JP5473255B2 - Activated carbon for gas component adjustment - Google Patents

Activated carbon for gas component adjustment Download PDF

Info

Publication number
JP5473255B2
JP5473255B2 JP2008157088A JP2008157088A JP5473255B2 JP 5473255 B2 JP5473255 B2 JP 5473255B2 JP 2008157088 A JP2008157088 A JP 2008157088A JP 2008157088 A JP2008157088 A JP 2008157088A JP 5473255 B2 JP5473255 B2 JP 5473255B2
Authority
JP
Japan
Prior art keywords
activated carbon
pore
natural gas
pore diameter
gas component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008157088A
Other languages
Japanese (ja)
Other versions
JP2009298668A (en
Inventor
広和 青野
康弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2008157088A priority Critical patent/JP5473255B2/en
Priority to PCT/JP2009/061268 priority patent/WO2009154290A1/en
Priority to CN200980121578XA priority patent/CN102056842B/en
Publication of JP2009298668A publication Critical patent/JP2009298668A/en
Application granted granted Critical
Publication of JP5473255B2 publication Critical patent/JP5473255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents

Description

本発明は、天然ガス等のエネルギー容量が大きいガス成分、特にブタンを調整するための活性炭に関する。   The present invention relates to activated carbon for adjusting a gas component having a large energy capacity such as natural gas, particularly butane.

近年、環境問題などから燃料資源として天然ガスの需要が高まっている。天然ガスは、産地等により異なるが、一般的にメタンを主成分とし、他にエタン、プロパン、ブタン等を含む燃料ガスである。天然ガスは石油の約二倍の埋蔵量が見込まれており、発熱量に対する二酸化炭素の発生量も少ないことからクリーンなエネルギーとして注目されている。   In recent years, demand for natural gas as a fuel resource has increased due to environmental problems. Natural gas is a fuel gas that contains methane as a main component and also contains ethane, propane, butane, etc., although it varies depending on the production area. Natural gas is expected to have about twice the reserves of oil, and the amount of carbon dioxide generated relative to the calorific value is small, so it is attracting attention as clean energy.

特に、常温・大気圧下で気体であり、且つエネルギー効率に優れているなどの点から、ブタンガス(主としてカセットコンロやガスライター用)の需要が拡大している。   In particular, the demand for butane gas (mainly for cassette stoves and gas lighters) is expanding because it is a gas at normal temperature and atmospheric pressure and has excellent energy efficiency.

ここで、天然ガスは、一般に極低温(−162℃)に冷却して液化(液化天然ガス(LNG))するか、あるいは常温又は高圧下で圧縮(圧縮天然ガス(CNG))することで貯蔵したものが輸入されている。   Here, natural gas is generally stored by cooling to cryogenic temperature (-162 ° C.) and liquefying (liquefied natural gas (LNG)) or compressing at normal temperature or high pressure (compressed natural gas (CNG)). That has been imported.

しかしながら、いずれの方法も設備費や効率の観点から問題があるため、天然ガスを吸着材に高密度で貯蔵させる方法が開発されている(特開昭49−104213号公報、特開平6−55067号公報等)。高い吸着ポテンシャルを有する吸着材を用いることで、圧力だけでは液化しない天然ガス成分が液化状態に近い密度で当該吸着材に物理吸着される。   However, since both methods have problems from the viewpoint of equipment cost and efficiency, methods for storing natural gas in an adsorbent at high density have been developed (Japanese Patent Laid-Open Nos. 49-104213 and 6-55067). Issue gazette). By using an adsorbent having a high adsorption potential, a natural gas component that is not liquefied only by pressure is physically adsorbed on the adsorbent at a density close to a liquefied state.

一般に、天然ガスを活性炭等の吸着材の細孔内に安定的に吸着貯蔵を行わせるためには細孔径を小さく、且つ細孔容積を大きくすることが有効であると考えられており、そのため、従来の天然ガス吸着貯蔵装置には、出来る限り細孔径が小さく細孔容積の大きい活性炭が使用されていた(特開2005−273717号公報)。   In general, it is considered effective to reduce the pore diameter and increase the pore volume in order to stably store the natural gas in the pores of the adsorbent such as activated carbon. In the conventional natural gas adsorption storage device, activated carbon having as small a pore diameter as possible and a large pore volume has been used (Japanese Patent Laid-Open No. 2005-273717).

