の砥粒で粗面化し、さらに黒体塗料を均一に塗布した上で、第3の主表面120Bの側から、波長400nm~700nmの範囲で、第3の主表面120Bの反射率(第2参照反射率という)Rを測定する。反射率の測定においては、絶対反射率測定が可能な分光測定装置を用いる。なお、第4の研磨表面127Bの反射率は、Rで代表して良い。次に、以下の(4)式により、第1の研磨サンプル110Aの内部透過率T1iを算出する:
 
  T1i=[-(1-R+{(1-R+4T 0.5
                      /(2T )  (4)式
 
 同様に、以下の(5)式により、第2の研磨サンプル110Bの内部透過率T2iを算出する:
 
  T2i
 =[-(1-R)(1-R)+{(1-R(1-R+4T 0.5]/(2T)       (5)式
 
 次に、以下の(6)式により、第1の研磨サンプル110Aの吸光度Aを算定する:
 
  A=-log101i        (6)式
 
 また、以下の(7)式により、第2の研磨サンプル110Bの吸光度Aを算定する:
 
  A=-log102i        (7)式
 
 最後に(8)式により、スズ含有層150の吸光度Apが導出される。
 
     Ap=A-A     (8)式
 
 第1のガラス板100において、スズ含有層の吸光度Apの波長400nm~700nmの範囲における最大値と最小値の差は0.0007以下である。これにより、第1のガラス板100を導光板として用いた場合に、特定の波長における吸収が小さく、入射光と出射光の色ずれを有意に抑制できる。前記吸光度Apの波長400nm~700nmの範囲における最大値と最小値の差は、0.0006以下が好ましく、0.0005以下がより好ましく、0.0003以下が特に好ましい。
Next, the fourth polished surface 127B is roughened with abrasive grains having a particle size of # 80, and further a black body paint is applied uniformly, and then the third main surface 120B side has a wavelength in the range of 400 nm to 700 nm. , reflectance of the third main surface 120B (referred to as a second reference reflectance) measuring the R t. In the measurement of the reflectance, a spectroscopic measuring device capable of measuring the absolute reflectance is used. Note that the reflectivity of the fourth polished surface 127B may be represented by R r . Next, the internal transmittance T 1i of the first polishing sample 110A is calculated by the following equation (4):

T 1i = [− (1−R r ) 2 + {(1−R r ) 4 + 4T 1 2 R r 2 } 0.5 ]
/ (2T 1 R r 2 ) (4) Formula
Similarly, the internal transmittance T 2i of the second polishing sample 110B is calculated by the following equation (5):

T 2i
= [-(1-R r ) (1-R t ) + {(1-R r ) 2 (1-R t ) 2 + 4T 2 2 R r R t } 0.5 ] / (2T 2 R r R t ) Equation (5)
Next, the absorbance A 1 of the first polishing sample 110A is calculated by the following equation (6):

A 1 = −log 10 T 1i (6)
Further, the absorbance A2 of the second polishing sample 110B is calculated by the following equation (7):

A 2 = −log 10 T 2i (7)
Finally, the absorbance Ap of the tin-containing layer 150 is derived from the equation (8).

