JP2020155503A - 光検出装置 - Google Patents

光検出装置 Download PDF

Info

Publication number
JP2020155503A
JP2020155503A JP2019050629A JP2019050629A JP2020155503A JP 2020155503 A JP2020155503 A JP 2020155503A JP 2019050629 A JP2019050629 A JP 2019050629A JP 2019050629 A JP2019050629 A JP 2019050629A JP 2020155503 A JP2020155503 A JP 2020155503A
Authority
JP
Japan
Prior art keywords
semiconductor layer
cell
region
plate
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2019050629A
Other languages
English (en)
Inventor
健介 安田
Kensuke Yasuda
健介 安田
順之 戸田
Yoriyuki Toda
順之 戸田
慎二 河原
Shinji Kawahara
慎二 河原
和章 山浦
Kazuaki Yamaura
和章 山浦
山本 武志
Takeshi Yamamoto
武志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2019050629A priority Critical patent/JP2020155503A/ja
Priority to US16/566,480 priority patent/US11177408B2/en
Priority to CN202010024135.7A priority patent/CN111725347A/zh
Publication of JP2020155503A publication Critical patent/JP2020155503A/ja
Priority to US17/357,755 priority patent/US20210320215A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】検出精度が高い光検出装置を提供する。【解決手段】光検出装置は、隣り合う第1セル及び第2セルが設定された光検出装置である。前記光検出装置は、第1導電形の第1半導体層と、前記第1半導体層上に設けられた第2導電形の第2半導体層と、前記第1セルと前記第2セルとの間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第1部材と、前記第1部材と前記第1セルとの間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第2部材と、前記第1部材と前記第2セルとの間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第3部材と、を備える。【選択図】図3

Description

実施形態は、光検出装置に関する。
従来より、微弱な光を検出する光検出装置として、複数のセルが配列され、セル毎にアバランシェフォトダイオード(APD)が設けられたSiPM(Silicon Photomultiplier:シリコン光電子増倍管)が開発されている。このような光検出装置においても、検出精度の向上が要求されている。
特開2018−121164号公報
実施形態の目的は、検出精度が高い光検出装置を提供することである。
実施形態に係る光検出装置は、隣り合う第1セル及び第2セルが設定された光検出装置である。前記光検出装置は、第1導電形の第1半導体層と、前記第1半導体層上に設けられた第2導電形の第2半導体層と、前記第1セルと前記第2セルとの間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第1部材と、前記第1部材と前記第1セルとの間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第2部材と、前記第1部材と前記第2セルとの間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第3部材と、を備える。
第1の実施形態に係る光検出装置を示す平面図である。 第1の実施形態に係る光検出装置を示す一部拡大平面図である。 図2に示すA−A’線による断面図である。 第1の実施形態に係る光検出装置の素子分離領域を示す一部拡大断面図である。 第1の実施形態に係る光検出装置を示す回路図である。 第1の実施形態に係る光検出装置の動作を示す断面図である。 第1の実施形態の変形例に係る光検出装置を示す断面図である。 第2の実施形態に係る光検出装置を示す断面図である。 第2の実施形態に係る光検出装置の動作を示す断面図である。 第2の実施形態の変形例に係る光検出装置を示す断面図である。 (a)は第3の実施形態に係る光検出装置を示す平面図であり、(b)は(a)に示すB−B’線による断面図である。 第4の実施形態に係る光検出装置を示す平面図である。 第5の実施形態に係る光検出装置を示す平面図である。 (a)及び(b)は、横軸に二次光子の波長をとり、縦軸に素子分離領域における光の反射率をとって、第1の試験例における光の反射率のシミュレーション結果を示すグラフである。 (a)及び(b)は、横軸に二次光子の波長をとり、縦軸に素子分離領域における光の反射率をとって、第1の試験例における光の反射率のシミュレーション結果を示すグラフである。 横軸に二次光子の波長をとり、縦軸に素子分離領域における光の反射率をとって、第2の試験例における光の反射率のシミュレーション結果を示すグラフ及び表である。 横軸に二次光子の波長をとり、縦軸に素子分離領域における光の反射率をとって、第2の試験例における光の反射率のシミュレーション結果を示すグラフ及び表である。
<第1の実施形態>
以下、第1の実施形態について説明する。
図1は、本実施形態に係る光検出装置を示す平面図である。
図2は、本実施形態に係る光検出装置を示す一部拡大平面図である。
図3は、図2に示すA−A’線による断面図である。
図4は、本実施形態に係る光検出装置の素子分離領域を示す一部拡大断面図である。
図5は、本実施形態に係る光検出装置を示す回路図である。
なお、各図は模式的なものであり、適宜省略及び強調されている。また、図間において、構成要素の縦横比等は必ずしも整合していない。後述する他の図についても同様である。
本実施形態に係る光検出装置1は、例えばSiPMである。
図1に示すように、本実施形態に係る光検出装置1においては、複数のセル100が設けられている。複数のセル100は、例えば、マトリクス状に配列されている。セル100間には素子分離領域101が設けられている。一例では、光検出装置1には数十から数千個のセル100が設けられている。上方から見て、セル100の形状は矩形、例えば、正方形であり、セル100の一辺の長さは数十〜百μm程度である。上方から見て、素子分離領域101の形状は各セル100を囲む格子状である。光検出装置1に設けられた複数のセル100のうち、隣り合う2つのセル100を「セル100a」及び「セル100b」ともいう。
図2及び図3に示すように、光検出装置1においては、導電形がn形のn形基板11が設けられている。n形基板11は、例えば、単結晶のシリコン基板である。n形基板11上には、導電形がp形のp形半導体層12が設けられている。p形半導体層12は、例えば、シリコンのエピタキシャル層である。n形基板11とp形半導体層12との接触面は、pn界面10となっている。
本実施形態においては、n形基板11からp形半導体層12に向かう方向を「上」といい、p形半導体層12からn形基板11に向かう方向を「下」というが、この表記は便宜的なものであり、重力の方向とは無関係である。また、「上」及び「下」を総称して「垂直方向」ともいう。本明細書において「上方から見て」との記載は、上から下に向かう方向の視線による観察を意味している。
p形半導体層12においては、p形領域13、p形領域14、p形領域15及びp形領域16が設けられている。このうち、p形領域13、p形領域15、p形領域16はセル100内のみに設けられており、素子分離領域101には設けられていない。p形領域13はn形基板11に接している。p形領域14はn形基板11上及びp形領域13上に設けられており、p形領域13を覆っており、n形基板11及びp形領域13に接している。p形領域15はp形領域14上に設けられており、p形領域14に接し、p形半導体層12の上面に露出している。p形領域16はp形領域15を囲む枠状に設けられており、p形領域15及びp形領域14に接している。このため、セル100の中央部においては、下から上に向かって、n形基板11、p形領域13、p形領域14及びp形領域15がこの順に配列されている。
本明細書において、「p形」は導電形がp形であって「p形」よりも不純物濃度が高いことを意味し、「p形」は導電形がp形であって「p形」よりも不純物濃度が低いことを意味する。同様に、「n形」は導電形がn形であって「n形」よりも不純物濃度が高いことを意味し、「n形」は導電形がn形であって「n形」よりも不純物濃度が低いことを意味する。また、「不純物濃度」とは、半導体材料の導電性に寄与する不純物の濃度をいい、同じ部分にドナーとなる不純物とアクセプタとなる不純物の双方が含まれている場合は、それらの相殺分を除いた実効的な濃度をいう。
素子分離領域101においては、p形半導体層12上に絶縁膜20が設けられており、絶縁膜20の直下にはn形領域19が設けられている。n形領域19は絶縁膜20に接し、n形基板11からは離隔している。そして、絶縁膜20とn形基板11との間に、1枚の板状部材21及び2枚の板状部材22が設けられている。1枚の板状部材21及び2枚の板状部材22は、隣り合う2つのセル100aとセル100bとの間に配置されている。以下の説明においては、板状部材21及び22を総称して、単に「板状部材」ともいう。
板状部材の光の屈折率は、n形基板11及びp形半導体層12の光の屈折率とは異なる。板状部材は、n形基板11及びp形半導体層12の材料とは異なる材料からなり、例えば誘電体からなる。誘電体とは導電性よりも誘電性が優位な物質であり、絶縁体である。本実施形態においては、板状部材は、例えば、シリコン酸化物からなる。なお、板状部材21の材料と板状部材22の材料は異なっていてもよい。板状部材21の上端21U及び板状部材22の上端22Uは、絶縁膜20に接している。板状部材21の下端21L及び板状部材22の下端22Lは、n形基板11内に位置している。すなわち、下端21L及び22Lは、pn界面10よりも下方に位置している。
板状部材21の形状は、複数のセル100をそれぞれ囲む格子状である。板状部材22の形状は、1つのセル100を囲む枠状である。板状部材22は、板状部材21とセル100との間に配置されている。換言すれば、板状部材21は、複数のセル100をそれぞれ囲んだ複数の板状部材22を、さらにその外側から囲む。板状部材22のうち、セル100aを囲む板状部材22を「板状部材22a」ともいい、セル100bを囲む板状部材22を「板状部材22b」ともいう。
隣り合う2つのセル100を含む断面、例えば、図3及び図4に示すようなセル100a及びセル100bを含む断面において、板状部材22a、板状部材21、板状部材22bは、周期的に配列されている。また、セル100aの中心とセル100bの中心とを結ぶ仮想的な直線201に対して、板状部材21の両側面21c及び21d、板状部材22aの両側面22c及び22d、板状部材22bの両側面22e及び22fは直交している。なお、直線201はpn界面10に平行である。セル100の中心とは、例えば、上方から見てセル100の重心をいい、例えば、セル100の形状が矩形である場合には、対角線の交点をいう。
図4に示すように、板状部材21の厚さをt21とし、板状部材22の厚さをt22とする。厚さt21及びt22を総称して厚さtという。また、板状部材に入射する波長をλとし、この光に対する板状部材の屈折率をnとする。更に、mを0以上の整数とする。この場合、厚さtは、概ね、以下の数式1を満たす。
Figure 2020155503
板状部材がシリコン酸化物(SiO)により形成されている場合、屈折率nは1.457である。光の波長λを900nmとすると、t=308m+154[nm]である。例えば、mが0である場合は、t=154[nm]である。したがって、厚さtは154nm程度とする。板状部材の厚さtは一定であることが好ましいが、図6に例示するように、下にいくほど薄いテーパ形状であってもよい。また、板状部材21の厚さt21と板状部材22の厚さt22は異なっていてもよい。例えば、板状部材21と板状部材22で材料を異ならせた場合は、それぞれの材料の屈折率に基づいて、上記数式1にしたがって好適な厚さtを算出する。このとき、板状部材21と板状部材22とで、整数mの値を異ならせてもよい。
また、p形領域14における板状部材21と板状部材22との間の部分14aの幅をdとする。また、上述の光に対するp形領域14の屈折率をnとする。更に、mを0以上の整数とする。この場合、幅dは、概ね、以下の数式2を満たす。
Figure 2020155503
形領域14がシリコン(Si)により形成されている場合、屈折率nは3.882である。光の波長λを900nmとすると、t=116m+58[nm]である。例えば、mが0である場合は、t=58[nm]である。したがって、幅dは58nm程度とする。幅dは一定であることが好ましいが、板状部材の厚さtが下にいくほど薄くなる場合には、幅dは下にいくほど厚くなる。また、幅dは、p形領域14の部分14a毎に異なっていてもよい。
図3に示すように、絶縁膜20上には、例えばポリシリコンからなる抵抗部材31が設けられている。抵抗部材31の一方の端部31aは、コンタクト32、配線33及びコンタクト34を介して、p形領域15に接続されている。抵抗部材31の他方の端部31bは、コンタクト35及び配線36を介して接地電位GNDに接続される。また、n形基板11には、正の電源電位Vrが印加される。
これにより、セル100においては、n形基板11とp形半導体層12により、アバランシェフォトダイオード(APD)37が形成される。この結果、図5に示すように、セル100においては、抵抗部材31とAPD37が直列に接続される。光検出装置1においては、セル100が並列に接続される。
次に、本実施形態に係る光検出装置の動作について説明する。
図6は、本実施形態に係る光検出装置の動作を示す断面図である。
図6に示すように、光検出装置1のn形基板11に正の電源電位Vrを印加し、抵抗部材31(図3参照)を介してp形領域15に接地電位GNDを印加すると、APD37に逆バイアス電圧が印加され、pn界面10を起点として空乏層(図示せず)が拡がる。
この状態で、セル100に光子202が入射すると、電子eと正孔hの対が発生し、電子eはn形基板11に向かって流れ、正孔hはp形領域15に向かって流れる。これにより、APD37に順方向電流が流れ、APD37がアバランシェ降伏する。この結果、APD37においてアバランシェ電流が発生し、このアバランシェ電流が抵抗部材31に流れ、抵抗部材31の両端部間に電位差が生じる。光検出装置1は抵抗部材31の両端部間の電位差を検出することにより、セル100に光子202が入射したことを検出する。
このとき、セル100内においては、アバランシェ降伏によって発生した電子−正孔対が再結合することにより、二次光子203が発生する。二次光子203が素子分離領域101に入射すると、周期的に配列された3枚の板状部材、すなわち、板状部材22、板状部材21及び板状部材22により干渉されて反射される。これにより、二次光子203が素子分離領域101を透過することを抑制できる。この結果、あるセル100内で発生した二次光子203が、素子分離領域101を越えて隣のセル100に漏洩することを抑制でき、セル100間のクロストークを抑制できる。すなわち、セル100aのみに光子202が入射したときに、セル100aにおいて発生した二次光子203が隣のセル100bに入射し、セル100bにおいてアバランシェ降伏を誘発し、光を誤検出することを抑制できる。したがって、光検出装置1は検出精度が高い。
<第1の実施形態の変形例>
次に、第1の実施形態の変形例について説明する。
図7は、本変形例に係る光検出装置を示す断面図である。
図7に示すように、本変形例に係る光検出装置1aにおいては、板状部材21及び22がn形基板11に到達しておらず、n形基板11から離隔している。すなわち、下端21L及び22Lは、pn界面10よりも上方に位置している。但し、板状部材21及び22の下端21及び22bは、p形領域14とp形領域15との界面よりは下方に位置している。
APD37に逆バイアス電圧が印加されたときに発生する空乏層は、最大でp形領域14とp形領域15との界面付近まで到達する。このため、板状部材21及び22がp形領域14とp形領域15との界面よりも下方まで延出していれば、空乏層内で発生した二次光子を反射する効果が得られる。本変形例に係る光検出装置1aは、板状部材21及び22が浅いため、製造が容易である。本変形例における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
<第2の実施形態>
次に、第2の実施形態について説明する。
図8は、本実施形態に係る光検出装置を示す断面図である。
図8に示すように、本実施形態に係る光検出装置2においては、導電形がp形のp形基板41が設けられている。p形基板41は、例えば、単結晶のシリコン基板である。p形基板41上には、導電形がp形のp形領域42が設けられている。p形領域42は、例えば、シリコンのエピタキシャル層である。p形基板41及びp形領域42は、セル100及び素子分離領域101の双方に設けられている。
セル100において、p形領域42上には、導電形がp形のp形領域43が設けられている。また、素子分離領域101において、p形領域42上には、導電形がp形のp形領域44が設けられている。p形基板41、p形領域42、p形領域43及びp形領域44により、p形半導体層45が形成されている。
セル100において、p形領域43上には、導電形がn形のn形半導体層46が設けられている。n形半導体層46はp形領域43及びp形領域42に接している。このため、セル100の中央部においては、下から上に向かって、p形基板41、p形領域42、p形領域43及びn形半導体層46がこの順に配列されている。n形半導体層46とp形領域43との界面、及び、n形半導体層46とp形領域42との界面が、pn界面50となっている。これにより、セル100においては、n形半導体層46と、p形領域43及びp形領域42により、アバランシェフォトダイオード(APD)51が形成される。
素子分離領域101においては、絶縁膜20が設けられている。p形領域44は絶縁膜20に接している。p形基板41と絶縁膜20との間には、板状部材21及び22が設けられている。板状部材21及び22の構成は、第1の実施形態と同様である。板状部材21の下端21L及び板状部材22の下端22Lは、p形基板41内に位置している。すなわち、下端21L及び22Lは、p形基板41とp形領域42との界面よりも下方に位置している。
次に、本実施形態に係る光検出装置2の動作について説明する。
図9は、本実施形態に係る光検出装置の動作を示す断面図である。
図9に示すように、光検出装置2のp形基板41に接地電位GNDを印加し、抵抗部材31(図8参照)を介してn形半導体層46に正の電源電位Vrを印加すると、APD51に逆バイアス電圧が印加され、pn界面50を起点として空乏層(図示せず)が拡がる。
この状態で、セル100に光子202が入射すると、電子eと正孔hの対が発生し、電子eはn形半導体層46に向かって流れ、正孔hはp形基板41に向かって流れる。これにより、APD51に順方向電流が流れ、APD51がアバランシェ降伏する。これにより、光検出装置2はセル100に光子202が入射したことを検出する。
このとき、セル100内においては、アバランシェ降伏によって発生した電子−正孔対が再結合することにより、二次光子203が発生する。但し、二次光子203が発生する位置は空乏層内であり、空乏層はpn界面50を起点として拡がるため、光検出装置2において二次光子203が発生する位置は、第1の実施形態に係る光検出装置1(図6参照)において二次光子203が発生する位置よりも上方である。二次光子203は、素子分離領域101に設けられた板状部材22、板状部材21及び板状部材22により干渉されて反射されるため、隣のセル100には漏洩しにくい。このため、光検出装置2は検出精度が高い。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
<第2の実施形態の変形例>
次に、第2の実施形態の変形例について説明する。
図10は、本変形例に係る光検出装置を示す断面図である。
図10に示すように、本変形例に係る光検出装置2aにおいては、板状部材21及び22がp形基板41に到達しておらず、p形基板41から離隔している。但し、板状部材21及び22の下端21L及び22Lは、p形領域43とn形半導体層46のpn界面50よりは下方に位置している。
APD51に逆バイアスが印加されたときに発生する空乏層は、pn界面50を起点として発生するため、板状部材21及び22がpn界面50よりも下方まで延出していれば、空乏層内で発生した二次光子を反射する効果が得られる。本変形例に係る光検出装置2aは、板状部材21及び22が浅いため、製造が容易である。本変形例における上記以外の構成、動作及び効果は、第2の実施形態と同様である。
<第3の実施形態>
次に、第3の実施形態について説明する。
図11(a)は本実施形態に係る光検出装置を示す平面図であり、(b)は(a)に示すB−B’線による断面図である。
図11(a)及び(b)においては、セル100内の詳細な構成は図示を省略している。
図11(a)及び(b)に示すように、本実施形態に係る光検出装置3は、第1の実施形態に係る光検出装置1(図1〜図6参照)と比較して、板状部材21の替わりに相互に離隔した2枚の板状部材23が設けられている点が異なっている。板状部材23の形状は枠状であり、それぞれ板状部材22を囲み、したがって、板状部材22を介してセル100を囲んでいる。板状部材23のうち、板状部材22a及びセル100aを囲む板状部材23を「板状部材23a」ともいい、板状部材22b及びセル100bを囲む板状部材23を「板状部材23b」ともいう。
板状部材23の組成は、板状部材22の組成と略同じである。また、板状部材23の上端及び下端の垂直方向における位置も、板状部材22の上端及び下端の位置と略同じである。このため、光検出装置3においては、隣り合うセル100間に4枚の板状部材が配置されている。隣り合う2つのセル100を含む断面において、板状部材22、板状部材23、板状部材23、及び、板状部材22は、周期的に配列されている。例えば、セル100aとセル100bとの間には、板状部材22a、板状部材23a、板状部材23b及び板状部材22bが、この順に周期的に配列されている。
本実施形態によれば、隣り合うセル100間に4枚の板状部材を配置し、周期的に配列させることにより、二次光子を効果的に干渉させて、反射効率をより向上させることができる。この結果、二次光子の隣のセル100への漏洩をより効果的に抑制し、検出精度をより向上させることができる。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
なお、第1及び第2の実施形態においては、隣り合うセル100間に3枚の板状部材を配置する例を示し、本実施形態においては、隣り合うセル100間に4枚の板状部材を配置する例を示したが、本発明はこれには限定されず、隣り合うセル100間に5枚以上の板状部材を配置してもよい。また、各板状部材の形状は枠状としてもよく格子状としてもよい。
<第4の実施形態>
次に、第4の実施形態について説明する。
図12は、本実施形態に係る光検出装置を示す平面図である。
図12においては、セル100内及び素子分離領域101内の構成は図示を省略している。
図12に示すように、本実施形態に係る光検出装置4においては、上方から見て、セル100の形状が八角形である。セル100の形状は、例えば、正方形の角部を斜辺にした形状である。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
<第5の実施形態>
次に、第5の実施形態について説明する。
図13は本実施形態に係る光検出装置を示す平面図である。
図13においては、セル100内及び素子分離領域101内の構成は図示を省略している。
図13に示すように、本実施形態に係る光検出装置5においては、上方から見て、セル100の形状が六角形であり、例えば、ハニカム状に配列されている。これにより、上方から見て、セル100の単位面積当たりの端縁の長さを短くすることができる。この結果、光検出装置5におけるセル100の面積比率を高めることができ、光の検出精度をより一層向上させることができる。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
なお、前述の第1〜第3の実施形態においては、上方から見て、セル100の形状が四角形である例を示し、第4の実施形態においては、セル100の形状が八角形である例を示し、第5の実施形態においては、セル100の形状が六角形である例を示したが、セル100の形状はこれらには限定されない。セル100の形状は任意の形状とすることができ、例えば、多角形、円形又は楕円形とすることができる。また、前述の各実施形態は、任意に組み合わせて実施することができる。例えば、第2の実施形態で説明したような空乏層がセルの上部に形成されるような光検出装置において、第3の実施形態で説明したように、隣り合うセル間に板状部材を4枚配置してもよく、第4及び第5の実施形態で説明したような平面レイアウトを採用してもよい。
<第1の試験例>
次に、第1の試験例について説明する。
図14(a)及び(b)、図15(a)及び(b)は、横軸に二次光子の波長をとり、縦軸に素子分離領域における光の反射率をとって、本試験例における光の反射率のシミュレーション結果を示すグラフである。
先ず、シミュレーションの共通条件について説明する。
光検査装置の構成は、図4に示すように、3本又は4本の板状部材が周期的に配列されている構成を想定した。板状部材の厚さtは板状部材間及び板状部材内で均一であるものとし、板状部材間の半導体層の幅dも均一であるものとした。板状部材はシリコン酸化物からなり、半導体層はシリコンからなるものとした。シリコン酸化物の屈折率nは1.457とし、シリコンの屈折率nは3.882とした。
二次光子203の入射方向が直線201に対してなす角度とθ[°]とした。直線201は、板状部材の両側面に対して直交する直線である。また、各条件において、板状部材の厚さt及び半導体層の部分14aの幅dが設計値どおりの場合、すなわち、誤差が0%である場合を実線で示し、設計値+10%の場合、すなわち、実際のサイズが設計値よりも10%大きくなった場合を一点鎖線で示し、設計値−10%の場合、すなわち、実際のサイズが設計値よりも10%小さくなった場合を破線で示す。
次に、個別のシミュレーション条件及び結果について説明する。
図14(a)及び(b)は、板状部材の厚さtが154nmであり、半導体層の部分14aの幅dが58nmであり、角度θが0°である場合を示す。これらの厚さt及び幅dの値は、光の波長λが900nmであり、整数m及びmが0であるときに、上述の数式1及び2を満たすような値である。図14(a)は板状部材が3枚である場合を示し、図14(b)は板状部材が4枚である場合を示す。
図14(a)及び(b)に示すように、上記条件において、厚さt及び幅dが設計値どおりの場合(0%)には、波長λが概ね700nm以上1100nm以下の範囲で、反射率が0.95以上となった。また、厚さt及び幅dが設計値+10%の場合及び設計値−10%の場合を含めても、板状部材が3枚の場合(図14(a))は、波長λが概ね730nm以上1080nm以下の範囲で反射率が0.8以上となり、板状部材が4枚の場合(図14(b)参照)は、波長λが概ね740nm以上1120nm以下の範囲で反射率が0.8以上となった。
図15(a)及び(b)は、板状部材の厚さtが154nmであり、半導体層の部分14aの幅dが174nmであり、角度θが0°である場合を示す。これらの厚さt及び幅dの値は、光の波長λが900nmであり、整数mが0であり、整数mが1であるときに、上述の数式1及び2を満たすような値である。図15(a)は板状部材が3枚である場合を示し、図15(b)は板状部材が4枚である場合を示す。
図15(a)及び(b)に示すように、上記条件の場合は、厚さt及び幅dが設計値どおりの場合(0%)には、波長λが概ね770nm以上920nm以下の範囲で、反射率が0.95以上となった。また、厚さt及び幅dが設計値+10%の場合及び設計値−10%の場合を含めると、板状部材が3枚の場合(図15(a))は、波長λが概ね790nm以上950nm以下の範囲で反射率が0.8以上となり、板状部材が4枚の場合(図15(b)参照)は、波長λが概ね790nm以上950nm以下の範囲で反射率が0.8以上となった。
このように、本試験例によれば、二次光子の中心波長900nm付近で良好な反射率が得られ、隣のセル100への透過が抑制されることが確認された。特に、上記数式1及び2において、整数m及びmが0である場合には、広い波長範囲で高い反射率が得られた。また、寸法の変動に対する依存性も少なかった。
<第2の試験例>
次に、第2の試験例について説明する。
図16及び図17は、横軸に二次光子の波長をとり、縦軸に素子分離領域における光の反射率をとって、本試験例における光の反射率のシミュレーション結果を示すグラフ及び表である。
本試験例においては、板状部材の厚さtを154nmとし、半導体層の部分14aの幅dを58nmとし、角度θを0〜45°の範囲で変化させた。他の条件は、第1の試験例と同様である。図16は板状部材が3枚である場合を示し、図17は板状部材が4枚である場合を示す。
図16及び図17に示すように、二次光子が板状部材に入射する角度θが0〜45°の範囲で変化しても、概ね650nm以上1050nm以下の波長範囲で、反射率が0.5以上となった。このように、角度θがばらついても、隣のセルへの二次光子の漏洩を抑制する効果が確認された。
以上説明した実施形態によれば、検出精度が高い光検出装置を実現することができる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明及びその等価物の範囲に含まれる。
1、1a、2、2a、3、4、5:光検出装置
10:pn界面
11:n形基板
12:p形半導体層
13:p形領域
14:p形領域
14a:部分
15:p形領域
16:p形領域
19:n形領域
20:絶縁膜
21、22、22a、22b、23、23a、23b:板状部材
21U、22U:上端
21L、22L:下端
21c、21d、22c、22d、22e、22f:側面
31:抵抗部材
31a、31b:端部
32:コンタクト
33:配線
34、35:コンタクト
36:配線
37:アバランシェフォトダイオード(APD)
41:p形基板
42:p形領域
43:p形領域
44:p形領域
45:p形半導体層
46:n形半導体層
50:pn界面
51:アバランシェフォトダイオード(APD)
100、100a、100b:セル
101:素子分離領域
201:直線
202:光子
203:二次光子
d、da:幅
e:電子
GND:接地電位
h:正孔
t、t21、t22:厚さ
Vr:電源電位
θ:角度
λ:波長

Claims (13)

  1. 隣り合う第1セル及び第2セルが設定された光検出装置であって、
    第1導電形の第1半導体層と、
    前記第1半導体層上に設けられた第2導電形の第2半導体層と、
    前記第1セルと前記第2セルとの間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第1部材と、
    前記第1部材と前記第1セルとの間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第2部材と、
    前記第1部材と前記第2セルとの間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第3部材と、
    を備えた光検出装置。
  2. 前記第1部材、前記第2部材及び前記第3部材は、誘電体からなる請求項1記載の光検出装置。
  3. 前記第1部材の形状は、前記第1セル及び前記第2セルをそれぞれ囲む格子状である請求項1または2に記載の光検出装置。
  4. 前記第2部材は前記第1セルを囲み、前記第3部材は前記第2セルを囲む請求項1〜3のいずれか1つに記載の光検出装置。
  5. 前記第1セル及び前記第2セルを含む断面において、前記第1部材、前記第2部材及び前記第3部材は周期的に配列されている請求項1〜4のいずれか1つに記載の光検出装置。
  6. 前記第1セルの中心と前記第2セルの中心とを結ぶ直線に対して、前記第1部材の両側面、前記第2部材の両側面及び前記第3部材の両側面が直交している請求項1〜5のいずれか1つに記載の光検出装置。
  7. 前記第2半導体層は、
    前記第1半導体層に接した第1領域と、
    前記第1領域上に設けられ、不純物濃度が前記第1領域の不純物濃度よりも低い第2領域と、
    前記第2領域上に設けられ、不純物濃度が前記第2領域の不純物濃度よりも高い第3領域と、
    を有し、
    前記第1部材の下端、前記第2部材の下端、及び、前記第3部材の下端は、前記第2領域と前記第3領域の界面よりも下方に位置する請求項1〜6のいずれか1つに記載の光検出装置。
  8. 前記第1部材の下端、前記第2部材の下端、及び、前記第3部材の下端は、前記第1半導体層と前記第2半導体層の界面よりも下方に位置する請求項7記載の光検出装置。
  9. 前記第1半導体層は、
    第1領域と、
    前記第1領域上に設けられ、不純物濃度が前記第1領域の不純物濃度よりも低い第2領域と、
    前記第2領域上に設けられ、前記第2半導体層に接し、不純物濃度が前記第2領域の不純物濃度よりも高い第3領域と、
    を有し、
    前記第1部材の下端、前記第2部材の下端、及び、前記第3部材の下端は、前記第3領域と前記第2半導体層の界面よりも下方に位置する請求項1〜6のいずれか1つに記載の光検出装置。
  10. 前記第1部材の下端、前記第2部材の下端、及び、前記第3部材の下端は、前記第1領域と前記第2領域の界面よりも下方に位置する請求項9記載の光検出装置。
  11. 前記第1部材と前記第3部材との間に設けられ、前記第1半導体層及び前記第2半導体層とは異なる材料からなる第4部材をさらに備えた請求項1〜10のいずれか1つに記載の光検出装置。
  12. 前記第4部材は前記第2セルを囲む請求項11記載の光検出装置。
  13. 前記第1セル及び前記第2セルのそれぞれについて、前記第1半導体層又は前記第2半導体層に接続された抵抗部材をさらに備えた請求項1〜12のいずれか1つに記載の光検出装置。
JP2019050629A 2019-03-19 2019-03-19 光検出装置 Abandoned JP2020155503A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019050629A JP2020155503A (ja) 2019-03-19 2019-03-19 光検出装置
US16/566,480 US11177408B2 (en) 2019-03-19 2019-09-10 Light detection device
CN202010024135.7A CN111725347A (zh) 2019-03-19 2020-01-10 光检测装置
US17/357,755 US20210320215A1 (en) 2019-03-19 2021-06-24 Light detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050629A JP2020155503A (ja) 2019-03-19 2019-03-19 光検出装置

Publications (1)

Publication Number Publication Date
JP2020155503A true JP2020155503A (ja) 2020-09-24

Family

ID=72514705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050629A Abandoned JP2020155503A (ja) 2019-03-19 2019-03-19 光検出装置

Country Status (3)

Country Link
US (2) US11177408B2 (ja)
JP (1) JP2020155503A (ja)
CN (1) CN111725347A (ja)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4105170B2 (ja) * 2005-03-02 2008-06-25 日本テキサス・インスツルメンツ株式会社 半導体装置およびその検査方法
JP2009525619A (ja) * 2006-02-01 2009-07-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ガイガーモード・アバランシェ・フォトダイオード
TWI443817B (zh) 2006-07-03 2014-07-01 Hamamatsu Photonics Kk Photodiode array
JP2008103614A (ja) 2006-10-20 2008-05-01 Mitsui Eng & Shipbuild Co Ltd 光電変換デバイス
JP4671981B2 (ja) * 2007-03-20 2011-04-20 パナソニック株式会社 光半導体装置
IT1399075B1 (it) * 2010-03-23 2013-04-05 St Microelectronics Srl Metodo di rilevazione di posizioni di fotoni che impingono su un fotodiodo a valanga geiger-mode, relativi fotodiodi a valanga geiger-mode e processo di fabbricazione
JP5983076B2 (ja) 2012-06-15 2016-08-31 三菱電機株式会社 フォトダイオードアレイ
JP2015084392A (ja) * 2013-10-25 2015-04-30 浜松ホトニクス株式会社 光検出器
US9466631B2 (en) * 2014-05-13 2016-10-11 Stmicroelectronics S.R.L. Solid state photomultipliers array of enhanced fill factor and simplified packaging
JP6822859B2 (ja) 2017-01-24 2021-01-27 キヤノンメディカルシステムズ株式会社 検出装置及び検出方法
JP2018156984A (ja) * 2017-03-15 2018-10-04 株式会社東芝 光検出素子
US10636818B2 (en) * 2018-04-04 2020-04-28 Avago Technologies International Sales Pte. Limited Semiconductor device and sensor including a single photon avalanche diode (SPAD) structure
IT201800004621A1 (it) * 2018-04-17 2019-10-17 Dispositivo optoelettronico ad elevata sensibilita' per la rilevazione di specie chimiche e relativo metodo di fabbricazione
US11296247B2 (en) * 2019-02-11 2022-04-05 Allegro Microsystems, Llc Photodetector with a buried layer
US11255985B2 (en) * 2019-05-31 2022-02-22 Canon Medical Systems Corporation Method and apparatus to use a broad-spectrum energy source to correct a nonlinear energy response of a gamma-ray detector

Also Published As

Publication number Publication date
US20200303580A1 (en) 2020-09-24
US11177408B2 (en) 2021-11-16
CN111725347A (zh) 2020-09-29
US20210320215A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US20140339615A1 (en) Bsi cmos image sensor
JP6095268B2 (ja) 固体撮像装置、及び撮像システム
EP2330626A1 (en) Coplanar high fill factor pixel architecture
TW201104854A (en) Imaging device
KR20120070348A (ko) 트렌치 분리형 실리콘 포토멀티플라이어
CN101901849A (zh) 光半导体装置
US10497823B2 (en) Light receiving device and method of manufacturing light receiving device
US20190296074A1 (en) Photodetector and light detection and ranging
JP2012138533A (ja) 太陽電池ストリング、および太陽電池モジュール
US20180061871A1 (en) Light-receiving device having avalanche photodiodes of different types
JP2020155503A (ja) 光検出装置
TWI591808B (zh) Photo diode array
WO2020121858A1 (ja) 光検出装置及び光検出装置の製造方法
JP6981365B2 (ja) 光検出器
TW201436289A (zh) 光二極體陣列
CN112490300B (zh) 一种共用深n阱的spad器件及其构成的光探测阵列
US20210408099A1 (en) Imaging device
KR20120068280A (ko) 반도체 포토멀티플라이어의 상부 광학 구조 및 그 제작 방법
US10297633B2 (en) Photoelectric conversion device and scanner
WO2016021416A1 (ja) 機能性素子および電子機器
US11081599B2 (en) Single photon avalanche diode and array of single photon avalanche diodes
JP2017183453A (ja) SiGeフォトダイオード
TWI612652B (zh) 光電轉換裝置及影像讀取裝置
KR101638545B1 (ko) 누설전류를 방지하는 실리콘 광증배관 소자
WO2023149284A1 (ja) 光検出器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20221102