特開昭49−104213号公報JP-A-49-104213 特開平6−55067号公報JP-A-6-55067 特開2005−273717号公報JP 2005-273717 A

天然ガスは濃度や成分比が安定しておらず、天然ガス成分の濃度を調節して天然ガスを安定供給する場合には、天然ガス成分の濃度が高すぎる時には当該成分を吸着し、そして低すぎる時には脱離することが必要となる。特に、高カロリー成分であるブタンは、その濃度によって天然ガス全体のカロリー量に大きな影響を及ぼすため、その濃度調整が課題となっている。また、ブタンガスは沸点がそれぞれ0℃付近と低く、常温近くでは温度によって濃度が変化しやすい。このような濃度変化は、安定したエネルギー供給の点で問題となることがある。   The concentration and ratio of natural gas is not stable. When natural gas is supplied stably by adjusting the concentration of the natural gas component, when the concentration of the natural gas component is too high, the component is adsorbed and low. If too much, it is necessary to desorb. In particular, butane, which is a high-calorie component, greatly affects the amount of calories in the entire natural gas depending on its concentration, so that concentration adjustment is a problem. In addition, butane gas has a low boiling point of around 0 ° C., and its concentration tends to change depending on temperature near normal temperature. Such a concentration change may cause a problem in terms of stable energy supply.

従来の天然ガス吸着貯蔵用活性炭は、細孔径が小さく、吸着する能力が大きいため、天然ガス成分の吸着が主目的として使用される。このような活性炭においては、吸着破過により天然ガス成分の一部が漏れ出すことはあっても、天然ガス成分を脱離させてガス濃度を一定に調整することは困難である。事実、従来の吸着特性に優れた活性炭は、一旦吸着・保持したガス成分を再び脱離・放出するには加熱・加圧などの処理が必要とされ、ガス成分の調整用に用いることはできない。ましてや、活性炭に供給される天然ガスの濃度が経時的に大きく変化する場合、特定の成分の濃度を調整することは更に困難なものとなる。   Conventional activated carbon for natural gas adsorption storage has a small pore size and a large ability to adsorb, and therefore, natural gas component adsorption is mainly used. In such activated carbon, even if part of the natural gas component leaks due to adsorption breakthrough, it is difficult to adjust the gas concentration to be constant by desorbing the natural gas component. In fact, activated carbon with superior adsorption characteristics requires heat and pressure treatment to desorb and release the gas components once adsorbed and retained, and cannot be used to adjust the gas components. . Furthermore, when the concentration of the natural gas supplied to the activated carbon changes greatly with time, it becomes more difficult to adjust the concentration of a specific component.

一例として、最初に低濃度、後に高濃度というように一定時間毎に濃度が変化して供給される天然ガスについて検討する。天然ガスが低濃度の時には、対象のガス成分は吸着破過になるまで活性炭に吸着される。この場合、当該ガス成分は吸着破過前は活性炭からほとんど排出されない。その後、破過状態になった活性炭に対し高濃度の天然ガスが供給されると、活性炭は対象のガス成分を吸着することができず、そのまま当該ガス成分は活性炭を通過することとなり、対象のガス成分は高濃度で排出されてしまう。その結果、ガス成分を一定濃度で供給することはできない。   As an example, let us consider natural gas that is supplied with its concentration changed at regular intervals, such as a low concentration first and a high concentration later. When the natural gas is in a low concentration, the target gas component is adsorbed on the activated carbon until adsorption breakthrough occurs. In this case, the gas component is hardly discharged from the activated carbon before the adsorption breakthrough. After that, when high-concentration natural gas is supplied to the activated carbon in a breakthrough state, the activated carbon cannot adsorb the target gas component, and the gas component passes through the activated carbon as it is. Gas components are exhausted at a high concentration. As a result, the gas component cannot be supplied at a constant concentration.

従って、本発明の目的は、天然ガス中のエネルギー容量が大きい成分の濃度を調整することが可能な活性炭を提供することにある。   Accordingly, an object of the present invention is to provide an activated carbon capable of adjusting the concentration of a component having a large energy capacity in natural gas.

本発明者が鋭意検討した結果、特定の細孔特性を有する活性炭を用いることで、濃度が変動し難い低温時にはガス成分、特にエネルギー容量が大きいブタンガスを優先的に吸着・保持し、一方、温度が高まり、ガス成分濃度が低下した時には、一旦吸着・保持したガス成分を再び周囲に放出することで、温度変動によるガス成分の濃度変動を抑制できることを見出し、本発明を完成するに至った。   As a result of intensive studies by the inventor, the use of activated carbon having specific pore characteristics preferentially adsorbs and retains gas components, particularly butane gas having a large energy capacity, at a low temperature where the concentration is difficult to fluctuate. When the gas component concentration decreases and the gas component concentration decreases, it has been found that the gas component once adsorbed and retained can be discharged again to the surroundings, whereby the concentration variation of the gas component due to temperature variation can be suppressed, and the present invention has been completed.