Ap = A 2 −A 1 (8)
In the first glass plate 100, the difference between the maximum value and the minimum value in the wavelength range of 400 nm to 700 nm of the absorbance Ap of the tin-containing layer is 0.0007 or less. Thereby, when the 1st glass plate 100 is used as a light-guide plate, the absorption in a specific wavelength is small and the color shift of incident light and emitted light can be suppressed significantly. The difference between the maximum value and the minimum value of the absorbance Ap in the wavelength range of 400 nm to 700 nm is preferably 0.0006 or less, more preferably 0.0005 or less, and particularly preferably 0.0003 or less.
 また、第1のガラス板100において、前記吸光度Apの波長400nm~700nmの範囲における最大値は0.0010以下である。これにより、第1のガラス板100を導光板として用いた場合に、吸収が小さく、より多くの光を取り出すことができるとともに、入射光と出射光の色ずれを有意に抑制できる。前記吸光度Apの波長400nm~700nmの範囲における最大値は、0.0008以下が好ましく、0.0006以下がより好ましく、0.0003以下が特に好ましい。 Further, in the first glass plate 100, the maximum value of the absorbance Ap in the wavelength range of 400 nm to 700 nm is 0.0010 or less. Thereby, when the 1st glass plate 100 is used as a light-guide plate, while absorption is small, more light can be taken out and the color shift of incident light and emitted light can be suppressed significantly. The maximum value of the absorbance Ap in the wavelength range of 400 nm to 700 nm is preferably 0.0008 or less, more preferably 0.0006 or less, and particularly preferably 0.0003 or less.
 (ガラス板100の反射率)
 ここで、再度図2を参照すると、第1のガラス板100の第1の主表面120における波長400nm~700nmの範囲での反射率R(%)の平均値をRa.ave(以下、「第1平均反射率Ra.ave」という)(%)とし、第2の主表面122における波長400nm~700nmの範囲での反射率R(%)の平均値をRb.ave(以下、「第2平均反射率Rb.ave」という)(%)としたとき、第1平均反射率Ra.ave(%)は第2平均反射率Rb.ave(%)よりも大きく、かつ、第1平均反射率Ra.ave(%)と、第2平均反射率Rb.ave(%)の差ΔRは、0.25%よりも大きいことが好ましい。
(Reflectance of glass plate 100)
Here, referring to FIG. 2 again, the average value of the reflectance R a (%) in the wavelength range of 400 nm to 700 nm on the first main surface 120 of the first glass plate 100 is expressed as R a. ave (hereinafter referred to as “first average reflectance R a.ave ”) (%), and the average value of the reflectance R b (%) in the wavelength range of 400 nm to 700 nm on the second main surface 122 is defined as R b . ave (hereinafter referred to as “second average reflectance R b.ave ”) (%), the first average reflectance R a. ave (%) is the second average reflectance R b. ave (%) and the first average reflectance R a. ave (%) and the second average reflectance R b. The difference ΔR of ave (%) is preferably larger than 0.25%.
 差ΔRが0.25%よりも大きい場合、第1のガラス板100を、例えば図1に示したような導光板30に適用した際に、第1の主表面120を表示装置10の背面側として(すなわち、散乱主要面として)使用することが好ましく、第1の主表面120に衝突した光が内部に反射され、第2の主表面122の側から出射される光の量を高めることができる。従って、光の取り出し効率が高くなる。 When the difference ΔR is larger than 0.25%, when the first glass plate 100 is applied to, for example, the light guide plate 30 as shown in FIG. 1, the first main surface 120 is the back side of the display device 10. (Ie, as a scattering main surface), and the light that collides with the first main surface 120 is reflected inside, and the amount of light emitted from the second main surface 122 side is increased. it can. Accordingly, the light extraction efficiency is increased.
 特に、差ΔRは、0.27%よりも大きいことがより好ましく、0.30%よりも大きいことが特に好ましい。 In particular, the difference ΔR is more preferably greater than 0.27%, and particularly preferably greater than 0.30%.
 ここで、第1の主表面120における反射率R(%)を測定する際は、被測定面と対向する第2の主表面122からの反射を防ぐため、第2の主表面122を粒度#80の砥粒で粗面化し、さらに黒体塗料を均一に塗布しておく必要がある。この状態で、絶対反射率測定が可能な分光測定装置を用いて、第1の主表面120における反射率R(%)を測定する。 Here, when measuring the reflectance R a (%) on the first main surface 120, the particle size of the second main surface 122 is set in order to prevent reflection from the second main surface 122 facing the surface to be measured. It is necessary to roughen with # 80 abrasive grains and to apply a black body paint uniformly. In this state, the reflectance R a (%) on the first main surface 120 is measured using a spectroscopic measurement apparatus capable of measuring absolute reflectance.
 同様に、第2の主表面122における反射率R(%)を測定する際は、被測定面と対向する第1の主表面120からの反射を防ぐため、第1の主表面120を粒度#80の砥粒で粗面化し、さらに黒体塗料を均一に塗布しておく必要がある。この状態で、絶対反射率測定が可能な分光測定装置を用いて、第2の主表面122における反射率R(%)を測定する。 Similarly, when measuring the reflectance R b (%) on the second main surface 122, the particle size of the first main surface 120 is set to prevent reflection from the first main surface 120 facing the surface to be measured. It is necessary to roughen with # 80 abrasive grains and to apply a black body paint uniformly. In this state, the reflectance R b (%) on the second main surface 122 is measured using a spectroscopic measurement device capable of measuring absolute reflectance.
 従って、実際のガラス板100の反射率の測定においては、被測定対象から調製された2つの測定サンプルが使用される。 Therefore, in the measurement of the reflectance of the actual glass plate 100, two measurement samples prepared from the object to be measured are used.
 (本発明の一実施形態によるガラス板のその他の特徴について)
 次に、本発明の一実施形態によるガラス板のその他の特徴について説明する。なお、ここでは、第1のガラス板100を例に、各種特徴について説明する。また、ここでは、明確化のため、各部材を表す際に、図2~図4に示した参照符号を使用する。
(About other characteristics of the glass plate by one Embodiment of this invention)
Next, other features of the glass plate according to an embodiment of the present invention will be described. Here, various features will be described using the first glass plate 100 as an example. In addition, here, for the sake of clarity, reference numerals shown in FIGS. 2 to 4 are used to represent each member.
 (ガラス板100の形状)
 第1のガラス板100の寸法は、前述の特徴を有する限り、特に限られない。ガラス板100は、例えば、少なくとも一辺の長さが20cm以上の大きな寸法を有しても良い。
ガラス板100の厚さは導光板の輝度には影響しないが、厚さが0.2mm未満の場合は、剛性が不十分となり好ましくなく、5mmより大きい場合は、ガラスが重くなってしまうため好ましくない。また、ガラス板100の形状は、特に限られず、ガラス板100は、例えば、矩形状または円盤状等の形状であっても良い。
(Shape of glass plate 100)
The dimension of the first glass plate 100 is not particularly limited as long as it has the above-described characteristics. For example, the glass plate 100 may have a large dimension in which at least one side has a length of 20 cm or more.
The thickness of the glass plate 100 does not affect the brightness of the light guide plate. However, when the thickness is less than 0.2 mm, the rigidity is not sufficient, and when the thickness is greater than 5 mm, the glass becomes heavy. Absent. In addition, the shape of the glass plate 100 is not particularly limited, and the glass plate 100 may be, for example, a rectangular shape or a disk shape.
 なお、矩形状のガラス板100では、端面が4つ存在するのに対して、円盤状のガラス板100の場合、端面は一つとなることに留意する必要がある。 It should be noted that the rectangular glass plate 100 has four end surfaces, whereas the disk-shaped glass plate 100 has one end surface.
 (スズ含有層150について)
 第1のガラス板100の第1の主表面120は、スズ含有層150を有する。このスズ含有層150は、第1のガラス板100の成形の際に、溶融スズと接触することにより形成されたものである。スズ含有層150の厚さは、二次イオン質量分析法によって、スズ成分が侵入している層の深さを測定することにより決定される。スズ含有層150の厚さは、通常10μm以下であり、5μm~9μm程度であることが多い。
(About the tin-containing layer 150)
The first main surface 120 of the first glass plate 100 has a tin-containing layer 150. The tin-containing layer 150 is formed by contacting molten tin when the first glass plate 100 is formed. The thickness of the tin-containing layer 150 is determined by measuring the depth of the layer into which the tin component has penetrated by secondary ion mass spectrometry. The thickness of the tin-containing layer 150 is usually 10 μm or less, and is often about 5 μm to 9 μm.
 このスズ含有層150の領域を含む、第1の主表面120の表面から10μmの深さ領域において、Feに換算した酸化鉄の濃度の最大値は、0.2質量%以下であることが好ましい。この場合、スズ含有層150において着色の原因である鉄が少ないために、着色を小さく抑えることができる。なお、第1の主表面120の表面から10μmの深さ領域において、Feに換算した酸化鉄の濃度は、表面に近いほど高い値になることが多い。Feに換算した酸化鉄の濃度分布は、二次イオン質量分析法によって測定される。 In the depth region of 10 μm from the surface of the first main surface 120 including the region of the tin-containing layer 150, the maximum value of the concentration of iron oxide converted to Fe 2 O 3 is 0.2% by mass or less. It is preferable. In this case, since there is little iron which is a cause of coloring in the tin content layer 150, coloring can be restrained small. In the depth region of 10 μm from the surface of first main surface 120, the concentration of iron oxide converted to Fe 2 O 3 often becomes higher as the surface is closer. The concentration distribution of iron oxide converted to Fe 2 O 3 is measured by secondary ion mass spectrometry.
 また、第1の主表面120の表面から10μmの深さ領域において、SnOに換算した酸化スズの濃度の最大値は、1.0質量%より大きいことが好ましい。この場合、主表面120の反射率を高めることができ、第1平均反射率Ra.ave(%)を第2平均反射率Rb.ave(%)よりも大きくし、かつ、第1平均反射率Ra.ave(%)と、第2平均反射率Rb.ave(%)の差ΔRを、0.25%よりも大きくすることが容易である。よって、第1のガラス板100を導光板として用いた時に、光の取り出し効率が高くなる。第1の主表面120の表面から10μmの深さ領域において、SnOに換算した酸化スズの濃度の最大値は、1.1質量%以上であることが好ましく、1.2質量%以上であることがより好ましく、1.5質量%以上であることが特に好ましい。 Further, in the depth region of 10 μm from the surface of first main surface 120, the maximum value of the tin oxide concentration converted to SnO 2 is preferably larger than 1.0 mass%. In this case, the reflectance of the main surface 120 can be increased, and the first average reflectance R a. ave (%) is the second average reflectance R b. ave (%) and the first average reflectance R a. ave (%) and the second average reflectance R b. It is easy to make the difference ΔR of ave (%) larger than 0.25%. Therefore, when the first glass plate 100 is used as the light guide plate, the light extraction efficiency is increased. In the depth region of 10 μm from the surface of the first main surface 120, the maximum value of the tin oxide concentration converted to SnO 2 is preferably 1.1% by mass or more, and is 1.2% by mass or more. It is more preferable that the content is 1.5% by mass or more.
 (ガラス板100の組成)
 第1のガラス板100の組成(スズ含有層150の部分を除く)は、前述の特徴を有する限り、特に限られないが、下記する3種類(ガラス組成A、ガラス組成B、ガラス組成Cを有するガラス)が代表的な例として挙げられる。
(Composition of glass plate 100)
The composition of the first glass plate 100 (excluding the portion of the tin-containing layer 150) is not particularly limited as long as it has the above-described characteristics, but the following three types (glass composition A, glass composition B, and glass composition C) A typical example of such a glass is (having glass).
 ガラス組成Aを有するガラス板としては、酸化物基準の質量百分率表示で、SiOを60~80%、Alを0.5~7%、MgOを0~10%、CaOを0~20%、SrOを0~15%、BaOを0~15%、NaOを3~20%、KOを0~10%、Feを5~100質量ppm、SO3を0~0.5%含むものであることが好ましい。また、Feに換算した全鉄の含有量に対するFeに換算した2価の鉄イオンの含有量で表される鉄のレドックスは、40%以下であることが好ましい。この場合のガラスのヘリウムのd線(波長587.6nm)における室温での屈折率は、1.45~1.60である。具体例としては、例えば表6の組成1~5が挙げられる。 As a glass plate having glass composition A, SiO 2 is 60 to 80%, Al 2 O 3 is 0.5 to 7%, MgO is 0 to 10%, and CaO is 0 to 0% by mass percentage on an oxide basis. 20%, SrO 0-15%, BaO 0-15%, Na 2 O 3-20%, K 2 O 0-10%, Fe 2 O 3 5-100 mass ppm, SO3 0-0 It is preferable to contain 0.5%. Also, redox iron represented by the content of divalent iron ions in terms of Fe 2 O 3 to the content of total iron in terms of Fe 2 O 3 is preferably 40% or less. In this case, the refractive index at room temperature of d-line (wavelength: 587.6 nm) of helium in the glass is 1.45 to 1.60. Specific examples include compositions 1 to 5 in Table 6.
 また、ガラス組成Bを有するガラス板としては、酸化物基準の質量百分率表示で、SiOを45~80%、Alを7%超30%以下、Bを0~15%、MgOを0~15%、CaOを0~6%、SrOを0~5%、BaOを0~5%、NaOを7~20%、KOを0~10%、ZrOを0~10%、Feを5~100質量ppm含むものであることが好ましい。また、Feに換算した全鉄の含有量に対するFeに換算した2価の鉄イオンの含有量で表される鉄のレドックスは、40%以下であることが好ましい。この場合のガラスのヘリウムのd線(波長587.6nm)における室温での屈折率は、例えば1.45~1.60である。この場合のガラス組成は、イオン交換が容易であり、化学強化しやすい。具体例としては、例えば表6の組成6~12が挙げられる。 Further, as a glass plate having the glass composition B, the oxide-based mass percentage display is 45 to 80% SiO 2 , Al 2 O 3 is more than 7% and 30% or less, and B 2 O 3 is 0 to 15%. MgO 0-15%, CaO 0-6%, SrO 0-5%, BaO 0-5%, Na 2 O 7-20%, K 2 O 0-10%, ZrO 2 It preferably contains 0 to 10% and 5 to 100 ppm by mass of Fe 2 O 3 . Also, redox iron represented by the content of divalent iron ions in terms of Fe 2 O 3 to the content of total iron in terms of Fe 2 O 3 is preferably 40% or less. In this case, the refractive index at room temperature of d-line (wavelength: 587.6 nm) of helium in the glass is, for example, 1.45 to 1.60. In this case, the glass composition is easy to ion exchange and easy to chemically strengthen. Specific examples include compositions 6 to 12 in Table 6.
