JP2020071095A - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
JP2020071095A
JP2020071095A JP2018204001A JP2018204001A JP2020071095A JP 2020071095 A JP2020071095 A JP 2020071095A JP 2018204001 A JP2018204001 A JP 2018204001A JP 2018204001 A JP2018204001 A JP 2018204001A JP 2020071095 A JP2020071095 A JP 2020071095A
Authority
JP
Japan
Prior art keywords
magnetic
thickness
magnetic body
sensor
sensor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018204001A
Other languages
English (en)
Inventor
圭 田邊
Kei Tanabe
圭 田邊
将司 ▲高▼橋
将司 ▲高▼橋
Shoji Takahashi
勇一郎 山地
Yuichiro Yamaji
勇一郎 山地
晶裕 海野
Akihiro Unno
晶裕 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018204001A priority Critical patent/JP2020071095A/ja
Publication of JP2020071095A publication Critical patent/JP2020071095A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】センサチップよりもサイズの大きい磁性体を用いた磁気センサにおいて、検出感度の空間的なムラを低減する。【解決手段】磁気センサ10Aは、センサチップ30と、磁束φをセンサチップ30の磁気検出素子に集める磁性体40Aとを備え、磁性体40Aのx方向における長さは、センサチップ30のx方向における長さよりも大きく、磁性体40Aのy方向における厚みは、x方向における位置によって異なる。本発明によれば、磁性体40Aの厚みの厚い部分の集磁能力が相対的に高くなり、厚みの薄い部分の集磁能力が相対的に低くなる。したがって、磁性体の厚みが一定である場合に感度が低下する部分の厚みを厚くし、或いは、磁性体の厚みが一定である場合に感度が過剰となる部分の厚みを薄くすれば、検出感度の空間的なムラを低減することが可能となる。【選択図】図1

Description

本発明は磁気センサに関し、特に、磁気検出素子に磁束を集めるための磁性体を備えた磁気センサに関する。
磁気センサは、電流計、磁気エンコーダ、紙幣センサなどに広く用いられている。特許文献1及び2に記載されているように、磁気センサには、磁気検出素子に磁束を集めるための磁性体が設けられることがある。磁気センサに磁性体を設けると、磁気の検出感度が高められるとともに、指向性を持たせることも可能となる。
特許第5500785号公報 特開2016−170028号公報
しかしながら、磁性体の集磁能力は必ずしも均一ではなく、場合によっては局所的に集磁能力が高かったり、局所的に集磁能力が低かったりすることがあり、この場合には、検出感度に空間的なムラが生じてしまう。このような現象は、センサチップよりもサイズの大きい磁性体を用いた場合において特に顕著となる。
したがって、本発明は、センサチップよりもサイズの大きい磁性体を用いた磁気センサにおいて、検出感度の空間的なムラを低減することを目的とする。
本発明による磁気センサは、磁気検出素子が形成された素子形成面を有するセンサチップと、素子形成面と平行な第1の方向を長手方向とし、素子形成面と平行且つ第1の方向と直交する第2の方向を厚み方向とする板状部材であり、磁束を磁気検出素子に集める磁性体とを備え、磁性体の第1の方向における長さは、センサチップの第1の方向における長さよりも大きく、磁性体の第2の方向における厚みは、第1の方向における位置によって異なることを特徴とする。
本発明によれば、磁性体の厚みが第1の方向における位置によって異なっていることから、厚みの厚い部分の集磁能力が相対的に高くなり、厚みの薄い部分の集磁能力が相対的に低くなる。したがって、磁性体の厚みが一定である場合に感度が低下する部分の厚みを厚くし、或いは、磁性体の厚みが一定である場合に感度が過剰となる部分の厚みを薄くすれば、検出感度の空間的なムラを低減することが可能となる。
本発明において、磁性体の第2の方向における厚みは、素子形成面と直交する第3の方向から見てセンサチップと重なる第1の領域における厚みの方が、センサチップと重ならない第2の領域における厚みよりも厚くても構わない。これによれば、センサチップと重なる略中央部における集磁能力を高めることが可能となる。
この場合、磁性体の第1の領域における第2の方向における厚みは、素子形成面に近い下端部の厚みよりも、素子形成面から離れた上端部の厚みの方が大きくても構わない。これによれば、センサチップのチップサイズをより小型化することが可能となる。さらにこの場合、第3の方向から見て、磁気検出素子は磁性体の下端部と重なりを有しておらず、且つ、磁性体の上端部と重なりを有していても構わない。これによれば、センサチップのチップサイズをよりいっそう小型化することが可能となる。
本発明による磁気センサは、センサチップ及び磁性体を覆う磁気シールドをさらに備え、磁気シールドは、第2の方向からセンサチップを挟み込む第1及び第2の側壁部と、第1の側壁部の一端に接続され、磁性体に向けて第2の方向に延在する第1の天板部と、第2の側壁部の一端に接続され、磁性体に向けて第2の方向に延在する第2の天板部とを含み、磁性体は、第1及び第2の天板部と接することなく、第1の天板部の先端と第2の天板部の先端によって形成されるギャップ内に配置されていても構わない。これによれば、磁性体の直下(又は直上)に位置する磁気パターンに対する検出選択性を高めることが可能となる。したがって、例えば第2の方向に被測定部材をスキャンすれば、特にスキャン方向における分解能を高めることが可能となる。
この場合、磁性体の第2の方向における厚みは、素子形成面と直交する第3の方向から見てセンサチップと重なる第1の領域における厚みよりも、センサチップと重ならない第3の領域における厚みの方が厚くても構わない。これによれば、磁気シールドの存在によって集磁能力が低下しやすい第1の方向における端部の集磁能力を高めることが可能となる。
このように、本発明によれば、センサチップよりもサイズの大きい磁性体を用いた磁気センサにおいて、検出感度の空間的なムラを低減することが可能となる。
図1は、本発明の第1の実施形態による磁気センサ10Aの構造を説明するための略斜視図である。 図2は、本発明の第2の実施形態による磁気センサ10Aの構造を説明するための略上面図である。 図3は、磁気検出素子R1〜R4の接続関係を説明するための回路図である。 図4は、第1の実施形態による磁気センサ10Aのx方向における感度分布を示すグラフである。 図5は、第1の実施形態による磁気センサ10Aをx方向に複数配列した長尺型の磁気センサを示す図であり、(a)はy方向から見た略側面図、(b)はz方向から見た略上面図である。 図6は、本発明の第2の実施形態による磁気センサ10Bの構造を説明するための略斜視図である。 図7は、本発明の第2の実施形態による磁気センサ10Bの構造を説明するための略上面図である。 図8は、本発明の第2の実施形態による磁気センサ10Bの構造を説明するためのyz断面図である。 図9は、第2の実施形態による磁気センサ10Bのx方向における感度分布を示すグラフである。 図10は、本発明の第3の実施形態による磁気センサ10Cの外観を示す略斜視図である。 図11は、磁気センサ10Cから磁気シールド50Cを削除した状態を示す略斜視図である。 図12は、第3の実施形態による磁気センサ10Cのyz断面図である。 図13は、第3の実施形態による磁気センサ10Cの効果を説明するためのグラフである。 図14は、第3の実施形態による磁気センサ10Cのx方向における感度分布を示すグラフである。 図15は、第3の実施形態による磁気センサ10Cを用いた長尺型の磁気センサを示す略斜視図である。 図16は、本発明の第4の実施形態による磁気センサ10Dの構造を説明するための略斜視図である。 図17は、本発明の第4の実施形態による磁気センサ10Dの構造を説明するための略上面図である。
以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
<第1の実施形態>
図1及び図2は本発明の第1の実施形態による磁気センサ10Aの構造を説明するための図であり、図1は略斜視図、図2は略上面図である。
図1及び図2に示すように、第1の実施形態による磁気センサ10Aは、略直方体形状を有し、基板20の実装領域21に実装されたセンサチップ30と、x方向を長手方向とする板状の磁性体40Aからなる。センサチップ30の上面である素子形成面31上には、4つの磁気検出素子R1〜R4と複数の端子電極32が形成されており、これら端子電極32は、ボンディングワイヤBWを介して基板20に設けられた端子電極22に接続されている。磁気検出素子R1〜R4としては、磁界の向きに応じて電気抵抗が変化する磁気抵抗効果素子(MR素子)を用いることが好ましい。磁気検出素子R1〜R4の磁化固定方向は、図2の矢印Pが示す方向(y方向)に全て揃えられている。
センサチップ30の素子形成面31上には、フェライトなどの高透磁率材料からなる磁性体40Aが固定されている。磁性体40Aは、x方向を長手方向とし、y方向を厚み方向とする板状部材であり、磁束φをセンサチップ30に集める役割を果たす。磁性体40Aのx方向における長さL1は、センサチップ30のx方向における長さL0よりも長く、磁性体40Aのy方向における厚みT1,T2は、センサチップ30のy方向における幅T0よりも薄い。磁性体40Aは、z方向から見てセンサチップ30と重なる第1の領域41と、z方向から見てセンサチップ30と重ならない第2の領域42を有し、第1の領域41におけるy方向の厚みT1の方が第2の領域42におけるy方向の厚みT2よりも厚い。
図1及び図2に示す例では、厚みがT1である領域がセンサチップ30と重ならない位置まで拡大されているが、本発明においてこの点は必須でない。逆に、厚みがT2である領域がセンサチップ30と重なる位置まで拡大されていても構わない。つまり、磁気検出素子R1〜R4が設けられたx方向における中央部の厚みがT1であり、x方向における両端部の厚みがT2(<T1)であれば良い。
磁性体40Aの第1の領域41は、磁気検出素子R1,R3と磁気検出素子R2,R4との間に配置される。ここで、磁気検出素子R1,R3はy方向における位置が等しく、磁気検出素子R2,R4はy方向における位置が等しい。また、磁気検出素子R1,R4はx方向における位置が等しく、磁気検出素子R2,R3はx方向における位置が等しい。磁性体40Aは、垂直方向(z方向)の磁束φを集める役割を果たし、磁性体40Aによって集磁された磁束φは、y方向にほぼ均等に分配される。このため、垂直方向の磁束φは、磁気検出素子R1〜R4に対してほぼ均等に与えられることになる。
図3は、磁気検出素子R1〜R4の接続関係を説明するための回路図である。
図3に示すように、磁気検出素子R2,R1は、電源電位Vddが供給される端子電極32と接地電位Gndが供給される端子電極32との間に直列に接続される。同様に、磁気検出素子R3,R4も、電源電位Vddが供給される端子電極32と接地電位Gndが供給される端子電極32との間に直列に接続される。そして、磁気検出素子R1と磁気検出素子R2の接続点の電位Vaは所定の端子電極32を介して外部に出力され、磁気検出素子R3と磁気検出素子R4の接続点の電位Vbは別の端子電極32を介して外部に出力される。
そして、磁気検出素子R1,R3は平面視で磁性体40Aからみて一方側(図2では上側)に配置され、磁気検出素子R2,R4は平面視で磁性体40Aからみて他方側(図2では下側)に配置されていることから、磁気検出素子R1〜R4は差動ブリッジ回路を構成し、磁束密度に応じた磁気検出素子R1〜R4の電気抵抗の変化を高感度に検出することが可能となる。つまり、磁気検出素子R1〜R4は、全て同一の磁化固定方向を有していることから、平面視で磁性体40Aからみて一方側に位置する磁気検出素子R1,R3の抵抗変化量と、平面視で磁性体40Aからみて他方側に位置する磁気検出素子R2,R4の抵抗変化量との間には差が生じる。この差は、図3に示した差動ブリッジ回路によって増幅される。但し、本発明において4つの磁気検出素子R1〜R4を用いることは必須ではなく、例えば2つの磁気検出素子(R1とR4)を用いても構わない。
上述の通り、磁性体40Aはz方向の磁束φを集める役割を果たすが、図1に示すように、磁性体40Aのx方向における両端部には、周囲からより多くの磁束φが集まるため、この部分における磁気の検出感度が局所的に高くなってしまうことがある。しかしながら、第1の実施形態による磁気センサ10Aは、磁性体40Aのx方向における中央部に位置する第1の領域41の厚みT1を選択的に拡大し、これによってこの部分の集磁能力を高めていることから、集磁能力がより均一化される。その結果、検出感度の空間的なムラが低減される。
図4は、第1の実施形態による磁気センサ10Aのx方向における感度分布を示すグラフであり、磁性体40Aのx方向における長さL1が8.0mm、y方向における厚さT1,T2がそれぞれ0.45mm及び0.15mm、z方向における高さが1.3mmであり、第1の領域41のx方向における幅W1が0.25mm、0.5mm、1mm、1.5mm及び2mmである場合のシミュレーション結果を示している。センサチップ30のx方向における長さL0は、1mmである。グラフの横軸は磁性体40Aのx方向における中心部を0とした場合のx方向位置を示し、グラフの縦軸は最も高い感度を100%とした場合における検出感度である。この点は、以下のグラフにおいても同様である。
図4に示すように、第1の実施形態による磁気センサ10Aは、x方向における中央部で感度がやや低下しているが、その低下量は第1の領域41のx方向における幅W1が多くなるほど緩和されることが分かる。特に、第1の領域41のx方向における幅W1がセンサチップ30のx方向における長さL0よりも大きい場合、よりフラットな特性が得られることが分かる。
以上説明したように、第1の実施形態による磁気センサ10Aは、磁性体40Aのx方向における略中央部に位置する第1の領域41の厚みT1を選択的に拡大していることから、中央部における磁気の検出感度の低下を補うことが可能となる。その結果、よりフラットな特性を得ることが可能となる。また、第1の実施形態において用いる磁性体40Aは比較的シンプルな形状を有していることから、製造コストの増大を抑制することが可能となる。磁性体40Aの作製方法としては、フェライトなどを用いて一体成形しても構わないし、フェライトなどからなる単純な板状体を用意し、第1の領域41に相当する部分に別のフェライト部材を貼り付けることによって作製しても構わない。
第1の実施形態による磁気センサ10Aは、図5に示すように、x方向に複数配列することによって長尺型の磁気センサを構成することが可能である。これによれば、y方向に移動する被測定部材(図示せず)に設けられた磁気パターンをスキャンすることができる。特に限定されるものではないが、被測定部材としては紙幣が挙げられる。紙幣のスキャン方向は、短辺方向および長辺方向のいずれであっても構わない。磁気センサ10Aをx方向に複数配列する場合、図5に示すように、x方向に隣接する2つの磁性体40Aを接触させることなく、僅かなギャップGxを介して分離する必要がある、一方、センサチップ30のx方向における長さは、磁性体40Aのx方向における長さよりも十分に小さく、したがって、x方向に隣接する2つのセンサチップ30同士は十分に離間している。
ギャップGxは、磁気パターンを検出することができない、或いは、検出感度が大幅に低下する部分である。したがって、ギャップGxのx方向における幅は、できるだけ狭く設計することが好ましい。但し、x方向に隣接する2つの磁性体40Aが接触すると、隣接する磁気センサ10A間において磁気的な干渉が生じることから、両者が直接接触しないようレイアウトする必要がある。
<第2の実施形態>
図6〜図8は、本発明の第2の実施形態による磁気センサ10Bの構造を説明するための図であり、図6は略斜視図、図7は略上面図、図8はyz断面図である。
図6〜図8に示すように、第2の実施形態による磁気センサ10Bは、磁性体40Aが磁性体40Bに置き換えられている点において、第1の実施形態による磁気センサ10Aと相違している。その他の基本的な構成は第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
第2の実施形態において使用する磁性体40Bは、第1の領域41の厚みがz方向に一定ではなく、素子形成面31に近い下端部41bの厚みが第2の領域42の厚みT2と同じ厚みとされている。素子形成面31から離れた上端部41aの厚みは、第1の実施形態と同じT1(>T2)である。かかる構成により、磁気検出素子R1,R4と磁気検出素子R2,R3のy方向における距離を短縮できることから、センサチップ30のy方向におけるサイズをより小型化することが可能となる。特に、図8に示すように、z方向から見て磁気検出素子R1〜R4が下端部41bと重ならず、且つ、z方向から見て磁気検出素子R1〜R4が上端部41aと重なることが好ましい。つまり、磁気検出素子R1〜R4は、上端部41aと下端部41bの境界によって構成されるオーバーハング部分で覆われることが好ましい。これによれば、センサチップ30のy方向におけるサイズをよりいっそう小型化することが可能となる。
図9は、第2の実施形態による磁気センサ10Bのx方向における感度分布を示すグラフであり、磁性体40Bの上端部41aのz方向における高さが1.2mm、磁性体40Bの下端部41bのz方向における高さが0.1mmである他は、図4のシミュレーション条件と同じである。
図9に示すように、第2の実施形態による磁気センサ10Bによれば、x方向の中央部における感度の低下がより緩和されることが分かる。特に、第1の領域41の上端部41aのx方向における幅W1が多くなるほど感度の低下が緩和され、幅W1が1mm以上である場合には、中央部における感度の低下が4%以下に抑制されている。
<第3の実施形態>
図10は、本発明の第3の実施形態による磁気センサ10Cの外観を示す略斜視図である。
図10に示すように、第3の実施形態による磁気センサ10Cは、磁性体40Aが磁性体40Cに置き換えられているとともに、基板20、センサチップ30及び磁性体40Cを覆う磁気シールド50Cを備えている点において、第1の実施形態による磁気センサ10Aと相違している。その他の基本的な構成は第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。磁気シールド50Cは、ノイズとなる磁束を遮断することによって磁気センサ10Cの指向性を高めるための部材であり、パーマロイなど透磁率の高い磁性金属材料を用いることが好ましい。
図11は、磁気センサ10Cから磁気シールド50Cを削除した状態を示す略斜視図である。
図11に示すように、磁気センサ10Cに含まれる磁性体40Cは、z方向から見てセンサチップ30と重なる第1の領域41と、z方向から見てセンサチップ30と重ならない第3の領域43を有し、第1の領域41における厚みT1よりも、第3の領域43のx方向における両端部における厚みT3の方が厚くなっている。特に限定されるものではないが、第3の実施形態においては、第3の領域43の厚みがz方向に一定ではなく、磁気シールド50Cのギャップ間に位置する上端部の厚みがT3(>T1)であり、下端部の厚みは第1の領域41と同じT1である。但し、第3の領域43は、上端部から下端部に亘って厚みがT3であっても構わない。
図12は、第3の実施形態による磁気センサ10Cのyz断面図である。
図12に示すように、磁気センサ10Cを構成する基板20、センサチップ30及び磁性体40Cは、磁気シールド50Cによって大部分が覆われる。磁気シールド50Cは、y方向からセンサチップ30を挟み込む第1及び第2の側壁部51,52と、第1の側壁部51のz方向における一端に接続され、磁性体40Cに向けてy方向に延在する第1の天板部53と、第2の側壁部52のz方向における一端に接続され、磁性体40Cに向けてy方向に延在する第2の天板部54と、第1の側壁部51のz方向における他端と第2の側壁部52のz方向における他端を接続する底板部55を有している。第1及び第2の側壁部51,52はxz平面を構成し、第1及び第2の天板部53,54と底板部55はxy平面を構成する。
そして、磁気シールド50Cの材料としてパーマロイなどの磁性金属材料を用いれば、1枚の磁性金属板を折り曲げることにより、磁気シールド50Cを作製することが可能となる。但し、磁気シールド50Cが一体的である必要はなく、複数の磁性部材を接着したものであっても構わない。また、磁気シールド50Cと基板20に囲まれた空間を樹脂材料でモールドしても構わない。このように、磁気シールド50Cは略筒状体であることから、センサチップ30及び磁性体40Cが搭載された基板20を筒状の磁気シールド50Cに挿入することによって磁気センサ10Cを作製することができる。この場合、磁気シールド50C自体を磁気センサ10Cの筐体として使用することも可能である。但し、磁気シールド50Cが略筒状体である必要はなく、底板部55を省略し、第1の側壁部51と第1の天板部53からなる部分と、第2の側壁部52と第2の天板部54からなる部分を別部材によって構成しても構わない。
図12に示すように、第3の実施形態においては、第1の天板部53の先端と第2の天板部54の先端によって形成されるギャップG内に磁性体40Cが配置される。特に限定されるものではないが、磁性体40Cの上面は、第1及び第2の天板部53,54と同一平面に位置することが好ましい。これは、第1及び第2の天板部53,54から見て、磁性体40Cの上面が奥側に引っ込むほど磁界の検出感度が低下する一方、磁性体40Cの上面の突出量が大きくなるほどノイズの影響を受けやすくなるからである。また、磁性体40Cは、第1及び第2の天板部53,54と接しておらず、第1及び第2の天板部53,54に対して所定の間隔Sを有している。磁性体40Cと第1及び第2の天板部53,54の間には、樹脂などの非磁性部材が介在していても構わない。
図12には、被測定部材60も示されている。被測定部材60はy方向に配列された磁気パターンM1,M2を有しており、被測定部材60をy方向にスキャンすると、磁気パターンM1,M2が磁性体40Cの直下をy方向に通過することになる。尚、被測定部材60のスキャンは、磁気センサ10Cを固定した状態で被測定部材60をy方向に移動させても構わないし、逆に、被測定部材60を固定した状態で磁気センサ10Cをy方向に移動させても構わない。また、磁気センサ10Cと被測定部材60の上下位置は逆であっても構わない。そして、磁気パターンM1,M2が磁性体40Cの直下をy方向に通過する際、磁気パターンM1,M2によって生じる磁束が磁性体40Cを介して磁気検出素子R1〜R4に与えられ、これによって磁気パターンM1,M2が読み取られる。
図12においては、磁気パターンM1が磁性体40Cの直下に位置しているため、このタイミングでは、磁気パターンM1によって生じる磁束が読み取られる。しかしながら、磁気パターンM1のy方向における近傍には別の磁気パターンM2が存在しているため、この磁気パターンM2によって生じる磁束の一部も同じタイミングで読み取られてしまう。磁気パターンM2によって生じる磁束は、磁気パターンM1を読み取るタイミングにおいてはノイズである。
しかしながら、第3の実施形態による磁気センサ10Cは磁気シールド50Cを備えており、磁性体40Cの直下に位置しない磁気パターン(図12においてはM2)の磁束を磁気シールド50Cによって遮断することができる。つまり、ノイズとなるy方向の磁束については、xz平面を有する第1及び第2の側壁部51,52によって遮断され、ノイズとなるz方向の磁束については、xy平面を有する第1及び第2の天板部53,54によって遮断される。これにより、磁性体40Cの直下に位置する磁気パターン(図12においてはM1)から生じる磁束をより選択的に読み取ることができ、空間分解能が高められる。
図13は、第3の実施形態による磁気センサ10Cの効果を説明するためのグラフであり、横軸は磁性体40Cを基準とした磁気パターンのy方向における位置を示し、縦軸は検出磁界の強度を示している。検出磁界の強度は、ピーク値を1として規格化している。図13に示すように、磁気シールド50Cを備える磁気センサ10Cは、磁気シールド50Cを備えない磁気センサ10A,10Bに比べて検出磁界の波形がシャープとなり、空間分解能が向上していることが分かる。
図14は、第3の実施形態による磁気センサ10Cのx方向における感度分布を示すグラフであり、磁性体40Cのx方向における長さL1が8.0mm、y方向における厚さT1,T3がそれぞれ0.15mm及び0.45mm、z方向における高さが1.3mmであり、第3の領域43のx方向における幅W2が0mm、0.25mm、0.5mm、1mm、1.5mm及び2mmである場合のシミュレーション結果を示している。
図14に示すように、第3の領域43の幅W2が0mmである場合、つまり、磁性体40Cが単純な板状体であり、y方向における厚みが完全に一定である場合、x方向における両端部において感度が低下する。そして、第3の領域43の幅W2を大きくするにしたがい、x方向における両端部の感度が向上するが、第3の領域43の幅W2が大きすぎると、x方向における両端部の感度が高くなりすぎ、x方向における中央部の感度が相対的に低くなってしまう。上記のシミュレーション条件では、第3の領域43の幅W2が1mmである場合に最もフラットな特性が得られている。一般化すると、磁性体40Cのx方向における長さに対し、第3の領域43の幅W2を10%〜15%の範囲に設定すれば、最もフラットな特性が得られる。
以上説明したように、第3の実施形態による磁気センサ10Cは、磁性体40Cのx方向における両端部における厚みを選択的に拡大していることから、両端部における磁気の検出感度の低下を補うことが可能となる。
単純な板状体である磁性体40を用いた場合に両端部における感度が低下する理由は次の通りである。
単純な板状体である磁性体40に対してz方向の磁束φが存在する場合、磁束φは磁性体40と磁気シールド50Cに流れ込む。さらに、磁束φが磁性体40と磁気シールド50Cに流れ込む割合はx方向に位置において一定ではなく、磁性体40の両端部においては磁性体40の中央部よりも減少する傾向がある。これは、磁気パターンM1から発生する磁束のx方向の領域に対して、磁性体40の中央部に磁気パターンM1が位置するときにはおおよそ全領域の磁束φが磁性体40に流れ込むが、磁性体40の両端部に磁気パターンM1が位置するときには磁性体40に流れ込む磁束φが全領域よりも狭い領域となり結果的に磁性体40を通過し磁気検出素子R1〜R4に与えられる磁束の量が減るためである。このようなメカニズムにより、単純な板状体である磁性体40を用いた場合には、両端部における感度が大幅に低下してしまう。
これに対し、第3の実施形態による磁気センサ10Cにおいては、x方向における両端部における厚みが選択的に拡大された磁性体40Cを用いていることから、両端部における感度の低下が補われる。その結果、よりフラットな特性を得ることが可能となる。
また、図15に示すように、磁気シールド50Cの内部にセンサチップ30及び磁性体40Cをx方向に複数配列すれば、長尺型の磁気センサを構成することが可能である。これによれば、y方向に移動する紙幣などの被測定部材(図示せず)に設けられた磁気パターンをスキャンすることができる。
<第4の実施形態>
図16及び図17は本発明の第4の実施形態による磁気センサ10Dの構造を説明するための図であり、図16は略斜視図、図17は略上面図である。
図16及び図17に示すように、第4の実施形態による磁気センサ10Dは、磁気シールド50Cが磁気シールド50Dに置き換えられている点において、第3の実施形態による磁気センサ10Cと相違している。その他の基本的な構成は第3の実施形態による磁気センサ10Cと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
第4の実施形態において用いる磁気シールド50Dは、ギャップGのy方向における幅が一定ではなく、磁性体40Cの厚みに合わせたギャップ幅を有している。つまり、磁性体40Cの厚みが薄い部分(厚みがT1である部分)を挟む位置においては、ギャップGの幅も狭く、磁性体40Cの厚みが厚い部分(厚みがT3である部分)を挟む位置においては、ギャップGの幅も広くなっている。これにより、図12に示す間隔Sを狭くする(理想的には均一とする)ことができるため、磁気シールド50Dによるシールド効果を高めることが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
10A,10B,10C,10D 磁気センサ
20 基板
21 実装領域
22 端子電極
30 センサチップ
31 素子形成面
32 端子電極
40,40A,40B,40C 磁性体
41 第1の領域
41a 上端部
41b 下端部
42 第2の領域
43 第3の領域
50C,50D 磁気シールド
51 第1の側壁部
52 第2の側壁部
53 第1の天板部
54 第2の天板部
55 底板部
60 被測定部材
BW ボンディングワイヤ
G,Gx ギャップ
M1,M2 磁気パターン
R1〜R4 磁気検出素子
S 間隔
φ 磁束

Claims (7)

  1. 磁気検出素子が形成された素子形成面を有するセンサチップと、
    前記素子形成面と平行な第1の方向を長手方向とし、前記素子形成面と平行且つ前記第1の方向と直交する第2の方向を厚み方向とする板状部材であり、磁束を前記磁気検出素子に集める磁性体と、を備え、
    前記磁性体の前記第1の方向における長さは、前記センサチップの前記第1の方向における長さよりも大きく、
    前記磁性体の前記第2の方向における厚みは、前記第1の方向における位置によって異なることを特徴とする磁気センサ。
  2. 前記磁性体の前記第2の方向における厚みは、前記素子形成面と直交する第3の方向から見て前記センサチップと重なる第1の領域における厚みの方が、前記センサチップと重ならない第2の領域における厚みよりも厚いことを特徴とする請求項1に記載の磁気センサ。
  3. 前記磁性体の前記第1の領域における前記第2の方向における厚みは、前記素子形成面に近い下端部の厚みよりも、前記素子形成面から離れた上端部の厚みの方が大きいことを特徴とする請求項2に記載の磁気センサ。
  4. 前記第3の方向から見て、前記磁気検出素子は前記磁性体の前記下端部と重なりを有しておらず、且つ、前記磁性体の前記上端部と重なりを有していることを特徴とする請求項3に記載の磁気センサ。
  5. 前記センサチップ及び前記磁性体を覆う磁気シールドをさらに備え、
    前記磁気シールドは、前記第2の方向から前記センサチップを挟み込む第1及び第2の側壁部と、前記第1の側壁部の一端に接続され、前記磁性体に向けて前記第2の方向に延在する第1の天板部と、前記第2の側壁部の一端に接続され、前記磁性体に向けて前記第2の方向に延在する第2の天板部とを含み、
    前記磁性体は、前記第1及び第2の天板部と接することなく、前記第1の天板部の先端と前記第2の天板部の先端によって形成されるギャップ内に配置されていることを特徴とする請求項1に記載の磁気センサ。
  6. 前記磁性体の前記第2の方向における厚みは、前記素子形成面と直交する第3の方向から見て前記センサチップと重なる第1の領域における厚みよりも、前記センサチップと重ならない第3の領域における厚みの方が厚いことを特徴とする請求項5に記載の磁気センサ。
  7. 前記第2の方向は、被測定部材のスキャン方向であることを特徴とする請求項1乃至6のいずれか一項に記載の磁気センサ。
JP2018204001A 2018-10-30 2018-10-30 磁気センサ Pending JP2020071095A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018204001A JP2020071095A (ja) 2018-10-30 2018-10-30 磁気センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018204001A JP2020071095A (ja) 2018-10-30 2018-10-30 磁気センサ

Publications (1)

Publication Number Publication Date
JP2020071095A true JP2020071095A (ja) 2020-05-07

Family

ID=70547594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018204001A Pending JP2020071095A (ja) 2018-10-30 2018-10-30 磁気センサ

Country Status (1)

Country Link
JP (1) JP2020071095A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298312A (ja) * 2001-03-28 2002-10-11 Hitachi Ltd 磁気ヘッドおよびその製造方法
JP2004271244A (ja) * 2003-03-05 2004-09-30 Asahi Kasei Electronics Co Ltd 磁気センサ
JP2016170028A (ja) * 2015-03-12 2016-09-23 Tdk株式会社 磁気センサ
JP2017096714A (ja) * 2015-11-20 2017-06-01 Tdk株式会社 磁界センサ及びこれを備える磁界検出装置
JP2017167021A (ja) * 2016-03-17 2017-09-21 Tdk株式会社 磁気センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298312A (ja) * 2001-03-28 2002-10-11 Hitachi Ltd 磁気ヘッドおよびその製造方法
JP2004271244A (ja) * 2003-03-05 2004-09-30 Asahi Kasei Electronics Co Ltd 磁気センサ
JP2016170028A (ja) * 2015-03-12 2016-09-23 Tdk株式会社 磁気センサ
JP2017096714A (ja) * 2015-11-20 2017-06-01 Tdk株式会社 磁界センサ及びこれを備える磁界検出装置
JP2017167021A (ja) * 2016-03-17 2017-09-21 Tdk株式会社 磁気センサ

Similar Documents

Publication Publication Date Title
JP5695195B2 (ja) 電流センサ用基板及び電流センサ
CN104204835B (zh) 磁性传感器装置
JP6610178B2 (ja) 磁気センサ
JP6819361B2 (ja) 磁気センサ
WO2013176271A1 (ja) 電流センサ
JP7115242B2 (ja) 磁気センサ
JP2020071198A (ja) 磁気センサ
CN110622020B (zh) 磁传感器
JP2019148475A (ja) 磁気センサ
JP7095350B2 (ja) 磁気センサ
JP2020071096A (ja) 磁気センサ
JP6969397B2 (ja) 磁気センサ
JP2020071095A (ja) 磁気センサ
WO2018198627A1 (ja) 磁界センサ
JPWO2013008466A1 (ja) 電流センサ用基板及び電流センサ
JP7047610B2 (ja) 磁気センサ
JP6973090B2 (ja) 磁気センサ
JP2019219293A (ja) 磁気センサ
JP2014006118A (ja) 電流センサ
JP7119351B2 (ja) 磁気センサ
JP7172178B2 (ja) 磁気センサ
US20230258741A1 (en) Magnetic sensor
JP2022143682A (ja) 磁気センサ
JP6805962B2 (ja) 磁気センサ
CN110998349B (zh) 磁传感器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221227