即ち、本発明は、以下の発明を包含する。
[1]窒素吸着等温線からBJH法により求めた微分細孔分布において、細孔径2.0nmの細孔容積が単位容積当たり0.5ml/ml以上であり、且つ窒素吸着等温線からBJH法により求めた積分細孔分布において、細孔径3.0nmにおける単位容積当たりの細孔容積から、細孔径2.0nmにおける単位容積当たりの細孔容積を減算した値が0.075ml/ml以上である、天然ガス成分調整用活性炭。
[2]窒素吸着等温線からBJH法により求めた微分細孔分布において、細孔径ピークが1.8〜2.5nmである、[1]に記載の天然ガス成分調整用活性炭。
That is, the present invention includes the following inventions.
[1] In the differential pore distribution determined by the BJH method from the nitrogen adsorption isotherm, the pore volume having a pore diameter of 2.0 nm is 0.5 ml / ml or more per unit volume, and from the nitrogen adsorption isotherm by the BJH method. In the obtained integrated pore distribution, a value obtained by subtracting the pore volume per unit volume at a pore diameter of 2.0 nm from the pore volume per unit volume at a pore diameter of 3.0 nm is 0.075 ml / ml or more. Activated carbon for natural gas component adjustment.
[2] The activated carbon for natural gas component adjustment according to [1], wherein a pore diameter peak is 1.8 to 2.5 nm in a differential pore distribution determined by a BJH method from a nitrogen adsorption isotherm.

本発明によれば、細孔容積等を上述のような一定の範囲内に調節することで、BWC(ブタンワーキングキャパシティー)(ASTM D5228-92)が著しく向上する。従って、天然ガスに含まれるエネルギー容量の大きい成分、特にブタンに対する活性炭の吸着特性を十分保持したまま脱離特性を向上させることが可能となる。   According to the present invention, BWC (Butane Working Capacity) (ASTM D5228-92) is remarkably improved by adjusting the pore volume and the like within the certain range as described above. Therefore, it is possible to improve the desorption characteristics while maintaining sufficient adsorption characteristics of the activated carbon for components having a large energy capacity contained in natural gas, particularly butane.

更に、現在天然ガスは都市ガス原料の約80%を占めており、その都市ガスの種類には種々のものが存在しているが、総カロリー量が高い12A、13Aガスが現在主流となっている。ブタンは発熱量が8,400kcal/Lと、他の天然ガス成分のものと比較して高カロリーであることから(メタン:2,000kcal/L;エタン:6,110kcal/L)、ブタンの濃度が安定していないと天然ガスの総カロリー量を大きく変動させることがあり得る。従って、天然ガスのように濃度が一定でなく、安定した品質のものを供給することが困難な場合であっても、本発明の活性炭は、一定濃度のブタン、すなわち一定カロリーのエネルギーを提供することができる。更に、本発明の活性炭は、それ自体を破過させなくても所望の成分を脱離するため、継続して使用することができる。   Furthermore, natural gas currently accounts for about 80% of the city gas feedstock, and there are various types of city gas, but 12A and 13A gases with high total calories are currently mainstream. Yes. Butane has a calorific value of 8,400 kcal / L, which is higher than that of other natural gas components (methane: 2,000 kcal / L; ethane: 6,110 kcal / L), butane concentration If it is not stable, the total calorie content of natural gas can be greatly varied. Therefore, even when it is difficult to supply a stable quality product with a non-constant concentration such as natural gas, the activated carbon of the present invention provides a constant concentration of butane, that is, a constant calorie energy. be able to. Furthermore, the activated carbon of the present invention can be used continuously because it removes desired components without breaking through itself.

尚、本願発明は、従来の活性炭がエネルギー容量の少ないメタンガスやエタンガスなども含めた天然ガス全体を吸着・保持させることを目的としていたのに対し、ブタンガスの濃度調整を目的としている点で異なる。   The present invention is different in that the conventional activated carbon is intended to adsorb and retain the whole natural gas including methane gas and ethane gas having a small energy capacity, but is intended to adjust the concentration of butane gas.

本発明の活性炭の細孔分布は、BJH(Barrett, Joyner and Halenda)法に従い窒素吸着等温線から測定することができる。本明細書に記載の細孔容積の値は、窒素吸着等温線からBJH法により求めた細孔分布に基づいて算出した値を指す。ここで、吸着等温線とは、一定温度における平衡濃度と平衡吸着量の関係を表したものである。本発明においては、市販のN細孔分布分析装置(ユアサアイオニクス社製NOVA3200)を用いて細孔分布及び細孔容積の測定を行った。本発明のマイクロ孔の容積については、NOVA3200の解析ソフトに従い、吸着等温線の横軸の相対圧をその相対圧での多層吸着層の厚み(Å)に換算して算出した(t−プロット解析)。本発明の活性炭の積分細孔分布及び微分細孔分布をそれぞれ図1及び図2に示す。図1における縦軸は、積分細孔容積(ml/ml)を表し、図2における縦軸は、微分細孔容積(Dv[log d])(ml/ml)を表す。 The pore distribution of the activated carbon of the present invention can be measured from a nitrogen adsorption isotherm according to the BJH (Barrett, Joyner and Halenda) method. The value of the pore volume described in the present specification indicates a value calculated based on the pore distribution obtained by the BJH method from the nitrogen adsorption isotherm. Here, the adsorption isotherm represents the relationship between the equilibrium concentration and the equilibrium adsorption amount at a constant temperature. In the present invention, pore distribution and pore volume were measured using a commercially available N 2 pore distribution analyzer (NOVA 3200 manufactured by Yuasa Ionics). The volume of the micropore of the present invention was calculated by converting the relative pressure on the horizontal axis of the adsorption isotherm into the thickness (Å) of the multilayer adsorption layer at the relative pressure according to the analysis software of NOVA3200 (t-plot analysis). ). The integral pore distribution and differential pore distribution of the activated carbon of the present invention are shown in FIGS. 1 and 2, respectively. The vertical axis in FIG. 1 represents the integrated pore volume (ml / ml), and the vertical axis in FIG. 2 represents the differential pore volume (Dv [log d]) (ml / ml).

図1及び図2に示す通り、本発明の活性炭は、BWCを向上させる観点から、窒素吸着等温線からBJH法により求めた微分細孔分布において、細孔径2.0nmの細孔容積が単位容積当たり0.5ml/ml以上であり、且つ窒素吸着等温線からBJH法により求めた積分細孔分布において、細孔径3.0nmにおける単位容積当たりの細孔容積から、細孔径2.0nmにおける単位容積当たりの細孔容積を減算した値が0.075ml/ml以上である。   As shown in FIGS. 1 and 2, the activated carbon of the present invention has a pore volume with a pore size of 2.0 nm as a unit volume in the differential pore distribution determined by the BJH method from the nitrogen adsorption isotherm from the viewpoint of improving BWC. In the integrated pore distribution determined by the BJH method from the nitrogen adsorption isotherm, the unit volume at a pore diameter of 2.0 nm is obtained from the pore volume per unit volume at a pore diameter of 3.0 nm. The value obtained by subtracting the perforated pore volume is 0.075 ml / ml or more.

ここで、細孔径2.0nmの細孔容積が単位容積当たり0.5ml/ml未満である場合、ブタンの脱離能力が低下するため、低濃度のガス濃度の調節に使用する場合には好ましくない。従って、ブタンの脱離能力の観点からは、細孔径2.0nm以上の細孔容積は単位容積当たり0.5ml/ml以上、特に0.6ml/ml以上であることが好ましい。また、細孔径3.0nmにおける単位容積当たりの細孔容積から、細孔径2.0nmにおける単位容積当たりの細孔容積を減算した値が0.075ml/ml以上、特に0.1ml/ml以上であることが好ましい。 Here, if the pore volume of pore diameter 2.0nm is 0.5 ml / m l less than per unit volume, to lower desorption capacity of butane, when used in the regulation of low concentration gas concentration Is not preferred. Therefore, from the viewpoint of butane desorption ability, the pore volume having a pore diameter of 2.0 nm or more is preferably 0.5 ml / ml or more, particularly 0.6 ml / ml or more per unit volume. Further, the value obtained by subtracting the pore volume per unit volume at a pore diameter of 2.0 nm from the pore volume per unit volume at a pore diameter of 3.0 nm is 0.075 ml / ml or more, particularly 0.1 ml / ml or more. Preferably there is.

また、図2に記載の通り、細孔容積を微分細孔容積Dv[log d]で表した場合、本発明の活性炭は細孔径ピークが1.8〜2.5nmとなる。ブタン吸脱着能力を向上させる観点からは、該細孔径ピークは2.0〜2.5nmが好ましい。   As shown in FIG. 2, when the pore volume is represented by the differential pore volume Dv [log d], the activated carbon of the present invention has a pore diameter peak of 1.8 to 2.5 nm. From the viewpoint of improving the butane adsorption / desorption ability, the pore diameter peak is preferably 2.0 to 2.5 nm.

また、本発明の活性炭は、平均細孔直径がミクロ孔に属する従来の天然ガス吸着貯蔵用活性炭と異なり、平均細孔直径が2.4〜2.9nmのメソ孔に属するものである。理論に拘束されることを意図するものではないが、このような比較的大きい平均細孔直径を持ち、且つ特定の範囲の細孔直径の孔が従来のものより大きな細孔容積を有することで、ブタン吸脱着能力が向上するものと考えられる。   In addition, the activated carbon of the present invention belongs to mesopores having an average pore diameter of 2.4 to 2.9 nm, unlike the conventional activated carbon for natural gas adsorption storage in which the average pore diameter belongs to micropores. While not intending to be bound by theory, it is because such pores having a relatively large average pore diameter and a specific range of pore diameters have a larger pore volume than conventional ones. It is considered that the ability to absorb and desorb butane is improved.

本発明の活性炭は、限定しないが、鉱物系、例えば石炭系又は石油ピッチ等、あるいは植物系、例えば木材又はヤシ等を原料とすることができる。更に、本発明の活性炭は、細孔径をコントロールする観点からは石炭を原料としたものであることが好ましい。   The activated carbon of the present invention is not limited, but can be made from mineral-based materials such as coal-based or petroleum pitch, or plant-based materials such as wood or palm. Furthermore, the activated carbon of the present invention is preferably made from coal from the viewpoint of controlling the pore diameter.

本発明の活性炭の形状は、限定しないが、ペレット形状、球状又は粉砕形状等の造粒形状である。一定容積に入れた場合の充填性を考慮すると、当該活性炭はペレット形状、例えば円柱、又は球状であることが好ましく、その直径は、例えば0.5〜12.0mである。また、JIS 1474での硬さ試験において、本発明の活性炭は、石炭を原料とした場合、細孔容積が高いにも関わらず、90%以上の硬度を維持する。 The shape of the activated carbon of the present invention is not limited, but is a granulated shape such as a pellet shape, a spherical shape or a pulverized shape. Considering the packing property when put in a certain volume, the activated carbon is preferably in the form of a pellet, for example, a cylinder or a sphere, and the diameter thereof is, for example, 0.5 to 12.0 mm . In addition, in the hardness test according to JIS 1474, the activated carbon of the present invention maintains a hardness of 90% or more in spite of a high pore volume when coal is used as a raw material.

上述のような細孔特性を有する活性炭は、例えばフェノール樹脂を炭化、賦活して賦活度をコントロールした後、平均細孔直径がおよそ2.4〜2.9nmとなるように篩い分けすることで得られる。   Activated carbon having the above-mentioned pore characteristics is obtained by, for example, sieving the phenol resin so that the average pore diameter is about 2.4 to 2.9 nm after carbonization and activation of phenol resin to control the activation degree. can get.

以下の実施例を用いて、本発明を更に具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The present invention is not limited to these examples.

(実施例1)
石炭粉を原料としてコールタール成型し、700℃にて炭化後、HOを5.5g/分投入して、水蒸気雰囲気下950℃で8時間賦活し、平均細孔直径が2.9nmになるようJIS篩網にて篩い分けすることで本発明の天然ガス成分調整用活性炭を調製した。
Example 1
Coal tar molding is performed using coal powder as a raw material, carbonized at 700 ° C., H 2 O is added at 5.5 g / min, and activated at 950 ° C. for 8 hours in a steam atmosphere, so that the average pore diameter is 2.9 nm. The activated carbon for natural gas component adjustment of the present invention was prepared by sieving with a JIS sieve mesh.

参考例
6時間賦活した点を除き実施例1と同様の手法を用い、平均細孔直径が2.4nmである本発明の天然ガス成分調整用活性炭を調製した。
( Reference example )
Using the same method as in Example 1 except that it was activated for 6 hours, an activated carbon for natural gas component adjustment of the present invention having an average pore diameter of 2.4 nm was prepared.

(比較例1)
4時間賦活した点を除き実施例1と同様の手法を用い、上述の活性炭と比較してより小さな細孔径を有する活性炭、具体的には平均細孔直径が2.0nmである天然ガス成分調整用活性炭を調製した。
(Comparative Example 1)
Using the same method as in Example 1 except that it was activated for 4 hours, activated carbon having a smaller pore diameter compared to the above-mentioned activated carbon, specifically, natural gas component adjustment with an average pore diameter of 2.0 nm Activated carbon was prepared.

(比較例2)
10時間賦活した点を除き実施例1と同様の手法を用い、上述の活性炭と比較してより大きな細孔径を有する活性炭、具体的には平均細孔直径が3.8nmである天然ガス成分調整用活性炭を調製した。
(Comparative Example 2)
Using the same method as in Example 1 except that it was activated for 10 hours, activated carbon having a larger pore diameter than the above-mentioned activated carbon, specifically, natural gas component adjustment with an average pore diameter of 3.8 nm Activated carbon was prepared.

(窒素細孔分布測定方法)
上記活性炭サンプルを約20mg準備し、このサンプルをガラスホルダーに入れ、N2細孔分布分析装置(ユアサアイオニクス社製NOVA3200)において窒素吸脱着を行うことで細孔分布及び細孔容積を測定した(図1及び図2並びに表1を参照のこと)。表1中、「2nmの微分細孔容積」とは、図2に記載の微分細孔分布における微分細孔容積を指し、そして「2nm以上の積分細孔容積」及び「2〜3nm範囲の積分細孔容積」とは、それぞれ、図1に記載の積分細孔分布中の細孔径2.0nm以上の細孔容積の積分値及び細孔径3.0nmにおける単位容積当たりの積分細孔容積から、細孔径2.0nmにおける単位容積当たりの積分細孔容積を減算した値を表す。
(Nitrogen pore distribution measurement method)
About 20 mg of the activated carbon sample was prepared, this sample was put in a glass holder, and the pore distribution and the pore volume were measured by performing nitrogen adsorption / desorption in an N2 pore distribution analyzer (NOVA 3200 manufactured by Yuasa Ionics) ( (See FIGS. 1 and 2 and Table 1). In Table 1, “2 nm differential pore volume” refers to the differential pore volume in the differential pore distribution shown in FIG. 2, and “integral pore volume of 2 nm or more” and “integral in the range of 2 to 3 nm”. `` Pore volume '' refers to the integrated value of the pore volume having a pore diameter of 2.0 nm or more and the integrated pore volume per unit volume at a pore diameter of 3.0 nm in the integrated pore distribution shown in FIG. It represents a value obtained by subtracting the integrated pore volume per unit volume at a pore diameter of 2.0 nm.

(硬度測定)
上記実施例、参考例及び比較例の活性炭サンプルをそれぞれ100ml正確に量り取った。鋼球を入れた硬さ試験用の皿に当該サンプルを入れて振とうさせた後、ふるいで篩い分け、ふるいの上に残ったサンプルの重量と試験前の重量とを比較した。これらの比率を硬度として算出した(JIS K 1474)。結果を表1に示す。
(Hardness measurement)
100 ml of each of the activated carbon samples of the above Examples , Reference Examples and Comparative Examples was accurately weighed. The sample was placed in a dish for hardness test containing a steel ball and shaken, and then sieved with a sieve. The weight of the sample remaining on the sieve was compared with the weight before the test. These ratios were calculated as hardness (JIS K 1474). The results are shown in Table 1.

Figure 0005473255
Figure 0005473255

表1の結果からは、比較例2の活性炭は硬度が低く、本発明の活性炭と比較して実用性の点で劣ることがわかる。   From the results in Table 1, it can be seen that the activated carbon of Comparative Example 2 has a low hardness and is inferior in practicality compared to the activated carbon of the present invention.

(性能評価)
ASTM(米国材料試験協会;American Society for Testing and Materials)5228に従い、以下の方法を用いて上記活性炭(各15ml)の吸着脱離試験を実施した。
(Performance evaluation)
In accordance with ASTM (American Society for Testing and Materials) 5228, the adsorption / desorption test of the activated carbon (15 ml each) was performed using the following method.

・吸着試験
1. 上記活性炭を測定カラムに入れた後、3L/分で天然ガス(メタン:88.6%、エタン:7.0%、プロパン:3.2%、n−ブタン:0.69%、i−ブタン:0.50%、ペンタン:0.05%)を前記測定カラムに流して5℃又は40℃で平衡吸着させる。
2. 上記ガスの入りガスと出ガスの濃度差及び活性炭の重量変動が5%以内になった時点で吸着飽和とみなし平衡吸着工程を終了する。
Adsorption test After putting the activated carbon into the measuring column, natural gas (methane: 88.6%, ethane: 7.0%, propane: 3.2%, n-butane: 0.69%, i-butane at 3 L / min. : 0.50%, pentane: 0.05%) is allowed to flow through the measurement column and equilibrated at 5 ° C or 40 ° C.
2. When the concentration difference between the gas entering and exiting the gas and the weight fluctuation of the activated carbon are within 5%, it is regarded as adsorption saturation and the equilibrium adsorption process is terminated.

・脱離試験
1. 1L/分で窒素パージを行い、出ガスを20Lのテドラーバッグに保存する。
2. この間の天然ガス濃度の経時変化を測定し、天然ガスの出口濃度が0となるまで繰り返す。
3. 個々のバッグ内に含まれている天然ガス成分濃度を分析する。
4. 各ガス成分の濃度から、以下のように脱離量を算出する:
脱離量(重量%)=(20L×濃度(%)÷100÷24.45(25℃の1モル当たりのガス容量(L)×ガス成分の分子量)÷活性炭重量(g)×100
Desorption test A nitrogen purge is performed at 1 L / min and the outgas is stored in a 20 L Tedlar bag.
2. During this time, the change in the natural gas concentration over time is measured and repeated until the natural gas outlet concentration becomes zero.
3. Analyze the concentration of natural gas components contained in individual bags.
4). From the concentration of each gas component, the desorption amount is calculated as follows:
Desorption amount (% by weight) = (20 L × concentration (%) ÷ 100 ÷ 24.45 (gas capacity per mol at 25 ° C. × molecular weight of gas component) ÷ active carbon weight (g) × 100

5℃及び40℃での各ガス成分の吸着脱離量の比較をそれぞれ図3及び4に示す。尚、当該温度は本発明の活性炭の実用上の温度の上限及び下限を想定したものであるが、実際の上限及び下限はかかる温度に限定されない。これらの図からは、実施例1及び参考例の活性炭は、いずれの温度でもブタン、特にi−ブタンの吸着量と脱離量の差が大きく、濃度変化における調整能力が高いことがわかる。両ブタン成分の吸着脱離量の合計について要約した結果を5〜40℃範囲での平均吸着脱離量と共に表2に示す。 A comparison of the amount of adsorption and desorption of each gas component at 5 ° C. and 40 ° C. is shown in FIGS. 3 and 4, respectively. In addition, although the said temperature assumes the upper limit and the minimum of the practical temperature of the activated carbon of this invention, an actual upper limit and a minimum are not limited to this temperature. From these figures, it can be seen that the activated carbons of Example 1 and the reference example have a large difference between the adsorption amount and desorption amount of butane, particularly i-butane, at any temperature, and the adjustment ability in the concentration change is high. The results summarized for the total adsorption and desorption amount of both butane components are shown in Table 2 together with the average adsorption and desorption amount in the range of 5 to 40 ° C.

Figure 0005473255
Figure 0005473255

表2の結果から明らかなように、所定の細孔容積を有する実施例1及び参考例の活性炭は、40℃未満の温度、すなわち一般的な大気温度で、比較例1及び2の活性炭と比較して脱離効率が有意に高い。 As is apparent from the results in Table 2, the activated carbons of Example 1 and Reference Example having a predetermined pore volume are compared with the activated carbons of Comparative Examples 1 and 2 at a temperature of less than 40 ° C., that is, a general atmospheric temperature. Therefore, the desorption efficiency is significantly high.

本発明によれば、細孔容積及び細孔径を一定の範囲に調節することで、従来の活性炭と比較して脱離特性が向上し、且つ濃度変動におけるガス調整が可能な天然ガス調整用活性炭の提供が可能となる。本発明の天然ガス調整用活性炭は、かかる特性より、天然ガスプラントのガス供給側に配置してガスのカロリー変動の調整のために使用することが好適である。   According to the present invention, by adjusting the pore volume and pore diameter to a certain range, the desorption characteristics are improved as compared with the conventional activated carbon, and the activated carbon for natural gas adjustment capable of adjusting the gas in the concentration variation. Can be provided. Due to such characteristics, the activated carbon for natural gas adjustment of the present invention is preferably disposed on the gas supply side of the natural gas plant and used for adjusting the calorie fluctuation of the gas.

図1は、実施例1,参考例及び比較例1,2の活性炭の積分形細孔径分布を比較した図であり、ここで、横軸は細孔径(nm)、縦軸は積分細孔容積(ml/ml)を表す。FIG. 1 is a graph comparing the integrated pore size distribution of activated carbons of Example 1, Reference Example and Comparative Examples 1 and 2, wherein the horizontal axis is the pore size (nm) and the vertical axis is the integrated pore volume. (Ml / ml). 図2は、実施例1,参考例及び比較例1,2の活性炭の微分形細孔径分布を比較した図であり、ここで、横軸は細孔径(nm)、縦軸は微分細孔容積Dv[log d](ml/ml)を表す。FIG. 2 is a graph comparing differential pore size distributions of the activated carbons of Example 1, Reference Example and Comparative Examples 1 and 2, where the horizontal axis is the pore size (nm) and the vertical axis is the differential pore volume. Dv [log d] (ml / ml) is expressed. 図3は、実施例1,参考例及び比較例1,2の活性炭に対する、13Aガスに含まれる成分の5℃での吸着脱離量(wt%)を表すグラフである。FIG. 3 is a graph showing the adsorption / desorption amount (wt%) at 5 ° C. of the components contained in the 13A gas with respect to the activated carbons of Example 1, Reference Example and Comparative Examples 1 and 2. 図4は、実施例1,参考例及び比較例1,2の活性炭に対する、13Aガスに含まれる成分の40℃での吸着脱離量(wt%)を表すグラフである。FIG. 4 is a graph showing the adsorption / desorption amount (wt%) at 40 ° C. of components contained in 13A gas for the activated carbons of Example 1, Reference Example and Comparative Examples 1 and 2.

Claims (3)

窒素吸着等温線からBJH法により求めた微分細孔分布において、細孔径ピークが2.0〜2.5nmであり、細孔径2.0nmの細孔容積が単位容積当たり0.5ml/ml以上であり、且つ窒素吸着等温線からBJH法により求めた積分細孔分布において、細孔径3.0nmにおける単位容積当たりの細孔容積から、細孔径2.0nmにおける単位容積当たりの細孔容積を減算した値が0.075ml/ml以上である、天然ガス成分調整用活性炭。 In the differential pore distribution determined by the BJH method from the nitrogen adsorption isotherm, the pore diameter peak is 2.0 to 2.5 nm, and the pore volume with a pore diameter of 2.0 nm is 0.5 ml / ml or more per unit volume. In addition, in the integrated pore distribution obtained by the BJH method from the nitrogen adsorption isotherm, the pore volume per unit volume at a pore diameter of 2.0 nm was subtracted from the pore volume per unit volume at a pore diameter of 3.0 nm. Activated carbon for natural gas component adjustment having a value of 0.075 ml / ml or more. 平均細孔直径が2.4〜2.9nmである、請求項1に記載の天然ガス成分調整用活性炭。  The activated carbon for natural gas component adjustment according to claim 1, wherein the average pore diameter is 2.4 to 2.9 nm. 石炭を原料としてコールタールを成型する工程、  The process of molding coal tar from coal,
前記コールタールを炭化する工程、  Carbonizing the coal tar,
前記炭化したコールタールを水蒸気雰囲気下で賦活して活性炭を得る工程、及び  Activating the carbonized coal tar under a steam atmosphere to obtain activated carbon; and
前記活性炭を篩網で篩い分けする工程  Sieving the activated carbon with a sieve mesh
を含む方法によって得られる、請求項1に記載の天然ガス成分調整用活性炭。The activated carbon for natural gas component adjustment of Claim 1 obtained by the method containing this.
JP2008157088A 2008-06-16 2008-06-16 Activated carbon for gas component adjustment Expired - Fee Related JP5473255B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008157088A JP5473255B2 (en) 2008-06-16 2008-06-16 Activated carbon for gas component adjustment
PCT/JP2009/061268 WO2009154290A1 (en) 2008-06-16 2009-06-16 Activated carbon for controlling gas components
CN200980121578XA CN102056842B (en) 2008-06-16 2009-06-16 Activated carbon for controlling gas components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157088A JP5473255B2 (en) 2008-06-16 2008-06-16 Activated carbon for gas component adjustment

Publications (2)

Publication Number Publication Date
JP2009298668A JP2009298668A (en) 2009-12-24
JP5473255B2 true JP5473255B2 (en) 2014-04-16

Family

ID=41434202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157088A Expired - Fee Related JP5473255B2 (en) 2008-06-16 2008-06-16 Activated carbon for gas component adjustment

Country Status (3)

Country Link
JP (1) JP5473255B2 (en)
CN (1) CN102056842B (en)
WO (1) WO2009154290A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033395B2 (en) 2013-02-20 2016-11-30 大阪ガスケミカル株式会社 Granular activated carbon and method for producing the same
EP2960206B1 (en) * 2013-02-20 2019-12-18 Osaka Gas Chemicals Co., Ltd. Granular activated carbon having many mesopores, and manufacturing method for same
WO2016140266A1 (en) * 2015-03-05 2016-09-09 株式会社キャタラー Carbon porous body, method for manufacturing same, ammonia adsorbent, and canister and method for manufacturing same
JP6042922B2 (en) * 2015-03-05 2016-12-14 株式会社豊田中央研究所 Porous carbon, production method thereof, and ammonia adsorbent
JP6471256B1 (en) * 2018-05-18 2019-02-13 ユニチカ株式会社 Deodorizing material and deodorizing sheet
CN112135794B (en) * 2018-06-19 2023-09-05 株式会社安德如 activated carbon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW309505B (en) * 1993-03-31 1997-07-01 Toto Ltd
JP4393747B2 (en) * 2002-04-18 2010-01-06 株式会社キャタラー Fuel vapor adsorbent
JP2005035812A (en) * 2003-07-16 2005-02-10 Cataler Corp Active carbon and canister
WO2007037508A1 (en) * 2005-09-29 2007-04-05 Showa Denko K.K. Activated carbon and process of making the same

Also Published As

Publication number Publication date
WO2009154290A1 (en) 2009-12-23
JP2009298668A (en) 2009-12-24
CN102056842B (en) 2013-07-24
CN102056842A (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP5473255B2 (en) Activated carbon for gas component adjustment
CA2193949C (en) Carbon adsorbent, manufacturing method therefor,gas seperation method and device therefor
Li et al. Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation
Zhang et al. Grain-based activated carbons for natural gas storage
Adeniran et al. A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO 2 capture
Xia et al. Enhanced room-temperature hydrogen storage in super-activated carbons: The role of porosity development by activation
Feng et al. Adsorption equilibrium isotherms and thermodynamic analysis of CH 4, CO 2, CO, N 2 and H 2 on NaY Zeolite
Pellerano et al. CO2 capture by adsorption on activated carbons using pressure modulation
Guo et al. Polyacrylonitrile‐Derived Sponge‐Like Micro/Macroporous Carbon for Selective CO2 Separation
Mahboub et al. Improving methane storage on wet activated carbons at various amounts of water
Demiral et al. Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition
JP5103030B2 (en) Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device
Koonaphapdeelert et al. Low pressure biomethane gas adsorption by activated carbon
Villar-Rodil et al. Porous texture evolution in Nomex-derived activated carbon fibers
CN101596396A (en) A kind of method of deeply drying gas
Yuan et al. KOH-activated graphite nanofibers as CO 2 adsorbents
Sudibandriyo et al. Adsorption capacity and its dynamic behavior of the hydrogen storage on carbon nanotubes
Alali et al. Generalised predictability in the synthesis of biocarbons as clean energy materials: targeted high performance CO 2 and CH 4 storage
WO2006134193A3 (en) Gas adsorbents based on microporous coordination polymers
Shui et al. A Peach‐Kernel‐Derived Ultramicroporous Carbon with Extremely High CO2‐Capture Ability
JP5021409B2 (en) Methane adsorbent or method for producing the same
JP4823949B2 (en) Mixed gas storage container
Wang et al. High pressure methane adsorption on granular activated carbons
JP2011026144A (en) Activated carbon for suppressing heat quantity fluctuation of fuel gas, and method and system for suppressing heat quantity fluctuation
Pstrowska et al. Characterization of activated beech wood char—Methane storage application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees