JP2020092512A - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
JP2020092512A
JP2020092512A JP2018227908A JP2018227908A JP2020092512A JP 2020092512 A JP2020092512 A JP 2020092512A JP 2018227908 A JP2018227908 A JP 2018227908A JP 2018227908 A JP2018227908 A JP 2018227908A JP 2020092512 A JP2020092512 A JP 2020092512A
Authority
JP
Japan
Prior art keywords
power
vehicle
soc
storage device
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2018227908A
Other languages
English (en)
Inventor
環 小澤
Tamaki Ozawa
環 小澤
正晶 清原
Masaaki Kiyohara
正晶 清原
長瀬 敏之
Toshiyuki Nagase
敏之 長瀬
肇 久嶋
Hajime Kushima
肇 久嶋
雄紀 清水
Yuki Shimizu
雄紀 清水
昭夫 魚谷
Akio Uotani
昭夫 魚谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018227908A priority Critical patent/JP2020092512A/ja
Publication of JP2020092512A publication Critical patent/JP2020092512A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】車載の電力供給源と電力網との間で電力の授受が可能な電動車両において電力需要の平準化に貢献する。【解決手段】ECUは、運転中に(S100にてYES)、所定の実行条件が成立すると(S102にてYES)、運転停止予定時刻と、次回の運転開始予定時刻を取得するステップ(S104)と、次回の運転開始予定時刻における第1目標SOCを設定するステップ(S106)と、運転停止予定時刻における第2目標SOCを設定するステップ(S108)と、目標SOCの補正量を設定するステップ(S110)とを含む、処理を実行する。【選択図】図3

Description

本開示は、電力網と電力の授受が可能な電動車両の制御に関する。
近年、ハイブリッド車両や電気自動車等の比較的大容量の蓄電装置を搭載する電動車両について、電力網から電力の供給を受けて蓄電装置を搭載したり、スマートグリッドなどに見られるように、電動車両を電力供給源として考え、電力網を経由して他の供給先に電力を供給したりする技術が公知である。また、電動車両がたとえばハイブリッド車両である場合には、走行中にエンジンにより発電した電力を用いて蓄電装置を充電することが可能となる。
このような電動車両に関して、たとえば、特開2001−314004号公報(特許文献1)には、たとえば、ナビゲーション装置の走行経路情報と、交通センタから入手した交通情報とを加味することにより作成される、予想走行経路上の車速パターンを用いて充放電スケジュールを設定し、設定された充放電スケジュールに従ってバッテリの充電率を制御することによって、燃料消費量の少ない走行を実現するハイブリッド車両が開示される。
特開2001−314004号公報
ところで、近年、太陽光発電システム等の再生エネルギーを電力網に供給することによって日中の電力供給不足の解消が図られている。しかしながら、太陽光発電システムの普及が進むほど日中の需要電力が低下するのに対して、電動車両の普及が進むほど夜間に充電が行なわれる車両が増加し需要電力が上昇する。その結果、1日において需要電力が日中と夜間とで急峻に変動する、いわゆる、需要電力のダックカーブ現象の顕在化が問題となっている。そのため、需要電力の変動の改善が求められている。上述の公報に開示されている技術は、電動車両の単独での燃費向上を図るものであり、電動車両の普及が進むことにより生じる課題について何ら考慮されておらず解決することができない。
本開示は、上述した課題を解決するためになされたものであって、その目的は、車載の電力供給源と電力網との間で電力の授受が可能な電動車両において電力需要の平準化に貢献する電動車両を提供することである。
本開示のある局面に係る電動車両は、車両の駆動力を発生する電動機と、電動機に供給する電力を蓄電する蓄電装置と、車両の駐車中に車両の外部の電力網と蓄電装置との間で電力の授受が可能に構成される接続部と、車両の運転中および電力網と接続された状態であるときに車両の運転開始予定時刻と運転停止予定時刻とを用いて蓄電装置のSOCを制御する制御装置とを備える。制御装置は、運転中に、次の運転開始予定時刻における蓄電装置のSOCの第1目標値と、電力網と接続された状態での蓄電装置に対する充電電力の上限値とを用いて、次の運転開始予定時刻よりも前に電力網と接続された状態になるときに電力網から要求される電力量の給電が可能となるように運転停止予定時刻における蓄電装置のSOCの第2目標値を設定し、運転停止予定時刻において蓄電装置のSOCが第2目標値になるように運転中の蓄電装置のSOCを制御する。
このようにすると、運転停止予定時刻において車両が駐車し、電力網と接続された状態になるときに電力網から要求される電力量の給電が可能となるとともに、次の運転開始予定時刻において蓄電装置のSOCを第1目標値にすることができる。そのため、車両が駐車し、次の運転開始予定時刻よりも前に需要電力が増加する期間がある場合には、当該期間に電力網への給電を行なうことができる。そのため、電力需要の平準化に貢献することができる。
本開示によると、車載の電力供給源と電力網との間で電力の授受が可能な電動車両において電力需要の平準化に貢献する電動車両を提供することができる。
本実施の形態に係る電動車両の構成の一例を概略的に示す図である。 太陽光発電システムおよび外部充電が可能な電動車両の普及が進んだ地域における需要電力の変化の一例を示す図である。 運転中にECUで実行される処理の一例を示すフローチャートである。 インレットにコネクタが接続されるときにECU100で実行される処理の一例を示すフローチャートである。 ECUの動作を説明するためのタイミングチャートである。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
