JP2019174072A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2019174072A
JP2019174072A JP2018064388A JP2018064388A JP2019174072A JP 2019174072 A JP2019174072 A JP 2019174072A JP 2018064388 A JP2018064388 A JP 2018064388A JP 2018064388 A JP2018064388 A JP 2018064388A JP 2019174072 A JP2019174072 A JP 2019174072A
Authority
JP
Japan
Prior art keywords
indoor
indoor units
refrigerant
unit
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018064388A
Other languages
English (en)
Inventor
稔弘 関根
Toshihiro Sekine
稔弘 関根
慎太郎 真田
Shintaro Sanada
慎太郎 真田
佑 廣崎
Yu Hirosaki
佑 廣崎
亮 ▲高▼岡
亮 ▲高▼岡
Akira Takaoka
光哉 青木
Mitsuya Aoki
光哉 青木
達朗 山▲崎▼
Tatsuro Yamazaki
達朗 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018064388A priority Critical patent/JP2019174072A/ja
Priority to PCT/JP2019/005705 priority patent/WO2019187760A1/ja
Publication of JP2019174072A publication Critical patent/JP2019174072A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】可燃性冷媒に置き換えて冷媒充填量が減少しても使用者の不快感を低減できる空気調和装置を提供する【解決手段】CPU210は、室内機5a〜5tでの要求能力の合計である合計要求能力が閾要求能力を超えた場合は、閾要求能力に対応する台数の室内機を運転し残る室内機を停止する。そして、停止する室内機を定期的に変更する停止室内機ローテーション制御を行う。CPU210は、停止室内機ローテーション制御を実行するとき、所定時間毎に各室内機の熱負荷を算出し、同熱負荷が小さいものから順に選択した室内機を停止する。【選択図】図2

Description

本発明は、空気調和装置に関する。
ビル用マルチエアコンなどの空気調和装置は、室外機と複数台の室内機が冷媒配管で接続された冷媒回路を有し、冷媒回路に冷媒を循環させて冷媒の放熱あるいは吸熱を利用して空気を過熱あるいは冷却することで、空調空間の暖房あるいは冷房を行っている。このような空気調和装置では、室外機に接続される室内機の台数が多い程、また、室外機と各室内機を接続する冷媒配管の長さが長い程、冷媒回路に充填する冷媒量が多くなる。
従来、地球温暖化防止や安全性向上の観点から、冷媒回路の冷媒充填量が、全ての室内機で各室内機の最大能力を発揮できる冷媒充填量である最大充填量より少ない規制充填量とし、室内機の運転台数が多いときは運転台数を制限して運転を行うローテーション運転を行う技術がある(例えば、特許文献1)。
特許文献1に記載の空気調和装置では、各室内機における室温と設定温度との温度差に応じて優先順位を設定している。詳細には、当該温度差が小さい程優先順位を高く設定する。すなわち、室温が設定温度に近いという事は、要求されている能力が小さく、停止させたときの影響が少ないため、ローテーション運転時に優先して停止させている。
しかし、上記の方法だと、温度差が同じ室内機同士の優先度の判断や、室内機側で熱負荷に急激な変化があった場合等を考慮することができない。その結果、使用者に不快感を与える恐れがある。
特開2018−013307号公報
本発明は以上述べた問題点を解決するものであって、ローテーション運転を行う際に、使用者の不快感を低減できる空気調和装置を提供することを目的とする。
上記の課題を解決するために、本発明の空気調和装置は、室外機と複数台の室内機が冷媒配管で接続された冷媒回路を有し、冷媒回路を冷媒が循環して各室内機が設置される空調空間の冷房運転あるいは暖房運転を行うものであって、冷媒回路の冷媒充填量が、全ての室内機で各室内機の最大能力を発揮できる冷媒充填量である最大充填量より少ない規制充填量とされている。そして、全ての室内機の要求能力の合算値である合計要求能力が、規制充填量の冷媒が充填されたときに各室内機で発揮できる能力の最大値の合算値である閾要求能力を超えた場合に、各室内機の最大能力の合算値に対する閾要求能力の割合を算出し、運転中の室内機の台数が当該割合以下の台数となるように一部の室内機を停止し、当該停止室内機を所定時間毎に変更する停止室内機ローテーション制御を実行する制御手段を有する。
上記のように構成した本発明の空気調和装置によれば、可燃性冷媒への置き換えをリプレイスで対応することによって冷媒充填量が減少することで全ての室内機で要求能力が発揮できない場合に、停止室内機を所定時間毎に変更するので、使用者の不快感を低減することができる。
本発明の実施形態における、空気調和装置の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段および室内機制御手段のブロック図である。 本発明の実施形態における、室内機および室外機の設置状態を表す図面である。 本発明の実施形態における、停止室内機選択テーブルである。 本発明の実施形態における、室外機制御部の処理を示すフローチャートである。 本発明の実施形態における、室外機制御部の処理を示すフローチャートである。 本発明の実施形態における、室外機制御部の処理を示すフローチャートである。 本発明の実施形態における、室外機制御部の処理を示すフローチャートである。
以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、使用する冷媒を不燃性冷媒から可燃性冷媒に置き換えるために、不燃性冷媒に対応した
室外機と複数台の室内機から可燃性冷媒に対応した室外機と複数台の室内機に変更し、室外機と複数台の室内機を接続する冷媒配管は既設のものを流用する空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。
図1(A)および図2に示すように、本実施形態における空気調和装置1は、空調空間である部屋300の屋外に設置される1台の室外機2と、部屋300に設置され、室外機2に既設の液管8およびガス管9と電気配線10で並列に接続された能力が同じである20台の室内機5a〜5tを備えている。具体的には、液管8の一端は室外機2の閉鎖弁25に接続され、液管8の他端は分岐して各室内機5a〜5tの液管接続部53a〜53tに接続されている。ガス管9の一端は室外機2の閉鎖弁26に接続され、ガス管9の他端は分岐して各室内機5a〜5tのガス管接続部54a〜54tに接続されている。このように室外機2と10台の室内機5a〜5tが接続されて、空気調和装置1の冷媒回路100が構成されている。また、電気配線10の一端は後述する室外機2の通信部230に接続され、電気配線10の他端は分岐して後述する各室内機5a〜5tの通信部530a〜530tに接続されている。
尚、図1(A)では、20台の室内機5a〜5tのうち、室内機5a、室内機5b、および、室内機5tのみを示している。また、上記冷媒回路100には、HFO1234yf、R32、あるいはこれらを含む混合冷媒等の、GWPが低い可燃性冷媒が用いられる。そして、以下に説明する室外機2および20台の室内機5a〜5tは、各々が可燃性冷媒に対応するように設計されたものである。つまり、空気調和装置1は、元々はR410A等の不燃性冷媒に対応した室外機(以降、旧室外機と記載)と20台の室内機(以降、旧室内機と記載)が液管8およびガス管9で接続されて構成されていたものから、可燃性冷媒に対応し各々の能力は旧室外機および旧室内機と同じである室外機2と20台の室内機5a〜5tに置き換え、液管8およびガス管9を流用して室外機2と20台の室内機5a〜5tを接続した冷媒回路100に可燃性冷媒を充填したものである。
まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外膨張弁24と、液管8の一端が接続された閉鎖弁25と、ガス管9の一端が接続された閉鎖弁26と、アキュムレータ28と、室外ファン27を備えている。そして、室外ファン27を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室外機冷媒回路20を構成している。
圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaに吐出管41で接続されており、また、圧縮機21の冷媒吸入側は、アキュムレータ28の冷媒流出側に吸入管42で接続されている。
四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側に吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口に冷媒配管43で接続されている。ポートcは、アキュムレータ28の冷媒流入側に冷媒配管46で接続されている。そして、ポートdは、閉鎖弁26に室外機ガス管45で接続されている。
室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbに冷媒配管43で接続され、他方の冷媒出入口は室外機液管44で閉鎖弁25に接続されている。
室外膨張弁24は室外機液管44に設けられている。室外膨張弁24は電子膨張弁であり、空気調和装置1が暖房運転を行っている場合すなわち室外熱交換器23が蒸発器として機能する場合は、後述する吐出温度センサ33で検出した圧縮機21の吐出温度に応じてその開度が調整されることで、吐出温度が性能上限値を超えないようにしている。また、空気調和装置1が冷房運転を行っている場合すなわち室外熱交換器23が凝縮器として機能する場合は、その開度が全開とされる
室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。
アキュムレータ28は、上述したように、冷媒流入側が四方弁22のポートcに冷媒配管46で接続されるとともに、冷媒流出側が圧縮機21の冷媒吸入側に吸入管42で接続されている。アキュムレータ28は、冷媒配管46からアキュムレータ28の内部に流入した冷媒をガス冷媒と液冷媒に分離してガス冷媒のみを圧縮機21に吸入させる。
以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ28の冷媒流入口近傍には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸込温度センサ34が設けられている。
室外機液管44における室外熱交換器23と室外膨張弁24との間には、室外熱交換器23に流入する冷媒の温度あるいは室外熱交換器23から流出する冷媒の温度を検出するための熱交温度センサ35が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が備えられている。
また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240とを備えている。
記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態等を記憶している。通信部230は、室内機5a〜5cとの通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。
CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機5a〜5tから送信される後述する制御信号を通信部230および電気配線10を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り換え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁24の開度調整を行う。
次に、20台の室内機5a〜5tについて説明する。20台の室内機5a〜5tは、室内熱交換器51a〜51tと、室内膨張弁52a〜52tと、分岐した液管8の他端が接続された液管接続部53a〜53tと、分岐したガス分管9a〜9cの他端が接続されたガス管接続部54a〜54tと、室内ファン55a〜55tを備えている。そして、室内ファン55a〜55tを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室内機冷媒回路50a〜50tを構成している。
以下に、20台の室内機5a〜5tの構成について詳細に説明する。尚、室内機5a〜5tは全て構成が同じであるため、以下の説明では室内機5aを例に挙げて詳細な説明を行い、その他の室内機5b〜5tについては詳細な説明を省略する。また、図1では、室内機5aの構成装置に付与した番号の末尾をaからb〜tにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b〜5tの構成装置となる。
室内熱交換器51aは、冷媒と、後述する室内ファン55aの回転により図示しない吸込口から室内機5aの内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口が液管接続部53aに室内機液管71aで接続され、他方の冷媒出入口がガス管接続部54aに室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。
尚、液管接続部53aやガス管接続部54aは、各冷媒配管が溶接やフレアナット等により接続されている。
室内膨張弁52aは、室内機液管71aに設けられている。室内膨張弁52aは電子膨張弁であり、室内熱交換器51aが蒸発器として機能する場合すなわち室内機5aが冷房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(ガス管接続部54a側)での冷媒過熱度が目標冷媒過熱度となるように調整される。また、室内膨張弁52aは、室内熱交換器51aが凝縮器として機能する場合すなわち室内機5aが暖房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(液管接続部53a側)での冷媒過冷却度が目標冷媒過冷却度となるように調整される。ここで、目標冷媒過熱度や目標冷媒過冷却度とは、室内機5aで十分な冷房能力あるいは暖房能力を発揮するのに必要な冷媒過熱度および冷媒過冷却度である
室内ファン55aは樹脂材で形成されており、室内熱交換器51aの近傍に配置されている。室内ファン55aは、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内部に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を図示しない吹出口から室内へ放出する。
以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内機液管71aにおける室内熱交換器51aと室内膨張弁52aとの間には、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する冷媒の温度を検出する液側温度センサ61aが設けられている。室内機ガス管72aには、室内熱交換器51aから流出あるいは室内熱交換器51aに流入する冷媒の温度を検出するガス側温度センサ62aが設けられている。室内機5aの図示しない吸込口付近には、室内機5aの内部に流入する室内空気の温度、すなわち吸込温度を検出する吸込温度センサ63aが備えられている。
また、室内機5aには、室内機制御手段500aが備えられている。室内機制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU510aと、記憶部520aと、通信部530aと、センサ入力部540aを備えている。
記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。センサ入力部540aは、室内機5aの各種センサでの検出結果を取り込んでCPU510aに出力する。
CPU510aは、前述した室内機5aの各センサでの検出結果をセンサ入力部540aを介して取り込む。また、CPU510aは、使用者が図示しないリモコンを操作して設定した運転情報やタイマー運転設定等を含んだ信号を図示しないリモコン受光部を介して取り込む。また、CPU510aは、運転開始/停止信号や運転情報(要求能力や設定温度、室内温度等)を含んだ制御信号を、通信部530aおよび電気配線10を介して室外機2に送信するとともに、室外機2が検出した吐出圧力等の情報を含む制御信号を通信部530aおよび電気配線10を介して室外機2から受信する。CPU510aは、取り込んだ検出結果やリモコンおよび室外機2から送信された信号に基づいて、室内膨張弁52aの開度調整や、室内ファン55aの駆動制御を行う。
尚、以上説明した室外機制御手段200と室内機制御手段500a〜500tとで、本発明の制御手段が構成される。
以上説明した空気調和装置1が、図2に示す部屋300に設置されている。室外機2が部屋300の屋外に配置されており、20台の室内機5a〜5tが部屋300に設置されている。部屋300の一壁面には、左右方向に渡って配置される窓310が設けられている。また、部屋300の窓310が設けられる壁面に対向する壁面の一部に出入口320が設けられている。20台の室内機5a〜5tは、部屋300の左右方向に略等間隔で4台並べて配置されるとともに、窓310から出入口320に向かう方向に略等間隔で5台並べて配置されている。つまり、部屋300には、左右方向に並べた室内機4台でなる列が、窓310から出入口320に向かう方向に5列並べられる形で室内機5a〜5tが配置されている。
より詳細には、窓310に一番近い列には、室内機5a〜5dの4台の室内機が配置されている。この室内機5a〜5dで構成される列を以降はAグループとする。Aグループの次の列つまりAグループの出入口320側の列には、室内機5e〜5hの4台の室内機が配置されている。この室内機5e〜5hで構成される列を以降はBグループとする。以下、出入口320に向かう順に、室内機5i〜5lの4台の室内機が配置された列、室内機5m〜5pの4台の室内機が配置された列、室内機5q〜5tの4台の室内機が配置された列があり、各列を順にCグループ、Dグループ、Eグループとする。
次に、本実施形態における空気調和装置1の空調運転時の冷媒回路100における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、空気調和装置1が冷房運転を行う場合でありかつ全ての室内機5a〜5tが運転する場合について説明し、暖房運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は冷房運転時の冷媒の流れを示している。
図1に示すように、空気調和装置1が冷房運転を行う場合、室外機制御手段200のCPU210は、四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートbが連通するよう、また、ポートcとポートdが連通するよう、切り換える。これにより、冷媒回路100は、室外熱交換器23が凝縮器として機能するとともに室内熱交換器51a〜51tが蒸発器として機能する冷房サイクルとなる。
圧縮機21から吐出された高圧の冷媒は、吐出管41を流れて四方弁22に流入し、四
方弁22から冷媒配管43を流れて室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。室外熱交換器23から室外機液管44に流出した冷媒は、室外膨張弁24で減圧され閉鎖弁25を介して液管8に流出する。
液管8を流れる冷媒は液管接続部53a〜53tを介して室内機5a〜5tに流入する。室内機5a〜5tに流入した冷媒は室内機液管71a〜71tを流れ、室内膨張弁52a〜52tを通過して減圧される。減圧された冷媒は室内熱交換器51a〜51tに流入し、室内ファン55a〜55tの回転により室内機5a〜5tの内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器51a〜51tが蒸発器として機能し、室内熱交換器51a〜51tで冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5a〜5tが設置された室内の冷房が行われる。
室内熱交換器51a〜51tから流出した冷媒は室内機ガス管72a〜72tを流れ、ガス管接続部54a〜54tを介してガス管9に流出する。ガス管9を流れて閉鎖弁26を介して室外機2に流入した冷媒は、室外機ガス管45、四方弁22、冷媒配管46、アキュムレータ28、吸入管42の順に流れ、圧縮機21に吸入されて再び圧縮される。
尚、空気調和装置1が暖房運転を行う場合、CPU210は、四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するように切り換える。これにより、冷媒回路100は、室外熱交換器23が蒸発器として機能するとともに各室内機5a〜5tの室内熱交換器51a〜51tが凝縮器として機能する暖房サイクルとなる。
ところで、空気調和装置1が冷房運転あるいは暖房運転を行うときは、各室内機5a〜5tにおいて、室内機制御手段500a〜500tのCPU510a〜510tは、使用者が決定した設定温度と吸込温度センサ63a〜63tで検出しセンサ入力部540a〜540tを介して取り込んだ室内温度の温度差を算出し、この温度差に基づく各室内機5a〜5tの要求能力を通信部530a〜530tを介して室外機2に送信する。
一方、通信部230を介して各室内機5a〜5tの要求能力を受信した室外機制御手段200のCPU210は、各室内機5a〜5tの要求能力の合算値である合計要求能力を算出し、算出した合計要求能力を達成するのに必要な量の冷媒を冷媒回路100に循環させるための圧縮機21の回転数を決定する。そして、CPU210は、決定した回転数で圧縮機21を駆動制御する。
前述したように、本実施形態の空気調和装置1は、元々は不燃性冷媒に対応した旧室外機と20台の旧室内機が液管8およびガス管9で接続されて構成されていたものから、可燃性冷媒に対応し各々の能力は旧室外機および旧室内機と同じである室外機2と20台の室内機5a〜5tに置き換え、液管8およびガス管9を流用して室外機2と20台の室内機5a〜5tを接続した冷媒回路100に可燃性冷媒を充填したものである。
旧室外機を室外機2に置き換えるとともに20台の旧室内機を室内機5a〜5tに置き換えて可燃性冷媒を冷媒回路100に充填するときは、その充填量が旧冷媒を使用していたときより少なくなる場合がある。これは、IEC60335−2−40やISO5149といった規格で、不燃性冷媒に比べて可燃性冷媒や微燃性冷媒の許容される充填量(以降、最大充填量と記載)が少なくなるためである。この最大充填量は、例えば、ISO5149では、換気扇やガス漏れセンサを設置する等の部屋における冷媒濃度の管理に対する手当を行っていれば、部屋の大きさに関わらず許容される充填量として定められているものが該当し、不燃性冷媒では冷媒の種類によらず150kgであるのに対し、可燃性冷媒や微燃性冷媒では各冷媒の発火下限濃度に応じた量とされ、一例としてR32冷媒では約60kgとされている。
このため、空気調和装置1が旧室外機と20台の旧室内機で構成されて旧冷媒を用いていたときは、各室内機において各室内機の最大能力が要求されても、各室内機で要求された最大能力を合算した能力が発揮できる冷媒充填量とされていたものをリプレイスにより可燃性冷媒あるいは微燃性冷媒に置き換えると、規制充填量まで充填しても旧冷媒と比べて充填量が少なくなって各室内機で最大能力を発揮できない恐れがある。例えば、全ての旧室内機で最大能力が要求された場合の合計要求能力を100としたときに、この合計要求能力より最大充填量と規制充填量の差分の冷媒充填量の分だけ低い合計要求能力(以降、閾要求能力と記載。例えば、80)しか発揮できない。
そこで、上記のように不燃性冷媒から可燃性冷媒に置き換えた空気調和装置1において、室内機5a〜5tの合計要求能力が閾要求能力を超えたときは、各室内機の最大能力の合算値に対する閾要求能力の割合を算出し、運転中の室内機の台数が当該割合以下の台数となるように一部の室内機を停止させることで、運転している室内機で最大能力に発揮させることが考えられる。例えば、本実施形態の空気調和装置1において、閾要求能力が各室内機の最大能力の合算値の80%とされている場合に、全ての室内機5a〜5tで最大能力が要求されたときは、20台の室内機5a〜5tのうちいずれか4台の室内機を停止させればよい。
しかし、上述したように4台の室内機を停止させるときに、常に室内機5a〜5tのうちの特定の4台の室内機を停止すると、停止室内機が受け持つ空調空間つまりは部屋300における停止室内機の下方の室内温度が上昇あるいは低下して設定温度との温度差が運転している室内機が受け持つ空調空間と比べて大きくなる、つまり、停止室内機が受け持つ空調空間の空調環境が悪化するので、当該空調空間に存在する使用者に不快感を与える恐れがあった。
そこで、本実施形態の空気調和装置1では、各室内機5a〜5tの合計要求能力が閾要求能力を超えた場合は、室内機5a〜5tのうち閾要求能力に対応する台数である16台の室内機を運転し残る4台の室内機を停止する。そして、停止する4台の室内機を定期的に変更する停止室内機ローテーション制御を行う。なお、各室内機5a〜5tのうち閾要求能力に対応する台数とは、規制充填量の冷媒が充填されたときに最大能力を発揮できる室内機の台数を示す。
具体的には、室外機制御手段200のCPU210は、各室内機5a〜5tから取り込んだ要求能力の合計が閾要求能力を超えた場合、後述するフローチャートによって選択された室内機5q〜5tを所定時間(例えば、20分間)停止する。尚、上記所定時間は、予め試験等を行って定められたものであり、所定の外気温下において一般的な断熱性能を持つ部屋に各室内機5a〜5tを設置した状態で、この時間室内機が停止しても当該室内機が受け持つ空調空間の空調環境が極端に悪化(例えば、設定温度と室内温度の温度差が6℃以上となる)しないことが確認できている時間である。後述するフローチャートでは、(1)設定温度と室内温度の差ΔT、(2)直近の区間でのサーモオン時間、(3)直近の区間の運転中の室温の変化量の大きさ、(4)直近の区間の停止中の室温の変化量の小ささの4項目に基づいて優先順位を判定する。
<(1)設定温度と室内温度の差ΔTについて>
図3に示す停止室内機選択テーブル400は、室外機2の室外機制御手段200が保有する記憶部220に記憶されているものであり、室内機5a〜5t(すべて最大能力が等しいものとする)が冷房運転を行っているときの、使用者が定めた設定温度と、各吸込温度センサ63a〜63tで検出されて室外機2に送信された室内温度と、室内温度から設定温度を減じた温度差ΔTと、温度差ΔTに基づく順位が、室内機5a〜5t毎に記憶されているものである。尚、停止室内機選択テーブル400は、使用者によって室内機5a〜5tの設定温度が変更される度に、あるいは、定期的(例えば30秒毎)に検出される室内温度を室外機2が受信する度に、その内容が更新される。また、図示は省略するが、図3に示すものとは別に室内機5a〜5tが暖房運転を行っているときの停止室内機選択テーブルも同様に記憶部220に記憶されている。
ここで順位とは、温度差ΔTが小さい、つまり、設定温度と室内温度の差が小さいものに高い順位が付与されており、この温度差ΔTが大きくなるにつれて順位が低くされている。そして、本実施形態における停止室内機ローテーション制御を実行する際は、CPU210はこの停止室内機選択テーブル400を所定時間(例えば、20分)毎に参照し、順位が一番高いものから順に所定台数の室内機を選んで当該室内機を停止させる。例えば、本実施形態の空気調和装置1において、閾要求能力が全ての室内機5a〜5tで最大能力が要求されたときの合計要求能力の80%とされている場合に、全ての室内機5a〜5tで最大能力が要求されたときは、CPU210は、随時更新される停止室内機選択テーブル400を所定時間毎に参照し、20台の室内機5a〜5tのうち順位が一番高いものから順に4台の室内機を選んで当該室内機を停止させればよい。
具体的には、図3に示す停止室内機選択テーブル400では、一番順位が高い(順位が1位)のは温度差ΔTが0℃となっている室内機5r、5s、および5tの3台である。CPU210は、冷房運転を行っているときに全ての室内機5a〜5tの要求能力が閾要求能力を超えて停止室内機ローテーション制御を実行する際は、停止室内機選択テーブル400を参照して一番順位が高い3台の室内機5r、5s、および5tの計3台を所定時間停止させる。なお、本実施形態においては、前述の通り合計要求能力を発揮するために必要な停止機台数は4台であるところ、一番順位の高い(温度差ΔTが0℃)となっている室内機は3台であるため、1台足りない。この場合は、停止室内機選択テーブル400を参照して、次に順位の高い室内機が何台あるかを判定する。もし、次に順位の高い室内機がちょうど1台であれば、CPU210は当該室内機も所定時間停止させる。そして、所定時間が経過した後は、再び更新された停止室内機選択テーブル400を参照して、順位が高いものから4台の室内機を選択し当該各室内機を停止させる。
<(2)直近の区間でのサーモオン時間について>
停止室内機選択テーブル400を参照して、次に順位の高い室内機が何台あるかを割り出し、次に順位の高い室内機が2台以上であれば、その全ての室内機を停止させてしまうと、5台以上停止させることになり室内機5a〜5tで発揮される能力の合算値が低下して、使用者に不快感を与える恐れがある。そのため本実施形態では、温度差ΔTが同順位の室内機の中で更に順位をつけるため、直近の区間(例えば、30分)でΔT=0が発生した室内機を抽出する。この室内機を、室内機Aとする。なお、CPU210は、室内機5a〜5tが冷房運転を行っているときにΔT=0が発生した場合、室外機2の室外機制御手段200が保有する記憶部220に記憶しているものとする。
具体的には、図3に示す停止室内機選択テーブル400では、一番順位が高い3台の室内機5r、5s、および5tの次に順位が高いのは温度差ΔTが+1℃となっている室内機5pおよび5qの計2台である。室内機5pおよび5qのうち、室内機5qのみが室内機Aだった場合、CPU210は室内機5qを所定時間停止させる。また、室内機5pおよび5qの両方が室内機Aだった場合、直近の区間(例えば、30分)でサーモオン時間が短い室内機を優先して所定時間停止させる。サーモオン時間が短いということは、その室内機の周辺の室温が設定温度に到達してから、室温が設定温度付近で維持されるようにするための比較的低負荷の運転であると推定できる。比較的低負荷の運転をしているため、当該室内機を停止させたとしても使用者の快適性への影響は比較的小さい。
<(3)直近の区間の運転中の室温の変化量の大きさについて>
前述の判定では、比較的熱負荷が小さいと推定した室内機Aの台数を割り出し、それを基に温度差ΔTが同順位の室内機の中で更に順位をつけていたが、室内機Aが存在しない、若しくは、室内機Aだけでは規定停止台数に満たない場合は、直近の区間よりも長い区間(例えば、1時間)で常に運転状態(温度差ΔT>0)だった室内機を抽出する。この室内機を、室内機Bとする。
具体的には、図3に示す停止室内機選択テーブル400では、一番順位が高い3台の室内機5r、5s、および5tの次に順位が高いのは温度差ΔTが+1℃となっている室内機5pおよび5qの計2台である。室内機5pおよび5qのうち、室内機Aが存在しない、かつ、室内機5qのみが室内機Bだった場合、CPU210は室内機5qを所定時間停止させる。また、室内機5pおよび5qの両方が室内機Bだった場合、運転中の単位時間当たりの温度変化量(すなわち、吸込温度が設定温度に向かって変化している時の単位時間当たりの温度変化量)が大きい室内機を優先して所定時間停止させる。吸込温度が設定温度に向かって変化している時の単位時間当たりの温度変化量が大きいということは、熱負荷に対して当該室内機が発揮している冷房能力が比較的大きいと推定できる。言い換えれば、当該室内機が発揮している冷房能力に対して、熱負荷が小さいといえる。すなわち、当該室内機が発揮している冷房能力が室温を設定温度に到達させるために必要な冷房能力に対して余裕がある(大きい)ため、当該室内機を停止させたとしても使用者の快適性への影響は比較的小さい。
<(4)直近の区間の停止中の室温の変化量の小ささについて>
前述の判定では、比較的熱負荷が小さいと推定した室内機Bの台数を割り出し、それを基に温度差ΔTが同順位の室内機の中で更に順位をつけていたが、室内機Bが存在しない、若しくは、室内機Aと室内機Bだけでは規定停止台数に満たない場合、直近の区間よりも長い区間(例えば、1時間)で停止していた間の室温の変化量の小ささに基づいて停止させる室内機の優先順位を決定する。
具体的には、図3に示す停止室内機選択テーブル400では、一番順位が高い3台の室内機5r、5s、および5tの次に順位が高いのは温度差ΔTが+1℃となっている室内機5pおよび5qの計2台である。室内機5pおよび5qのうち、室内機A、室内機Bが存在しない場合、運転停止中の単位時間当たりの温度変化量(すなわち、吸込温度が設定温度から離れる方向に変化している時の単位時間当たりの温度変化量)が小さい室内機を優先して所定時間停止させる。吸込温度が設定温度から離れる方向に変化している時の単位時間当たりの温度変化量が小さいということは、熱負荷が比較的小さいと推定できる。すなわち、比較的低負荷の運転をしているため、当該室内機を停止させたとしても使用者の快適性への影響は比較的小さい。
尚、室内機5a〜5tの合計要求能力が閾要求能力を超えたときに、停止室内機を設けるのではなく全ての室内機5a〜5tを運転し、各室内機5a〜5tで発揮する能力を、閾要求能力を室内機5a〜5tの台数(本実施形態では20台)で割った値つまり最大能力より低い能力に抑えることも考えられる。しかし、このように全ての室内機5a〜5tで発揮される能力を最大能力より低い能力に抑えると、最大能力を要求している使用者に不快感を与える恐れがある。
また、全ての室内機5a〜5tの室内熱交換器51a〜51tにガス冷媒と液冷媒が存在することとなるので、暖房運転時に室内熱交換器にガス冷媒のみが存在する停止室内機がある場合や、冷房運転時に室内熱交換器に液冷媒が略存在しない停止室内機がある場合と比べて空気調和装置1全体の冷媒循環量が減少し、室内機5a〜5tで発揮される能力の合算値が停止室内機が存在する場合と比べて小さくなる恐れがある。
以上説明した理由により、室内機5a〜5tの合計要求能力が閾要求能力を超えたときは、全ての室内機5a〜5tを運転するより、各室内機の最大能力の合算値に対する閾要求能力の割合を算出し、運転中の室内機の台数が当該割合以下の台数となるように一部の室内機を停止させる方が、室内機5a〜5tで発揮される能力の合算値を大きくできる。
以上説明したように、本実施形態の空気調和装置1は、全ての室内機5a〜5tの合計要求能力が閾要求能力を超えたときに、閾要求能力に対応する台数の室内機を停止するとともに停止する室内機を所定時間毎に交代させる停止室内機ローテーション制御を行う。このため、冷媒回路100に充填する冷媒が可燃性冷媒となって充填量が減少し、これに起因して空気調和装置1で発揮できる合計要求能力が低下しても、使用者の不快感を低減できる。
以上説明したように、本実施形態の空気調和装置1は、全ての室内機5a〜5tの要求能力が閾要求能力を超えたときに、停止室内機選択テーブル400を用いて選択した室内機を停止するとともに停止する室内機を所定時間毎に選択し直す停止室内機ローテーション制御を行う。これにより、冷媒回路100に充填する冷媒が可燃性冷媒となって充填量が減少し、これに起因して空気調和装置1で発揮できる空調能力が低下しても、使用者の不快感を低減できる。
<ローテーション運転時の停止室内機選択処理の流れ>
次に、図4〜図7に示すフローチャートを用いて、冷房運転中のローテーション運転を行うとき、停止させる室内機を選択する際に、室外機制御手段200のCPU210が実行する処理について説明する。
図4〜図7に示すフローチャートは、CPU210がローテーション運転を行う際の処理の流れを示すものであり、STはステップを表しこれに続く番号はステップ番号を表している。尚、図4では、本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路100の制御といった、空気調和装置1に関わる一般的な処理については説明を省略している。
CPU210は、室外機制御手段200のCPU210は、各室内機5a〜5tから取り込んだ要求能力の合計が閾要求能力を超えた場合、室内機5a〜5tの合計要求能力と閾要求能力の差に基づいてローテーション運転時に室内機を停止させる台数である規定停止台数を算出する(ST101)。例えば、本実施形態の空気調和装置1において、閾要求能力が全ての室内機5a〜5tで最大能力が要求されたときの合計要求能力の80%とされている場合に、全ての室内機5a〜5tで最大能力が要求されたときは、規定停止台数は4台となる。
次に、CPU210は、カウンタnを1に設定し(ST102)、その後、各室内機5a〜5tの温度差ΔTを算出する(ST103)。温度差ΔTは、各吸込温度センサ63a〜63tで検出されて室外機2に送信された室内温度から使用者が定めた設定温度を減じた値である。温度差ΔTが大きい程、その室内機は高負荷であることを示す。
次に、CPU210は、温度差ΔTがn番目に小さい室内機の台数が残り規定停止台数以下であるか否かを判定する(ST104)。ST104の処理を始めて行うときは、カウンタnは1となっているため、この場合、CPU210は、温度差ΔTが1番小さい室内機の台数と規定停止台数を比較する。温度差ΔTがn番目に小さい室内機の数が残り規定停止台数以下である場合(ST104−YES)、CPU210は、温度差ΔTがn番目に小さい室内機を全て停止させ(ST105)、停止させた室内機の台数が規定停止台数と等しい台数であるか否かを判定する(ST106)。
停止させた室内機の台数が規定停止台数と等しい台数である場合(ST106−YES)、各室内機の最大能力の合算値に対する閾要求能力の割合を算出し、運転中の室内機の台数が当該割合以下の台数となるように一部の室内機を停止できているので、CPU210は、このフローチャートによる処理を終了させる。その後、CPU210は、所定時間(例えば、20分)が経過したら再び当該フローチャートの処理を行い、停止させる室内機を選択する。停止させた室内機の台数が規定停止台数と等しい値ではない、すなわち、停止させた室内機の台数が規定停止台数に満たない場合(ST106−NO)、CPU210は、カウンタnに1を加えて(ST107)、ST104に処理を戻す。ST104では、規定停止台数にST105で停止した室内機の台数を減じた「残り規定停止台数」と「温度差ΔTがn番目に小さい室内機の台数」を比較する。
ST104において、温度差ΔTがn番目に小さい室内機の数が残り規定停止台数以下ではない、つまり、残り規定停止台数を超えている場合(ST104−YES)、CPU210は、温度差ΔTがn番目に小さい室内機のうち、直近の区間(例えば、30分)でサーモオフが発生した室内機Aの台数を抽出する(ST201)。その後、室内機Aの台数が残り規定停止台数以下であるか否かを判定する(ST202)。室内機Aの台数が残り規定停止台数以下である場合(ST202−YES)、サーモオン時間が短い室内機から順に残り規定停止台数分の室内機を停止させる(ST203)。これは、室内機の直近の区間のサーモオン時間が短い程、熱負荷が小さいと推定できるためである。ST203の処理によって、各室内機の最大能力の合算値に対する閾要求能力の割合を算出し、運転中の室内機の台数が当該割合以下の台数となるように一部の室内機を停止できたので、CPU210は、このフローチャートによる処理を終了させる。
室内機Aの台数が残り規定停止台数以下ではない場合(ST202−NO)、CPU210は、まず、室内機Aを全台停止させる(ST204)。ここまでで停止させた室内機の台数は、残り規定停止台数に達していない。そのため、CPU210は、ST301に処理を移し、温度差ΔTがn番目に小さい室内機のうち、直近の区間よりも長い区間(例えば、1時間)で常に温度差ΔT≠0だった室内機Bの台数を抽出する(ST301)。
その後、室内機Bの台数が残り規定停止台数以下であるか否かを判定する(ST302)。室内機Bの台数が残り規定停止台数以下である場合(ST302−YES)、運転中の単位時間当たりの温度変化量(すなわち、吸込温度が設定温度に向かって変化している時の単位時間当たりの温度変化量)が大きい室内機から順に残り規定停止台数分の室内機を停止させる(ST303)。これは、室内機の運転中の単位時間当たりの温度変化量(すなわち、吸込温度が設定温度に向かって変化している時の単位時間当たりの温度変化量)が大きい程、熱負荷が小さいと推定できるためである。ST303の処理によって、各室内機の最大能力の合算値に対する閾要求能力の割合を算出し、運転中の室内機の台数が当該割合以下の台数となるように一部の室内機を停止できたので、CPU210は、このフローチャートによる処理を終了させる。
室内機Bの台数が残り規定停止台数以下ではない場合(ST302−NO)、CPU210は、まず、室内機Bを全台停止させる(ST304)。ここまでで停止させた室内機の台数は、残り規定停止台数に達していない。そのため、CPU210は、ST401に処理を移し、運転停止中の単位時間当たりの温度変化量(すなわち、吸込温度が設定温度から離れる方向に変化している時の単位時間当たりの温度変化量)が小さい室内機から順に残り規定停止台数分の室内機を停止させる。これは、室内機の運転停止中の単位時間当たりの温度変化量(すなわち、吸込温度が設定温度から離れる方向に変化している時の単位時間当たりの温度変化量)が小さい程、熱負荷が小さいと推定できるためである。ST401の処理によって、各室内機の最大能力の合算値に対する閾要求能力の割合を算出し、運転中の室内機の台数が当該割合以下の台数となるように一部の室内機を停止できたので、CPU210は、このフローチャートによる処理を終了させる。
また、本実施形態の停止室内機ローテーション制御を行う際に停止する室内機は、停止室内機選択テーブル400で順位が高い、つまり、室内温度と設定温度の温度差が小さいものを選択する。従って、当該室内機が停止している間に室内温度が上昇もしくは低下しても、設定温度と室内温度の温度差が、他の室内機を停止した場合と比べて小さくなるので、停止室内機が受け持つ空調空間に存在する使用者の不快感が少ない。
以上説明した各実施形態において、20台の室内機5a〜5tが同じ最大能力を発揮でき、閾要求能力の室内機5a〜5tの最大能力の合算値に対する割合が停止室内機の台数の全室内機の台数に対する割合に置き換えられる、つまり、閾要求能力が室内機5a〜5t最大能力の合算値の80%であるときに、停止する室内機の台数も全台数(20台)の80%である4台とする場合について説明した。これに対し、能力が異なる複数種類の室内機で空気調和装置が構成される場合は、各室内機の最大能力の合算値に対する閾要求能力の割合を算出し、運転中の室内機の最大能力の合算値が当該割合以下の台数となるように異なる最大能力の室内機を複数台組み合わせて停止させる室内機を決定してもよい。
1 空気調和装置
2 室外機
5a〜5t 室内機
8 液管
9 ガス管
10 電気配線
63a〜63t 吸込温度センサ
100 冷媒回路
200 室外機制御部
210 CPU
220 記憶部
230 通信部
300部屋
310 窓
320 出入口
400 停止室内機選択テーブル
500a〜500t 室内機制御部
510a〜510t CPU
530a〜530t 通信部
540a〜540t センサ入力部

Claims (4)

  1. 室外機と複数台の室内機が冷媒配管で接続された冷媒回路を有し、同冷媒回路を冷媒が循環して前記各室内機が設置される空調空間の冷房運転あるいは暖房運転を行う空気調和装置であって、
    前記冷媒回路の冷媒充填量が、全ての前記室内機で同各室内機の最大能力を発揮できる冷媒充填量である最大充填量より少ない規制充填量とされており、
    前記全ての室内機の要求能力の合算値である合計要求能力が、前記規制充填量の冷媒が充填されたときに前記各室内機で発揮できる能力の最大値の合算値である閾要求能力を超えた場合に、前記各室内機の最大能力の合算値に対する前記閾要求能力の割合を算出し、当該割合以下の台数に応じて運転中の室内機のうち一部の室内機を停止し、当該停止室内機を所定時間毎に変更する停止室内機ローテーション制御を実行する制御手段を有し、
    前記制御手段は、前記停止室内機ローテーション制御を実行するとき、所定時間毎に各室内機の熱負荷を推定し、同熱負荷が小さいものから順に選択した室内機を停止する
    ことを特徴とする空気調和装置。
  2. 前記制御手段は、前記室内機の直近のサーモオン時間が短い程、前記熱負荷が小さいと判断する、
    ことを特徴とする請求項1に記載の空気調和装置。
  3. 前記複数の室内機は、吸込温度を検出する吸込温度センサを有し、
    前記制御手段は、前記吸込温度が設定温度に向かって変化している時の前記吸込温度の単位時間当たりの温度変化量が大きい程、前記熱負荷が小さいと判断する、
    ことを特徴とする請求項1に記載の空気調和装置。
  4. 前記複数の室内機は、吸込温度を検出する吸込温度センサを有し、
    前記制御手段は、前記室内機の直近のサーモオフ時の前記吸込温度の単位時間当たりの温度変化量が小さい程、前記熱負荷が小さいと判断する、
    ことを特徴とする請求項1に記載の空気調和装置。
JP2018064388A 2018-03-29 2018-03-29 空気調和装置 Pending JP2019174072A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018064388A JP2019174072A (ja) 2018-03-29 2018-03-29 空気調和装置
PCT/JP2019/005705 WO2019187760A1 (ja) 2018-03-29 2019-02-15 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064388A JP2019174072A (ja) 2018-03-29 2018-03-29 空気調和装置

Publications (1)

Publication Number Publication Date
JP2019174072A true JP2019174072A (ja) 2019-10-10

Family

ID=68059832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064388A Pending JP2019174072A (ja) 2018-03-29 2018-03-29 空気調和装置

Country Status (2)

Country Link
JP (1) JP2019174072A (ja)
WO (1) WO2019187760A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081148A (ja) * 2019-11-21 2021-05-27 株式会社富士通ゼネラル 空気調和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7347295B2 (ja) * 2020-03-30 2023-09-20 株式会社富士通ゼネラル 空気調和装置および空気調和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960943A (ja) * 1995-08-28 1997-03-04 Toshiba Corp 空気調和装置
JP2002106917A (ja) * 2000-09-28 2002-04-10 Hitachi Ltd 寒冷地用蓄熱式ヒートポンプ空気調和機
JP2004309015A (ja) * 2003-04-07 2004-11-04 Toho Gas Co Ltd Ghp故障予知診断方法およびその装置
JP2012007887A (ja) * 2011-10-11 2012-01-12 Daikin Industries Ltd 空気調和システム及び空調管理装置
JP2018013307A (ja) * 2016-07-22 2018-01-25 株式会社富士通ゼネラル 空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960943A (ja) * 1995-08-28 1997-03-04 Toshiba Corp 空気調和装置
JP2002106917A (ja) * 2000-09-28 2002-04-10 Hitachi Ltd 寒冷地用蓄熱式ヒートポンプ空気調和機
JP2004309015A (ja) * 2003-04-07 2004-11-04 Toho Gas Co Ltd Ghp故障予知診断方法およびその装置
JP2012007887A (ja) * 2011-10-11 2012-01-12 Daikin Industries Ltd 空気調和システム及び空調管理装置
JP2018013307A (ja) * 2016-07-22 2018-01-25 株式会社富士通ゼネラル 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081148A (ja) * 2019-11-21 2021-05-27 株式会社富士通ゼネラル 空気調和装置
JP7375490B2 (ja) 2019-11-21 2023-11-08 株式会社富士通ゼネラル 空気調和装置

Also Published As

Publication number Publication date
WO2019187760A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6071823B2 (ja) 空気調和機及び空気調和システム
JP2018013307A (ja) 空気調和装置
JP5931189B2 (ja) 空気調和装置
US9897359B2 (en) Air-conditioning apparatus
JP5403112B2 (ja) 冷凍装置
JP2014102050A (ja) 冷凍装置
JP6277005B2 (ja) 冷凍装置
WO2019187760A1 (ja) 空気調和装置
JP6123289B2 (ja) 空気調和システム
US20190376702A1 (en) Method for sequencing compressor operation based on space humidity
EP1677058A2 (en) Method of controlling over-load cooling operation of air conditioner
JP2010007996A (ja) 空気調和装置の試運転方法および空気調和装置
JP7356506B2 (ja) 空気調和機
JP5138292B2 (ja) 空気調和装置
KR20130053972A (ko) 공기조화기 및 그 제어방법
JP2010190484A (ja) 電子機器冷却装置
JP2021046953A (ja) 空気調和機
JP2011242097A (ja) 冷凍装置
JP5245576B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP2015094504A (ja) 冷凍装置
KR102104818B1 (ko) 칠러
JP2013072619A (ja) 多室型空気調和機
JP7384073B2 (ja) 空気調和装置および空気調和方法
WO2018100729A1 (ja) 冷凍サイクル装置
WO2022244806A1 (ja) 冷凍サイクル装置および冷媒漏洩判定システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191023