 また、ガラス組成Cを有するガラス板としては、酸化物基準の質量百分率表示で、SiOを45~70%、Alを10~30%、Bを0~15%、MgO、CaO、SrOおよびBaOを合計で5~30%、LiO、NaOおよびKOを合計で0%以上、3%未満、Feを5~100質量ppm含むものであることが好ましい。また、Feに換算した全鉄の含有量に対するFeに換算した2価の鉄イオンの含有量で表される鉄のレドックスは、40%以下であることが好ましい。この場合のガラスのヘリウムのd線(波長587.6nm)における室温での屈折率は、例えば1.45~1.60である。具体例としては、例えば表6の組成13~15が挙げられる。 Further, as a glass plate having a glass composition C, SiO 2 is 45 to 70%, Al 2 O 3 is 10 to 30%, B 2 O 3 is 0 to 15%, MgO in terms of oxide-based mass percentage. CaO, SrO and BaO in a total of 5 to 30%, Li 2 O, Na 2 O and K 2 O in a total of 0% or more and less than 3%, and Fe 2 O 3 in a content of 5 to 100 ppm by mass preferable. Also, redox iron represented by the content of divalent iron ions in terms of Fe 2 O 3 to the content of total iron in terms of Fe 2 O 3 is preferably 40% or less. In this case, the refractive index at room temperature of d-line (wavelength: 587.6 nm) of helium in the glass is, for example, 1.45 to 1.60. Specific examples include compositions 13 to 15 in Table 6.
 上記した成分を有する本発明のガラス板のガラスの組成の各成分の組成範囲について、以下に説明する。 The composition range of each component of the glass composition of the glass plate of the present invention having the above-described components will be described below.
 SiOは、ガラスの主成分である。 SiO 2 is a main component of glass.
 SiOの含有量は、ガラスの耐候性、失透特性を保つため、酸化物基準の質量百分率表示で、ガラス組成Aにおいては、好ましくは60%以上、より好ましくは63%以上であり、ガラス組成Bにおいては、好ましくは45%以上、より好ましくは50%以上であり、ガラス組成Cにおいては、好ましくは45%以上、より好ましくは50%以上である。
一方、SiOの含有量は、溶解を容易にし、泡品質を良好なものとするために、またガラス中の鉄の含有量を低く抑え、光学特性を良好なものとするため、ガラス組成Aにおいては、好ましくは80%以下、より好ましくは75%以下であり、ガラス組成Bにおいては、好ましくは80%以下、より好ましくは70%以下であり、ガラス組成Cにおいては、好ましくは70%以下、より好ましくは65%以下である。
In order to maintain the weather resistance and devitrification properties of the glass, the content of SiO 2 is preferably 60% or more, more preferably 63% or more in the glass composition A in terms of the oxide-based mass percentage. In composition B, it is preferably 45% or more, more preferably 50% or more, and in glass composition C, it is preferably 45% or more, more preferably 50% or more.
On the other hand, the SiO 2 content facilitates dissolution and makes the foam quality good, and also keeps the iron content in the glass low and makes the optical properties good. Is preferably 80% or less, more preferably 75% or less. In the glass composition B, preferably 80% or less, more preferably 70% or less, and in the glass composition C, preferably 70% or less. More preferably, it is 65% or less.
 Alは、スズの侵入量を減らし、スズ含有層における着色を小さく抑えることができる必須成分である。本発明のガラスにおいて、着色をできる限り小さくすることが好ましく、Alの含有量は、ガラス組成Aにおいては、好ましくは0.5%以上、より好ましくは2%以上、特に好ましくは3%以上であり、ガラス組成Bにおいては、好ましくは7%超、より好ましくは8%以上、特に好ましくは10%以上であり、ガラス組成Cにおいては、好ましくは10%以上、より好ましくは11%以上、特に好ましくは13%以上である。 Al 2 O 3 is an essential component that can reduce the amount of intrusion of tin and suppress coloring in the tin-containing layer to a small level. In the glass of the present invention, it is preferable to reduce the coloration as much as possible. In the glass composition A, the content of Al 2 O 3 is preferably 0.5% or more, more preferably 2% or more, and particularly preferably 3 In the glass composition B, it is preferably more than 7%, more preferably 8% or more, particularly preferably 10% or more, and in the glass composition C, preferably 10% or more, more preferably 11%. Above, especially preferably 13% or more.
 但し、Alの含有量が過剰であると、溶解時の粘度が上がり、泡抜けが悪くなる。Alの含有量は、ガラス組成Aにおいては、好ましくは7%以下、より好ましくは6%以下であり、ガラス組成Bにおいては、好ましくは30%以下、より好ましくは23%以下であり、ガラス組成Cにおいては、好ましくは30%以下、より好ましくは20%以下である。 However, when the content of Al 2 O 3 is excessive, the viscosity at the time of dissolution increases, and bubble removal becomes worse. The content of Al 2 O 3 is preferably 7% or less, more preferably 6% or less in the glass composition A, and preferably 30% or less, more preferably 23% or less in the glass composition B. In the glass composition C, it is preferably 30% or less, more preferably 20% or less.
 Bは、ガラス原料の溶融を促進し、機械的特性や耐候性を向上させる成分であるが、揮発による脈理(ream)の生成、炉壁の侵食等の不都合が生じないために、Bの含有量は、ガラスAにおいては、好ましくは5%以下、より好ましくは3%以下であり、ガラス組成BおよびCにおいては、好ましくは15%以下、より好ましくは、12%以下である。 B 2 O 3 is a component that promotes melting of the glass raw material and improves mechanical properties and weather resistance, but it does not cause inconveniences such as generation of striae due to volatilization and furnace wall erosion. In the glass A, the content of B 2 O 3 is preferably 5% or less, more preferably 3% or less. In the glass compositions B and C, the content is preferably 15% or less, more preferably 12%. It is as follows.
 LiO、NaO、及び、KOといったアルカリ金属酸化物は、ガラス原料の溶融を促進し、熱膨張、粘性等を調整するのに有用な成分である。
そのため、NaOの含有量は、ガラス組成Aにおいては、好ましくは3%以上、より好ましくは、8%以上である。NaOの含有量は、ガラス組成Bにおいては、好ましくは7%以上、より好ましくは、10%以上である。但し、溶解時の清澄性を保持し、製造されるガラスの泡品質を保つために、NaOの含有量は、ガラス組成A及びBにおいては、20%以下とするのが好ましく、15%以下とするのがさらに好ましく、ガラス組成Cにおいては、3%以下とするのが好ましく、1%以下とするのがより好ましい。
Alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity, and the like.
Therefore, in the glass composition A, the content of Na 2 O is preferably 3% or more, more preferably 8% or more. In the glass composition B, the content of Na 2 O is preferably 7% or more, more preferably 10% or more. However, the content of Na 2 O is preferably 20% or less in the glass compositions A and B in order to maintain the clarity during melting and maintain the foam quality of the produced glass, and 15% More preferably, the glass composition C is 3% or less, more preferably 1% or less in the glass composition C.
 また、KOの含有量は、ガラス組成A及びBにおいては、好ましくは10%以下、より好ましくは7%以下であり、ガラス組成Cにおいては、好ましくは2%以下、より好ましくは、1%以下である。 Further, the content of K 2 O is preferably 10% or less, more preferably 7% or less in the glass compositions A and B, and preferably 2% or less, more preferably 1% in the glass composition C. % Or less.
 また、LiOは、任意成分であるが、ガラス化を容易にし、原料に由来する不純物として含まれる鉄含有量を低く抑え、バッチコストを低く抑えるために、ガラス組成A、B及びCにおいて、LiOを2%以下含有させることができる。 Further, Li 2 O is an optional component, but in order to facilitate vitrification, to keep the iron content contained as an impurity derived from the raw material low, and to keep the batch cost low, in glass compositions A, B and C , Li 2 O can be contained at 2% or less.
 また、これらアルカリ金属酸化物の合計含有量(LiO+NaO+KO)は、溶解時の清澄性を保持し、製造されるガラスの泡品質を保つために、ガラス組成A及びBにおいては、好ましくは5%~20%、より好ましくは8%~15%であり、ガラス組成Cにおいては、好ましくは0%~2%、より好ましくは、0%~1%である。 In addition, the total content of these alkali metal oxides (Li 2 O + Na 2 O + K 2 O) maintains the clarification at the time of melting, and in order to maintain the foam quality of the produced glass, in the glass compositions A and B In the glass composition C, it is preferably 0% to 2%, more preferably 0% to 1%.
 MgO、CaO、SrO、及びBaOといったアルカリ土類金属酸化物は、ガラス原料の溶融を促進し、熱膨張、粘性等を調整するのに有用な成分である。 Alkaline earth metal oxides such as MgO, CaO, SrO, and BaO are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity, and the like.
 MgOは、ガラス溶解時の粘性を下げ、溶解を促進する作用がある。また、比重を低減させ、ガラス板に疵をつきにくくする作用があるために、ガラス組成A、B及びCにおいて、含有させることができる。また、ガラスの熱膨張係数を低く、失透特性を良好なものとするために、MgOの含有量は、ガラス組成Aにおいては、好ましくは10%以下であり、より好ましくは8%以下であり、ガラス組成Bにおいては、好ましくは15%以下、より好ましくは12%以下であり、ガラス組成Cにおいては、好ましくは10%以下、より好ましくは5%以下である。
CaOは、ガラス原料の溶融を促進し、また粘性、熱膨張等を調整する成分であるので、ガラス組成A、B及びCにおいて含有させることができる。上記の作用を得るためには、ガラス組成Aにおいては、CaOの含有量は、好ましくは3%以上、より好ましくは5%以上である。また、失透を良好にするためには、ガラス組成Aにおいては、好ましくは20%以下、より好ましくは10%以下であり、ガラス組成Bにおいては、好ましくは6%以下であり、より好ましくは4%以下である。
MgO has the effect of lowering the viscosity during glass melting and promoting the melting. Moreover, since there exists an effect | action which reduces specific gravity and makes a glass plate hard to be wrinkled, it can be contained in glass composition A, B, and C. Further, in order to make the glass have a low coefficient of thermal expansion and good devitrification properties, the content of MgO in the glass composition A is preferably 10% or less, more preferably 8% or less. In glass composition B, it is preferably 15% or less, more preferably 12% or less, and in glass composition C, it is preferably 10% or less, more preferably 5% or less.
CaO is a component that promotes melting of the glass raw material and adjusts viscosity, thermal expansion, and the like, and therefore can be contained in the glass compositions A, B, and C. In order to obtain the above action, in the glass composition A, the content of CaO is preferably 3% or more, more preferably 5% or more. In order to improve devitrification, the glass composition A is preferably 20% or less, more preferably 10% or less, and the glass composition B is preferably 6% or less, more preferably 4% or less.
 SrOは、熱膨張係数の増大及びガラスの高温粘度を下げる効果がある。かかる効果を得るために、ガラス組成A、B及びCにおいて、SrOを含有させることができる。但し、ガラスの熱膨張係数を低く抑えるため、SrOの含有量は、ガラス組成A及びCにおいては、15%以下とするのが好ましく、10%以下とするのがより好ましく、ガラス組成Bにおいては、5%以下とするのが好ましく、3%以下とするのがより好ましい。 SrO has the effect of increasing the thermal expansion coefficient and lowering the high temperature viscosity of the glass. In order to obtain such an effect, SrO can be contained in the glass compositions A, B and C. However, in order to keep the thermal expansion coefficient of the glass low, the SrO content in the glass compositions A and C is preferably 15% or less, more preferably 10% or less, and in the glass composition B It is preferably 5% or less, and more preferably 3% or less.
 BaOは、SrO同様に熱膨張係数の増大及びガラスの高温粘度を下げる効果がある。上記の効果を得るためにBaOを含有させることができる。但し、ガラスの熱膨張係数を低く抑えるため、ガラス組成A及びCにおいては、15%以下とするのが好ましく、10%以下とするのがより好ましく、ガラス組成Bにおいては、5%以下とするのが好ましく、3%以下とするのがより好ましい。 BaO, like SrO, has the effect of increasing the coefficient of thermal expansion and lowering the high temperature viscosity of the glass. In order to obtain the above effect, BaO can be contained. However, in order to keep the thermal expansion coefficient of the glass low, it is preferably 15% or less in the glass compositions A and C, more preferably 10% or less, and 5% or less in the glass composition B. Of these, 3% or less is more preferable.
 また、これらアルカリ土類金属酸化物の合計含有量(MgO+CaO+SrO+BaO)は、熱膨張係数を低く抑え、失透特性を良好なものとし、強度を維持するために、ガラス組成Aにおいては、好ましくは10%~30%、より好ましくは13%~27%であり、ガラス組成Bにおいては、好ましくは1%~15%、より好ましくは3%~10%であり、ガラス組成Cにおいては、好ましくは5%~30%、より好ましくは10%~20%である。 Further, the total content of these alkaline earth metal oxides (MgO + CaO + SrO + BaO) is preferably 10 in the glass composition A in order to keep the coefficient of thermal expansion low, good devitrification properties, and maintain strength. % To 30%, more preferably 13% to 27%. In the glass composition B, preferably 1% to 15%, more preferably 3% to 10%, and in the glass composition C, preferably 5%. % To 30%, more preferably 10% to 20%.
 本発明のガラス板のガラスのガラス組成においては、ガラスの耐熱性及び表面硬度の向上のために、任意成分としてZrOを、ガラス組成A、B及びCにおいて、10%以下、好ましくは5%以下含有させてもよい。但し、10%超であると、ガラスが失透しやすくなるので、好ましくない。 In the glass composition of the glass of the glass plate of the present invention, in order to improve the heat resistance and surface hardness of the glass, ZrO 2 is an optional component, and the glass compositions A, B and C are 10% or less, preferably 5%. You may make it contain below. However, if it exceeds 10%, the glass tends to be devitrified, which is not preferable.