図1は、本実施の形態に係る電動車両(以下、単に車両と記載する)1の構成の一例を概略的に示す図である。車両1は、車載の電力供給源と電力網との間で電力の授受が可能な車両あればよく、本実施の形態においては、たとえば、プラグインハイブリッド自動車の構成を一例として説明する。
図1を参照して、車両1は、蓄電装置20と、システムメインリレー(SMR:System Main Relay)21と、パワーコントロールユニット(PCU:Power Control Unit)22と、第1モータジェネレータ(以下、第1MGと記載する)61と、第2モータジェネレータ(以下、第2MGと記載する)62と、エンジン63と、動力分割装置64と、動力伝達ギヤ65と、駆動輪66と、ECU(Electronic Control Unit)100とを含む。
蓄電装置20は、再充電可能な直流電源であり、たとえば、リチウムイオン電池またはニッケル水素電池などの二次電池を含んで構成される。蓄電装置20として電気二重層キャパシタ等のキャパシタも採用可能である。蓄電装置20は、車両1の走行駆動力を生成するための電力をPCU22へ供給する。また、蓄電装置20は、第1MG61とエンジン63とを用いた発電動作によって発電された電力により充電されたり、第2MG62の回生制動により発電された電力により充電されたり、第1MG61または第2MG62の駆動動作により放電されたり、車両外部から供給される電力により充電されたり、車両外部への電力の供給により放電されたりする。
SMR21は、蓄電装置20とPCU22との間に電気的に接続されている。SMR21の閉成/開放は、ECU100からの指令に従って制御される。
PCU22は、ECU100からの指令に従って、蓄電装置20と第1MG61との間で電力変換を行なったり、蓄電装置20と第2MG62との間で電力変換を行なったりする。PCU22は、蓄電装置20から電力を受けて第1MG61または第2MG62を駆動するインバータと、インバータに供給される直流電圧のレベルを調整するコンバータ(いずれも図示せず)等とを含んで構成される。
第1MG61および第2MG62の各々は、三相交流回転電機であって、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。第1MG61および第2MG62は、いずれも電動機(モータ)としての機能と発電機(ジェネレータ)としての機能とを有する。第1MG61および第2MG62は、PCU22を介して蓄電装置20と接続される。
第1MG61は、たとえば、エンジン63の始動時においては、PCU22に含まれるインバータによって駆動され、エンジン63の出力軸を回転させる。また、第1MG61は、発電時においては、エンジン63の動力を受けて発電する。第1MG61によって発電された電力は、PCU22を介して蓄電装置20に蓄えられる。
第2MG62は、たとえば、車両1の走行時においては、PCU22に含まれるインバータによって駆動される。第2MG62の動力は、動力伝達ギヤ65を介して駆動輪66に伝達される。また、第2MG62は、たとえば、車両1の制動時においては、駆動輪66により第2MG62が駆動され、第2MG62が発電機として動作して、回生制動を行なう。第2MG62によって発電された電力は、PCU22を介して蓄電装置20に蓄えられる。
エンジン63は、ガソリンエンジンやディーゼルエンジンなどの燃料(ガソリンや軽油)を燃焼させて動力を出力する公知の内燃機関であって、スロットル開度(吸気量)や燃料供給量、点火時期などの運転状態をECU100によって電気的に制御できるように構成されている。ECU100は、エンジン63が車両1の状態に基づいて設定される目標回転数および目標トルクで動作するように、エンジン63の燃料噴射量、点火時期および吸入空気量等を制御する。エンジン63の動力は、動力分割装置64よって駆動輪66に伝達される経路と第1MG61へ伝達される経路とに分割される。動力分割装置64は、たとえば、遊星歯車機構によって構成される。
車両1は、外部充電または外部給電を行なうための構成として、充放電リレー26と、電力変換装置27と、インレット28とをさらに備える。インレット28には、コネクタ32が連結される。コネクタ32は、ケーブル31を介して住宅5のHEMS(Home Energy Management System)53に連結される。図1においては、コネクタ32がインレット28に取り付けられた状態が示されるが、コネクタ32は、インレット28から脱着可能に構成され、外部充電または外部給電が行なわれる場合にインレット28にコネクタ32が取り付けられ、車両1が運転される場合にインレット28からコネクタ32が取り外される。
蓄電装置20の外部充電時には、HEMS53側からケーブル31、コネクタ32およびインレット28を介して電力が供給され、電力変換装置27において蓄電装置20の充電が可能な電力(以下、充電電力と記載する)に変換され、変換された充電電力が蓄電装置20に供給される。一方、蓄電装置20の外部給電時には、電力変換装置27において所定の電力(たとえば、交流電力)に変換され、変換された交流電力がインレット28、コネクタ32およびケーブル31を介してHEMS53に供給される。
充放電リレー26は、蓄電装置20と電力変換装置27との間に電気的に接続されている。充放電リレー26が閉成され、かつ、SMR21が閉成されると、インレット28と蓄電装置20との間で電力伝送が可能な状態となる。
電力変換装置27は、充放電リレー26とインレット28との間に電気的に接続されている。電力変換装置27は、ECU100からの指令に従って、HEMS53から供給される電力を充電電力に変換したり、あるいは、蓄電装置20からの電力を給電可能な電力(たとえば、AC100Vの交流電力)に変換したりする。
ECU100は、CPU(Central Processing Unit)101、メモリ(ROM(Read Only Memory)およびRAM(Random Access Memory)など)102、および、各種信号を入出力するための入出力ポート(図示せず)等を含んで構成されている。ECU100は、車両1が所望の状態となるように車両1内の各機器(SMR21、PCU22、充放電リレー26、電力変換装置27およびエンジン63など)を制御する。ECU100により実行される各種制御は、ソフトウェア処理、すなわち、メモリ102に格納されたプログラムがCPU101により読み出されることにより実行される。ECU100による各種制御は、ソフトウェア処理に限られず、専用のハードウェア(電子回路)で処理してもよい。
車両1は、ナビゲーション装置40と、無線通信装置50とをさらに備える。ナビゲーション装置40は、車両1の位置情報(車両1の現在地や走行履歴など)を取得するように構成される。ナビゲーション装置40は、たとえば、人工衛星からの電波に基づいて車両1の現在地を特定するGPS(Global Positioning System)受信機41を含む。ナビゲーション装置40は、GPS受信機41により特定された車両1の各種ナビゲーション処理を実行する。
より具体的には、ナビゲーション装置40は、車両1のGPS情報とメモリ(図示せず)に格納された道路地図データとに基づいて、車両1の現在地から目的地までの走行ルート(走行予定ルートまたは目標ルート)を設定し、その走行ルートの情報をECU100に送信する。さらに、ナビゲーション装置40は、たとえば、GPS受信機41を用いて特定された車両1の現在地や走行履歴についての情報をECU100に送信する。ECU100は、ナビゲーション装置40から取得した情報をメモリ102に記憶させる。
ナビゲーション装置40は、たとえば、タッチパネル付ディスプレイ42をさらに含む。タッチパネル付ディスプレイ42は、車両1の現在地や走行ルートを道路地図上に重ね合わせて表示したり、ECU100からの情報を表示したりする。また、タッチパネル付ディスプレイ42は、ユーザによる様々な操作を受け付ける。
たとえば、ユーザの操作によって、毎日の車両1の運転開始予定時刻と、運転停止予定時刻と、運転開始予定時刻から運転停止予定時刻までの走行予定ルートとが入力されると、ECU100のメモリ102には、メモリ102に、入力された運転開始予定時刻と、運転停止予定時刻と、走行予定ルートとが記憶される。そして、メモリ102に記憶された運転開始予定時刻と、運転停止予定時刻と、走行予定ルートとを用いて運転中あるいはインレット28にコネクタ32が接続された状態における蓄電装置20のSOC(State Of Charge)が制御される。
無線通信装置50は、車両外部と各種情報等を通信するために構成される。無線通信装置50は、遠距離通信モジュール51と、近距離通信モジュール52とを含む。遠距離通信モジュール51は、たとえば、LTE(Long Term Evolution)通信モジュールを含む。遠距離通信モジュール51は、通信ネットワーク内の基地局(図示せず)との双方向のデータ通信が可能なように構成されている。近距離通信モジュール52は、車両1から近距離(たとえば、数メートルから数十メートル程度)にあるユーザの携帯端末(図示せず)や住宅5との双方向のデータ通信が可能なように構成されている。
また、ECU100は、無線通信装置50を介して様々な情報(車両1の位置情報など)を住宅5に送信したり、住宅5からの情報を受信したりする。なお、ユーザが携帯する携帯端末が無線通信装置50を介して車両1と通信することも可能である。
ECU100は、たとえば、車両1の運転中、あるいは、車両1の駐車中であって、インレット28にコネクタ32が接続され、電力網8と蓄電装置20との間で電力の授受が可能な状態であるときに、蓄電装置20のSOCを算出する。
なお、SOCの算出方法としては、たとえば、電流値積算(クーロンカウント)による手法、または、開放電圧(OCV:Open Circuit Voltage)の推定による手法など、種々の公知の手法を採用できる。
ECU100は、車両1の運転中において、CD(Charge Depleting)モードおよびCS(Charge Sustaining)モードのいずれかを選択し、選択されたモードに応じてエンジン63およびPCU22を制御する。CDモードとは、蓄電装置20のSOC(State Of Charge)を消費する制御モードである。CSモードとは、蓄電装置20のSOCを所定範囲に維持する制御モードである。
ECU100は、たとえば、外部充電によって蓄電装置20の充電が完了した後に車両1が運転される場合には、蓄電装置20のSOCがCSモードにおけるSOCの制御中心(以下、目標SOCともいう)に低下するまではCDモードを選択し、SOCがCSモードにおけるSOCの制御中心まで低下した後はCSモードを選択する。
CDモードにおいては、基本的には、蓄電装置20に蓄えられた電力(主には外部充電によって充電された電力)が消費される。CDモードでの走行中においては、SOCを維持するためにはエンジン63は作動しない。したがって、減速中の第2MG62の回生電力等により一時的にSOCが増加することはあるものの、結果的に充電よりも放電の割合の方が大きくなり、全体としてはSOCが徐々に減少する。
一方、CSモードにおいては、SOCは、目標SOCを中心として、目標SOCよりも高い制御上限値と目標SOCよりも低い制御下限値とによって規定される所定範囲内に維持される。
たとえば、CDモードの走行中において蓄電装置20のSOCがCSモードでの制御中心である目標SOCまで低下すると、ECU100は、エンジン63を始動させ、制御モードをCDモードからCSモードへ移行させる。その後、ECU100は、SOCが所定範囲内で維持されるようにエンジン63を間欠的に作動する。
具体的には、ECU100は、蓄電装置20のSOCが制御下限値まで低下するとエンジン63を作動させ、SOCが制御上限値に達するとエンジン63を停止させることによって、SOCを所定範囲内に維持する。すなわち、CSモードにおいては、SOCを所定範囲に維持するためにエンジン63が作動する。さらに、ECU100は、SOCが目標SOCよりも高い場合には、蓄電装置20の放電を促進し、SOCが目標SOCよりも低い場合には、蓄電装置20の充電を促進するようにエンジン63の出力を制御する。
住宅5は、HEMS53と、通信装置54と、電気機器58とが設けられる。HEMS53は、車両1との間で電力を授受する第1入出力部53aと、電力網8との間で電力を授受する第2入出力部53bと、電気機器58に給電するための出力部53cとを含む。通信装置54は、車両1の無線通信装置50と通信可能に構成される。HEMS53は、通信装置54を経由して車両1との間で情報を授受する。
HEMS53は、たとえば、配電盤、電力変換装置および制御装置等によって構成される。HEMS53は、たとえば、電力網8から供給される電力を電気機器58に供給したり、車両1に供給したり、車両1への電力の供給量を調整したりする。あるいは、HEMS53は、たとえば、車両1から供給される電力を電気機器58に供給したり、電力網8に供給したり、電力網8への電力の供給量を調整したりする。なお、住宅5には、図示しない太陽光発電システムが設けられ、HEMS53によって太陽光発電システムにおいて発電された電力が車両1、電力網8、および、電気機器58のうちの少なくともいずれかに供給されてもよい。
このような構成を有する車両1は、上述したように、電力網8から電力の供給を受けて蓄電装置20を搭載したり、スマートグリッドなどに見られるように、車両1を電力供給源として考え、電力網8を経由して他の供給先に電力を供給したりする技術が知られている。また、車両1には、エンジン63が搭載されているため、走行中にエンジン63により発電した電力を用いて蓄電装置20を充電することが可能となる。
また、近年、太陽光発電システム等の再生エネルギーを電力網8に供給することによって日中の電力供給不足の解消が図られている。しかしながら、太陽光発電システムの普及が進むほど日中の需要電力が低下するのに対して、車両1を一例とするような電動車両の普及が進むほど夜間に充電が行なわれる車両が増加し需要電力が上昇する。その結果、1日において需要電力が日中と夜間とで急峻に変動する、いわゆる、需要電力のダックカーブ現象の顕在化が問題となっている。
図2は、太陽光発電システムおよび外部充電が可能な電動車両の普及が進んだ地域における需要電力の変化の一例を示す図である。図2の縦軸は、需要電力を示す。図2の横軸は、時間を示す。需要電力は電力網8に要求する電力を示す。
図2に示すように、8時までの期間は、日の出前の期間を含み、そのような期間において太陽光発電を行なうことができない。また、8時までの期間は、当該地域内の住宅の住人の多くが就寝中となる期間を含み、そのような期間において需要電力の変動は小さい。
一方、8時以降においては、日の出とともに太陽光発電が行なわれるため、当該地域内の住宅で消費される電力の一部が太陽光発電によって発電された電力により補われる。その結果、8時までの期間よりも需要電力が低下する。また、8時以降においては、太陽の高度が高くなるにつれて太陽光発電の発電電力が増加するため、需要電力がさらに減少していく。そして、太陽の高度が低くなるにつれて太陽光発電の発電電力が減少するため、需要電力が増加していく。18時以降においては、日の入りによって太陽光発電を行なうことができなくなることに加えて住宅に帰宅した住人が住宅内の電気機器を利用するとともに電動車両の充電を行なうことにより、需要電力が急激に増加する。その結果、1日において需要電力が日中と夜間とで急峻に変動する、いわゆる、需要電力のダックカーブ現象が発生することになる。そのため、需要電力の変動の改善が求められている。
このような需要電力の変動の改善手法の一例として、たとえば、当該地域内のすべての電動車両に対して1日における需要電力が比較的高くなる夜間の一部の期間(以下、放電期間と記載する)に所定の放電量の外部給電を要求することによって需要電力の変動を抑制することが考えられる。しかしながら、このような外部給電が車両1に要求される場合には、駐車中にエンジン63が始動すると騒音が発生することになるため、車両1の運転中に外部給電に備えて蓄電装置20のSOCを調整することが望ましい。
そこで、本実施の形態においては、ECU100は、車両1の運転中に、次の運転開始予定時刻における蓄電装置20のSOCの第1目標値(以下、第1目標SOCと記載する)と、電力網8と接続された状態での蓄電装置20に対する充電電力の上限値とを用いて、次の運転開始予定時刻よりも前に電力網8と接続された状態になるときに電力網8から要求される電力量の給電が可能となるように運転停止予定時刻における蓄電装置20のSOCの第2目標値(以下、第2目標SOCと記載する)を設定するものとする。そして、ECU100は、運転停止予定時刻において蓄電装置20のSOCが第2目標SOCになるように運転中の蓄電装置20のSOCを制御するものとする。
このようにすると、運転停止予定時刻において車両1が駐車し、電力網8と接続された状態になるときに電力網8から要求される電力量の給電が可能となるとともに、次の運転開始予定時刻において蓄電装置20のSOCを第1目標SOCにすることができる。そのため、車両1が駐車し、次の運転開始予定時刻よりも前に放電期間がある場合には、放電期間に電力網8への給電を行なうことができる。そのため、電力需要の平準化に貢献することができる。
以下、図3を参照して、運転中にECU100で実行される処理について説明する。図3は、運転中にECU100で実行される処理の一例を示すフローチャートである。このフローチャートに示される処理は、図1で示したECU100により、所定の処理周期で繰り返し実行される。
ステップ(以下、ステップをSと記載する)100にて、ECU100は、車両1が運転中であるか否かを判定する。ECU100は、たとえば、車両1が走行可能状態である場合に車両1が運転中であると判定する。ECU100は、たとえば、車両1がReady−ON状態である場合に車両1が走行可能状態であると判定する。なお、ECU100は、たとえば、車両1のシステムがオフ状態であるときにスタートボタン(図示せず)が操作されることによって、車両1のシステムを起動し(すなわち、走行に関連する電気機器を作動可能な状態にし)、車両1をReady−ON状態とする。車両1が運転中であると判定される場合(S100にてYES)、処理はS102に移される。
S102にて、ECU100は、所定の実行条件が成立するか否かを判定する。所定の実行条件は、たとえば、運転を開始してから第2目標SOCが設定されていないという条件と、現在の時刻がその日の放電期間よりも前の時間帯であるという条件とを含むようにしてもよい。所定の実行条件が成立すると判定される場合(S102にてYES)、処理はS104に移される。
S104にて、ECU100は、運転停止予定時刻と次回の運転開始予定時刻とを取得する。ECU100は、たとえば、メモリ102に記憶される、運転停止予定時刻と次回の運転開始予定時刻とを取得する。メモリ102への運転停止予定時刻の記憶や運転開始予定時刻の記憶については上述したとおりであるため、その詳細な説明は繰り返さない。
S106にて、ECU100は、次回の運転開始予定時刻における第1目標SOCを設定する。ECU100は、たとえば、次回の運転開始予定時刻以降の車両1の走行予定ルートに基づいて消費される電力量を推定し、推定された電力量に相当するSOCの変化分を蓄電装置20のSOCの下限値に加算した値を第1目標SOCとして設定する。走行予定ルートに基づく消費電力量は、たとえば、走行予定ルートにおける走行距離と所定距離当たりの平均的な消費電力量とによって算出されてもよい。
S108にて、ECU100は、運転停止予定時刻における第2目標SOCを設定する。ECU100は、たとえば、次回の運転開始予定時刻において蓄電装置20のSOCを第1目標SOCとするために充電開始時点において必要となるSOCを推定する。ECU100は、たとえば、SOCの下限値から第1目標SOCになるまで電力網8から供給される電力を用いた充電が蓄電装置20に対する充電電力の上限値で行なわれた場合の充電開始時刻を推定する。なお、SOCの下限値は、たとえば、予め定められた値であって、かつ、放置状態が継続されても劣化が促進されない値に設定される。
ECU100は、推定された充電開始時刻が放電期間の終期以後の時刻になる場合には、SOCの下限値を充電開始時点において必要となるSOCの下限値として推定する。
一方、ECU100は、推定された充電開始時刻が放電期間の終期よりも前の時刻である場合には、充電開始時刻から放電期間の終期の時点までの間で充電可能な電力量に相当するSOCの変化分をSOCの下限値に加算した値を充電開始時点において必要となるSOCの下限値として推定する。
ECU100は、充電開始時点において必要となるSOCの下限値に、放電期間中に電力網8への給電が要求される電力量に相当するSOCの変化分を加算した値を運転停止予定時刻における第2目標SOCとして設定する。
S110にて、ECU100は、目標SOCの補正量を設定する。ECU100は、たとえば、第2目標SOCが目標SOCになるように補正量を設定してもよいし、あるいは、現在の目標SOCと第2目標SOCとの差分がしきい値よりも大きい場合には、しきい値(あるいは、しきい値に所定の係数を乗算した値)を目標SOCの補正量として設定してもよい。なお、ECU100は、運転中において目標SOCの補正量が設定される場合には、現在の目標SOCに補正量を加算した値を新たな目標SOCとして設定する。
次に、図4を参照しつつ、車両1のインレット28にコネクタ32が接続されるときにECU100で実行される処理について説明する。図4は、インレット28にコネクタ32が接続されるときにECU100で実行される処理の一例を示すフローチャートである。
S200にて、ECU100は、インレット28にコネクタ32が接続されたか否かを判定する。ECU100は、たとえば、インレット28へのコネクタ32の接続を検出するセンサ(図示せず)から所定の接続信号を受信した場合にインレット28にコネクタ32が接続されたと判定してもよい。インレット28にコネクタ32が接続されたと判定される場合(S200にてYES)、処理はS202に移される。
S202にて、ECU100は、現在の時刻が放電期間内の時刻であるか否かを判定する。ECU100は、たとえば、タイマー(図示せず)によって計測される現在の時刻が予め定められた放電期間内であるか否かを判定する。予め定められた放電期間としては、たとえば、1日のうちの需要電力がしきい値を超える期間(たとえば、図2の18時から23時までの期間)が設定される。現在の時刻が放電期間内の時刻であると判定される場合(S202にてYES)、処理はS204に移される。
S204にて、ECU100は、放電期間に車両1に割り当てられた放電量(以下、割り当て分と記載する)の放電が未完了であるか否かを判定する。ECU100は、たとえば、割り当て分の放電が完了したときにオン状態となるフラグ(以下、放電完了フラグと記載する)の状態に基づいて割り当て分の放電が未完了であるか否かを判定する。割り当て分の放電が未完了であると判定される場合(S204にてYES)、処理はS206に移される。
S206にて、ECU100は、割り当て分の放電が可能であるか否かを判定する。ECU100は、たとえば、現在のSOCからSOCの下限値までの差分に相当する電力量が割り当て分よりも大きい場合に割り当て分の放電が可能であると判定する。割り当て分の放電が可能であると判定される場合(S206にてYES)、処理はS208に移される。
S208にて、ECU100は、放電制御を実行する。具体的には、ECU100は、充放電リレー26をオン状態にした後、蓄電装置20側からの直流電力が交流電力に変換されるように電力変換装置27を制御するとともに、住宅5のHEMS53と通信して、車両1から供給される電力が電力網8に供給されるようにHEMS53を制御する。
なお、割り当て分の放電が可能でないと判定される場合(S206にてNO)、処理はS210に移される。S210にて、ECU100は、エンジン63を始動させる。なお、ECU100は、エンジン63が作動中である場合には、放電制御の実行時において、蓄電装置20から供給される電力に加えてまたは代えて第1MG61において発生する発電電力を電力網8に供給するようにHEMS53を制御する。
S212にて、ECU100は、放電制御の実行が開始されてからの車両1から電力網8への放電量がしきい値よりも大きいか否かを判定する。なお、しきい値は、割り当て分に相当する値である。放電量がしきい値よりも大きいと判定される場合(S212にてYES)、処理はS214に移される。なお、放電量がしきい値以下であると判定される場合(S212にてNO)、処理はS212に戻される。
S214にて、ECU100は、放電制御を停止する。具体的には、ECU100は、住宅5のHEMS53と通信して、車両1からの電力網8への電力供給が停止されるようにHEMS53を制御するとともに、電力変換装置27の動作を停止し、充放電リレー26をオフ状態にする。また、このとき、ECU100は、放電完了フラグをオン状態にする。さらに、ECU100は、エンジン63が作動中である場合には、エンジン63を停止させる。
なお、現在の時刻が放電期間内の時刻でないと判定されたり(S202にてNO)、割り当て分の放電が完了していると判定される場合(S204にてNO)、処理はS216に移される。
S216にて、ECU100は、メモリ102から運転開始予定時刻を取得する。S218にて、ECU100は、蓄電装置20の充電を要するか否かを判定する。ECU100は、たとえば、運転開始予定時刻と、その後の運転停止予定時刻あるいは走行予定ルートとから必要とされる第1目標SOCを推定する。ECU100は、蓄電装置20の現在のSOCが第1目標SOCよりも低い場合に蓄電装置20の充電を要すると判定する。蓄電装置20の充電を要すると判定される場合(S218にてYES)、処理はS220に移される。
S220にて、ECU100は、充電開始時刻を設定する。ECU100は、たとえば、第1目標SOCと、電力網8からの電力を用いた充電における充電電力の上限値とから充電開始時刻を設定する。充電開始時刻の設定方法については、上述の充電開始時刻の推定方法と同様であるため、その詳細な説明は繰り返さない。
S222にて、ECU100は、現在の時刻が充電開始時刻に到達しているか否かを判定する。現在の時刻が充電開始時刻に到達していると判定される場合(S222にてYES)、処理はS224に移される。なお、充電開始時刻に到達していないと判定される場合(S222にてNO)、処理はS222に戻される。
S224にて、ECU100は、充電制御を実行する。具体的には、ECU100は、充放電リレー26をオン状態にするとともに、住宅5のHEM53と通信して、電力網8から供給される電力が車両1に供給されるようにHEMS53を制御した後、電力網8からの交流電力が直流電力に変換されるように電力変換装置27を制御する。
S226にて、ECU100は、蓄電装置20のSOCがしきい値よりも大きいか否かを判定する。しきい値は、たとえば、第1目標SOCであってもよいし、あるいは、第1目標SOCに一定のマージンを加えた値であってもよい。蓄電装置20のSOCがしきい値よりも大きいと判定される場合(S226にてYES)、処理はS228に移される。なお、蓄電装置20のSOCがしきい値以下であると判定される場合(S226にてNO)、処理はS226に戻される。
S228にて、ECU100は、充電制御を停止する。具体的には、ECU100は、電力変換装置27の動作を停止するとともに、住宅5のHEMS53と通信して、電力網8から車両1への電力供給が停止されるようにHEMS53を制御するとともに、充放電リレー26をオフ状態にする。なお、充電を要しないと判定される場合(S216にてNO)、この処理は終了される。
以上のような構造およびフローチャートに基づくECU100の動作について図5を参照しつつ説明する。図5は、ECU100の動作を説明するためのタイミングチャートである。図5の横軸は、時間を示し、図5の縦軸は、SOCを示す。図5のLN1(実線)は、翌日の運転開始予定時刻t(3)における第1目標SOCとしてSOC(3)が設定される場合の蓄電装置20のSOCの変化を示す。図5のLN2(破線)は、翌日の運転開始予定時刻t(3)における第1目標SOCとしてSOC(6)(>SOC(3))が設定される場合の蓄電装置20のSOCの変化を示す。また、図5において、たとえば、1日のうちの18時から23時までの期間が放電期間として設定されるものとする。
<車両1の運転中のECU100の動作について>
たとえば、時間t(0)にて、車両1が運転中であり、かつ、第2目標SOCが設定されていない場合を想定する。
この場合、車両1が運転中であると判定されるとともに(S100にてYES)、所定の実行条件が成立すると判定されるため(S102にてYES)、運転停止予定時刻t(1)と次回の運転開始予定時刻t(3)とが取得される(S104)。
そして、図5のLN1に示すように、次回の運転開始予定時刻t(3)における第1目標SOCとして、SOC(3)が設定される場合には(S106)、運転停止予定時刻t(1)における第2目標SOCは、以下のように設定される(S108)。
すなわち、蓄電装置20のSOCが下限値SOC(0)から、上限の充電電力で蓄電装置20が充電されたときの充電開始時刻t(2)が推定される。推定された充電開始時刻t(2)が放電期間の終期である23時よりも後である場合には、下限値SOC(0)に割り当て分の放電量に相当するSOCの変化分を加算して算出される値SOC(4)が第2目標SOCとして設定される。
そして、設定された第2目標SOCと現在の目標SOCとの差分に応じて目標SOCの補正量が設定され、現在の目標SOCに補正量が加算されることで新たな目標SOCが設定される。このような動作が繰り返されることにより、時間が経過するとともに制御中心である目標SOCは、SOC(4)に近づいていく。そのため、蓄電装置20のSOCは、時間t(1)にて、車両1が駐車されるときに蓄電装置20のSOCがSOC(4)となる。
一方、図5のLN2に示すように、次回の運転開始予定時刻t(3)における第1目標SOCとして、SOC(6)が設定される場合には(S106)、運転停止予定時刻t(1)における第2目標SOCは、以下のように設定される(S108)。
すなわち、蓄電装置20のSOCが下限値SOC(0)から、上限の充電電力で蓄電装置20が充電されたときの充電開始時刻t(2)’が推定される。推定された充電開始時刻t(2)’が放電期間の終期である23時よりも前である場合には、推定された充電開始時刻に下限値SOC(0)から上限の充電電力で蓄電装置20が充電された場合の23時における蓄電装置20のSOC(1)が推定される。そして、推定されたSOC(1)に割り当て分の放電量に相当するSOCの変化分を加算して算出される値SOC(5)(>SOC(4))が第2目標SOCとして設定される。
そして、設定された第2目標SOCと現在の目標SOCとの差分に応じて目標SOCの補正量が設定され、現在の目標SOCに補正量が加算されることで新たな目標SOCが設定される。このような動作が繰り返されることにより、時間が経過するとともに制御中心である目標SOCは、SOC(5)に近づいていく。そのため、蓄電装置20のSOCは、時間t(1)にて、車両1が駐車されるときに蓄電装置20のSOCがSOC(5)となる。
<インレット28にコネクタ32が接続されたときのECU100の動作について>
たとえば、運転停止予定時刻において、車両1のインレット28にコネクタ32が接続され(S200にてYES)、現在の時刻が放電期間内の時刻であって(S202にてYES)、割り当て分の放電が未完了であって(S204にてYES)、かつ、割り当て分の放電が可能であると判定される場合(S206にてYES)、放電制御が実行される(S208)。放電制御が実行されることによって車両1からHEMS53を経由して電力網8に電力が供給される。そして、電力網8への放電量がしきい値を超える場合に(S212にてYES)、放電制御が停止される(S214)。
このように、放電期間において車両1から電力網8に対して割り当て分の放電が行なわれることによって放電期間において高まる需要電力に対応した電力網8への電力供給が可能となる。
一方、車両1のインレット28にコネクタ32が接続された状態で(S200にてYES)、現在の時刻が放電期間内の時刻でなかったり(S202にてNO)、割り当て分の放電が完了していたりすると(S204にてNO)、運転開始予定時刻が取得される(216)。
そして、蓄電装置20の現在のSOCが運転開始予定時刻の第1目標SOCよりも小さいと充電を要すると判定され(S218にてYES)、充電開始時刻が設定される(S220)。
その後、現在の時刻が充電開始時刻に到達すると(S222にてYES)、充電制御が実行される(S224)。充電制御が実行されることによって電力網8からHEMS53を経由して車両1に電力が供給される。そして、蓄電装置20のSOCがしきい値である第2目標SOCを超えると(S226にてYES)、充電制御が停止される(S228)。
以上のようにして、本実施の形態に係る電動車両によると、運転停止予定時刻において車両1が駐車し、電力網8と接続された状態になるときに電力網8から要求される電力量の給電が可能となるとともに、次の運転開始予定時刻において蓄電装置20のSOCを第1目標SOCにすることができる。そのため、車両1が駐車し、次の運転開始予定時刻よりも前に放電期間がある場合には、放電期間に電力網8への給電を行なうことができる。そのため、電力需要の平準化に貢献することができる。したがって、車載の電力供給源と電力網との間で電力の授受が可能な電動車両において電力需要の平準化に貢献する電動車両を提供することができる。
以下、変形例について記載する。
上述の実施の形態では、インレット28にコネクタ32を取り付けることによって、HEMS53と蓄電装置20との間で電力を授受する構成を一例として説明したが、たとえば、HEMS53と蓄電装置20との間で非接触で電力を授受する構成であってもよい。
さらに上述の実施の形態では、車両1は、第1MG61と、エンジン63と、第2MG62とを動力分割装置64によって接続される構成を一例としたハイブリッド自動車であるものとして説明したが、車両1は、外部への給電が可能な電動車両であればよく、たとえば、シリーズ方式などの異なる方式のハイブリッド自動車であってもよいし、電気自動車であってもよい。なお、電気自動車である場合には、第2MG62の出力特性を変化させるなどしてSOCの低下速度を変化させることによって運転停止予定時刻に第2目標SOCになるように蓄電装置20のSOCを調整してもよい。
さらに上述の実施の形態では、運転停止予定時刻よりも前に住宅5以外の充電設備で充電しない場合を前提として説明したが、たとえば、運転停止予定時刻よりも前に住宅5以外の充電設備において蓄電装置20を充電する場合には、当該充電設備において蓄電装置20のSOCが第1目標SOC以上のSOC(たとえば、その後の運転停止予定時刻までCDモードで走行する場合に要する電力量に相当するSOCの変化分を第1目標SOCに加算した値)になるまで蓄電装置20が充電されてもよい。
さらに上述の実施の形態では、インレット28にコネクタ32が取り付けられた場合に、放電期間内の時刻であっても、蓄電装置20による放電が可能でないときにエンジンを始動し、第1MG61において発生した発電電力を電力網8に供給するものとして説明したが、住宅5に別途蓄電装置が設けられる場合には、当該蓄電装置から電力網8への放電の要求量の全部あるいは不足分の電力を供給してもよい。
さらに上述の実施の形態では、車両1に対して放電期間内に所定量の放電を要求する場合を一例として説明したが、たとえば、管理サーバにおいて、所定地域における1日の需要電力の変化を予測し、放電期間内に需要電力が通常よりも増加することが予測される場合には、管理サーバは、車両1に対して所定量よりも増加した放電量を要求してもよいし、車両1を含む複数の車両の各々に対して所定量よりも増加した放電量を要求してもよいし、車両1を含む複数の車両に搭載される蓄電装置の容量あるいはSOC等に応じて車両毎に異なる放電量を設定して、設定された放電量を要求してもよい。
さらに上述の実施の形態では、車両1に対して放電期間内に所定量の放電を要求する場合を一例として説明したが、たとえば、車両1に対して1日のうちの需要電力が低下する期間に所定量の充電を要求するようにしてもよい。この場合、ECU100は、たとえば、インレット28にコネクタ32が取り付けられた場合において、需要電力が低下する期間に重複して充電期間が設定されるように充電開始時刻と充電終了時刻とを調整してもよい。このようにすると、1日のうちの需要電力が低下する期間に電力網8からの電力を用いて充電されるので需要電力を増加させることができる。そのため、日中と夜間との間での需要電力の変動を抑制することができる。
なお、上記した変形例は、その全部または一部を適宜組み合わせて実施してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、5 住宅、8 電力網、20 蓄電装置、21 SMR、22 PCU、26 充放電リレー、27 電力変換装置、28 インレット、31 ケーブル、32 コネクタ、40 ナビゲーション装置、41 GPS受信機、42 タッチパネル付ディスプレイ、50 無線通信装置、51 遠距離通信モジュール、52 近距離通信モジュール、53a 第1入出力部、53b 第2入出力部、53c 出力部、54 通信装置、58 電気機器、61 第1MG、62 第2MG、63 エンジン、64 動力分割装置、65 動力伝達ギヤ、66 駆動輪、100 ECU、101 CPU、102 メモリ。

Claims (1)

  1. 車両の駆動力を発生する電動機と、
    前記電動機に供給する電力を蓄電する蓄電装置と、
    前記車両の駐車中に前記車両の外部の電力網と前記蓄電装置との間で電力の授受が可能に構成される接続部と、
    前記車両の運転中および前記電力網と接続された状態であるときに前記車両の運転開始予定時刻と運転停止予定時刻とを用いて前記蓄電装置のSOCを制御する制御装置とを備え、
    前記制御装置は、
    前記運転中に、次の前記運転開始予定時刻における前記蓄電装置のSOCの第1目標値と、前記電力網と接続された状態での前記蓄電装置に対する充電電力の上限値とを用いて、次の前記運転開始予定時刻よりも前に前記電力網と接続された状態になるときに前記電力網から要求される電力量の給電が可能となるように前記運転停止予定時刻における前記蓄電装置のSOCの第2目標値を設定し、
    前記運転停止予定時刻において前記蓄電装置のSOCが前記第2目標値になるように前記運転中の前記蓄電装置のSOCを制御する、電動車両。
JP2018227908A 2018-12-05 2018-12-05 電動車両 Ceased JP2020092512A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018227908A JP2020092512A (ja) 2018-12-05 2018-12-05 電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018227908A JP2020092512A (ja) 2018-12-05 2018-12-05 電動車両

Publications (1)

Publication Number Publication Date
JP2020092512A true JP2020092512A (ja) 2020-06-11

Family

ID=71013954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018227908A Ceased JP2020092512A (ja) 2018-12-05 2018-12-05 電動車両

Country Status (1)

Country Link
JP (1) JP2020092512A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009976A1 (ja) * 2015-07-15 2017-01-19 本田技研工業株式会社 サーバ装置
WO2018084152A1 (ja) * 2016-11-01 2018-05-11 本田技研工業株式会社 蓄電装置、輸送機器及び制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009976A1 (ja) * 2015-07-15 2017-01-19 本田技研工業株式会社 サーバ装置
WO2018084152A1 (ja) * 2016-11-01 2018-05-11 本田技研工業株式会社 蓄電装置、輸送機器及び制御方法

Similar Documents

Publication Publication Date Title
CN107031430B (zh) 用于在驾驶路线的多个位置上给电动车辆充电的控制策略
CN101436689B (zh) 用于***式车辆的电网负载管理
US7402978B2 (en) System and method for optimizing grid charging of an electric/hybrid vehicle
JP7156012B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
US11498452B2 (en) Vehicle charging control systems and methods
US9233616B2 (en) Charging system for minimizing system energy
US9731617B2 (en) Pattern based charge scheduling
EP2784905B1 (en) Vehicle, vehicle control method, and power-receiving facility
EP2219278A1 (en) Charging control device and charging control method
JP5837129B2 (ja) スマートグリッドシステム
US10759281B2 (en) Controlling operation of electrified vehicle travelling on inductive roadway to influence electrical grid
CN102395498A (zh) 优化混合和插电式车辆的能量消耗的方法和实现该方法的混合和插电式车辆
CN107054104B (zh) 调整电动车辆操作以使电网平衡
EP4155144A1 (en) Battery energy management method and device for hybrid vehicle, and machine-readable storage medium
JP2020092512A (ja) 電動車両
JP2020104755A (ja) プラグインハイブリッド車両
JP7074049B2 (ja) 車両管理システム
JP2020114041A (ja) 電動車両
JP2020107023A (ja) 残容量管理システム
KR102030239B1 (ko) 태양전지 발전량 예측을 통한 차량 배터리 관리 방법
JP2020114063A (ja) 電力管理装置
US11801767B2 (en) Control of vehicle and home energy storage systems
US20230304814A1 (en) Server, power transfer system, and power transfer method
Lehtola et al. Automatic charging scheme for electric vehicle to grid using vehicle built-in monitoring device
JP2022116971A (ja) 電力システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20230228