JPWO2003026792A1 - Activated carbon fiber and method for producing the same - Google Patents

Activated carbon fiber and method for producing the same Download PDF

Info

Publication number
JPWO2003026792A1
JPWO2003026792A1 JP2003530419A JP2003530419A JPWO2003026792A1 JP WO2003026792 A1 JPWO2003026792 A1 JP WO2003026792A1 JP 2003530419 A JP2003530419 A JP 2003530419A JP 2003530419 A JP2003530419 A JP 2003530419A JP WO2003026792 A1 JPWO2003026792 A1 JP WO2003026792A1
Authority
JP
Japan
Prior art keywords
activated carbon
value
carbon fiber
odor
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003530419A
Other languages
Japanese (ja)
Inventor
豊樹 宇山
豊樹 宇山
竜男 片山
竜男 片山
武士 前田
武士 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AD'ALL CO., LTD.
Osaka Gas Chemicals Co Ltd
Unitika Ltd
Original Assignee
AD'ALL CO., LTD.
Osaka Gas Chemicals Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AD'ALL CO., LTD., Osaka Gas Chemicals Co Ltd, Unitika Ltd filed Critical AD'ALL CO., LTD.
Publication of JPWO2003026792A1 publication Critical patent/JPWO2003026792A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes

Abstract

トリハロメタン類の除去吸着性能及び黴臭原因物質の除去吸着性能ともに優れた活性炭素繊維を提供する本発明は、77.4Kにおける窒素吸着等温線において、相対圧力P/P0での窒素ガス吸着量をV(P/P0)として、(a)V(0.1)の値が200cc/g以上、(b)V(0.1)/V(0.2)の値が0.92〜0.99、(c)V(0.2)/V(0.8)の値が0.80〜0.95及び(d)V(0.8)/V(1.0)の値が0.80〜0.90をすべて満たすことを特徴とする活性炭素繊維、及びその製造方法に係る。The present invention for providing activated carbon fibers excellent in both the removal and adsorption performance of trihalomethanes and the removal and adsorption performance of odor-causing substances is based on the nitrogen adsorption isotherm at 77.4K. As V (P / P0), the value of (a) V (0.1) is 200 cc / g or more, and the value of (b) V (0.1) / V (0.2) is 0.92 to .0. 99, (c) the value of V (0.2) / V (0.8) is 0.80 to 0.95 and (d) the value of V (0.8) / V (1.0) is 0.00. The present invention relates to an activated carbon fiber characterized by satisfying all of 80 to 0.90 and a method for producing the same.

Description

技 術 分 野
本発明は、新規な活性炭素繊維及びその製造方法に関する。
背 景 技 術
活性炭素繊維は、その外観形状のみならず、細孔構造も粒状又は粉末状活性炭と異なる特徴を有している。かかる特徴をもつ活性炭素繊維は、吸着材をはじめとする様々な用途に幅広く利用されている。
活性炭素繊維は、その名の通り繊維状であることから、一般に粒状又は粉末状活性炭と比べ単位重量当たりの露出表面が大きい。このため、被処理物とより接触しやすく、また被処理物流体通過時の圧力損失を低く抑えられるという特性を発揮する。
特に飲料水の浄化に関し、残留塩素(いわゆる「カルキ臭」)を除去するために活性炭素繊維を吸着材とした浄水器が広く用いられている。ところが、近年では、河川水質の冨栄養化が問題視され、水道水中の有機塩素化合物(いわゆる「トリハロメタン類」)の除去、さらには微生物に由来するとされる「黴臭」の除去が「カルキ臭」の除去とともに要求されている。
活性炭素繊維は、比表面積が大きく、多くのミクロ細孔を有することから、カルキ臭の除去には非常に有効である。他方、黴臭の除去については、黴臭原因物質が巨大分子であるため、活性炭素繊維のミクロ細孔内に捕捉されにくく、活性炭素繊維に不向きである。
活性炭素繊維のトリハロメタン類の除去能力改善については、これまでに例えば特開平6−99064号、特開平7−145516号、特開平10−244253号、特開平11−240708号、特開平12−256999号公報等が提案されている。これらはいずれも活性炭素繊維に吸着したトリハロメタン類を脱着再生して活性炭素繊維の寿命の延命を図ろうとするものである。さらに、トリハロメタン類と黴臭原因物質を同時に除去する技術として、本出願人はさきに特開平11−240707号公報において、ミクロ細孔のみならずメソ細孔をも有する活性炭素繊維を提案している。
しかしながら、これらの従来技術は、トリハロメタン類と黴臭原因物質とをともに除去するための材料としては必ずしも十分なものとは言えない。特に、処理水の流通しない状態(すなわち、静的条件)における吸着能力(いわゆる平衡吸着能力)のみならず、水浄化等での実際上の使用条件である通水状態における除去能力について改善すべき余地が大きい。
発 明 の 開 示
本発明の主な目的は、トリハロメタン類の除去吸着性能及び黴臭原因物質の除去吸着性能がともに優れた活性炭素繊維を提供することにある。
本発明者は、従来技術の問題に鑑みて研究を重ねた結果、特定の微細構造を有する活性炭素繊維が上記目的を達成できることを見出し、本発明を完成するに至った。
すなわち、本発明は、下記に示す活性炭素繊維及びその製造方法に係るものである。
1.77.4Kにおける窒素吸着等温線において、相対圧力P/Pでの窒素ガス吸着量をV(P/P)として、
(a)V(0.1)の値が200cc/g以上、
(b)V(0.1)/V(0.2)の値が0.92〜0.99、
(c)V(0.2)/V(0.8)の値が0.80〜0.95及び
(d)V(0.8)/V(1.0)の値が0.80〜0.90
をすべて満たすことを特徴とする活性炭素繊維。
2.前記項1記載の活性炭素繊維を含む浄水精製用材料。
3.トリハロメタン類及び黴臭原因物質の吸着用活性炭素繊維の製造方法であって、(1)活性炭前駆体としてバナジウム、白金及び鉄の少なくとも1種の金属成分を0.01〜5重量%含有するピッチを用い、この前駆体を溶融紡糸し、不融化処理し、賦活処理することにより活性炭素繊維を得る工程、及び
(2)得られた活性炭素繊維の窒素ガス吸着量を測定することにより、77.4Kにおける窒素吸着等温線において、相対圧力P/Pでの窒素ガス吸着量をV(P/P)として、
(a)V(0.1)の値が200cc/g以上、
(b)V(0.1)/V(0.2)の値が0.92〜0.99、
(c)V(0.2)/V(0.8)の値が0.80〜0.95及び
(d)V(0.8)/V(1.0)の値が0.80〜0.90
をすべて満たす活性炭素繊維を選出する工程を有することを特徴とする製造方法。
4.活性炭素繊維を用いてトリハロメタン類及び黴臭原因物質を吸着除去する方法であって、
当該活性炭素繊維が、77.4Kにおける窒素吸着等温線において、相対圧力P/Pでの窒素ガス吸着量をV(P/P)として、
(a)V(0.1)の値が200cc/g以上、
(b)V(0.1)/V(0.2)の値が0.92〜0.99、
(c)V(0.2)/V(0.8)の値が0.80〜0.95及び
(d)V(0.8)/V(1.0)の値が0.80〜0.90
をすべて満たすことを特徴とする方法。
5.前記項1記載の活性炭素繊維が充填された管状体に被処理水を通水することにより、トリハロメタン類及び黴臭原因物質を除去する方法。
以下、本発明について詳細に説明する。なお、本発明において「ミクロ細孔」とは細孔直径が20Å未満の細孔、「メソ細孔」とは細孔直径が20〜500Åの細孔、「マクロ細孔」とは細孔直径が500Åを超える細孔をいう。
1.活性炭素繊維
本発明の活性炭素繊維は、77.4Kにおける窒素吸着等温線において、相対圧力P/Pでの窒素ガス吸着量をV(P/P)として、
(1)V(0.1)の値(以下「a値」という。)が200cc/g以上、
(2)V(0.1)/V(0.2)の値(以下「b値」という。)が0.92〜0.99、
(3)V(0.2)/V(0.8)の値(以下「c値」という。)が0.80〜0.95及び
(4)V(0.8)/V(1.0)の値(以下「d値」という。)が0.80〜0.90
をすべて満たすことを特徴とする。
本発明において、上記窒素吸着等温線は次のようにして作成する。活性炭素繊維を77.4K(窒素の沸点)に冷却し、窒素ガスを導入して容量法により窒素ガスの吸着量V[cc/g]を測定する。このとき、導入する窒素ガスの圧力P[mmHg]を徐々に上げ、窒素ガスの飽和蒸気圧P[mmHg]で除した値を相対圧力P/Pとして、各相対圧力に対する吸着量をプロットすることにより窒素吸着等温線を作成する。この窒素吸着等温線において、各相対圧力(P/P)における窒素ガス吸着量をV(P/P)とする。例えば、相対圧力が0.1である場合の窒素ガス吸着量はV(0.1)と表記される。窒素吸着等温線は、図1に示すように、横軸に相対圧力(P/P)をとり、縦軸に窒素ガス吸着量をV(P/P)をとれば良い。窒素ガスの吸着量の測定に際しては、市販の自動ガス吸着量測定装置を用いることができる。例えば、商品名「AUTOSORB−6」(QUANTCHROME製)等を好適に用いることができる。
上記a値は200cc/g以上とし、好ましくは220cc/g以上とする。a値が200cc/g未満の場合は、一般に、被吸着物質を効果的に吸着除去することが困難になるおそれがある。
上記b値は0.92〜0.99とし、好ましくは0.95〜0.99とする。b値が0.92未満の場合は、ミクロ細孔とミクロ細孔の細孔直径に近い細孔直径をもつメソ細孔とが過多となるため、所望の吸着性能が得られなくなるおそれがある。他方、b値が0.99を超えると、ミクロ細孔とミクロ細孔の細孔直径に近い細孔直径をもつメソ細孔とが過少となるため、吸着性能が低下することがある。
上記c値は0.80〜0.95、好ましくは0.85〜0.95とする。c値が0.80未満の場合は、細孔直径20〜100Å付近のメソ細孔が過多となるため、本発明の効果が得られなくなることがある。c値が0.95を超えると、細孔直径20〜100Å付近のメソ細孔が過少となるため、本発明の浄水精製用材料等としての効果が得られなくなる場合がある。
上記d値は0.80〜0.90、好ましくは0.82〜0.90とする。d値が0.80未満の場合は、マクロ細孔とマクロ細孔の細孔直径に近い細孔直径をもつメソ細孔とが過多となるため、所望の吸着性能が得られなくなるおそれがある。d値が0.90を超えると、マクロ細孔とマクロ細孔の細孔直径に近い細孔直径をもつメソ細孔とが過少となるため、本発明の浄水精製用材料等としての能力が発揮されない場合がある。
本発明の活性炭素繊維は、従来の活性炭素繊維の用途にも好適に用いることができる。特に、トリハロメタン類及び黴臭原因物質の吸着除去用材料に好適に用いることができる。従って、浄水精製用材料、ガス精製用材料等として使用することができる。例えば、浄水精製用材料として用いる場合は、公知の浄水器等における吸着材に代えて本発明材料をそのまま使用すれば良い。本発明は、上記活性炭素繊維を用いるトリハロメタン類及び黴臭原因物質の除去方法も包含する。具体的には、本発明の活性炭素繊維が充填された管状体に被処理水を通水することにより、被処理水中のトリハロメタン類及び黴臭原因物質を吸着除去することができる。このときの通水量、本発明材料の使用量等も公知の方法・条件に従えば良い。
2.活性炭素繊維の製造方法
本発明の活性炭素繊維は、上記a〜d値を具備するものが得られる限り、どのような方法で製造しても良いが、例えば次のような製造方法によることが望ましい。
すなわち、活性炭前駆体を溶融紡糸し、不融化処理し、賦活処理することにより活性炭繊維を製造する方法において、当該活性炭前駆体としてバナジウム、白金及び鉄の少なくとも1種の金属成分を0.01〜5重量%含有するピッチを用いることを特徴とする方法によって、本発明の活性炭素繊維をより確実に得ることができる。
金属成分は、バナジウム、白金及び鉄の少なくとも1種である。2種以上の金属成分を併用する場合、組み合わせる金属の種類、その割合等は活性炭素繊維の用途、使用目的等に応じて適宜設定すれば良い。
金属成分の含有量は活性炭前駆体中0.01〜5重量%、好ましくは0.1〜2重量%になるように調整する。金属成分の含有量が0.01重量%未満の場合は、賦活反応時の金属の作用が弱くなる等の理由により、上記a値〜d値を有する活性炭素繊維が得られなくなることがある。逆に5重量%を超える場合は、活性炭中で金属成分が凝縮しやすくなり、活性炭素繊維の物理的強度が著しく低下するため、浄水用素材等としての実用性を欠くことがある。なお、金属成分の含有量は、金属化合物としての含有量ではなく金属元素換算の含有量を示し、ICP発光分析法により測定した値を示す。
活性炭前駆体は、例えば上記金属成分を含む化合物(金属化合物)とピッチとを混合することによって調製することができる。
上記ピッチとしては、不融化、炭素化等により活性炭になり得、しかも金属化合物と混合可能なものであれば特に限定されない。例えば、石油系ピッチ、石炭系ピッチ、合成ピッチ等のいずれも使用できる。また、光学的性質としても、等方性又は異方性のいずれであっても良い。
なお、活性炭前駆体を調製する場合、例えばピッチの原料であるコールタールと金属化合物とを溶媒中で混合・攪拌した後、減圧蒸留することによりピッチと金属成分を含む活性炭前駆体を得ることもできる。
金属化合物としては、これらの金属成分が含まれていれば特に限定されず、無機化合物及び有機化合物のいずれも使用することができる。無機化合物としては、例えば塩化物、硝酸塩、及び酢酸塩等の無機塩類が用いられる。具体的には、塩化鉄、硝酸鉄、酢酸鉄等を例示することができる。また、有機化合物としては、上記金属成分とアセチルアセトンやシクロペンタジエン等との有機金属錯体が用いられる。具体的には、トリスアセチルアセトナト鉄、アセチルアセトナト鉄、トリスシクロペンタジエニル鉄等を例示することができる。
金属化合物とピッチとの混合方法は、均一に混合できれば限定されず、例えば金属化合物とピッチとをそのまま混合したり、あるいは適当な溶媒中で両者を混合しても良い。特に、金属化合物とピッチとを溶媒中で混合することが好ましい。
溶媒としては、金属化合物及びピッチの双方を溶解できるものであれば特に限定されず、キノリン、ベンゼン、ジクロロメタン、トルエン、キシレン、テトラヒドロフラン、メタノール、エタノール等の公知の溶媒の中から、用いるピッチの種類、金属化合物の種類に応じて適宜選択すれば良い。例えば、鉄化合物としてアセチルアセトン錯体を用い、ピッチとして石炭系等方性ピッチを用いる場合には、キノリン等を用いることができる。
溶媒の使用量は、均一な活性炭前駆体が得られる限り特に限定されず、使用する溶媒、金属化合物等の種類に応じて適宜設定すれば良い。
次いで、得られた活性炭前駆体を紡糸した後、不融化処理及び/又は炭素化処理し、次いで賦活処理を施すことによって本発明活性炭素繊維を得ることができる。上記紡糸方法、不融化処理、炭素化処理及び賦活処理は、以下に示す方法で実施することが好ましい。
紡糸方法は、公知の溶融紡糸方法に従って行うことができる。溶融温度及び紡糸温度は、一般に活性炭前駆体の軟化点温度以上の温度とし、好ましくは軟化点よりも30〜100℃高い温度に設定する。溶融した活性炭前駆体は、紡糸機のノズル部へ送液され、多数の細孔を穿ったノズル面より、紡糸温度以下に制御された雰囲気中に繊維を形成しつつ吐出される。
不融化処理は、不活性ガス雰囲気又は酸素含有ガス雰囲気下において活性炭前駆体をその融点以下の温度から昇温速度0.1〜10℃/分で400℃程度まで加熱することによって実施することができる。
炭素化処理は、窒素ガス、アルゴンガス等の不活性ガス雰囲気下において、活性炭前駆体を昇温速度5〜10℃/分で800〜1200℃程度まで加熱し、そのときの最大温度を最大限10分程度維持することにより実施することができる。
賦活処理は、水蒸気、二酸化炭素、酸素及びこれらの混合ガス並びにこれらのガスを窒素等の不活性ガスで希釈したガス雰囲気中において、不融化処理及び/又は炭素化処理が施された活性炭前駆体を800〜1200℃程度の温度で5〜120分程度保持することにより実施することができる。
この場合、炭素化処理又は賦活処理に供する活性炭前駆体は、酸素原子を5重量%以上含むことが好ましい。酸素原子が5重量%以上含まれることにより、炭素化又は賦活反応において酸素原子が脱離する際に金属成分と相互作用が働き、本発明の活性炭素繊維の最大の特徴であるマクロ細孔の細孔直径に近い細孔直径をもつメソ細孔を適度に穿孔させる効果が得られる。酸素原子の含有量は、不融化温度、不融化時間等の不融化条件で適宜調節することができる。
本発明では、特にトリハロメタン類及び黴臭原因物質の吸着用に適した活性炭素繊維をより確実に得るために、このようにして得られた活性炭素繊維の窒素ガス吸着性能を測定することにより、77.4Kにおける窒素吸着等温線において、相対圧力P/Pでの窒素ガス吸着量をV(P/P)として、
(a)V(0.1)の値が200cc/g以上、
(b)V(0.1)/V(0.2)の値が0.92〜0.99、
(c)V(0.2)/V(0.8)の値が0.80〜0.95及び
(d)V(0.8)/V(1.0)の値が0.80〜0.90
をすべて満たす活性炭素繊維を選出する工程を有することが望ましい。窒素ガス吸着量の測定方法は前記と同様にすれば良い。
また、本発明は、トリハロメタン類及び黴臭原因物質の吸着用活性炭素繊維を選出する方法も包含する。すなわち、トリハロメタン類及び黴臭原因物質の吸着用活性炭素繊維を選出する方法であって、
活性炭素繊維の窒素ガス吸着量を測定することにより、77.4Kにおける窒素吸着等温線において、相対圧力P/Pでの窒素ガス吸着量をV(P/P)として、
(a)V(0.1)の値が200cc/g以上、
(b)V(0.1)/V(0.2)の値が0.92〜0.99、
(c)V(0.2)/V(0.8)の値が0.80〜0.95及び
(d)V(0.8)/V(1.0)の値が0.80〜0.90
をすべて満たす活性炭素繊維を選出することを特徴とする方法が本発明に包含される。この選出方法は、上記のような製法以外の方法で製造された活性炭素繊維を含め、あらゆる活性炭素繊維に適用できる。窒素ガス吸着量の測定方法は前記と同様にすれば良い。上記(a)〜(b)の条件をすべて満たす活性炭素繊維は、トリハロメタン類及び黴臭原因物質の吸着用材料として優れた効果を発揮する。
トリハロメタン類の分子の大きさは、黴臭原因物質のようにミクロ細孔内に侵入できない大きさではない。そこで、ミクロ細孔とメソ細孔とを兼ね備えた活性炭素繊維に着目し、詳細に検討した結果、メソ細孔がミクロ細孔に近い小さい細孔部分及びマクロ細孔に近い大きい細孔部分が特定の範囲で占められるように、その微細構造を窒素吸着等温線(窒素ガス吸着量)によりコントロールすることによって、高いトリハロメタン類吸着性能を維持しつつ黴臭原因物質の吸着性能をも改善することが可能となる。
従って、本発明活性炭素繊維は、カルキ臭に代表される低分子物質からトリハロメタン類、さらに黴臭原因物質等の巨大分子までを実質的にすべて除去できる吸着材として優れた効果を発揮することができる。すなわち、かかる特徴を有する本発明活性炭素繊維は、トリハロメタン類及び黴臭原因物質の吸着用活性炭素繊維として有用であり、具体的には浄水精製用材料、ガス精製用材料等として好適に用いることができる。
発明を実施するための最良の形態
以下、実施例及び比較例を示し、本発明の特徴とするところをよりいっそう明確に示す。ただし、本発明は、これら実施例に限定されるものではない。
なお、本実施例では、活性炭素繊維の窒素ガス吸着量は、商品名「AUTOSORB−6」(QUANTCHROME製)を用いて測定した。
実施例1
水分及びキノリン不溶分を除去したコールタール1000gを窒素雰囲気下90℃に加温し、そこにアセチルアセトナト鉄6gを溶解したキノリン混合液200mlを徐々に滴下し、90分間攪拌した。次に、これを減圧蒸留し、さらに3L/分の割合で空気を吹き込みながら330℃で3時間反応することにより、鉄含有コールタールピッチを得た。このピッチの鉄含有量は0.23重量%であった。得られた鉄含有コールタールピッチを溶融温度320℃で溶融押出紡糸してピッチ繊維を得た。紡糸されたピッチ繊維を空気中で常温から昇温速度1〜10℃で加熱し、最高温度364℃で4分保持し、全不融化時間65分をかけて不融化処理を行った。次いで、不融化したピッチ繊維を窒素雰囲気下850℃で60分間飽和水蒸気に暴露し、賦活処理を行い、鉄含有活性炭素繊維を得た。得られた活性炭素繊維のa〜d値を表1に示す。また、その窒素吸着等温線を図1に示す。
実施例2
アセチルアセトナト鉄6gの代わりにアセチルアセトナト白金5.7gを使用した以外は実施例1と同様の方法でコールタールピッチを得た。このピッチの白金含有量は2.60重量%であった。紡糸されたピッチ繊維を空気中で常温から昇温速度2℃/分で加熱し、375℃で15分間保持し、不融化処理を行った。次いで、不融化したピッチ繊維を窒素雰囲気下850℃で35分間飽和水蒸気に暴露し、賦活処理を行い、白金含有活性炭素繊維を作製した。得られた活性炭素繊維のa〜d値を表1に示す。また、その窒素吸着等温線を図1に示す。
比較例1
金属化合物を混合しないこと及び賦活処理時間を30分にした以外は実施例1と同様の方法で活性炭素繊維を製造した。得られた活性炭素繊維のa〜d値を表1に示す。また、その窒素吸着等温線を図1に示す。
比較例2
アセチルアセトナト鉄の量を180gに変更した以外は実施例1と同様の方法で鉄含有活性炭素繊維の作製を試みた。この時のピッチの鉄含有量は7重量%であった。しかし、紡糸の際に糸切れが多発し、操業上問題があり、作製した鉄含有活性炭素繊維は繊維形状が容易に崩壊し粉化した。また、鉄化合物の凝集物と認められるものが多数存在した。活性炭素繊維の粉化が著しく、a〜d値の測定は困難であった。
比較例3
不融化処理における最高温度を264℃にした以外は実施例1と同様の方法で鉄含有活性炭素繊維を作製した。なお、この時の活性炭前駆体中の酸素原子含有量は2.55%であった。得られた活性炭素繊維のa〜d値を表1に示す。また、その窒素吸着等温線を図1に示す。

Figure 2003026792
試験例1
各実施例及び比較例で得られた活性炭素繊維について、総トリハロメタンろ過能力試験及びカビ臭ろ過能力試験を行った。その結果を表2に示す。なお、各試験方法は以下の方法により実施した。
(1)総トリハロメタンろ過能力試験
JIS−S−3201『家庭用浄水器試験方法(連続法)』に基づいてミルド化した試料8.4gをアクリル容器に48mm(直径)・30mm(高さ)となるように充填して、総トリハロメタンTTHM(CHCl:CHClBr:CHClBr:CHBr=45:30:20:5)の濃度が102.4pptの原水を流量3L/分で通水した。このときの出口濃度Cと初期濃度Cの比C/Cが0.2となる通水量をろ過能力とした。なお、上記分析装置は、商品名『GC−14B』(島津製作所製)を使用し、ヘッドスペース法で実施した。
(2)カビ臭ろ過能力試験
JIS−S−3201『家庭用浄水器試験方法(連続法)』に基づいてミルド化した試料8.4gをアクリル容器に48mm(直径)・30mm(高さ)となるように充填して、2−メチルイソボルネオール濃度が55pptの原水を流量3L/分で通水した。このときの出口濃度Cと初期濃度Cの比C/Cが0.2となる通水量をろ過能力とした。なお、上記分析装置は、商品名『GCMS−QP5050』(島津製作所製)を使用し、パージトラップ法で実施した。
Figure 2003026792
これらの結果からも明らかなように、本発明の活性炭素繊維は、トリハロメタン類の吸着除去性能はもとより、黴臭原因物質の吸着除去性能においても優れた効果を発揮できることがわかる。なお、比較例2は、粉化が著しいため、ろ過能力試験の実施は困難であった。
【図面の簡単な説明】
図1は、実施例1の鉄含有活性炭素繊維、実施例2の白金含有活性炭素繊維、比較例1の金属を含まない活性炭素繊維及び比較例3の鉄含有活性炭素繊維の窒素吸着等温線を示す図である。 TECHNICAL FIELD The present invention relates to a novel activated carbon fiber and a method for producing the same.
Background Technology Activated carbon fibers have characteristics different from those of granular or powdered activated carbon, not only in appearance, but also in pore structure. Activated carbon fibers having such characteristics are widely used in various applications including adsorbents.
Since the activated carbon fiber is fibrous as the name suggests, the exposed surface per unit weight is generally larger than that of granular or powdered activated carbon. For this reason, the characteristics which it is easy to contact with a to-be-processed object, and the pressure loss at the time of a to-be-processed fluid passage can be suppressed low are exhibited.
In particular, with regard to purification of drinking water, water purifiers using activated carbon fibers as adsorbents are widely used to remove residual chlorine (so-called “calky smell”). However, in recent years, dredging of river water quality has been regarded as a problem, and removal of organochlorine compounds (so-called “trihalomethanes”) in tap water and removal of “bitter odor” that is derived from microorganisms has become a Is required with the removal of
Activated carbon fiber has a large specific surface area and has many micropores, so it is very effective in removing the odor of chalk. On the other hand, regarding the removal of odor, since the odor-causing substance is a macromolecule, it is not easily trapped in the micropores of the activated carbon fiber and is not suitable for activated carbon fiber.
With regard to improvement of the ability to remove trihalomethanes from activated carbon fibers, there have been known, for example, JP-A-6-99064, JP-A-7-145516, JP-A-10-244253, JP-A-11-240708, JP-A-12-256999. No. gazettes have been proposed. These are all intended to extend the life of activated carbon fibers by desorbing and regenerating trihalomethanes adsorbed on the activated carbon fibers. Furthermore, as a technique for simultaneously removing trihalomethanes and odor-causing substances, the present applicant previously proposed an activated carbon fiber having not only micropores but also mesopores in JP-A-11-240707. Yes.
However, these conventional techniques are not necessarily sufficient as materials for removing both trihalomethanes and odor-causing substances. In particular, not only the adsorption capacity (so-called equilibrium adsorption capacity) in the state where treated water does not flow (that is, static conditions) but also the removal capacity in the water-flowing state, which is the actual use condition for water purification, etc. There is a lot of room.
The main purpose of the disclosure <br/> present invention inventions is to provide an active carbon fiber removal adsorption performance of removing adsorption performance and musty odor substances causing trihalomethanes are both excellent.
As a result of repeated studies in view of the problems of the prior art, the present inventor has found that activated carbon fibers having a specific microstructure can achieve the above object, and have completed the present invention.
That is, this invention relates to the activated carbon fiber and its manufacturing method shown below.
In the nitrogen adsorption isotherm at 1.77.4 K, the nitrogen gas adsorption amount at relative pressure P / P 0 is defined as V (P / P 0 ),
(A) the value of V (0.1) is 200 cc / g or more,
(B) the value of V (0.1) / V (0.2) is 0.92 to 0.99,
(C) The value of V (0.2) / V (0.8) is 0.80 to 0.95 and (d) the value of V (0.8) / V (1.0) is 0.80. 0.90
An activated carbon fiber characterized by satisfying all of the above.
2. A water purification material comprising the activated carbon fiber according to Item 1.
3. A method for producing activated carbon fibers for adsorption of trihalomethanes and odor-causing substances, comprising: (1) a pitch containing 0.01 to 5% by weight of at least one metal component of vanadium, platinum and iron as an activated carbon precursor The precursor is melt spun, infusibilized, and activated to obtain activated carbon fibers, and (2) the amount of nitrogen gas adsorbed on the obtained activated carbon fibers is measured. In the nitrogen adsorption isotherm at 4K, the nitrogen gas adsorption amount at relative pressure P / P 0 is defined as V (P / P 0 ),
(A) the value of V (0.1) is 200 cc / g or more,
(B) the value of V (0.1) / V (0.2) is 0.92 to 0.99,
(C) The value of V (0.2) / V (0.8) is 0.80 to 0.95 and (d) the value of V (0.8) / V (1.0) is 0.80. 0.90
And a process for selecting activated carbon fibers satisfying all of the above.
4). A method of adsorbing and removing trihalomethanes and odor-causing substances using activated carbon fibers,
In the nitrogen adsorption isotherm at 77.4 K, the activated carbon fiber has a nitrogen gas adsorption amount at relative pressure P / P 0 as V (P / P 0 ),
(A) the value of V (0.1) is 200 cc / g or more,
(B) the value of V (0.1) / V (0.2) is 0.92 to 0.99,
(C) The value of V (0.2) / V (0.8) is 0.80 to 0.95 and (d) the value of V (0.8) / V (1.0) is 0.80. 0.90
A method characterized by satisfying all of the above.
5. A method for removing trihalomethanes and odor-causing substances by passing water to be treated through a tubular body filled with the activated carbon fiber according to Item 1.
Hereinafter, the present invention will be described in detail. In the present invention, “micropore” means a pore having a pore diameter of less than 20 mm, “mesopore” means a pore having a pore diameter of 20 to 500 mm, and “macropore” means a pore diameter. Means pores exceeding 500 mm.
1. Activated carbon fiber The activated carbon fiber of the present invention has a nitrogen adsorption isotherm at 77.4 K, and the nitrogen gas adsorption amount at relative pressure P / P 0 is defined as V (P / P 0 ).
(1) The value of V (0.1) (hereinafter referred to as “a value”) is 200 cc / g or more,
(2) The value of V (0.1) / V (0.2) (hereinafter referred to as “b value”) is 0.92 to 0.99,
(3) The value of V (0.2) / V (0.8) (hereinafter referred to as “c value”) is 0.80 to 0.95 and (4) V (0.8) / V (1. 0) (hereinafter referred to as “d value”) is 0.80 to 0.90.
It is characterized by satisfying all.
In the present invention, the nitrogen adsorption isotherm is created as follows. The activated carbon fiber is cooled to 77.4K (the boiling point of nitrogen), nitrogen gas is introduced, and the nitrogen gas adsorption amount V [cc / g] is measured by a volumetric method. At this time, the pressure P [mmHg] of the nitrogen gas to be introduced is gradually increased, and a value obtained by dividing by the saturated vapor pressure P 0 [mmHg] of the nitrogen gas is set as the relative pressure P / P 0 , and the adsorption amount with respect to each relative pressure is plotted. This creates a nitrogen adsorption isotherm. In this nitrogen adsorption isotherm, the nitrogen gas adsorption amount at each relative pressure (P / P 0 ) is defined as V (P / P 0 ). For example, the nitrogen gas adsorption amount when the relative pressure is 0.1 is expressed as V (0.1). As shown in FIG. 1, the nitrogen adsorption isotherm may have a relative pressure (P / P 0 ) on the horizontal axis and a nitrogen gas adsorption amount V (P / P 0 ) on the vertical axis. When measuring the adsorption amount of nitrogen gas, a commercially available automatic gas adsorption amount measuring device can be used. For example, a trade name “AUTOSORB-6” (manufactured by QUANTCHROME) or the like can be suitably used.
The a value is 200 cc / g or more, preferably 220 cc / g or more. When the a value is less than 200 cc / g, it is generally difficult to effectively adsorb and remove the substance to be adsorbed.
The b value is 0.92 to 0.99, preferably 0.95 to 0.99. When the b value is less than 0.92, the number of micropores and mesopores having a pore diameter close to that of the micropores is excessive, and the desired adsorption performance may not be obtained. . On the other hand, when the b value exceeds 0.99, the micropores and the mesopores having a pore diameter close to the pore diameter of the micropores become too small, and the adsorption performance may be lowered.
The c value is 0.80 to 0.95, preferably 0.85 to 0.95. When the c value is less than 0.80, the mesopores having a pore diameter of about 20 to 100 mm are excessive, and the effects of the present invention may not be obtained. When the c value exceeds 0.95, the mesopores with a pore diameter of 20 to 100 mm are too small, and the effect as the water purification material of the present invention may not be obtained.
The d value is 0.80 to 0.90, preferably 0.82 to 0.90. When the d value is less than 0.80, the macropores and the mesopores having a pore diameter close to that of the macropores are excessive, and the desired adsorption performance may not be obtained. . When the d value exceeds 0.90, macropores and mesopores having pore diameters close to the macropore diameter are too small. It may not be demonstrated.
The activated carbon fiber of the present invention can also be suitably used for conventional activated carbon fiber applications. In particular, it can be suitably used as a material for adsorbing and removing trihalomethanes and odor-causing substances. Therefore, it can be used as a water purification material, a gas purification material, or the like. For example, when used as a material for water purification, the material of the present invention may be used as it is instead of the adsorbent in a known water purifier or the like. The present invention also includes a method for removing trihalomethanes and odor-causing substances using the activated carbon fiber. Specifically, by passing water to be treated through a tubular body filled with the activated carbon fiber of the present invention, trihalomethanes and odor-causing substances in the water to be treated can be adsorbed and removed. At this time, the amount of water flow, the amount of use of the material of the present invention, etc. may be in accordance with known methods and conditions.
2. Method for producing activated carbon fiber The activated carbon fiber of the present invention may be produced by any method as long as the activated carbon fiber having the above-mentioned values a to d is obtained. For example, the following production is possible. Preferably by method.
That is, in the method of producing activated carbon fiber by melt spinning an activated carbon precursor, performing infusibilization treatment, and activation treatment, at least one metal component of vanadium, platinum and iron as the activated carbon precursor is 0.01 to The activated carbon fiber of the present invention can be obtained more reliably by a method characterized by using a pitch containing 5% by weight.
The metal component is at least one of vanadium, platinum, and iron. When two or more kinds of metal components are used in combination, the kind of metal to be combined, the ratio thereof, and the like may be appropriately set according to the use, purpose of use, etc. of the activated carbon fiber.
The content of the metal component is adjusted to 0.01 to 5% by weight, preferably 0.1 to 2% by weight in the activated carbon precursor. When the content of the metal component is less than 0.01% by weight, activated carbon fibers having the above-mentioned a value to d value may not be obtained due to reasons such as weakening the action of the metal during the activation reaction. On the other hand, if it exceeds 5% by weight, the metal component is likely to condense in the activated carbon, and the physical strength of the activated carbon fiber is remarkably reduced. In addition, content of a metal component shows not the content as a metal compound but content in metal element conversion, and shows the value measured by the ICP emission analysis method.
The activated carbon precursor can be prepared, for example, by mixing a compound (metal compound) containing the metal component and pitch.
The pitch is not particularly limited as long as it can be activated carbon by infusibilization, carbonization, and the like and can be mixed with a metal compound. For example, any of petroleum pitch, coal pitch, synthetic pitch, etc. can be used. Also, the optical property may be either isotropic or anisotropic.
In addition, when preparing an activated carbon precursor, for example, coal tar and a metal compound, which are raw materials of pitch, are mixed and stirred in a solvent, and then an activated carbon precursor containing pitch and a metal component is obtained by distillation under reduced pressure. it can.
The metal compound is not particularly limited as long as these metal components are contained, and any of inorganic compounds and organic compounds can be used. As the inorganic compound, for example, inorganic salts such as chloride, nitrate, and acetate are used. Specifically, iron chloride, iron nitrate, iron acetate and the like can be exemplified. As the organic compound, an organometallic complex of the metal component and acetylacetone, cyclopentadiene, or the like is used. Specific examples include trisacetylacetonatoiron, acetylacetonatoiron, triscyclopentadienyliron, and the like.
The mixing method of the metal compound and the pitch is not limited as long as it can be uniformly mixed. For example, the metal compound and the pitch may be mixed as they are, or both may be mixed in an appropriate solvent. In particular, it is preferable to mix a metal compound and pitch in a solvent.
The solvent is not particularly limited as long as it can dissolve both the metal compound and the pitch, and the kind of pitch to be used is selected from known solvents such as quinoline, benzene, dichloromethane, toluene, xylene, tetrahydrofuran, methanol, and ethanol. And may be appropriately selected according to the type of the metal compound. For example, when an acetylacetone complex is used as the iron compound and a coal-based isotropic pitch is used as the pitch, quinoline or the like can be used.
The usage-amount of a solvent is not specifically limited as long as a uniform activated carbon precursor is obtained, What is necessary is just to set suitably according to types, such as a solvent to be used and a metal compound.
Next, after the obtained activated carbon precursor is spun, the activated carbon fiber of the present invention can be obtained by performing infusibilization treatment and / or carbonization treatment and then performing activation treatment. The spinning method, infusibilization treatment, carbonization treatment and activation treatment are preferably carried out by the following methods.
The spinning method can be performed according to a known melt spinning method. The melting temperature and the spinning temperature are generally set to a temperature equal to or higher than the softening point temperature of the activated carbon precursor, and preferably set to a temperature 30 to 100 ° C. higher than the softening point. The molten activated carbon precursor is fed to the nozzle portion of the spinning machine, and discharged from the nozzle surface having a large number of pores while forming fibers in an atmosphere controlled to be below the spinning temperature.
The infusibilization treatment can be carried out by heating the activated carbon precursor from a temperature below its melting point to about 400 ° C. at a temperature rising rate of 0.1 to 10 ° C./min in an inert gas atmosphere or an oxygen-containing gas atmosphere. it can.
In the carbonization treatment, the activated carbon precursor is heated to about 800 to 1200 ° C. at a temperature rising rate of 5 to 10 ° C./min in an inert gas atmosphere such as nitrogen gas or argon gas, and the maximum temperature at that time is maximized. It can be carried out by maintaining for about 10 minutes.
The activation treatment is performed using inactive and / or carbonized activated carbon precursors in a gas atmosphere obtained by diluting water vapor, carbon dioxide, oxygen and a mixed gas thereof with an inert gas such as nitrogen. Can be carried out at a temperature of about 800 to 1200 ° C. for about 5 to 120 minutes.
In this case, the activated carbon precursor used for the carbonization treatment or activation treatment preferably contains 5% by weight or more of oxygen atoms. When the oxygen atom is contained in an amount of 5% by weight or more, when the oxygen atom is desorbed in the carbonization or activation reaction, the metal component interacts with the macropore, which is the greatest feature of the activated carbon fiber of the present invention. An effect of appropriately perforating mesopores having a pore diameter close to the pore diameter can be obtained. The oxygen atom content can be appropriately adjusted according to the infusibilization conditions such as the infusibilization temperature and the infusibilization time.
In the present invention, in order to more reliably obtain activated carbon fibers particularly suitable for adsorption of trihalomethanes and odor-causing substances, by measuring the nitrogen gas adsorption performance of the activated carbon fibers thus obtained, In the nitrogen adsorption isotherm at 77.4K, the nitrogen gas adsorption amount at the relative pressure P / P 0 is defined as V (P / P 0 ).
(A) the value of V (0.1) is 200 cc / g or more,
(B) the value of V (0.1) / V (0.2) is 0.92 to 0.99,
(C) The value of V (0.2) / V (0.8) is 0.80 to 0.95 and (d) the value of V (0.8) / V (1.0) is 0.80. 0.90
It is desirable to have a step of selecting activated carbon fibers satisfying all of the above. The method for measuring the nitrogen gas adsorption amount may be the same as described above.
The present invention also includes a method for selecting activated carbon fibers for adsorption of trihalomethanes and odor-causing substances. That is, a method for selecting activated carbon fibers for adsorption of trihalomethanes and odor-causing substances,
By measuring the nitrogen gas adsorption amount of the activated carbon fiber, in the nitrogen adsorption isotherm at 77.4K, the nitrogen gas adsorption amount at the relative pressure P / P 0 is defined as V (P / P 0 ).
(A) the value of V (0.1) is 200 cc / g or more,
(B) the value of V (0.1) / V (0.2) is 0.92 to 0.99,
(C) The value of V (0.2) / V (0.8) is 0.80 to 0.95 and (d) the value of V (0.8) / V (1.0) is 0.80. 0.90
A method characterized by selecting activated carbon fibers satisfying all of the above is included in the present invention. This selection method can be applied to all activated carbon fibers including activated carbon fibers produced by a method other than the above-described production method. The method for measuring the nitrogen gas adsorption amount may be the same as described above. The activated carbon fiber that satisfies all the conditions (a) to (b) exhibits an excellent effect as a material for adsorbing trihalomethanes and odor-causing substances.
The size of the molecule of trihalomethanes is not such a size that cannot penetrate into the micropores like the odor causing substance. Therefore, paying attention to the activated carbon fiber that has both micropores and mesopores, and as a result of detailed investigation, the mesopores are small pore portions close to micropores and large pore portions close to macropores. Improve the adsorption performance of odor-causing substances while maintaining high trihalomethanes adsorption performance by controlling the microstructure with nitrogen adsorption isotherm (nitrogen gas adsorption amount) so that it is occupied in a specific range Is possible.
Therefore, the activated carbon fiber of the present invention can exert an excellent effect as an adsorbent capable of removing substantially all of the low molecular weight substances typified by the calky odor, the trihalomethanes, and even macromolecules such as odor-causing substances. it can. That is, the activated carbon fiber of the present invention having such characteristics is useful as an activated carbon fiber for adsorbing trihalomethanes and odor-causing substances, and specifically, it is preferably used as a water purification material, a gas purification material, or the like. Can do.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, examples and comparative examples will be shown to show the features of the present invention more clearly. However, the present invention is not limited to these examples.
In the present example, the nitrogen gas adsorption amount of the activated carbon fiber was measured using a trade name “AUTOSORB-6” (manufactured by QUANTCHROME).
Example 1
1000 g of coal tar from which moisture and quinoline-insoluble components were removed was heated to 90 ° C. in a nitrogen atmosphere, and 200 ml of a quinoline mixed solution in which 6 g of acetylacetonatoiron was dissolved was gradually added dropwise and stirred for 90 minutes. Next, this was distilled under reduced pressure, and further reacted at 330 ° C. for 3 hours while blowing air at a rate of 3 L / min to obtain an iron-containing coal tar pitch. The iron content of this pitch was 0.23% by weight. The obtained iron-containing coal tar pitch was melt extrusion spun at a melting temperature of 320 ° C. to obtain pitch fibers. The spun pitch fiber was heated in air from room temperature at a heating rate of 1 to 10 ° C., held at a maximum temperature of 364 ° C. for 4 minutes, and subjected to infusibilization treatment with a total infusibilization time of 65 minutes. Next, the infusibilized pitch fiber was exposed to saturated water vapor at 850 ° C. for 60 minutes in a nitrogen atmosphere, and activation treatment was performed to obtain iron-containing activated carbon fibers. Table 1 shows the ad values of the obtained activated carbon fibers. The nitrogen adsorption isotherm is shown in FIG.
Example 2
A coal tar pitch was obtained in the same manner as in Example 1 except that 5.7 g of acetylacetonatoplatinum was used instead of 6 g of acetylacetonatoiron. The platinum content of this pitch was 2.60% by weight. The spun pitch fiber was heated in air from room temperature at a temperature rising rate of 2 ° C./min and held at 375 ° C. for 15 minutes for infusibilization. Next, the infusibilized pitch fiber was exposed to saturated water vapor at 850 ° C. for 35 minutes in a nitrogen atmosphere, and an activation treatment was performed to produce platinum-containing activated carbon fibers. Table 1 shows the ad values of the obtained activated carbon fibers. The nitrogen adsorption isotherm is shown in FIG.
Comparative Example 1
Activated carbon fibers were produced in the same manner as in Example 1 except that the metal compound was not mixed and the activation treatment time was 30 minutes. Table 1 shows the ad values of the obtained activated carbon fibers. The nitrogen adsorption isotherm is shown in FIG.
Comparative Example 2
Production of iron-containing activated carbon fibers was attempted in the same manner as in Example 1 except that the amount of acetylacetonatoiron was changed to 180 g. The iron content of the pitch at this time was 7% by weight. However, many yarn breaks occurred during spinning, and there were operational problems. The produced iron-containing activated carbon fibers were easily disintegrated and powdered. In addition, there were many that were recognized as aggregates of iron compounds. The activated carbon fiber was markedly pulverized, and the measurement of the ad values was difficult.
Comparative Example 3
An iron-containing activated carbon fiber was produced in the same manner as in Example 1 except that the maximum temperature in the infusibilization treatment was 264 ° C. At this time, the oxygen atom content in the activated carbon precursor was 2.55%. Table 1 shows the ad values of the obtained activated carbon fibers. The nitrogen adsorption isotherm is shown in FIG.
Figure 2003026792
Test example 1
About the activated carbon fiber obtained by each Example and the comparative example, the total trihalomethane filtration ability test and the mold odor filtration ability test were done. The results are shown in Table 2. In addition, each test method was implemented with the following method.
(1) Total Trihalomethane Filtration Capability Test 8.4 g of a sample milled based on JIS-S-3201 “Household water purifier test method (continuous method)” in an acrylic container with 48 mm (diameter) and 30 mm (height) The raw water having a total trihalomethane TTHM (CHCl 3 : CHCl 2 Br: CHClBr 2 : CHBr 3 = 45: 30: 20: 5) concentration of 102.4 ppt was passed at a flow rate of 3 L / min. The amount of water passing at which the ratio C / C 0 between the outlet concentration C and the initial concentration C 0 at this time was 0.2 was defined as the filtration capacity. In addition, the said analyzer was implemented by the head space method using brand name "GC-14B" (made by Shimadzu Corporation).
(2) Mold Odor Filtration Capability Test 8.4g of sample 8.4g milled according to JIS-S-3201 "Household water purifier test method (continuous method)" in an acrylic container with 48mm (diameter) and 30mm (height) The raw water having a 2-methylisoborneol concentration of 55 ppt was passed at a flow rate of 3 L / min. The amount of water passing at which the ratio C / C 0 between the outlet concentration C and the initial concentration C 0 at this time was 0.2 was defined as the filtration capacity. In addition, the said analyzer was implemented by the purge trap method using brand name "GCMS-QP5050" (made by Shimadzu Corporation).
Figure 2003026792
As is clear from these results, it can be seen that the activated carbon fiber of the present invention can exhibit excellent effects not only in the adsorption and removal performance of trihalomethanes but also in the adsorption and removal performance of odor-causing substances. In Comparative Example 2, since the pulverization was remarkable, it was difficult to perform the filtration ability test.
[Brief description of the drawings]
FIG. 1 shows the nitrogen adsorption isotherms of the iron-containing activated carbon fiber of Example 1, the platinum-containing activated carbon fiber of Example 2, the activated carbon fiber not containing metal of Comparative Example 1, and the iron-containing activated carbon fiber of Comparative Example 3. FIG.

Claims (4)

77.4Kにおける窒素吸着等温線において、相対圧力P/Pでの窒素ガス吸着量をV(P/P)として、
(a)V(0.1)の値が200cc/g以上、
(b)V(0.1)/V(0.2)の値が0.92〜0.99、
(c)V(0.2)/V(0.8)の値が0.80〜0.95及び
(d)V(0.8)/V(1.0)の値が0.80〜0.90
をすべて満たすことを特徴とする活性炭素繊維。
In the nitrogen adsorption isotherm at 77.4 K, the nitrogen gas adsorption amount at relative pressure P / P 0 is defined as V (P / P 0 ),
(A) the value of V (0.1) is 200 cc / g or more,
(B) the value of V (0.1) / V (0.2) is 0.92 to 0.99,
(C) The value of V (0.2) / V (0.8) is 0.80 to 0.95 and (d) the value of V (0.8) / V (1.0) is 0.80 0.90
An activated carbon fiber characterized by satisfying all of the above.
請求項1記載の活性炭素繊維を含む浄水精製用材料。A water purification material comprising the activated carbon fiber according to claim 1. トリハロメタン類及び黴臭原因物質の吸着用活性炭素繊維の製造方法であって、
(1)活性炭前駆体としてバナジウム、白金及び鉄の少なくとも1種の金属成分を0.01〜5重量%含有するピッチを用い、この前駆体を溶融紡糸し、不融化処理し、賦活処理することにより活性炭素繊維を得る工程、及び
(2)得られた活性炭素繊維の窒素ガス吸着量を測定することにより、77.4Kにおける窒素吸着等温線において、相対圧力P/Pでの窒素ガス吸着量をV(P/P)として、
(a)V(0.1)の値が200cc/g以上、
(b)V(0.1)/V(0.2)の値が0.92〜0.99、
(c)V(0.2)/V(0.8)の値が0.80〜0.95及び
(d)V(0.8)/V(1.0)の値が0.80〜0.90
をすべて満たす活性炭素繊維を選出する工程を有することを特徴とする製造方法。
A method for producing activated carbon fibers for adsorption of trihalomethanes and odor-causing substances,
(1) Using a pitch containing 0.01 to 5% by weight of at least one metal component of vanadium, platinum and iron as an activated carbon precursor, this precursor is melt-spun, infusibilized, and activated. (2) Nitrogen gas adsorption at a relative pressure P / P 0 in a nitrogen adsorption isotherm at 77.4 K by measuring the amount of nitrogen gas adsorption of the obtained activated carbon fiber. Let the amount be V (P / P 0 ),
(A) the value of V (0.1) is 200 cc / g or more,
(B) the value of V (0.1) / V (0.2) is 0.92 to 0.99,
(C) The value of V (0.2) / V (0.8) is 0.80 to 0.95 and (d) the value of V (0.8) / V (1.0) is 0.80 0.90
And a process for selecting activated carbon fibers satisfying all of the above.
活性炭素繊維を用いてトリハロメタン類及び黴臭原因物質を吸着除去する方法であって、
当該活性炭素繊維が、77.4Kにおける窒素吸着等温線において、相対圧力P/Pでの窒素ガス吸着量をV(P/P)として、
(a)V(0.1)の値が200cc/g以上、
(b)V(0.1)/V(0.2)の値が0.92〜0.99、
(c)V(0.2)/V(0.8)の値が0.80〜0.95及び
(d)V(0.8)/V(1.0)の値が0.80〜0.90
をすべて満たすことを特徴とする方法。
A method of adsorbing and removing trihalomethanes and odor-causing substances using activated carbon fibers,
In the nitrogen adsorption isotherm at 77.4 K, the activated carbon fiber has a nitrogen gas adsorption amount at relative pressure P / P 0 as V (P / P 0 ),
(A) the value of V (0.1) is 200 cc / g or more,
(B) the value of V (0.1) / V (0.2) is 0.92 to 0.99,
(C) The value of V (0.2) / V (0.8) is 0.80 to 0.95 and (d) the value of V (0.8) / V (1.0) is 0.80 0.90
A method characterized by satisfying all of the above.
JP2003530419A 2001-09-26 2002-09-26 Activated carbon fiber and method for producing the same Pending JPWO2003026792A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001294225 2001-09-26
JP2001294225 2001-09-26
PCT/JP2002/009919 WO2003026792A1 (en) 2001-09-26 2002-09-26 Activated carbon fiber and process for producing the same

Publications (1)

Publication Number Publication Date
JPWO2003026792A1 true JPWO2003026792A1 (en) 2005-01-06

Family

ID=19115870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003530419A Pending JPWO2003026792A1 (en) 2001-09-26 2002-09-26 Activated carbon fiber and method for producing the same

Country Status (2)

Country Link
JP (1) JPWO2003026792A1 (en)
WO (1) WO2003026792A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244905A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
WO2019244903A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
CN113727943A (en) * 2019-04-26 2021-11-30 株式会社可乐丽 Carbonaceous material, method for producing same, filter for water purification, and water purifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890131B2 (en) * 1990-03-13 1999-05-10 大阪瓦斯株式会社 Method for producing metal-containing activated carbon
JP3810521B2 (en) * 1997-05-30 2006-08-16 株式会社アドール Nitrogen oxide removing material and method for producing the same
JPH11240708A (en) * 1998-02-27 1999-09-07 Adooru:Kk Fibrous activated carbon
JPH11240707A (en) * 1998-02-27 1999-09-07 Adooru:Kk Activated carbon

Also Published As

Publication number Publication date
WO2003026792A1 (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US5446005A (en) Pitch-based activated carbon fiber
JP6379325B1 (en) Activated carbon and manufacturing method thereof
JP6683968B1 (en) Activated carbon
JP2004182511A (en) Activated carbon and method of manufacturing the same
JP2022132348A (en) Activated carbon and production method thereof
JPWO2003026792A1 (en) Activated carbon fiber and method for producing the same
JP2967389B2 (en) Activated carbon fiber, method for producing the same, and water purifier using the activated carbon fiber as an adsorbent
JPH11240707A (en) Activated carbon
KR102571710B1 (en) Method for producing activated carbon
KR100952945B1 (en) Fibrous Adsorbent and manufacturing method for VOC absorbent
JPWO2003033135A1 (en) Activated carbon fiber for removing organochlorine compounds
JPH11240708A (en) Fibrous activated carbon
KR102545878B1 (en) activated carbon
JP4876307B2 (en) Method for producing activated carbon
JP6719709B2 (en) Activated carbon
JP7300124B2 (en) Activated carbon for removing trihalomethane and method for producing the same
KR20100023946A (en) Fibrous adsorbent and manufacturing method for voc absorbent
JP2000157863A (en) Activated carbon for air cleaning and production thereof
WO2022004594A1 (en) Carbonaceous material and method for producing same, water purification filter, and water purifier
JPH04146220A (en) Production of high-performance activated carbon fiber
JPH04130008A (en) Production of activated carbon fiber having slitlike pore and precursory pitch used therefor
JPH04144906A (en) Precursor pitch for activated carbon fiber having slit micropore, its production and production of activated carbon fiber having slit micropore
JPH07299357A (en) Production of spherical fiber lump molecular sieve carbon
JPH06142503A (en) Production of spherical fiber lump molecular sieve carbon
JPH03146722A (en) Production of activated carbon composed of spherical fiber lump