JPH08239237A - Ir-cutting hard glass and its production - Google Patents

Ir-cutting hard glass and its production

Info

Publication number
JPH08239237A
JPH08239237A JP6865395A JP6865395A JPH08239237A JP H08239237 A JPH08239237 A JP H08239237A JP 6865395 A JP6865395 A JP 6865395A JP 6865395 A JP6865395 A JP 6865395A JP H08239237 A JPH08239237 A JP H08239237A
Authority
JP
Japan
Prior art keywords
glass
ratio
infrared
thermal expansion
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6865395A
Other languages
Japanese (ja)
Other versions
JP3778457B2 (en
Inventor
Takao Omori
隆雄 大森
Hisakazu Kamimura
久和 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP06865395A priority Critical patent/JP3778457B2/en
Publication of JPH08239237A publication Critical patent/JPH08239237A/en
Application granted granted Critical
Publication of JP3778457B2 publication Critical patent/JP3778457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE: To obtain a glass having excellent heat-resistance and chemical durability and exhibiting a sharp IR-cutting performance by specifying the thermal expansion coefficient of an Fe2 O3 -containing borosilicate glass and the Fe<2+> /Fe<3+> ratio in the glass. CONSTITUTION: Raw materials for a borosilicate glass having a thermal expansion coefficient of 32-60×10<-7> /K are compounded at ratios to get a basic glass batch composition composed of 50-80wt.% of SiO2 , 0.5-10wt.% of Al2 O3 , 0.1-5wt.% of Fe2 O3 , 1-12wt.% of Na2 O+K2 O+Li2 O, 5-20wt.% of B2 O3 , 0.5-20wt.% of CaO+MgO+BaO+ZnO+Sb2 O3 and 0.1-3wt.% of F. The compounded composition is incorporated with 0.1-1wt.% of powder of one or more kinds of glass- constituting metals selected from Si, Zn, Al and Sb as a reducing agent to reduce the Fe<3+> in the glass to Fe<2+> and adjust the Fe<2+> /Fe<3+> ratio to 3-25. These raw material batches are filled in a refractory crucible, melted at 1400-1420 deg.C for about 8hr in closed pot state, cast in a metallic mold, slowly cooled and polished to obtain the objective glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硬質ガラスであってか
つ赤外領域に吸収特性を持つ硬質赤外線カットガラスと
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard infrared cut glass which is hard glass and has absorption characteristics in the infrared region, and a method for producing the same.

【0002】[0002]

【従来の技術】従来からガラスによる熱線吸収には、F
2+イオンによる赤外部の吸収特性が利用されている。
Fe2+は波長1.1μm付近に吸収の中心を有し、特に
ガラス中で安定にFe2+を形成する燐酸系ガラスが、熱
線吸収用フィルタ等に使用されている。この種の燐酸系
ガラスは、多量にFeOを含有し、しかも可視部に吸収
を生じない特性的に優れた熱線吸収性を示すが、ガラス
構造的に化学的耐久性がわるく、溶融時の粘性が低いた
め複雑な形状に成形するのが難しいこともあって、窓ガ
ラスや容器あるいはガラス管としては使用しにくく、実
際の用途はフィルタ等の狭い範囲に限られていた。
2. Description of the Related Art Conventionally, F has been used to absorb heat rays by glass.
The absorption characteristic in the infrared region by the e 2+ ion is used.
Fe 2+ has an absorption center near a wavelength of 1.1 μm, and phosphoric acid glass that forms Fe 2+ stably in glass is used for heat ray absorbing filters and the like. This type of phosphoric acid glass contains a large amount of FeO and exhibits excellent heat ray absorbability without absorption in the visible region, but the glass structure has poor chemical durability and viscosity during melting. Since it is low, it is difficult to mold it into a complicated shape, and it is difficult to use it as a window glass, a container, or a glass tube, and the actual application was limited to a narrow range such as a filter.

【0003】このため、ソーダ石灰系ガラスを基礎ガラ
スとして熱線吸収特性を与える方法が開発され、このガ
ラスを使用することによって、熱線吸収特性をもった照
明用ランプバルブや各種容器の製造も可能になった。特
公昭59-3418 号公報に開示されたこの方法は、ガラスの
鉄分含有量、清澄剤及び還元剤の成分と使用量を選択す
ることにより、可視部に吸収の少ない熱線吸収ガラスを
得るものである。
For this reason, a method of giving heat ray absorption characteristics using soda lime glass as a basic glass has been developed, and by using this glass, it is possible to manufacture lamp bulbs for illumination and various containers having heat ray absorption characteristics. became. This method disclosed in Japanese Examined Patent Publication No. 59-3418 is to obtain a heat ray absorbing glass with little absorption in the visible region by selecting the iron content of the glass, the components of the fining agent and the reducing agent and the amounts used. is there.

【0004】一方、光化学反応を利用した化学プラント
において、反応を効率的に行わせるため、反応容器内の
反応液に光源を浸漬させる方法がとられている。光源と
しては、化学反応に必要とされる光の波長にもよるが、
水銀ランプ、HIDランプ、キセノンランプ等が使用さ
れる。このような化学プラント用光源では、光源の大型
化に伴ってランプの発熱量が増大するため、ランプを冷
却する必要があり、反応液とランプの間を隔絶するガラ
ス製の水冷管を使用し、水冷管内に冷却水を循環させて
光化学反応に必要な光放射を遮ることなく光源の冷却が
行われている。水冷管の材質としては、反応液に対して
十分な耐蝕性があり、温度上昇に対しても耐熱強度が要
求されるので、耐熱性、化学的耐久性、光透過性に優れ
た硼珪酸系ガラスが使用されている。
On the other hand, in a chemical plant utilizing a photochemical reaction, a method of immersing a light source in a reaction solution in a reaction vessel is used in order to efficiently carry out the reaction. As a light source, it depends on the wavelength of light required for chemical reaction,
Mercury lamps, HID lamps, xenon lamps, etc. are used. In such a light source for a chemical plant, the heating value of the lamp increases as the size of the light source increases.Therefore, it is necessary to cool the lamp, and a glass water cooling tube that isolates the reaction solution from the lamp is used. A light source is cooled by circulating cooling water in a water cooling tube without blocking the light emission necessary for photochemical reaction. The material of the water-cooled tube has sufficient corrosion resistance to the reaction solution and is required to have heat resistance strength against temperature rise. Therefore, borosilicate type is excellent in heat resistance, chemical durability and light transmission. Glass is used.

【0005】[0005]

【発明が解決しようとする課題】上記化学プラント用光
源の水冷管を用いた冷却水による効果は、伝熱によるラ
ンプ外管の温度上昇を防止するのみで、ランプからの輻
射熱をカットするまでには至らず、反応液の不必要な温
度上昇をもたらす要因となることがわかった。したがっ
て、水冷管に赤外線吸収特性をもったガラスを用いれ
ば、温度上昇の原因となる熱線を効果的に遮断して水冷
効果とも合わせ反応収率の向上に寄与できる。
The effect of the cooling water using the water cooling tube of the light source for the chemical plant is only to prevent the temperature rise of the outer tube of the lamp due to heat transfer, and to cut the radiant heat from the lamp. However, it was found that it was a factor that caused an unnecessary temperature rise of the reaction solution. Therefore, if a glass having infrared absorption properties is used for the water cooling tube, it is possible to effectively block the heat rays that cause the temperature rise and to contribute to the improvement of the reaction yield together with the water cooling effect.

【0006】しかしながら、上記燐酸系ガラス、ソーダ
石灰系ガラス等の軟質ガラスは、反応液に対する耐蝕性
や耐熱強度の点で不十分なため、このような用途への適
用は困難である。他方、現在水冷管に使用されている硼
珪酸系ガラスに赤外線吸収特性を付与することも考えら
れたが、次のような理由により赤外線のみを効果的にカ
ットできる硼珪酸系ガラスは得られていない。
However, the soft glass such as the phosphoric acid type glass and the soda lime type glass is insufficient in terms of corrosion resistance and heat resistance against the reaction liquid, and thus it is difficult to apply to such applications. On the other hand, it was also considered to give infrared absorbing properties to borosilicate glass currently used for water-cooled tubes, but borosilicate glass that can effectively cut only infrared rays has been obtained for the following reasons. Absent.

【0007】一般にガラス中の鉄分は、Fe2+またはF
3+の形で存在し、次のような平衡関係を有している。
Generally, the iron content in glass is Fe 2+ or F
It exists in the form of e 3+ and has the following equilibrium relationship.

【0008】[0008]

【化1】 Embedded image

【0009】この平衡は溶融雰囲気、ガラス組成、溶融
温度、溶融時間等によって左右される。硼珪酸系ガラス
の場合、その基本成分に多量の酸性成分を含有している
ため、ガラス中に含まれるFe3+に対してFe2+の比率
を大きくすることは難しく、したがって燐酸系ガラスの
ように可視域での透過率を高く保ったまま赤外域をシャ
ープカットすることはできなかった。このため単に硼珪
酸系ガラスにFeを添加したのみでは、上記水冷管の場
合、光化学反応に必要な波長域にまで吸収が及び、反応
効率の低下をまねく問題があった。
This equilibrium depends on the melting atmosphere, glass composition, melting temperature, melting time and the like. In the case of borosilicate glass, since its basic component contains a large amount of acidic component, it is difficult to increase the ratio of Fe 2+ to Fe 3+ contained in the glass. As described above, it was not possible to sharply cut the infrared region while maintaining a high transmittance in the visible region. Therefore, if only Fe is added to the borosilicate glass, in the case of the water-cooled tube, there is a problem that absorption occurs even in the wavelength region necessary for the photochemical reaction and the reaction efficiency decreases.

【0010】本発明はこのような事情を考慮してなされ
たもので、耐熱性、化学的耐久性に優れた硬質ガラスで
あって赤外線シャープカット性を合せ持ったガラスとそ
の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a glass which is a hard glass excellent in heat resistance and chemical durability and has an infrared sharp cut property, and a method for producing the same. The purpose is to

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するために、硼珪酸系ガラスにFe2 3 を含有させる
とともに強い還元性の条件下で溶融することによって、
ガラス中に含まれるFe2+の比率を大きくすることを可
能としたものである。
In order to achieve the above object, the present invention comprises adding Fe 2 O 3 to a borosilicate glass and melting the glass under strong reducing conditions.
It is possible to increase the ratio of Fe 2+ contained in the glass.

【0012】すなわち本発明は、Fe2 3 を0.1〜
5%含有し、熱膨脹係数が32〜60×10-7/Kの硼
珪酸系ガラスであって、ガラス中のFe2+/Fe3+の比
率が3〜25であることを特徴とする硬質赤外線カット
ガラスである。
That is, in the present invention, Fe 2 O 3 is added in an amount of 0.1
A borosilicate glass containing 5% and having a coefficient of thermal expansion of 32 to 60 × 10 -7 / K, characterized in that the ratio of Fe 2+ / Fe 3+ in the glass is 3 to 25. It is an infrared cut glass.

【0013】具体的には、質量百分率で、SiO2 50
〜80%,Al2 3 0.5〜10%,Fe2 3 0.
1〜5%,Na2 O+K2 O+Li2 O 1〜12%,
23 5〜20%,CaO+MgO+BaO+ZnO
+Sb2 3 0.5〜20%,F 0.1〜3%からな
る組成を有し、熱膨脹係数が32〜60×10-7/Kで
ある硬質赤外線カットガラスである。
Specifically, in terms of mass percentage, SiO 2 50
˜80%, Al 2 O 3 0.5 to 10%, Fe 2 O 3 0.
1-5%, Na 2 O + K 2 O + Li 2 O 1-12%,
B 2 O 3 5~20%, CaO + MgO + BaO + ZnO
Hard infrared cut glass having a composition of + Sb 2 O 3 0.5 to 20% and F 0.1 to 3% and a thermal expansion coefficient of 32 to 60 × 10 −7 / K.

【0014】本発明のガラスは、質量百分率で、SiO
2 50〜80%,Al2 3 0.5〜10%,Fe2
3 0.1〜5%,Na2 O+K2 O+Li2 O 1〜1
2%,B2 3 5〜20%,CaO+MgO+BaO+
ZnO+Sb2 3 0.5〜20%,F 0.1〜3%
からなる基礎ガラスバッチ中に、還元剤としてガラス構
成元素の金属粉末を0.1〜1%添加してガラス中のF
3+をFe2+に還元し、Fe2+/Fe3+の比率を3〜2
5とする製造方法により得られる。
The glass of the present invention has a percentage by weight of SiO 2.
2 50-80%, Al 2 O 3 0.5-10%, Fe 2 O
3 0.1-5%, Na 2 O + K 2 O + Li 2 O 1-1
2%, B 2 O 3 5~20 %, CaO + MgO + BaO +
ZnO + Sb 2 O 3 0.5-20%, F 0.1-3%
To the basic glass batch consisting of 0.1 to 1% of a metal powder of a glass-constituting element as a reducing agent,
e 3+ is reduced to Fe 2+ and the ratio of Fe 2+ / Fe 3+ is 3 to 2
It is obtained by the manufacturing method of 5.

【0015】また、前記金属粉末が、Si,Zn,A
l,Sbのいずれか1種または2種以上であることを特
徴とする硬質赤外線カットガラスの製造方法である。
The metal powder is Si, Zn, A
The method for producing a hard infrared cut glass is characterized in that any one or more of l and Sb is used.

【0016】[0016]

【作用】上記ガラスは、熱膨張係数を32〜60×10
-7/Kとする硼珪酸系ガラスであるため、耐熱性、化学
的耐久性に優れる。またFe2 3 を0.1〜5%含有
し、Fe2+/Fe3+の比率を3〜25としてあるため、
Fe2+による優れた赤外線シャープカット性が得られ
る。
The above glass has a coefficient of thermal expansion of 32 to 60 × 10.
Since it is a borosilicate glass with -7 / K, it has excellent heat resistance and chemical durability. Further, since Fe 2 O 3 is contained in an amount of 0.1 to 5% and the ratio of Fe 2+ / Fe 3+ is set to 3 to 25,
Excellent infrared sharp cut property due to Fe 2+ is obtained.

【0017】次に本発明のガラス組成を上記範囲に限定
した理由を説明する。
Next, the reason why the glass composition of the present invention is limited to the above range will be described.

【0018】SiO2 はガラスの主成分であり、ガラス
ネットワーク構造の形成に必要不可欠な成分であるが、
50%未満ではネットワーク構造が不十分となり耐水性
が劣化する。また80%を越えると溶融性が悪くなる。
好ましくは60〜76%の範囲である。
SiO 2 is a main component of glass and an essential component for forming a glass network structure.
If it is less than 50%, the network structure becomes insufficient and the water resistance deteriorates. Further, if it exceeds 80%, the meltability is deteriorated.
It is preferably in the range of 60 to 76%.

【0019】Al2 3 はガラスの化学的耐久性を向上
させる効果があるが、0.5%未満ではその効果が得ら
れず、10%を越えると脈理等のガラス不良を生じやす
くするので好ましくない。好ましくは1〜9%である。
Al 2 O 3 has an effect of improving the chemical durability of glass, but if it is less than 0.5%, the effect cannot be obtained, and if it exceeds 10%, glass defects such as striae are likely to occur. It is not preferable. It is preferably 1 to 9%.

【0020】Na2 O、K2 O、Li2 Oのアルカリ金
属酸化物は、ガラスの粘性を下げ、溶融を促進させる
が、その合量が1%未満ではその効果は得られず、12
%を越えるとガラスの熱膨脹係数が60×10-7/Kを
越え、また化学的耐久性が劣化する。
Alkali metal oxides of Na 2 O, K 2 O and Li 2 O lower the viscosity of glass and accelerate melting, but if the total amount is less than 1%, the effect cannot be obtained.
If it exceeds%, the coefficient of thermal expansion of the glass will exceed 60 × 10 −7 / K, and the chemical durability will deteriorate.

【0021】CaO、MgO、BaO、ZnO、Sb2
3 などの金属酸化物は、その存在により溶融性を改善
し、熱膨脹係数を調整し、化学的耐久性を向上させる効
果があるが、その合量が0.5%未満ではこれらの効果
は期待できず、20%を越えると結晶が発生しやすくな
る。好ましくは3〜17%の範囲である。
CaO, MgO, BaO, ZnO, Sb 2
Metal oxides such as O 3 have the effects of improving the meltability, adjusting the coefficient of thermal expansion, and improving the chemical durability due to their presence, but if the total amount is less than 0.5%, these effects are It cannot be expected, and if it exceeds 20%, crystals are likely to occur. It is preferably in the range of 3 to 17%.

【0022】B2 3 は熱膨張係数を大きくすることな
く溶融性を改善することができるが、5%未満ではその
効果が得られず、20%を越えると化学的耐久性が悪く
なる。好ましくは8〜18%の範囲である。
B 2 O 3 can improve the meltability without increasing the thermal expansion coefficient, but if it is less than 5%, its effect cannot be obtained, and if it exceeds 20%, the chemical durability is deteriorated. It is preferably in the range of 8 to 18%.

【0023】Fはガラスの溶融助剤として作用するが、
0.1%未満ではその効果は期待できず、3%を越える
と溶融炉の耐火物への浸蝕性が強くなり、溶融炉の寿命
を縮めるほかガラスが結晶を析出するようになるので好
ましくない。
Although F acts as a glass melting aid,
If it is less than 0.1%, the effect cannot be expected, and if it exceeds 3%, the erosion of the refractory in the melting furnace becomes strong, which shortens the life of the melting furnace and causes glass to precipitate crystals, which is not preferable. .

【0024】Fe2 3 はガラスに赤外線吸収特性を与
えるために加えられ、Fe3+が還元剤の作用によりFe
2+となって赤外線吸収特性を持つようになるが、0.1
%未満では十分な赤外線吸収効果が得られず、5%を越
えると可視域の吸収が大きくなり光透過材料としては適
さなくなる。好ましくは0.2〜2%、より好ましくは
0.3〜0.8%である。
Fe 2 O 3 is added to give infrared absorbing properties to the glass, and Fe 3+ acts as a reducing agent to produce Fe.
It becomes 2+ and has infrared absorption characteristics, but 0.1
If it is less than 5%, a sufficient infrared absorbing effect cannot be obtained, and if it exceeds 5%, the absorption in the visible region becomes large and it becomes unsuitable as a light transmitting material. It is preferably 0.2 to 2%, more preferably 0.3 to 0.8%.

【0025】熱膨張係数は、要求される耐熱強度を満た
し、ガラスの成形性等を考慮すると32〜60×10-7
/Kであることが好ましく、より好ましくは45〜55
×10-7/Kの範囲である。
The coefficient of thermal expansion satisfies the required heat resistance strength, and is 32 to 60 × 10 −7 in consideration of the formability of glass.
/ K is preferable, and more preferably 45 to 55.
It is in the range of × 10 -7 / K.

【0026】上記のとおり赤外線吸収特性はFe2+イオ
ンによって与えられるので、Fe2+/Fe3+の比が高い
ほど赤外線のシャープカット性は良くなるが、Fe2+
Fe3+の比が25を越えると還元鉄が析出するので好ま
しくない。一方、Fe2+/Fe3+の比が3未満では赤外
線シャープカット性がなくなり、十分な熱線吸収効果が
得られない。Fe2+/Fe3+の比の好ましい範囲は10
〜20である。
As mentioned above, since the infrared absorption property is given by Fe 2+ ions, the higher the ratio of Fe 2+ / Fe 3+ is, the better the sharp cut property of infrared rays is, but Fe 2+ /
If the ratio of Fe 3+ exceeds 25, reduced iron is precipitated, which is not preferable. On the other hand, if the Fe 2+ / Fe 3+ ratio is less than 3, the infrared sharp cut property is lost and a sufficient heat ray absorbing effect cannot be obtained. The preferable range of the ratio of Fe 2+ / Fe 3+ is 10
~ 20.

【0027】次に本発明の製造方法についてその作用を
述べる。上述のように硼珪酸系ガラスはその基本成分に
多量の酸性成分を含有しているため、燐酸系ガラス等で
は十分な還元作用が得られる澱粉等の弱い還元剤ではガ
ラス中に含まれるFe3+に対してFe2+の比率を大きく
することは難しく、燐酸系ガラスのように可視域での透
過率を高く保ったまま赤外域をシャープカットするのは
困難であった。そこで本発明では、硼珪酸系ガラスに比
較的多めのFe2 3 を含有させるとともに、還元剤と
してガラス構成元素を金属粉末の状態で0.1〜1%添
加して使用している。この金属粉末は、溶融ガラス中で
酸化されてガラス構成成分となり、この過程で強い還元
作用を及ぼす。これによってFe3+に対してFe2+の比
率を大きくすることが可能となり、硼珪酸系ガラスであ
りながら赤外線シャープカット性を合せ持つガラスが得
られた。金属粉末の添加量は、0.1%未満では硼珪酸
系ガラスに対しては還元作用が不十分で、赤外域に充分
な熱線吸収特性が得られず、1%を越えて添加すると、
還元雰囲気がより強くなり着色剤としてのFe2 3
還元されて黒色の金属鉄が析出するので好ましくない。
Next, the operation of the manufacturing method of the present invention will be described. As described above, borosilicate glass contains a large amount of acidic components in its basic component, and therefore, a weak reducing agent such as starch that provides a sufficient reducing action for phosphoric acid glass, etc. contains Fe 3 it is difficult to increase the ratio of Fe 2+ relative to +, it has been difficult to sharp cut the infrared range while maintaining a high transmittance in the visible region as phosphoric acid-based glass. Therefore, in the present invention, a relatively large amount of Fe 2 O 3 is contained in the borosilicate glass, and 0.1 to 1% of a glass constituent element is added as a reducing agent in a metal powder state for use. This metal powder is oxidized in molten glass to become a glass constituent component, and exerts a strong reducing action in this process. As a result, it was possible to increase the ratio of Fe 2+ to Fe 3+ , and a glass having an infrared sharp cut property even though it was a borosilicate glass was obtained. If the amount of the metal powder added is less than 0.1%, the reducing action is insufficient for borosilicate glass, and sufficient heat ray absorption characteristics in the infrared region cannot be obtained.
This is not preferable because the reducing atmosphere becomes stronger and Fe 2 O 3 as a colorant is reduced to deposit black metallic iron.

【0028】また、本発明では還元剤として用いる金属
粉末をガラス構成元素の金属成分から選択使用するよう
にしているので、強い還元作用が得られると同時に還元
剤がガラスに対して不要な影響を与えない利点がある。
したがって上記組成のガラスに対しては、Si,Zn,
Al,Sbを用いることが好ましい。これらの金属は、
それぞれSiO2 、ZnO、Al2 3 、Sb2 3
なってガラス中に取り込まれる。
Further, in the present invention, since the metal powder used as the reducing agent is selectively used from the metal components of the glass constituent elements, a strong reducing action can be obtained and at the same time the reducing agent has an unnecessary effect on the glass. There is an advantage not to give.
Therefore, for the glass of the above composition, Si, Zn,
It is preferable to use Al and Sb. These metals are
It becomes SiO 2 , ZnO, Al 2 O 3 , and Sb 2 O 3, respectively, and is taken into the glass.

【0029】[0029]

【実施例】以下、本発明の実施例について説明する。表
1に質量百分率で示したガラス組成が得られるように各
原料を調合し、これに表2に同じく質量百分率で示す還
元剤を混合する。次に、これらの原料バッチをそれぞれ
1lの耐火物るつぼに収容し、1400〜1420℃で
約8時間、クローズドポット状態で溶融した後、金属型
中に流し込んで徐冷したものを板状にスライスして、厚
さ2mmに研磨した試料を作成した。本発明のガラス
は、消泡性が良く、困難なくポット溶融が可能であっ
た。これとは別に表1に示す組成の燐酸系ガラスを溶融
し、実施例と同様の試料を作成して比較例とした。
Embodiments of the present invention will be described below. Each raw material is prepared so that the glass composition shown in Table 1 by mass percentage is obtained, and the reducing agent also shown in Table 2 by mass percentage is mixed therein. Next, each of these raw material batches was placed in a 1-liter refractory crucible, melted in a closed pot state at 1400 to 1420 ° C. for about 8 hours, then poured into a metal mold and gradually cooled, and sliced into plates. Then, a sample polished to a thickness of 2 mm was prepared. The glass of the present invention had good defoaming properties and could be melted in a pot without difficulty. Separately from this, a phosphoric acid glass having the composition shown in Table 1 was melted and a sample similar to that of the example was prepared as a comparative example.

【0030】得られた試料について、分光透過率を測定
し、波長535nmおよび1100nmの透過率を表2
に示した。また実施例No.3とNo.6の試料につい
ては、図1に従来水冷管に使用されていた赤外線吸収特
性を持たない硼珪酸系ガラスの特性と合わせて分光透過
率曲線を示す。
The spectral transmittance of the obtained sample was measured, and the transmittances at wavelengths of 535 nm and 1100 nm are shown in Table 2.
It was shown to. In addition, in Example No. 3 and No. For the sample of No. 6, the spectral transmittance curve is shown in FIG. 1 together with the characteristics of the borosilicate glass that does not have the infrared absorption characteristics conventionally used for water-cooled tubes.

【0031】また、それぞれのガラスについて湿式分析
の有機溶媒抽出法により全Fe含量およびFe3+含量を
測定し、全Fe含量からFe3+含量を差引いてFe2+
量を求めた。この結果に基づきFe2+/Fe3+の比を算
出し、これも表2に示した。
Further, the total Fe content and the Fe 3+ content of each glass were measured by the organic solvent extraction method of wet analysis, and the Fe 2+ content was obtained by subtracting the Fe 3+ content from the total Fe content. Based on this result, the ratio of Fe 2+ / Fe 3+ was calculated, which is also shown in Table 2.

【0032】さらに各試料を温度80℃、湿度95%の
雰囲気に1000時間放置する恒温恒湿試験を行い、ガ
ラス表面の性状変化により評価した結果を「耐候性」と
して表1に示す。
Further, each sample was subjected to a constant temperature and constant humidity test in which it was left in an atmosphere of a temperature of 80 ° C. and a humidity of 95% for 1000 hours, and the results evaluated by changing the properties of the glass surface are shown in Table 1 as “weather resistance”.

【0033】[0033]

【表1】 [Table 1]

【表2】 [Table 2]

【0034】表1および表2からわかるように、本発明
の実施例ガラスは、Fe2 3 の含有量というよりもF
2+/Fe3+の比に依存して535nmにおける透過率
が高くなっており、可視域において十分高い透過率を維
持したまま1100nmにおいては透過率が低く抑えら
れている。ちなみに実施例No.1のガラスに還元剤を
添加しないで溶融したガラスは、Fe2+/Fe3+の比が
0.3となり、多量のFe分によってガラスが黄褐色に
着色され赤外域の吸収が十分得られないまま全域の透過
率が低下してしまった。また図1に示すように本実施例
のガラスは、可視域で従来の硼珪酸系ガラスと同等の透
過率を維持したまま近赤外域から赤外域での透過率が急
激に低下している。
As can be seen from Tables 1 and 2, the example glasses of the present invention have a F 2 O 3 content rather than a F 2 O 3 content.
The transmittance at 535 nm is high depending on the ratio of e 2+ / Fe 3+ , and the transmittance is kept low at 1100 nm while maintaining a sufficiently high transmittance in the visible region. By the way, Example No. In the glass melted without adding a reducing agent to the glass of No. 1, the ratio of Fe 2+ / Fe 3+ was 0.3, and the glass was colored yellowish brown due to a large amount of Fe, and absorption in the infrared region was sufficiently obtained. The transmittance of the whole area was reduced without it. Further, as shown in FIG. 1, the glass of this example has a sharp decrease in the transmittance from the near infrared region to the infrared region while maintaining the same transmittance as that of the conventional borosilicate glass in the visible region.

【0035】以上のことから本発明の方法によって得ら
れるガラスは、強い還元剤の作用によりガラス中のFe
2+が増加した結果、赤外線のシャープカット特性が得ら
れていることがわかる。なお上記実施例においては還元
剤として各金属粉末を1種ずつ添加した例を示したが、
これら金属粉末を2種以上混合使用しても同様の効果が
得られた。
From the above, the glass obtained by the method of the present invention is characterized by the action of a strong reducing agent.
As a result of the increase in 2+, it can be seen that the infrared sharp cut characteristic is obtained. In addition, in the above-mentioned embodiment, an example in which one kind of each metal powder is added as a reducing agent is shown.
Similar effects were obtained even if two or more kinds of these metal powders were mixed and used.

【0036】また、表1に示した恒温恒湿試験の結果、
比較例のガラスは表面が白濁したようになり光透過材料
としては使用不能な状態になったのに対し、実施例のガ
ラスはいずれも外観上ほとんど変化なく、「◎」のもの
に比べて「○」のもので若干透過率の低下が見られた程
度であり、耐候性上なんら問題のないものであった。
Further, as a result of the constant temperature and constant humidity test shown in Table 1,
The glass of the comparative example became cloudy on the surface and could not be used as a light-transmitting material, while the glass of the examples showed almost no change in appearance, and compared with those of `` ◎ ''. In the case of “○”, the transmittance was slightly decreased, and there was no problem in weather resistance.

【0037】なお本発明のガラスは、熱膨張係数のみな
らずその他の物性においても従来の硼珪酸系ガラスと変
わることなく、様々な成形加工が可能であり、水冷管の
成形も従来同様に行うことができる。したがって本発明
のガラスを光化学プラントの水冷管として使用した場合
には、反応に必要な波長域の光を遮ることなく光源ラン
プからの輻射熱が遮断され、光源に起因する反応液の不
要な温度上昇が防止できる。また水冷管以外にも赤外線
吸収特性を要求される種種の用途に使用でき、従来用い
られていた燐酸系ガラスやソーダ石灰系ガラスに比べて
優れた耐久性、耐熱性を示す。
The glass of the present invention can be subjected to various forming processes not only in the thermal expansion coefficient but also in other physical properties, unlike the conventional borosilicate glass, and the water-cooled pipe can be formed in the same manner as in the conventional case. be able to. Therefore, when the glass of the present invention is used as a water cooling tube of a photochemical plant, the radiant heat from the light source lamp is blocked without blocking the light in the wavelength range necessary for the reaction, and the temperature rise of the reaction liquid caused by the light source is not required. Can be prevented. In addition to water-cooled tubes, it can be used in various applications requiring infrared absorption properties, and exhibits superior durability and heat resistance to the conventionally used phosphate-based glass and soda-lime-based glass.

【0038】[0038]

【発明の効果】以上のように本発明のガラスは、耐熱
性、化学的耐久性に優れた硬質ガラスでありながら、ガ
ラス中のFe2+比を高めたことにより優れた可視透過率
と赤外線シャープカット性を有する。
As described above, the glass of the present invention is a hard glass excellent in heat resistance and chemical durability, but has an excellent visible light transmittance and infrared rays due to the high Fe 2+ ratio in the glass. Has sharp cut properties.

【0039】また、本発明の製造方法によれば、ガラス
構成元素の金属粉末を還元剤として使用しているので、
硼珪酸系ガラスに対しても強い還元作用が得られ、これ
によってFe3+に対してFe2+の比率を大きくすること
が可能となり、赤外線シャープカット性を有するガラス
が得られる。還元剤として添加されるSi,Zn,A
l,Sb等の金属粉末は、ガラス構成成分としてガラス
中に吸収され、ガラスに対して不要な影響を与えない利
点もある。
Further, according to the manufacturing method of the present invention, since the metal powder of the glass-constituting element is used as the reducing agent,
A strong reducing action is also obtained for borosilicate glass, which makes it possible to increase the ratio of Fe 2+ to Fe 3+ and obtain a glass having an infrared sharp cut property. Si, Zn, A added as a reducing agent
Metal powders such as l and Sb are also absorbed in the glass as a glass constituent component and have an advantage that they do not have an unnecessary influence on the glass.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の試料ガラスと従来の硼珪酸系
ガラスの分光透過率を示す曲線図である。
FIG. 1 is a curve diagram showing the spectral transmittances of a sample glass of an example of the present invention and a conventional borosilicate glass.

【符号の説明】[Explanation of symbols]

1 従来の硼珪酸系ガラスの分光透過率曲線 2 本発明の実施例No.3のガラスの分光透過率曲線 3 本発明の実施例No.6のガラスの分光透過率曲線 1 Spectral transmittance curve of conventional borosilicate glass 2 Example No. 1 of the present invention Spectral transmittance curve of glass of No. 3 Example No. 3 of the present invention 6 Spectral transmittance curve of glass

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Fe2 3 を0.1〜5%含有し、熱膨
脹係数が32〜60×10-7/Kの硼珪酸系ガラスであ
って、ガラス中のFe2+/Fe3+の比率が3〜25であ
ることを特徴とする硬質赤外線カットガラス。
1. A borosilicate glass containing 0.1 to 5% of Fe 2 O 3 and having a coefficient of thermal expansion of 32 to 60 × 10 −7 / K, wherein Fe 2+ / Fe 3+ is contained in the glass. Infrared cut glass having a ratio of 3 to 25.
【請求項2】 質量百分率で、SiO2 50〜80%,
Al2 3 0.5〜10%,Fe2 3 0.1〜5%,
Na2 O+K2 O+Li2 O 1〜12%,B2 3
〜20%,CaO+MgO+BaO+ZnO+Sb2
3 0.5〜20%,F 0.1〜3%からなる組成を有
することを特徴とする請求項1記載の硬質赤外線カット
ガラス。
2. SiO 2 50 to 80% by mass percentage,
Al 2 O 3 0.5-10%, Fe 2 O 3 0.1-5%,
Na 2 O + K 2 O + Li 2 O 1~12%, B 2 O 3 5
~20%, CaO + MgO + BaO + ZnO + Sb 2 O
3. The hard infrared cut glass according to claim 1, having a composition of 0.5 to 20% and F of 0.1 to 3%.
【請求項3】 質量百分率で、SiO2 50〜80%,
Al2 3 0.5〜10%,Fe2 3 0.1〜5%,
Na2 O+K2 O+Li2 O 1〜12%,B2 3
〜20%,CaO+MgO+BaO+ZnO+Sb2
3 0.5〜20%,F 0.1〜3%からなる基礎ガラ
スバッチ中に、還元剤としてガラス構成元素の金属粉末
を0.1〜1%添加してガラス中のFe3+をFe2+に還
元し、Fe2+/Fe3+の比率を3〜25とすることによ
り赤外線吸収特性のあるガラスを得ることを特徴とする
硬質赤外線カットガラスの製造方法。
3. SiO 2 50 to 80% by mass percentage,
Al 2 O 3 0.5-10%, Fe 2 O 3 0.1-5%,
Na 2 O + K 2 O + Li 2 O 1~12%, B 2 O 3 5
~20%, CaO + MgO + BaO + ZnO + Sb 2 O
3 In a basic glass batch consisting of 0.5 to 20% and F 0.1 to 3%, 0.1 to 1% of metal powder of a glass constituent element was added as a reducing agent to add Fe 3+ in glass to Fe. A method for producing a hard infrared cut glass, which comprises reducing the glass to 2+ and adjusting the ratio of Fe 2+ / Fe 3+ to 3 to 25 to obtain a glass having infrared absorbing properties.
【請求項4】 前記金属粉末が、Si,Zn,Al,S
bのいずれか1種または2種以上であることを特徴とす
る請求項3記載の硬質赤外線カットガラスの製造方法。
4. The metal powder is Si, Zn, Al, S.
The method for producing a hard infrared cut glass according to claim 3, characterized in that it is any one kind or two kinds or more of b.
JP06865395A 1995-03-01 1995-03-01 Manufacturing method of hard infrared cut glass Expired - Lifetime JP3778457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06865395A JP3778457B2 (en) 1995-03-01 1995-03-01 Manufacturing method of hard infrared cut glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06865395A JP3778457B2 (en) 1995-03-01 1995-03-01 Manufacturing method of hard infrared cut glass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005153960A Division JP4442900B2 (en) 2005-05-26 2005-05-26 Hard infrared cut glass

Publications (2)

Publication Number Publication Date
JPH08239237A true JPH08239237A (en) 1996-09-17
JP3778457B2 JP3778457B2 (en) 2006-05-24

Family

ID=13379885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06865395A Expired - Lifetime JP3778457B2 (en) 1995-03-01 1995-03-01 Manufacturing method of hard infrared cut glass

Country Status (1)

Country Link
JP (1) JP3778457B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203872A (en) * 1998-09-11 2000-07-25 Nippon Sheet Glass Co Ltd Glass composition, substrate for information recording medium by using the same, and information recording medium
WO2016042679A1 (en) * 2014-09-19 2016-03-24 貞雅 禹 Manganese oxide-containing glass
CN108314317A (en) * 2018-01-30 2018-07-24 海宁海光信息科技有限公司 A kind of glass tube and its manufacturing method
JP2019059647A (en) * 2017-09-27 2019-04-18 日本電気硝子株式会社 Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
CN110981190A (en) * 2019-12-11 2020-04-10 福耀玻璃工业集团股份有限公司 Colored thin glass and laminated glass
WO2022131274A1 (en) * 2020-12-18 2022-06-23 Agc株式会社 Borosilicate glass, laminated glass, and window glass for vehicle
EP4180401A3 (en) * 2021-10-19 2023-08-02 Schott Ag Glass, glass article, method of making the glass, use of the glass and flash lamp comprising the glass

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203872A (en) * 1998-09-11 2000-07-25 Nippon Sheet Glass Co Ltd Glass composition, substrate for information recording medium by using the same, and information recording medium
WO2016042679A1 (en) * 2014-09-19 2016-03-24 貞雅 禹 Manganese oxide-containing glass
JP2019059647A (en) * 2017-09-27 2019-04-18 日本電気硝子株式会社 Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
CN108314317A (en) * 2018-01-30 2018-07-24 海宁海光信息科技有限公司 A kind of glass tube and its manufacturing method
CN108314317B (en) * 2018-01-30 2020-06-23 威海畅享海天新材料科技有限公司 Glass tube and manufacturing method thereof
CN110981190A (en) * 2019-12-11 2020-04-10 福耀玻璃工业集团股份有限公司 Colored thin glass and laminated glass
WO2022131274A1 (en) * 2020-12-18 2022-06-23 Agc株式会社 Borosilicate glass, laminated glass, and window glass for vehicle
EP4180401A3 (en) * 2021-10-19 2023-08-02 Schott Ag Glass, glass article, method of making the glass, use of the glass and flash lamp comprising the glass
US11958771B1 (en) 2021-10-19 2024-04-16 Schott Ag Glass, glass article, method of making the glass, use of the glass and flash lamp comprising the glass

Also Published As

Publication number Publication date
JP3778457B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP6973959B2 (en) Chemically strengthenable glass plate
CN101190827B (en) Glass article and method for making thereof
KR100847618B1 (en) High transmission glass plates and method for manufacturing the same
US6673729B2 (en) Glass ceramic
TWI271389B (en) Lamp reflector substrate, glass, glass-ceramic materials and process for making the same
JP4786781B2 (en) Neodymium glass for tungsten-halogen lamp envelopes and filters
JP7244804B2 (en) Li2O-Al2O3-SiO2-based crystallized glass
JP2002137935A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2004531445A (en) Borosilicate glass stable against solarization and its use
WO2020063208A1 (en) Optical glass and glass prefabricated member or optical element prepared therefrom, and optical instrument
JP5178977B2 (en) Glass composition
CN110156317A (en) Ultraviolet, visible and near-infrared absorption glass of one kind and its preparation method and application
JPH08239237A (en) Ir-cutting hard glass and its production
JP4442900B2 (en) Hard infrared cut glass
JPH0393644A (en) Ultraviolet ray transmitting glass
JPS61136936A (en) Glass composition
JP3084769B2 (en) Heat and UV absorbing glass
US20080227616A1 (en) Use of Glass Ceramics
JP4626934B2 (en) LCD protective glass
CN114014538A (en) Silicate glass and preparation method and application thereof
JP4756430B2 (en) Glass for electric lamp and manufacturing method thereof
JP2003002683A (en) Low-transmittance glass
JPH03218940A (en) Ultraviolet transmitting glass
KR20230066267A (en) Li2O-Al2O3-SiO2 based crystallized glass
JPS60145930A (en) Glass filter and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term