 本発明のガラス板のガラスのガラス組成においては、ガラスの熔解性向上のため、Feを、ガラス組成A、B及びCにおいて、5~100質量ppm含有させてもよい。なお、ここでFe量は、Feに換算した全酸化鉄量を指す。全酸化鉄量は好ましくは5~50質量ppmであり、より好ましくは5~30質量ppmである。上記した全酸化鉄量が5質量ppm未満の場合には、ガラスの赤外線の吸収が極端に悪くなり、熔解性を向上させることが難しく、また、原料の精製に多大なコストがかかるため、好ましくない。また、全酸化鉄量が100質量ppm超の場合には、スズ含有層におけるガラスの着色が大きくなるとともに、波長400nm~700nmの範囲における内部透過率の平均値を低下させるので好ましくない。 In the glass composition of the glass of the glass plate of the present invention, 5 to 100 ppm by mass of Fe 2 O 3 may be contained in the glass compositions A, B and C in order to improve the meltability of the glass. Here, the amount of Fe 2 O 3 refers to the total iron oxide amount in terms of Fe 2 O 3. The total amount of iron oxide is preferably 5 to 50 ppm by mass, more preferably 5 to 30 ppm by mass. If the total iron oxide content is less than 5 ppm by mass, the infrared absorption of the glass becomes extremely poor, it is difficult to improve the meltability, and it takes a great deal of cost to purify the raw materials. Absent. In addition, when the total iron oxide content exceeds 100 ppm by mass, the tin-containing layer is unfavorably colored, and the average internal transmittance in the wavelength range of 400 nm to 700 nm is lowered.
 2価の鉄イオンの含有量を減らすことは、波長400nm~700nmの範囲における内部透過率の平均値を向上させるとともに、スズ含有層の吸光度Apを小さくするために重要である。Feに換算した全鉄の含有量に対するFeに換算した2価の鉄イオンの含有量で表される鉄のレドックスは、40%以下であることが好ましく、35%以下であることがより好ましく、30%以下であることがさらに好ましく、20%以下であることがよりさらに好ましく、15%以下であることがいっそう好ましく、10%以下であることが最も好ましい。 Reducing the content of divalent iron ions is important for improving the average internal transmittance in the wavelength range of 400 nm to 700 nm and reducing the absorbance Ap of the tin-containing layer. Redox iron represented by the content of divalent iron ions in terms of Fe 2 O 3 to the content of total iron in terms of Fe 2 O 3 is preferably 40% or less, 35% or less More preferably, it is more preferably 30% or less, still more preferably 20% or less, still more preferably 15% or less, and most preferably 10% or less.
 また、本発明のガラス板のガラスは、清澄剤としてSOを含有してもよいが、SOはスズ含有層において、鉄と結合して、着色源となる可能性がある。スズ含有層の吸光度Apを小さくするため、SO含有量は、質量百分率表示で0.50%以下が好ましい。0.40%以下がより好ましく、0.30%以下がさらに好ましく、0.25%以下がよりさらに好ましく、0.20%以下がいっそう好ましい。なお、SO含有量とは、ガラス中に存在するS4+やS2-等のすべての硫黄イオンの量をSOに換算した量のことである。また、スズ含有層における、すべての硫黄イオン含有量に占めるS2-含有量の割合で表わされる硫黄のレドックスは、スズ含有層の吸光度Apを小さくするため、低い方が好ましい。スズと接触して成形された面にX線を照射し、蛍光X線として放出されるS-Kα線のピーク位置から求めた、スズ含有層における硫黄のレドックスは、99%以下であることが好ましく、98%以下であることがより好ましく、97%以下であることがさらに好ましく、95%以下であることがよりさらに好ましく、90%以下であることがいっそう好ましい。 The glass of the glass plate of the present invention may contain SO 3 as a refining agent but, SO 3 in the tin-containing layer, in combination with iron is likely to be colored source. In order to reduce the absorbance Ap of the tin-containing layer, the SO 3 content is preferably 0.50% or less in terms of mass percentage. 0.40% or less is more preferable, 0.30% or less is more preferable, 0.25% or less is more preferable, and 0.20% or less is still more preferable. The SO 3 content is an amount obtained by converting the amount of all sulfur ions such as S 4+ and S 2− present in the glass into SO 3 . Further, the redox of sulfur represented by the ratio of the S 2 -content in the total sulfur ion content in the tin-containing layer is preferably low in order to reduce the absorbance Ap of the tin-containing layer. The sulfur redox in the tin-containing layer, as determined from the peak position of SKα rays emitted as fluorescent X-rays by irradiating the surface formed in contact with tin with X-rays, should be 99% or less. Preferably, it is 98% or less, more preferably 97% or less, even more preferably 95% or less, and still more preferably 90% or less.
 また、本発明のガラス板のガラスは、酸化剤及び清澄剤としてSb、SnO及びAsのうちの一つ以上を含有してもよい。この場合、Sb、SnOまたはAsの含有量は、質量百分率表示で0~0.5%が好ましい。0.2%以下がより好ましく、0.1%以下がさらに好ましく、実質的に含有しないことがさらに好ましい。
Sb、SnO及びAsは、ガラスの酸化剤として作用するため、ガラスのFe2+の量を調節する目的により上記範囲内で添加してもよい。ただし、Asは、環境面から積極的に含有させるものではない。
The glass of the glass plate of the present invention may contain one or more of Sb 2 O 3, SnO 2 and As 2 O 3 as an oxidizing agent and a clarifying agent. In this case, the content of Sb 2 O 3 , SnO 2 or As 2 O 3 is preferably 0 to 0.5% in terms of mass percentage. 0.2% or less is more preferable, 0.1% or less is more preferable, and it is further more preferable not to contain substantially.
Since Sb 2 O 3 , SnO 2 and As 2 O 3 act as an oxidizing agent for glass, they may be added within the above range depending on the purpose of adjusting the amount of Fe 2+ in the glass. However, As 2 O 3 is not positively contained from the environmental viewpoint.
 また、本発明のガラス板のガラスは、NiOを含有してもよい。NiOを含有する場合、NiOは、着色成分としても機能するので、NiOの含有量は、上記したガラス組成の合量に対し、10質量ppm以下とするのが好ましい。特に、NiOは、波長400~700nmにおけるガラス板の内部透過率を低下させないという観点から、1.0質量ppm以下とするのが好ましく、0.5質量ppm以下とすることがより好ましい。 Further, the glass of the glass plate of the present invention may contain NiO. When NiO is contained, since NiO functions also as a coloring component, the content of NiO is preferably 10 mass ppm or less with respect to the total amount of the glass composition described above. In particular, NiO is preferably 1.0 ppm by mass or less, more preferably 0.5 ppm by mass or less, from the viewpoint of not reducing the internal transmittance of the glass plate at a wavelength of 400 to 700 nm.
 本発明のガラス板のガラスは、Crを含有してもよい。Crを含有する場合、Crは、着色成分としても機能するので、Crの含有量は、上記したガラス組成の合量に対し、10質量ppm以下とするのが好ましい。特に、Crは、波長400nm~700nmの範囲における内部透過率の平均値を低下させないという観点から、1.0質量ppm以下とするのが好ましく、0.5質量ppm以下とすることがより好ましい。 The glass of the glass plate of the present invention may contain Cr 2 O 3 . When Cr 2 O 3 is contained, Cr 2 O 3 also functions as a coloring component, so the content of Cr 2 O 3 is 10 ppm by mass or less with respect to the total amount of the glass composition described above. preferable. In particular, Cr 2 O 3 is preferably 1.0 mass ppm or less, and preferably 0.5 mass ppm or less from the viewpoint of not reducing the average internal transmittance in the wavelength range of 400 nm to 700 nm. More preferred.
 本発明のガラス板のガラスは、MnOを含有してもよい。MnOを含有する場合、MnOは、可視光を吸収する成分としても機能するので、MnOの含有量は、上記したガラス組成の合量に対し、50質量ppm以下とするのが好ましい。特に、MnOは、波長400nm~700nmの範囲における内部透過率の平均値を低下させないという観点から、10質量ppm以下とするのが好ましく、5質量ppm以下とするのがより好ましく、2質量ppm以下とするのがさらに好ましく、1質量ppm以下とすることがいっそう好ましい。 The glass of the glass plate of the present invention may contain MnO 2 . When MnO 2 is contained, MnO 2 also functions as a component that absorbs visible light. Therefore, the content of MnO 2 is preferably 50 ppm by mass or less with respect to the total amount of the glass composition described above. In particular, MnO 2 is preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less, from the viewpoint of not reducing the average value of internal transmittance in the wavelength range of 400 nm to 700 nm. More preferably, it is more preferably 1 ppm by mass or less.
 本発明のガラス板のガラスは、TiOを含んでいてもよい。TiOを含有する場合、TiOは、可視光を吸収する成分としても機能するので、TiOの含有量は、上記したガラス組成の合量に対し、1000質量ppm以下とするのが好ましい。TiOは、波長400nm~700nmの範囲における内部透過率の平均値を低下させないという観点から、含有量を500質量ppm以下とすることがより好ましく、100質量ppm以下とすることが特に好ましい。 The glass of the glass plate of the present invention may contain TiO 2 . When TiO 2 is contained, TiO 2 also functions as a component that absorbs visible light. Therefore, the content of TiO 2 is preferably 1000 ppm by mass or less with respect to the total amount of the glass composition described above. The content of TiO 2 is more preferably 500 ppm by mass or less, and particularly preferably 100 ppm by mass or less, from the viewpoint of not reducing the average value of internal transmittance in the wavelength range of 400 nm to 700 nm.
 本発明のガラス板のガラスは、CeOを含んでいてもよい。CeOには鉄のレドックスを下げる効果があり、波長400~700nmにおけるガラスの吸収を小さくすることができる。しかし、CeOを多量に含有する場合、CeOは、可視光を吸収する成分としても機能し、また鉄のレドックスを3%未満に下げすぎてしまう可能性があり、好ましくない。したがって、CeOの含有量は、上記したガラス組成の合量に対し、1000質量ppm以下とするのが好ましい。また、CeOの含有量は、500質量ppm以下とするのがより好ましく、400質量ppm以下とするのがさらに好ましく、300質量ppm以下とするのが特に好ましく、250質量ppm以下とするのが最も好ましい。 Glass of the glass plate of the present invention may contain CeO 2. CeO 2 has the effect of reducing the redox of iron, and can reduce the absorption of glass at a wavelength of 400 to 700 nm. However, if containing CeO 2 in a large amount, CeO 2 also functions as a component which absorbs visible light and there is a possibility that excessively lowering the redox iron to less than 3% is not preferable. Therefore, the CeO 2 content is preferably 1000 ppm by mass or less with respect to the total amount of the glass composition described above. Further, the CeO 2 content is more preferably 500 ppm by mass or less, further preferably 400 ppm by mass or less, particularly preferably 300 ppm by mass or less, and 250 ppm by mass or less. Most preferred.
 本発明のガラス板のガラスは、CoO、V及びCuOからなる群より選ばれる少なくとも1種の成分を含んでいてもよい。これらの成分を含有する場合、可視光を吸収する成分としても機能するので、前記成分の含有量は、上記したガラス組成の合量に対し、10質量ppm以下とするのが好ましい。特に、これら成分は、波長400nm~700nmの範囲における内部透過率の平均値を低下させないように、実質的に含有しないことが好ましい。 The glass of the glass plate of the present invention may contain at least one component selected from the group consisting of CoO, V 2 O 5 and CuO. When these components are contained, they also function as a component that absorbs visible light. Therefore, the content of the components is preferably 10 mass ppm or less with respect to the total amount of the glass composition described above. In particular, it is preferable that these components are not substantially contained so as not to lower the average value of the internal transmittance in the wavelength range of 400 nm to 700 nm.
Figure JPOXMLDOC01-appb-T000001
 (本発明の一実施形態によるガラス板の製造方法について)
 次に、前述のような特徴を有する本発明の一実施形態によるガラス板の製造方法(以下、「第1の製造方法」と称する)の一例について、簡単に説明する。
Figure JPOXMLDOC01-appb-T000001
(About the manufacturing method of the glass plate by one Embodiment of this invention)
Next, an example of a glass plate manufacturing method (hereinafter referred to as “first manufacturing method”) according to an embodiment of the present invention having the above-described features will be briefly described.
 図5には、第1の製造方法の概略的なフローを示す。 FIG. 5 shows a schematic flow of the first manufacturing method.
 図5に示すように、第1の製造方法は、
 (1)ガラス原料を溶解して溶融ガラスを製造する工程(工程S110)と、
 (2)溶融ガラスをフロートバス上で搬送させて、ガラスリボンを形成する工程(工程S120)と、
 (3)ガラスリボンを冷却する工程(工程S130)と
 を有する。
As shown in FIG. 5, the first manufacturing method is:
(1) a step (step S110) of manufacturing a molten glass by melting a glass raw material;
(2) transporting molten glass on a float bath to form a glass ribbon (step S120);
(3) a step of cooling the glass ribbon (step S130).
 以下、各工程について、説明する。 Hereinafter, each process will be described.
 (工程S110)
 まず、所定の原料成分を混合することにより、ガラス原料が調合される。また、このガラス原料が加熱され、溶融ガラスが製造される。
(Process S110)
First, a glass raw material is prepared by mixing predetermined raw material components. Moreover, this glass raw material is heated and a molten glass is manufactured.
 溶融ガラスは、不純物としての鉄成分(特にFe2+)ができる限り含まれないように調製される。このため、ガラス原料には、高純度のものが使用される。また、混合処理および溶解処理は、清浄度の高い雰囲気で実施される。 The molten glass is prepared so as not to contain iron components (particularly Fe 2+ ) as impurities as much as possible. For this reason, a high-purity glass raw material is used. Further, the mixing process and the dissolving process are performed in an atmosphere with a high cleanliness.
 (工程S120)
 次に、前述の工程で得られた溶融ガラスがフロートバスに流入される。フロートバスには、予め溶融スズが収容されている。このため、溶融ガラスは、溶融スズ上に浮遊して、ガラスリボンが形成される。
(Process S120)
Next, the molten glass obtained in the above-described process is introduced into the float bath. The float bath contains molten tin in advance. For this reason, molten glass floats on molten tin and a glass ribbon is formed.
 ガラスリボンは、溶融スズ上を移動する間に均一な厚さとなる。 The glass ribbon has a uniform thickness while moving on the molten tin.
 下記の工夫のいずれか一つ以上を組みあわせることで、ガラスのスズ含有層における着色を効果的に抑制できる。 ¡Coloring in the tin-containing layer of the glass can be effectively suppressed by combining any one or more of the following devices.
 溶融スズ内に存在する金属不純物(特に鉄)がガラスの溶融スズ面における着色要因となりうるため、溶融スズ錫を水管で冷却することにより、水管の周辺に鉄あるいはスズと鉄の合金あるいはその他の金属不純物を析出させ、溶融スズから鉄等の金属不純物が除去されてよい。 Because metallic impurities (especially iron) present in the molten tin can be a coloring factor on the molten tin surface of the glass, cooling the molten tin tin with a water tube will cause iron or an alloy of tin and iron or other materials around the water tube. Metal impurities may be precipitated and metal impurities such as iron may be removed from the molten tin.
 あるいは、溶融スズ中に電極を差し、還元させることにより、鉄あるいはスズと鉄の合金あるいはその他の金属不純物を析出させ、溶融スズから鉄等の金属不純物が除去されてよい。 Alternatively, iron or an alloy of tin and iron or other metal impurities may be precipitated by inserting an electrode into molten tin and reducing the metal impurities such as iron from the molten tin.
 あるいは、局所的に誘導磁場を発生させ、磁場を印加した周辺に鉄等の金属不純物を多く含むスズを集めてもよい。 Alternatively, an induction magnetic field may be generated locally, and tin containing a large amount of metal impurities such as iron may be collected around the area where the magnetic field is applied.
 あるいは、所望のガラスを製造する前に、各種金属不純物の添加量が溶融スズ中の金属不純物量と比べて同等かより低濃度となるよう調整した別のガラスをフロートバスに流入させ、該低不純物ガラスに溶融スズ中の金属不純物を吸収させることにより、溶融スズから金属不純物を除去してもよい。 Alternatively, before producing the desired glass, another glass adjusted so that the amount of various metal impurities added is equal to or lower than the amount of metal impurities in molten tin is allowed to flow into the float bath, The metal impurities may be removed from the molten tin by causing the impurity glass to absorb the metal impurities in the molten tin.
 また、溶融スズの一部あるいは全部を、金属不純物の含有量が低いスズに入れ替えてもよい。ただし、金属不純物の含有量が低いスズを多量に用意するには多大なコストがかかる。 Also, some or all of the molten tin may be replaced with tin with a low content of metal impurities. However, it is very expensive to prepare a large amount of tin with a low content of metal impurities.
 また、バス雰囲気の還元度を制御する目的で、水素や窒素等のガスの流量、濃度や濃度分布を調節して良い。水素ガス流量および濃度を増やすことは、スズ含有層の吸光度Apを小さくする効果があり、好ましい。 Also, the flow rate, concentration and concentration distribution of gas such as hydrogen and nitrogen may be adjusted for the purpose of controlling the reduction degree of the bath atmosphere. Increasing the hydrogen gas flow rate and concentration is preferable because it has the effect of reducing the absorbance Ap of the tin-containing layer.
 また、ガラスリボンが溶融スズ上を短時間で通過するように、リボンの移動速度を毎時200m以上に上げてもよい。これにより、ガラス中へのスズの侵入量が小さく抑えられ、着色を抑制できる。 Also, the moving speed of the ribbon may be increased to 200 m / h or more so that the glass ribbon passes over the molten tin in a short time. Thereby, the penetration | invasion amount of the tin into glass can be suppressed small, and coloring can be suppressed.
 なお、溶融スズ中の鉄等の不純物量は極力少なくすることが好ましい。スズ中の鉄の含有量について、具体的には、200質量ppm以下とすることが好ましく、150質量ppm以下とすることが好ましく、100質量ppm以下とすることがさらに好ましく、50質量ppm以下とすることが特に好ましい。 In addition, it is preferable to reduce the amount of impurities such as iron in the molten tin as much as possible. Regarding the iron content in tin, specifically, it is preferably 200 mass ppm or less, preferably 150 mass ppm or less, more preferably 100 mass ppm or less, and 50 mass ppm or less. It is particularly preferable to do this.
 (工程S130)
 その後、ガラスリボンは、所定の温度まで徐冷される。また、ガラスリボンを割断することにより、ガラス板が得られる。以上の工程により、本発明の一実施形態によるガラス板を製造できる。
(Step S130)
Thereafter, the glass ribbon is gradually cooled to a predetermined temperature. Moreover, a glass plate is obtained by cleaving the glass ribbon. The glass plate by one Embodiment of this invention can be manufactured according to the above process.
 以上、本発明の一実施形態によるガラスの製造方法の一例について説明した。ただし、本発明の一実施形態によるガラス板の製造方法は、以上の記載に限定されるものではない。 In the above, an example of the manufacturing method of the glass by one Embodiment of this invention was demonstrated. However, the manufacturing method of the glass plate by one Embodiment of this invention is not limited to the above description.
 また、上記記載では、本発明の一実施形態によるガラス板が表示装置の導光板として適用される場合を例に、本発明の一実施形態によるガラス板の特徴を説明した。 In the above description, the characteristics of the glass plate according to the embodiment of the present invention have been described by taking as an example the case where the glass plate according to the embodiment of the present invention is applied as a light guide plate of a display device.
 しかしながら、本発明によるガラス板は、表示装置の導光板以外の各種用途にも、適用できる。特に、本発明によるガラス板は、コンタミネーション物質の含有量が少なく、透過率が高いという特徴を有するため、各種照明用面発光装置および太陽電池用カバーガラス等に適用できる。また、高い意匠性が要求される建築用外装材、内装材、および家具等にも適用できる。 However, the glass plate according to the present invention can be applied to various uses other than the light guide plate of the display device. In particular, the glass plate according to the present invention is characterized by a low content of contaminants and a high transmittance, and thus can be applied to various surface emitting devices for illumination, cover glasses for solar cells, and the like. In addition, the present invention can also be applied to building exterior materials, interior materials, furniture, and the like that require high design properties.
 以下、本発明の実施例について説明する。なお、以下の説明において、例1~例2は、実施例であり、例3は、比較例である。 Hereinafter, examples of the present invention will be described. In the following description, Examples 1 and 2 are examples, and Example 3 is a comparative example.
 (例1)
 前述の図5に示したような方法で、厚さが2.3mmのガラス板(「ガラス板1」と称する)を製造した。
(Example 1)
A glass plate having a thickness of 2.3 mm (referred to as “glass plate 1”) was produced by the method shown in FIG.
 (例2)
 例1と同様の方法で、厚さが2.5mmのガラス板を製造した。ただし、この例2では、原料ガラスの組成を例1の場合とは変化させてガラス板を製造した。その他の製造条件は、例1の場合と同様である。得られたガラス板をガラス板2と称する。
(Example 2)
A glass plate having a thickness of 2.5 mm was produced in the same manner as in Example 1. However, in Example 2, the glass plate was produced by changing the composition of the raw glass from that in Example 1. Other manufacturing conditions are the same as in Example 1. The obtained glass plate is referred to as a glass plate 2.
 (例3)
 例1と同様の方法で、厚さが2.0mmガラス板を製造した。ただし、この例3では、ガラスの組成を例1の場合とは変化させてガラス板を製造した。その他の製造条件は、例1の場合と同様である。得られたガラス板をガラス板3と称する。
(Example 3)
A glass plate having a thickness of 2.0 mm was produced in the same manner as in Example 1. However, in Example 3, the glass composition was changed from that in Example 1 to produce a glass plate. Other manufacturing conditions are the same as in Example 1. The obtained glass plate is referred to as a glass plate 3.
 なお、以下の説明では、各ガラス板において、ガラスの成形の際に、スズ浴と接していた側の表面を、第1の主表面と称し、該第1の主表面と反対の側の表面を、第2の主表面と称する。 In the following description, in each glass plate, the surface on the side in contact with the tin bath at the time of molding the glass is referred to as a first main surface, and the surface on the side opposite to the first main surface. Is referred to as the second main surface.
 以下の表2には、ガラス板1~ガラス板3の組成および鉄レドックス(Fe-Redox)をまとめて示した。なお、これらの組成は、製造後のガラス板を分析することにより、得られたものである。 Table 2 below collectively shows the compositions of glass plates 1 to 3 and iron redox (Fe-Redox). In addition, these compositions are obtained by analyzing the glass plate after manufacture.
Figure JPOXMLDOC01-appb-T000002
 (評価)
 前述のガラス板1~ガラス板3を用いて、以下の評価を行った。
Figure JPOXMLDOC01-appb-T000002
(Evaluation)
The following evaluation was performed using the glass plates 1 to 3 described above.
 (内部透過率Tinおよび平均内部透過率Taveの評価)
 前述の(ガラス板の内部透過率Tinおよび平均内部透過率Tave)の項で示したような方法で、ガラス板1~ガラス板3において、透過率T、およびg線(435.8nm)、F線(486.1nm)、e線(546.1nm)、d線(587.6nm)、C線(656.3nm)の各波長における屈折率を測定し、内部透過率Tinを算出した。また、得られた結果から、平均内部透過率Taveを算定した。透過率の測定には、分光測定装置(UH4150:日立ハイテクノロジーズ社製)を使用し、屈折率の測定には、精密屈折計(KPR-2000:島津製作所社製)を使用した。
(Evaluation of internal transmittance T in and average internal transmittance T ave )
In the glass plate 1 to glass plate 3, the transmittance T A and the g-line (435.8 nm) were obtained by the method described in the above section (Internal transmittance T in and average internal transmittance T ave of the glass plate). ), F-line (486.1 nm), e-line (546.1 nm), d-line (587.6 nm), and C-line (656.3 nm) at each wavelength, and the internal transmittance T in is calculated. did. Moreover, average internal transmittance T ave was calculated from the obtained results. A spectrophotometer (UH4150: manufactured by Hitachi High-Technologies Corporation) was used to measure the transmittance, and a precision refractometer (KPR-2000: manufactured by Shimadzu Corporation) was used to measure the refractive index.
 図6には、ガラス板1およびガラス板2において得られた50mm長での内部透過率Tinの一例を示す。また、図7には、ガラス板3において得られた50mm長での内部透過率Tinの一例を示す。 Figure 6 shows an example of the internal transmittance T in at 50mm length obtained in the glass plate 1 and glass plate 2. FIG. 7 shows an example of the internal transmittance T in with a length of 50 mm obtained in the glass plate 3.
 また、以下の表3には、各ガラス板1~3において算定された、50mm長での、波長400nm~700nmの範囲における平均内部透過率Taveをまとめて示す。 Table 3 below collectively shows the average internal transmittance T ave calculated for each glass plate 1 to 3 in a wavelength range of 400 nm to 700 nm at a length of 50 mm.
Figure JPOXMLDOC01-appb-T000003
 この結果から、ガラス板1~3では、Feに換算した全鉄の含有量がいずれも100質量ppm以下であるために、50mm長での平均内部透過率Taveが85%以上であり、良好な透過性が得られることがわかった。なお、ガラス板3では、鉄レドックスが高いため、平均内部透過率Taveが92%には満たない。
Figure JPOXMLDOC01-appb-T000003
From these results, in the glass plates 1 to 3, since the total iron content converted to Fe 2 O 3 is 100 mass ppm or less, the average internal transmittance T ave at a length of 50 mm is 85% or more. It was found that good permeability was obtained. In addition, since the glass plate 3 has a high iron redox, the average internal transmittance T ave is less than 92%.
 (反射率の評価)
 次に、ガラス板1~ガラス板3において、第1の主表面および第2の主表面に対して、それぞれ、反射率RおよびRを測定した。また、得られた結果から、第1平均反射率Ra.aveおよび第2平均反射率Rb.aveを算定した。
(Evaluation of reflectance)
Next, in the glass plates 1 to 3, the reflectances R a and R b were measured for the first main surface and the second main surface, respectively. Further, from the obtained results, the first average reflectance R a. ave and second average reflectance R b. The ave was calculated.
 図8には、ガラス板1のぞれぞれの主表面において得られた反射率RおよびRの測定結果の一例を示す。図9には、ガラス板2のぞれぞれの主表面において得られた反射率RおよびRの測定結果の一例を示す。また、図10には、ガラス板3のぞれぞれの主表面において得られた反射率RおよびRの測定結果の一例を示す。 In FIG. 8, an example of the measurement result of reflectivity Ra and Rb obtained in each main surface of the glass plate 1 is shown. In FIG. 9, an example of the measurement result of reflectivity Ra and Rb obtained in each main surface of the glass plate 2 is shown. FIG. 10 shows an example of the measurement results of the reflectances R a and R b obtained on the main surfaces of the glass plates 3.
 また、以下の表4には、各ガラス板1~ガラス板3において算定された第1平均反射率Ra.ave、第2平均反射率Rb.ave、および両者の差ΔRをまとめて示す。 Table 4 below shows the first average reflectivity Ra calculated for each of the glass plates 1 to 3 . ave , second average reflectance R b. ave and the difference ΔR between the two are collectively shown.
Figure JPOXMLDOC01-appb-T000004
 この結果から、ガラス板1およびガラス板2では、第1平均反射率Ra.ave(%)は第2平均反射率Rb.ave(%)よりも大きく、かつ、第1平均反射率Ra.ave(%)と、第2平均反射率Rb.ave(%)の差ΔRは、0.25%よりも大きくなっており、図1に示した表示装置10の導光板30のような用途に適することが確認された。
Figure JPOXMLDOC01-appb-T000004
From this result, in the glass plate 1 and the glass plate 2, the first average reflectance R a. ave (%) is the second average reflectance R b. ave (%) and the first average reflectance R a. ave (%) and the second average reflectance R b. The difference ΔR in ave (%) is larger than 0.25%, and it was confirmed that it is suitable for the use like the light guide plate 30 of the display device 10 shown in FIG.
 (スズ含有層の吸光度評価)
 前述の(スズ含有層の吸光度Apの評価方法について)の項に示した方法により、ガラス板1~ガラス板3におけるスズ含有層の吸光度Apを評価した。
(Absorbance evaluation of tin-containing layer)
The absorbance Ap of the tin-containing layer in the glass plates 1 to 3 was evaluated by the method described in the above section (About the method for evaluating the absorbance Ap of the tin-containing layer).
 より具体的には、まず、各ガラス板の略中央部分から、第1および第2の2つのサンプル(縦30mm×横30mm)を採取した。 More specifically, first, two first and second samples (length 30 mm × width 30 mm) were collected from a substantially central portion of each glass plate.
 次に、第1のサンプルにおいて、第1の主表面(ガラス板の第1の主表面に相当する)の側を100μm程度研磨し、第2の主表面122Aの側を100μm程度研磨した。これにより、第1の主表面のスズ含有層が除去された。また、第1の主表面の側に、新たに第1の研磨表面が形成され、第2の主表面の側に、新たに第2の研磨表面が形成された。第1の研磨表面および第2の研磨表面は、いずれも算術平均粗さRaが0.04μm以下の鏡面状態となるまで研磨した。 Next, in the first sample, the side of the first main surface (corresponding to the first main surface of the glass plate) was polished by about 100 μm, and the side of the second main surface 122A was polished by about 100 μm. Thereby, the tin-containing layer on the first main surface was removed. In addition, a first polishing surface was newly formed on the first main surface side, and a second polishing surface was newly formed on the second main surface side. Both the first polishing surface and the second polishing surface were polished until the arithmetic average roughness Ra reached a mirror surface state of 0.04 μm or less.
 この第1のサンプルを、第1の研磨サンプルと称する。 This first sample is referred to as a first polished sample.
 次に、第2のサンプルにおいて、第4の主表面(ガラス板の第2の主表面に相当する)の側を200μm程度研磨し、第1のサンプルと板厚を揃えた。第4の主表面は、いずれも算術平均粗さRaが0.04μm以下の鏡面状態となるまで研磨した。これにより、第4の主表面の側に、新たに第4の研磨表面が形成された。 Next, in the second sample, the side of the fourth main surface (corresponding to the second main surface of the glass plate) was polished by about 200 μm, and the plate thickness was aligned with that of the first sample. Each of the fourth main surfaces was polished until the arithmetic average roughness Ra reached a mirror surface state of 0.04 μm or less. As a result, a fourth polished surface was newly formed on the fourth main surface side.
 この第2のサンプルを、第2の研磨サンプルと称する。 This second sample is referred to as a second polished sample.
 ガラス板1における第1のサンプルおよび第2のサンプルの厚みはいずれも、2.071mmであった。ガラス板2における第1のサンプルおよび第2のサンプルの厚みはいずれも、2.304mmであった。ガラス板3における第1のサンプルおよび第2のサンプルの厚みはいずれも、1.773mmであった。 The thicknesses of the first sample and the second sample in the glass plate 1 were both 2.071 mm. The thicknesses of the first sample and the second sample in the glass plate 2 were all 2.304 mm. The thicknesses of the first sample and the second sample in the glass plate 3 were all 1.773 mm.
 次に、第1の研磨サンプルを用いて、第2の研磨表面の側から、波長400nm~700nmの範囲で、第1の透過率Tを測定した。同様に、第2の研磨サンプルを用いて、第4の研磨表面の側から、波長400nm~700nmの範囲で、第2の透過率Tを測定した。 Next, using the first polishing sample, the first transmittance T 1 was measured in the wavelength range of 400 nm to 700 nm from the second polishing surface side. Similarly, the second transmittance T 2 was measured in the wavelength range of 400 nm to 700 nm from the fourth polishing surface side using the second polishing sample.
 次に、第1の研磨サンプルを用いて、第1の研磨表面を粒度#80の砥粒で粗面化し、さらに黒体塗料を均一に塗布した上で、第2の研磨表面の側から、波長400nm~700nmの範囲で、第2の研磨表面の反射率(第1参照反射率R)を測定した。同様に、第2の研磨サンプルを用いて、第4の研磨表面を粒度#80の砥粒で粗面化し、さらに黒体塗料を均一に塗布した上で、第3の主表面の側から、波長400nm~700nmの範囲で、第3の主表面の反射率(第2参照反射率R)を測定した。 Next, using the first polishing sample, the first polishing surface is roughened with abrasive grains of particle size # 80, and further after applying a black body paint uniformly, from the second polishing surface side, The reflectance (first reference reflectance R r ) of the second polished surface was measured in the wavelength range of 400 nm to 700 nm. Similarly, using the second polishing sample, the fourth polishing surface is roughened with abrasive grains of particle size # 80, and further a black body paint is applied uniformly, and then from the third main surface side, The reflectance of the third main surface (second reference reflectance R t ) was measured in the wavelength range of 400 nm to 700 nm.
 反射率の測定には、絶対反射率測定用アクセサリーを備える分光測定装置(LAMBDA 950:パーキンエルマー社製)を使用した。また、透過率の測定には、分光測定装置(U-4100:日立ハイテクノロジーズ社製)を使用した。 For the measurement of reflectance, a spectroscopic measurement device (LAMBDA 950: manufactured by Perkin Elmer) equipped with an absolute reflectance measurement accessory was used. Further, a spectrophotometer (U-4100: manufactured by Hitachi High-Technologies Corporation) was used for measuring the transmittance.
 得られた透過率TおよびTは、前述の(4)式および(5)式により、内部透過率T1iおよびT2iに変換した。 The obtained transmittances T 1 and T 2 were converted into internal transmittances T 1i and T 2i by the above-described equations (4) and (5).
 さらに、これらのパラメータを用いて、前述の(6)式~(8)式により、スズ含有層の吸光度Apを算定した。 Furthermore, using these parameters, the absorbance Ap of the tin-containing layer was calculated from the above-described equations (6) to (8).
 図11には、ガラス板1における内部透過率T1iおよびT2iの波長依存性を示す。図12には、ガラス板1における第1参照反射率Rおよび第2参照反射率Rの波長依存性を示す。また、図13には、ガラス板1におけるスズ含有層の吸光度Apの波長依存性を示す。 FIG. 11 shows the wavelength dependence of the internal transmittances T 1i and T 2i in the glass plate 1. FIG. 12 shows the wavelength dependence of the first reference reflectance R r and the second reference reflectance R t in the glass plate 1. Moreover, in FIG. 13, the wavelength dependence of the light absorbency Ap of the tin content layer in the glass plate 1 is shown.
 同様に、図14には、ガラス板2における内部透過率T1iおよびT2iの波長依存性を示す。図15には、ガラス板2における第1参照反射率Rおよび第2参照反射率Rの波長依存性を示す。また、図16には、ガラス板2におけるスズ含有層の吸光度Apの波長依存性を示す。 Similarly, FIG. 14 shows the wavelength dependence of the internal transmittances T 1i and T 2i in the glass plate 2. FIG. 15 shows the wavelength dependency of the first reference reflectance R r and the second reference reflectance R t in the glass plate 2. Moreover, in FIG. 16, the wavelength dependence of the light absorbency Ap of the tin content layer in the glass plate 2 is shown.
 同様に、図17には、ガラス板3における内部透過率T1iおよびT2iの波長依存性を示す。図18には、ガラス板3における第1参照反射率Rおよび第2参照反射率Rの波長依存性を示す。また、図19には、ガラス板3におけるスズ含有層の吸光度Apの波長依存性を示す。 Similarly, FIG. 17 shows the wavelength dependence of the internal transmittances T 1i and T 2i in the glass plate 3. FIG. 18 shows the wavelength dependence of the first reference reflectance R r and the second reference reflectance R t in the glass plate 3. FIG. 19 shows the wavelength dependence of the absorbance Ap of the tin-containing layer in the glass plate 3.
 さらに、表5には、各ガラス板において得られた、波長400nm~700nmの範囲におけるスズ含有層の吸光度Apの最大値(Ap Max)、最小値(Ap Min)、最大値-最小値の値(Ap Max - Ap Min)、および吸光度Apの平均値をまとめて示す。 Further, Table 5 shows the maximum value (Ap Max), the minimum value (Ap Min), and the maximum value-minimum value of the absorbance Ap of the tin-containing layer obtained in each glass plate in the wavelength range of 400 nm to 700 nm. (Ap Max -Ap Min) and the average value of absorbance Ap are collectively shown.
Figure JPOXMLDOC01-appb-T000005
 これらの結果から、ガラス板1およびガラス板2では、スズ含有層の吸光度Apの波長400nm~700nmの範囲における最大値と最小値の差は、それぞれ、0.00048および0.00024であり、十分に小さいことがわかった。一方、ガラス板3の場合、スズ含有層の吸光度Apの最大値と最小値の差は、0.00085であり、大きいことがわかった。ガラス板3では、鉄レドックスが50.0%と高く、そのため、吸光度Apの最大値と最小値の差が大きくなった。
Figure JPOXMLDOC01-appb-T000005
From these results, in the glass plate 1 and the glass plate 2, the difference between the maximum value and the minimum value in the wavelength range of 400 nm to 700 nm of the absorbance Ap of the tin-containing layer is 0.00048 and 0.00024, respectively. It was found to be small. On the other hand, in the case of the glass plate 3, it was found that the difference between the maximum value and the minimum value of the absorbance Ap of the tin-containing layer was 0.00085, which was large. In the glass plate 3, the iron redox was as high as 50.0%. Therefore, the difference between the maximum value and the minimum value of the absorbance Ap was large.
 また、ガラス板1およびガラス板2では、波長400nm~700nmの範囲におけるスズ含有層の吸光度Apの最大値は、それぞれ、0.00055および0.00028であった。一方、ガラス板3では、波長400nm~700nmの範囲におけるスズ含有層の吸光度Apの最大値は、0.00120であった。ガラス板3では、鉄レドックスが50.0%と高く、そのため、吸光度Apの最大値が大きくなった。 Further, in glass plate 1 and glass plate 2, the maximum values of absorbance Ap of the tin-containing layer in the wavelength range of 400 nm to 700 nm were 0.00055 and 0.00028, respectively. On the other hand, in the glass plate 3, the maximum absorbance Ap of the tin-containing layer in the wavelength range of 400 nm to 700 nm was 0.00120. In the glass plate 3, the iron redox was as high as 50.0%, and thus the maximum value of the absorbance Ap was increased.
 このことから、ガラス板1およびガラス板2では、第1の主表面に存在するスズ含有層によって、特定波長の入射光が吸収される度合いは少ないことが確認された。このため、ガラス板1およびガラス板2では、入射光と出射光の間で、色ずれが生じるという問題を有意に抑制できる。 From this, it was confirmed that in the glass plate 1 and the glass plate 2, the incident light of the specific wavelength is less absorbed by the tin-containing layer present on the first main surface. For this reason, in the glass plate 1 and the glass plate 2, the problem that a color shift arises between incident light and an emitted light can be suppressed significantly.
 さらに、表6には、各ガラス板の、第1の主表面から10μmの深さ領域における、Feに換算した酸化鉄の濃度の最大値(Fe Max)、および、第1の主表面から10μmの深さ領域における、SnOに換算した酸化スズの濃度の最大値(SnO Max)を示す。これらは、二次イオン質量分析法によって測定した。 Further, Table 6 shows the maximum iron oxide concentration (Fe 2 O 3 Max) converted to Fe 2 O 3 in the depth region of 10 μm from the first main surface of each glass plate, and 1 shows the maximum value (SnO 2 Max) of the concentration of tin oxide converted to SnO 2 in a depth region of 10 μm from the main surface of 1. These were measured by secondary ion mass spectrometry.
Figure JPOXMLDOC01-appb-T000006
 これらの結果から、ガラス板1およびガラス板2では、表面から10μmの深さまでにおける、Feに換算した酸化鉄の濃度の最大値が0.2質量%以下であり、かつ表面から10μmの深さまでにおける、酸化スズの濃度の最大値が1.0質量%より多いことがわかった。ガラス板1およびガラス板2では、Feに換算した全鉄の含有量が100質量ppm以下であり、鉄のレドックスが40%以下であり、SO含有量が0.50質量%以下であり、Al含有量が0.5質量%以上であり、また、表面から10μmの深さまでにおけるFeに換算した酸化鉄の濃度の最大値が0.2質量%以下であるために、スズ含有層における着色が小さく抑えられている。また、ガラス板1およびガラス板2では、表面から10μmの深さまでにおける、SnO換算の酸化スズの濃度の最大値が1.0質量%より大きく、Ra.ave(%)とRb.ave(%)の差が0.25%よりも大きい。そのため、ガラス板1およびガラス板2は、図1に示した表示装置10の導光板30のような用途に適することが確認された。
Figure JPOXMLDOC01-appb-T000006
From these results, in the glass plate 1 and the glass plate 2, the maximum value of the iron oxide concentration in terms of Fe 2 O 3 up to a depth of 10 μm from the surface is 0.2 mass% or less, and 10 μm from the surface. It was found that the maximum value of the tin oxide concentration up to a depth of 1.0 was greater than 1.0 mass%. In the glass plate 1 and the glass plate 2, the total iron content converted to Fe 2 O 3 is 100 mass ppm or less, the iron redox is 40% or less, and the SO 3 content is 0.50 mass% or less. Al 2 O 3 content is 0.5% by mass or more, and the maximum concentration of iron oxide converted to Fe 2 O 3 from the surface to a depth of 10 μm is 0.2% by mass or less. For this reason, coloring in the tin-containing layer is kept small. Further, the glass plate 1 and glass plate 2, definitive from the surface to a depth of 10 [mu] m, the maximum value of the concentration of tin oxide in terms of SnO 2 is larger than 1.0 mass%, R a. ave (%) and R b. The difference in ave (%) is larger than 0.25%. Therefore, it was confirmed that the glass plate 1 and the glass plate 2 are suitable for a use like the light guide plate 30 of the display apparatus 10 shown in FIG.
 本願は、2015年5月13日に出願した日本国特許出願2015-098557号に基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2015-098557 filed on May 13, 2015, the entire contents of which are incorporated herein by reference.
 10    表示装置
 20    光源群
 21    光源
 30    導光板
 32A   第1の主表面
 32B   第2の主表面
 34A~34D  端面
 40    表示素子
 100   第1のガラス板
 110-1 第1のサンプル
 110-2 第2のサンプル
 110A  第1の研磨サンプル
 110B  第2の研磨サンプル
 120   第1の主表面
 120A  第1の主表面
 120B  第3の主表面
 122   第2の主表面
 122A  第2の主表面
 122B  第4の主表面
 123A  第1の研磨表面
 124A  第2の研磨表面
 127B  第4の研磨表面
 132   第1の端面
 134   第2の端面
 136   第3の端面
 138   第4の端面
 150   スズ含有層
DESCRIPTION OF SYMBOLS 10 Display apparatus 20 Light source group 21 Light source 30 Light guide plate 32A 1st main surface 32B 2nd main surface 34A-34D End surface 40 Display element 100 1st glass plate 110-1 1st sample 110-2 2nd sample 110A First polishing sample 110B Second polishing sample 120 First main surface 120A First main surface 120B Third main surface 122 Second main surface 122A Second main surface 122B Fourth main surface 123A First 1 polishing surface 124A 2nd polishing surface 127B 4th polishing surface 132 1st end surface 134 2nd end surface 136 3rd end surface 138 4th end surface 150 Tin content layer

Claims (8)

  1.  第1および第2の主表面を有し、溶融スズ上で成形されたガラス板であって、
     前記第1の主表面は、前記溶融スズと接触した側であり、スズ含有層を有し、
     前記第1の主表面に垂直な方向で割断することにより、当該ガラス板の中心部分から、縦50mm×横50mmの寸法で採取され、相互に対向する第1および第2の割断面が、算術平均粗さRa≦0.03μmとなるようにされたサンプルAにおいて、前記第1の割断面から法線方向の50mm長での、波長400nm~700nmの範囲における内部透過率の平均値が85%以上であり、
     前記スズ含有層の吸光度Apの波長400~700nmの範囲における最大値と最小値の差が0.0007以下であり、
     前記吸光度Apの波長400nm~700nmの範囲における最大値は、0.0010以下である、ガラス板。
    A glass plate having first and second major surfaces and formed on molten tin;
    The first main surface is a side in contact with the molten tin, and has a tin-containing layer.
    By cleaving in the direction perpendicular to the first main surface, the first and second fractured sections which are taken from the central portion of the glass plate in a size of 50 mm length × 50 mm width and face each other are arithmetic. In sample A having an average roughness Ra ≦ 0.03 μm, the average value of internal transmittance in the wavelength range of 400 nm to 700 nm at a length of 50 mm in the normal direction from the first fractured surface is 85%. That's it,
    The difference between the maximum value and the minimum value in the wavelength range of 400 to 700 nm of the absorbance Ap of the tin-containing layer is 0.0007 or less,
    The maximum value of the absorbance Ap in the wavelength range of 400 nm to 700 nm is 0.0010 or less.
  2.  Feに換算した全鉄の含有量が100質量ppm以下であり、
     前記全鉄の含有量に対するFeに換算した2価の鉄イオンの含有量で表される鉄のレドックスは、40%以下であり、
     SO含有量が0.50質量%以下である、請求項1に記載のガラス板。
    The total iron content converted to Fe 2 O 3 is 100 ppm by mass or less,
    The redox of iron represented by the content of divalent iron ions in terms of Fe 2 O 3 with respect to the total iron content is 40% or less,
    SO 3 content is 0.50 mass%, a glass plate according to claim 1.
  3.  前記第1の主表面において、表面から10μmの深さまでにおける、Fe換算の酸化鉄の濃度の最大値は、0.2質量%以下である、請求項1または2に記載のガラス板。 The glass plate according to claim 1 or 2, wherein the maximum value of the concentration of iron oxide in terms of Fe 2 O 3 in the first main surface up to a depth of 10 µm from the surface is 0.2 mass% or less. .
  4.  Al含有量が0.5質量%以上である、請求項1乃至3のいずれか一つに記載のガラス板。 Al 2 O 3 content is more than 0.5 mass%, a glass plate according to any one of claims 1 to 3.
  5.  前記第1の主表面において、表面から10μmの深さまでにおける、SnO換算の酸化スズの濃度の最大値は、1.0質量%より大きい、請求項1乃至4のいずれか一つに記載のガラス板。 5. The maximum value of SnO 2 -converted tin oxide concentration in the first main surface up to a depth of 10 μm from the surface is greater than 1.0 mass%, according to claim 1. Glass plate.
  6.  前記第1の主表面において、波長400nm~700nmの範囲で測定された平均反射率Ra.ave(%)は、前記第2の主表面において、波長400nm~700nmの範囲で測定された平均反射率Rb.ave(%)よりも大きく、両者の差は、0.25%よりも大きい、請求項1乃至5のいずれか一つに記載のガラス板。 On the first main surface, the average reflectance Ra measured in the wavelength range of 400 nm to 700 nm . ave (%) is an average reflectance R b. measured on the second main surface in a wavelength range of 400 nm to 700 nm . The glass plate according to claim 1, which is larger than ave (%) and a difference between the two is larger than 0.25%.
  7.  当該ガラス板は、導光板である、請求項1乃至6のいずれか一つに記載のガラス板。 The glass plate according to any one of claims 1 to 6, wherein the glass plate is a light guide plate.
  8.  当該ガラス板の前記第2の主表面は、光出射側である、請求項7に記載のガラス板。 The glass plate according to claim 7, wherein the second main surface of the glass plate is on a light emitting side.
PCT/JP2016/064258 2015-05-13 2016-05-13 Glass sheet WO2016182054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680026825.8A CN107531540A (en) 2015-05-13 2016-05-13 Glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-098557 2015-05-13
JP2015098557A JP2018108898A (en) 2015-05-13 2015-05-13 Glass plate

Publications (1)

Publication Number Publication Date
WO2016182054A1 true WO2016182054A1 (en) 2016-11-17

Family

ID=57249503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064258 WO2016182054A1 (en) 2015-05-13 2016-05-13 Glass sheet

Country Status (4)

Country Link
JP (1) JP2018108898A (en)
CN (1) CN107531540A (en)
TW (1) TW201704167A (en)
WO (1) WO2016182054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572048A (en) * 2022-11-10 2023-01-06 中国洛阳浮法玻璃集团有限责任公司 Method for improving solar light transmittance of ultra-white float glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090624B1 (en) * 2018-12-20 2021-01-08 Eurokera COPPER ALUMINOBOROSILICATE GLASSES AND THEIR USES

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057638A1 (en) * 2001-12-28 2003-07-17 Nippon Sheet Glass Company, Limited Sheet glass and photoelectric converter-use sheet glass
WO2008056527A1 (en) * 2006-11-10 2008-05-15 Asahi Glass Company, Limited Glass substrate for flat panel display, process for producing the same, and display panel employing the same
JP2011011951A (en) * 2009-07-03 2011-01-20 Asahi Glass Co Ltd Glass substrate for flat panel display, method for producing the same, and display panel using the same
JP2012501285A (en) * 2008-09-01 2012-01-19 サン−ゴバン グラス フランス Method for obtaining glass and glass obtained

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071133B2 (en) * 1993-11-16 2006-07-04 Ppg Industries Ohio, Inc. Colored glass compositions and-automotive vision panels with-reduced transmitted-color shift
DE202005004487U1 (en) * 2004-07-12 2005-11-24 Schott Ag System for backlighting displays or screens
US20140147679A1 (en) * 2011-07-04 2014-05-29 Agc Glass Europe Sheet of float glass having high energy transmission
CN105264284B (en) * 2013-09-03 2018-04-06 日本电气硝子株式会社 Light guide plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057638A1 (en) * 2001-12-28 2003-07-17 Nippon Sheet Glass Company, Limited Sheet glass and photoelectric converter-use sheet glass
WO2008056527A1 (en) * 2006-11-10 2008-05-15 Asahi Glass Company, Limited Glass substrate for flat panel display, process for producing the same, and display panel employing the same
JP2012501285A (en) * 2008-09-01 2012-01-19 サン−ゴバン グラス フランス Method for obtaining glass and glass obtained
JP2011011951A (en) * 2009-07-03 2011-01-20 Asahi Glass Co Ltd Glass substrate for flat panel display, method for producing the same, and display panel using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572048A (en) * 2022-11-10 2023-01-06 中国洛阳浮法玻璃集团有限责任公司 Method for improving solar light transmittance of ultra-white float glass
CN115572048B (en) * 2022-11-10 2023-11-17 中国洛阳浮法玻璃集团有限责任公司 Method for improving solar light transmittance of ultra-white float glass

Also Published As

Publication number Publication date
CN107531540A (en) 2018-01-02
JP2018108898A (en) 2018-07-12
TW201704167A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
US10788172B2 (en) Glass plate
WO2015186486A1 (en) Glass plate for light-guide plate
WO2015178254A1 (en) Glass plate for light guide plate
US10112864B2 (en) Glass article and light guide
WO2016031345A1 (en) Glass plate
KR20200139156A (en) Chemically strengthened glass
WO2016159362A1 (en) Glass article
JP2016210665A (en) Glass sheet
WO2016182054A1 (en) Glass sheet
WO2018101220A1 (en) Glass plate
KR20230008048A (en) glass
WO2019045024A1 (en) Glass plate
JP7429093B2 (en) Light guide plate
JP2017107738A (en) Glass sheet for light guide plate
WO2018159385A1 (en) Light guide plate
WO2023171519A1 (en) Glass
WO2016031830A1 (en) Glass sheet
JP2016076478A (en) Glass plate for light guide plate
US20230391666A1 (en) Chemically strengthened glass production method and chemically strengthened glass
WO2018021279A1 (en) Glass sheet
JP2023164073A (en) split phase glass
JP2024080675A (en) Chemically strengthened glass and its manufacturing method
WO2023105895A1 (en) Low-thermal-expansion glass
WO2016031828A1 (en) Glass sheet
JP2018193286A (en) Glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP