JP2019138403A5 - - Google Patents

Download PDF

Info

Publication number
JP2019138403A5
JP2019138403A5 JP2018023421A JP2018023421A JP2019138403A5 JP 2019138403 A5 JP2019138403 A5 JP 2019138403A5 JP 2018023421 A JP2018023421 A JP 2018023421A JP 2018023421 A JP2018023421 A JP 2018023421A JP 2019138403 A5 JP2019138403 A5 JP 2019138403A5
Authority
JP
Japan
Prior art keywords
solenoid valve
pole piece
diaphragm
fluid
plate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018023421A
Other languages
English (en)
Other versions
JP2019138403A (ja
JP6989405B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2018023421A external-priority patent/JP6989405B2/ja
Priority to JP2018023421A priority Critical patent/JP6989405B2/ja
Priority to PCT/JP2019/002310 priority patent/WO2019159640A1/ja
Priority to DE112019000772.6T priority patent/DE112019000772T5/de
Priority to CN201980013083.9A priority patent/CN111712661B/zh
Priority to BR112020016367-8A priority patent/BR112020016367A2/pt
Publication of JP2019138403A publication Critical patent/JP2019138403A/ja
Priority to US16/942,845 priority patent/US20200352454A1/en
Publication of JP2019138403A5 publication Critical patent/JP2019138403A5/ja
Publication of JP6989405B2 publication Critical patent/JP6989405B2/ja
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

電磁弁、血圧計および機器
この発明は電磁弁に関し、より詳しくは、ソレノイドコイルの磁力によって開閉する電磁弁に関する。また、この発明は、そのような電磁弁を備えた血圧計および機器に関する。
従来、血圧計に用いられる電磁弁としては、例えば特許文献1(特開平08−203730号公報)に開示されたようなものが知られている。その電磁弁は、コの字状のフレームと、このフレームの開放端を塞ぐように取り付けられたヨークとを備えている。その中に、略筒状のコイルボビン(コイル枠)と、このコイルボビンに巻回されたソレノイドコイルとが収容されている。さらに、そのコイルボビンには、棒状の可動鉄心が摺動可能に内挿されている。上記ヨークと対向する上記フレームの底板には、流体が流通する流通口が設けられた固定鉄心が配置されている。可動鉄心の一端が、固定鉄心の流通口と対向している。上記ソレノイドコイルが無通電状態にある非作動時には、スプリングによる付勢力によって、上記可動鉄心の一端が上記固定鉄心の流通口から離れている。上記ソレノイドコイルが通電状態にある作動時には、上記ソレノイドコイルが発生する磁力によって上記スプリングによる付勢力に抗して上記可動鉄心が上記コイルボビン内で移動されて、上記可動鉄心の一端が上記固定鉄心の流通口を塞ぐ。これにより、上記電磁弁が開閉される。
特開平08−203730号公報
ところで、最近の健康志向ブームから、腕時計のように血圧計を手首に常時装着した状態で、血圧測定を行いたいとのニーズが高まっている。その場合、電磁弁のような構成部品をできるだけ小型化することが望まれる。
しかしながら、特許文献1に開示されているような一般的な電磁弁では、可動鉄心が棒状で、かつその長手方向に沿って移動するため、電磁弁のサイズ(特に、可動鉄心の長手方向に沿ったサイズ)が大きくなるという問題がある。
そこで、この発明の課題は、小型に構成可能な電磁弁を提供することにある。また、この発明は、そのような電磁弁を備えた血圧計および機器を提供することにある。
上記課題を解決するため、この開示の電磁弁は、
流体の流通を許容または遮断する電磁弁であって、
環状の周縁をもつ端板部と、この端板部の周縁に連なり、上記端板部の片側に隣り合う空間を環状に取り囲む側板部とを含むヨークと、
上記ヨークの上記端板部に直交して、上記片側の空間に存する一端部から反対側の他端部まで一方向に延在するポールピースとを備え、このポールピースは、上記一端部に開口を有し、上記他端部に、上記ポールピース内を通して上記開口と連通した第1の流体出入口を有し、
上記ポールピースと上記ヨークの上記側板部との間の環状の空間に収容されたソレノイドコイルと、
上記ヨークの上記端板部に上記空間を介して対向するとともに上記ヨークの上記側板部の環状縁にまたがる寸法をもつ板状の磁性材料からなるダイアフラムと、
上記ダイアフラムを、上記一方向に並行移動させる態様で、上記ポールピースの上記一端部から離間する向きに付勢するコイルばね
上記ポールピースの上記他端部が外部に露出した状態で、上記ヨークと、上記ポールピースのうち上記片側の空間に延在する部分と、上記ソレノイドコイルと、上記ダイアフラムと、上記コイルばねとを、一括して覆う筐体と
を備え、
上記コイルばねは、上記ヨークの上記側板部と、上記筐体のうち上記側板部に対向する環状の外周壁との間の環状の空間に沿って配置され、上記ダイアフラムの上記端板部に対向する面の周縁部に沿って環状に接し、
上記筐体の上記環状の外周壁と上記ダイアフラムの周縁部との間に、径方向の隙間が設けられ、
上記ダイアフラムのうち上記ポールピースの上記一端部の上記開口に対向する部分に、上記開口を塞ぐための弾性体が一体に取り付けられ、この弾性体は、上記一端部の上記開口に向かって上記ダイアフラムから柱状に突起して平坦な端面を有し、
上記ポールピースは、上記一端部に、上記ダイアフラムに取り付けられた上記弾性体に向かって開いた平坦な底をもつ窪みを有し、この窪みの上記底に上記開口が開いており、
上記ソレノイドコイルが無通電状態にある非作動時には、上記コイルばねによる付勢力によって、上記ダイアフラムが上記ポールピースの上記一端部から離間し、これにより、上記弾性体の上記端面が上記開口から離間して上記開口が開放された開状態になり、
上記ソレノイドコイルが通電状態にある作動時には、上記ソレノイドコイルが発生する磁力によって上記コイルばねによる付勢力に抗して、上記ダイアフラムが上記ポールピースの上記一端部に接近して、上記弾性体の上記端面によって上記開口が塞がれた閉状態になり得る
ことを特徴とする。
本明細書で、「ヨーク」、「ポールピース」は、電磁石の分野で周知な磁力線を導く働きをする要素であり、それぞれ磁性材料(特に、鉄などの強磁性材料が好ましい。)からなる。
上記ヨークの端板部の周縁の形状は、円形、丸角四角形(角が丸くされた四角形)など、環状の形状を広く含む。上記ヨークの上記側板部の環状の形状も同様である。
上記ヨークの上記側板部の「環状縁」とは、上記端板部とは反対側の縁を指す。
上記ポールピースの上記「他端部」は、上記ヨークの上記端板部から突出していてもよいし、上記端板部の外面(この端板部の2つの面のうち上記片側の空間とは反対側を向いた面)で止まっていてもよい。
本明細書で、「弾性体」とは、シリコーンゴム、ニトリルゴム(NBR)、エチレンプロピレンジエンゴム(EPDM)などの弾性材料(可撓性材料)からなる物体を指す。
弁の開閉状態としては、上記閉状態と上記開状態との間に、上記ソレノイドの通電量に応じて流量が制御される中間状態が存在する。
この開示の電磁弁では、上記ソレノイドコイルが無通電状態にある非作動時には、上記コイルばねによる付勢力によって、上記ダイアフラムが上記ポールピースの上記一端部から離間し、これにより、上記弾性体の上記端面が上記開口から離間して上記開口が開放された開状態になる。この開状態にある場合は、上記ポールピース内を通した流体の流通が許容される。この電磁弁は常開弁となる。
上記ソレノイドコイルが通電状態にある作動時には、上記ソレノイドコイルが発生する磁力によって上記コイルばねによる付勢力に抗して、上記ダイアフラムが上記ポールピースの上記一端部に接近して、上記弾性体の上記端面によって上記開口が塞がれた閉状態になり得る。具体的には、上記ソレノイドコイルが通電状態(作動時)にあるとき、上記ソレノイドコイルが発生する磁力線は、例えば、上記ヨークの上記側板部を通して上記端板部の周縁に達し、上記端板部の周縁から上記端板部を通して上記端板部と上記ポールピースとの直交箇所に達し、この直交箇所から上記ポールピースを通して上記ポールピースの上記一端部に達し、上記一端部からこの一端部と上記ダイアフラムとの接近箇所に達し、さらに、上記ダイアフラムを通して上記ヨークの上記側板部の環状縁に達する経路(磁気回路)を循環する。上記ソレノイドコイルに対する通電の向きが逆になれば、上記ソレノイドコイルが発生する磁力線は、この経路を逆向きに循環する。これにより、上記ソレノイドコイルは、上記ダイアフラムに対して上記コイルばねによる付勢力に抗した磁力を発生する。この磁力によって上記ダイアフラムに取り付けられた上記弾性体が上記ポールピースの上記一端部に対して接近して(これにより、安定した通電電流(または駆動電圧)対流量特性が得られる。)、上記弾性体の上記端面によって上記開口が塞がれた閉状態になり得る。閉状態にある場合は、上記ポールピース内を通した流体の流通は遮断される。このように、この電磁弁では、上記ソレノイドコイルが無通電状態(非作動時)であるか、上記ソレノイドコイルが通電状態(作動時)であるかに応じて、開状態または閉状態になることができる。これにより、上記ポールピース内(つまり、この電磁弁)を通した流体の流通を許容または遮断することができる。特に、上記閉状態のとき、上記ダイアフラムから柱状に突起して平坦な端面を有する上記弾性体が、上記ポールピースの上記一端部の、上記弾性体に向かって開いた平坦な底をもつ上記窪みに収容された状態で、上記開口を塞ぐ。したがって、上記弾性体が上記開口を安定して確実に塞ぐことができる。
ここで、この電磁弁では、流体の流通を許容または遮断するために、板状のダイアフラムが、上記ヨークの上記端板部に対向した姿勢で上記ポールピースの上記一端部に対して接近または離間する向きに一方向に並行移動する構成になっている。すなわち、従来例(可動鉄心が棒状で、かつその長手方向に沿って移動する)とは異なり、この電磁弁では、板状のダイアフラムが、このダイアフラムの板面に対して垂直な一方向に移動する。したがって、上記ダイアフラムが移動する上記一方向に関して電磁弁のサイズを小さくできる。この結果、電磁弁を小型に構成できる。
なお、上記ダイアフラムへの上記弾性体の取り付けは、圧入、接着、またはインサート成形によるのが望ましい。これにより、上記ダイアフラムに上記弾性体を簡単に一体に取り付けることができる。
一実施形態の電磁弁では、上記ポールピースと上記ヨークは一体に構成されていることを特徴とする。
この一実施形態の電磁弁では、上記ポールピースと上記ヨークは一体に構成されているので、上記ポールピースと上記ヨークとの間の磁気抵抗が小さく、それらを経路する磁気回路の効率が高まる。また、上記ポールピースと上記ヨークとの間の気密性を高めて、漏気を防ぐことができる。
一実施形態の電磁弁では、上記ダイアフラムをなす磁性材料はパーマロイであることを特徴とする。
ここで、「パーマロイ」とは、Ni−Feの合金を指す。
この一実施形態の電磁弁では、上記ダイアフラムは、板状で、パーマロイからなるので、例えば棒状の可動鉄心に比して、軽く構成され得る。その場合、鉛直方向に対して電磁弁の姿勢(向き)が様々に変化したとき、電磁弁の姿勢によって特性(例えば、通電電流対流量特性)が影響を受け難くなる。
なお、仮に弁の開閉のために駆動される要素が棒状の可動鉄心であれば、比較的大きな重量をもつため、鉛直方向に対して電磁弁の姿勢(向き)が様々に変化したとき、それに伴って可動鉄心が摺動方向に沿って受ける重力成分が大きく変化して、電磁弁の特性が大きく影響を受ける。
一実施形態の電磁弁では、
上記筐体は、上記ポールピースの上記他端部が外部に露出した状態で、上記ヨークと、上記ポールピースのうち上記片側の空間に延在する部分と、上記ソレノイドコイルと、上記ダイアフラムと、上記コイルばねとを、一括して流体密に覆う密閉ケースであり
上記密閉ケースの外壁を貫通して第2の流体出入口が設けられていることを特徴とする。
この一実施形態の電磁弁は、流路に介挿されて、その流路を通る流体の流通を許容または遮断するのに適する。この電磁弁が開状態であれば、例えば、上記第2の流体出入口から上記ポールピースの上記一端部の上記開口(上記一端部から上記ダイアフラムが離間して開状態にある)を経て上記第1の流体出入口へ向かって、または、その逆向きに、この電磁弁を通して流体が流通し得る。この電磁弁が閉状態であれば、上記開口(上記一端部に上記ダイアフラムが接近して閉状態にある)が遮断されているので、この電磁弁を通して上記第2の流体出入口と上記第1の流体出入口の間で流体が流通することはない。
一実施形態の電磁弁では、上記密閉ケースは、上記ヨークの上記端板部の外面に沿った第1の端壁と、上記ダイアフラムの上記端板部とは反対側を向いた背面に沿った第2の端壁と、上記第1の端壁の周縁部と上記第2の端壁の周縁部とをつなぐ上記環状の外周壁とを含むことを特徴とする。
上記端板部の「外面」とは、この端板部の2つの広がる面のうち上記片側の空間とは反対側を向いた面を指す。また、上記ダイアフラムの「背面」とは、このダイアフラムの2つの面のうち上記ヨークの上記端板部とは反対側を向いた面を指す。
この一実施形態の電磁弁では、上記密閉ケースの上記第1の端壁から上記第2の端壁までのサイズを小さく設定することによって、上記第1及び第2の端壁に沿った偏平な外形をもつことができる。そのような外形は、この電磁弁(密閉ケース)を例えば配線基板に沿って取り付けて、上記電磁弁(密閉ケース)と上記配線基板とを併せて全体として偏平に構成するのに適する。
一実施形態の電磁弁では、上記第1の流体出入口が設けられた上記ポールピースの上記他端部は、上記密閉ケースの上記第1の端壁から外部へ突出して配置されていることを特徴とする。
この一実施形態の電磁弁では、上記第1の流体出入口に、流路が流体流通可能に容易に接続される。
一実施形態の電磁弁では、上記第2の流体出入口は、上記密閉ケースの上記第1の端壁、上記第2の端壁、または上記外周壁から、外部へ突出して配置されていることを特徴とする。
この一実施形態の電磁弁では、上記第2の流体出入口に、流路が流体流通可能に容易に接続される。特に、上記第2の流体出入口が上記密閉ケースの上記外周壁から外部へ突出して配置されている場合、上記第2の流体出入口が上記密閉ケースの上記第2の端壁から外部へ突出するのを避けることができ、電磁弁を薄型化できる。また、上記第2の流体出入口が上記密閉ケースの上記第1の端壁から外部へ突出して配置されている場合、上記第2の流体出入口を上記第1の流体出入口と同じ向きに突出させることとができる。したがって、例えば、上記密閉ケースを配線基板の上面に搭載し、上記第2の流体出入口と上記第1の流体出入口を両方とも上記配線基板を貫通して下方へ延在させた実装構造が可能となる。
別の局面では、この開示の血圧計は、
被測定部位の血圧を測定する血圧計であって、
本体と、
被測定部位に装着されるカフと、
上記本体に搭載され、流路を通して上記カフに流体を供給するためのポンプと、
上記本体に搭載され、上記ポンプまたは上記流路と大気との間に介挿された上記電磁弁と、
上記ポンプによって上記流路を通して上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する圧力制御部と、
上記カフに収容された上記流体の圧力に基づいて血圧を算出する血圧算出部と
を備えたことを特徴とする。
この開示の血圧計では、典型的には、本体とカフとが一体に、被測定部位に装着される。この装着状態で、圧力制御部が、上記ポンプによって上記流路を通して上記カフへ流体を供給して上記カフを加圧し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する。血圧算出部は、上記カフに収容された上記流体の圧力に基づいて血圧を算出する(オシロメトリック法)。ここで、この血圧計では、上記電磁弁は、本開示の小型に構成され得る電磁弁からなっている。したがって、上記本体、ひいては血圧計全体を、小型に構成できる。
さらに別の局面では、この開示の機器は、
被測定部位の血圧を測定可能な機器であって、
本体と、
被測定部位に装着されるカフと、
上記本体に搭載された、上記カフに流体を供給するためのポンプと、
上記本体に搭載された上記電磁弁と、
上記ポンプによって上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する圧力制御部と、
上記カフに収容された上記流体の圧力に基づいて血圧を算出する血圧算出部と
を備えたことを特徴とする。
この開示の機器では、典型的には、本体とカフとが一体に、被測定部位に装着される。この装着状態で、圧力制御部が、上記ポンプによって上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する。血圧算出部は、上記カフに収容された上記流体の圧力に基づいて血圧を算出する(オシロメトリック法)。ここで、この機器では、上記電磁弁は、本開示の小型に構成され得る電磁弁からなっている。したがって、上記本体、ひいては機器全体を、小型に構成できる。
以上より明らかなように、この発明の電磁弁、血圧計、および機器は、小型に構成され得る。
この発明の一実施形態の電磁弁の外観を示す斜視図である。 上記電磁弁を分解状態で斜めから見たところを示す図である。 図2のものを別の方向から見たところを示す図である。 上記電磁弁を流体出入口を含む面で切断したときの断面構造の一例を示す図である。 上記電磁弁のケース内に設けられたダイアフラムの平面形状を示す図である。 上記電磁弁が開状態にあるときに、この電磁弁を通る流体の流れを示す図である。 上記電磁弁が閉状態にあるときに、この電磁弁の各部に加わる力を示す図である。 上記各電磁弁を開閉弁として備えた、この発明の一実施形態の血圧計のブロック構成を示す図である。 上記血圧計の動作フローを示す図である。 図9Aの動作フローに含まれた加圧速度制御のフローを示す図である。 上記電磁弁の駆動力と開度との関係を示す図である。 図11(A)、図11(B)は、上記電磁弁のケースを変形してなる一例の電磁弁を示す図である。 図12(A)、図12(B)は、上記電磁弁のケースを変形してなる別の例の電磁弁を示す図である。
以下、この発明の実施の形態を、図面を参照しながら詳細に説明する。
図1は、この発明の一実施形態の電磁弁(全体を符号2で示す。)の外観を斜めから見たところを示している。また、図2は、上記電磁弁2を分解状態で示している。図3は、図2のものを別の方向から見たところを示している。理解の容易のために、図1〜図3および後述の図4〜図7、図11〜図12では、XYZ直交座標を併せて示している。以下では、便宜上、Z方向を厚さ方向、XY方向を平面方向と呼ぶことがある。
(電磁弁の構成)
図1によって分かるように、この電磁弁2は筐体としてのケース10を備えている。このケース10は、厚さ方向片側(+Z側)に配された蓋ケース10Aと、厚さ方向反対側(−Z側)に配された主ケース10Bとを含んでいる。この例では、蓋ケース10Aは、外壁をなす円板状の第2の端壁10−2と、第2の端壁10−2の中央から外部(+Z側)へ突出した円筒部10a(流体を通すための第2の流体出入口12をなす。)とを有している。主ケース10Bは、矩形(この例では正方形)の板状の第1の端壁10−1と、この第1の端壁10−1に連なる略円筒状の外周壁10−3とを有している。図3に示すように、第1の端壁10−1の中央には、後述するポールピース4が嵌合される貫通孔10wが設けられている。また、第1の端壁10−1の1辺(この例では、−Y側の辺)には、配線(図示しないリード線)が通される貫通孔10uが設けられている。第1の端壁10−1の外面の四隅には、それぞれ金属(銅など)からなる接続端子71,72,73,74(参照)が一体に設けられている。
この例では、蓋ケース10Aは、非磁性のプラスチック材料を一体成形して形成されている。また、主ケース10Bは、接続端子71,72,73,74とともに非磁性のプラスチック材料を一体成形(インサート成形)して形成されている。この例では、蓋ケース10Aの第2の端壁10−2は、主ケース10Bの外周壁10−3に対して溶着されている。ただし、これに限られるものではなく、第2の端壁10−2は外周壁10−3に対してねじ込み式に取り付けられていてもよい。
図2、図3によって分かるように、この電磁弁2のケース10の内部には、ヨーク3と、このヨーク3(の端板部3b)に直交して一体に取り付けられたポールピース4と、ソレノイドコイル7と、付勢部としてのコイルばね5と、ダイアフラム6と、このダイアフラム6に一体に形成された弾性体8とが設けられている。
ヨーク3は、図2に示すように、環状(この例では、円形)の周縁をもつ端板部3bと、この端板部3bの周縁に連なり、端板部3bの片側(+Z側)に隣り合う空間SP1を環状に取り囲む側板部3cとを含んでいる。図3に示すように、端板部3bの中央には貫通孔3wが設けられ、この貫通孔3wにポールピース4が嵌合されている。端板部3bの周縁部のうち、主ケース10Bの第1の端壁10−1の貫通孔10uに対応する部分には、配線(図示しないリード線)が通される貫通孔3uが設けられている。なお、ヨーク3の端板部3bの周縁の形状は、円形に限られるものではなく、丸角四角形(角が丸くされた四角形)などであってもよい。側板部3cの側壁部の環状の形状も同様である。
この例では、ヨーク3の側板部3cの外径は、主ケース10Bの外周壁10−3の内径よりも小さく設定されている。これにより、図4に示す組立状態で、ヨーク3の側板部3cと主ケース10Bの外周壁10−3との間に、コイルばね5を収容する環状の空間SP2が形成される。
図2、図3によって分かるように、ポールピース4は、全体として略円筒状の形状を有している。このポールピース4は、軸方向(Z方向)に関して、ヨーク3の貫通孔3wに嵌合して外部へ突出する突起部4aと、この突起部4aの外径よりも大きい外径をもつ主部4bとを備えている。つまり、このポールピース4は、ヨーク3の端板部3bに直交して、片側(+Z側)の空間SP1に存する一端部4eから反対側(−Z側)の他端部4fまで一方向(Z方向)に延在している。また、この例では、ポールピース4は、一端部4eに、ダイアフラム6の弾性体8に向かって開いた円形の平面形状をもつ窪み4dを有している。この窪み4dは平坦な底4d1を有し、この窪み4dの底4d1に円形の開口4oが開いている。ポールピース4の他端部4fに、ポールピース4内を通して開口4oと連通した円形の第1の流体出入口11が設けられている。
この例では、ヨーク3とポールピース4は、それぞれ磁性材料であるSUM24L(硫黄複合快削鋼)からなっている。また、この例では、ヨーク3の貫通孔3wにポールピース4の突起部4aが圧入されて、ヨーク3とポールピース4は一体に構成されている。これにより、ポールピース4とヨーク3との間の磁気抵抗が小さく、それらを経路とする磁気回路の効率が高まる。また、ポールピース4とヨーク3との間の気密性を高めて、漏気を防ぐことができる。なお、ヨーク3とポールピース4とを空間的に連続した一体物として構成してもよい。
図2、図3によって分かるように、ソレノイドコイル7は、圧肉の円筒状の外形を有している。このソレノイドコイル7の寸法は、ポールピース4とヨーク3の側板部3cとの間の環状の空間SP1に収容され得るように設定されている。このソレノイドコイル7から、図示しない一対のリード線が延在している。
コイルばね5は、略円筒形の輪郭を有している。このコイルばね5は、図4に示す組立状態で、ヨーク3の側板部3cと主ケース10Bの外周壁10−3との間の環状の空間SP2に沿って配置され、ダイアフラム6の上記端板部3bに対向する面6bの周縁部に沿って環状に接している。これにより、コイルばね5は、ダイアフラム6を、一方向(Z方向)に並行移動させる態様で、ポールピース4の一端部4eから離間する向き(すなわち、+Z向き)に付勢する。図4中には、コイルばね5がダイアフラム6を付勢する付勢力f2が矢印で模式的に示されている。これにより、付勢部が少ない部品(すなわち、コイルばね5)で簡単に構成され得る。
図2、図3によって分かるように、ダイアフラム6は、略円板状の外形を有している。この例では、図5(ダイアフラム6の平面形状を示す)によって分かるように、ダイアフラム6の径方向に関して中心6cと周縁部6eとの間で、かつ、周方向に関して等角度ピッチ(この例では、90°ピッチ)で、4つの円形の貫通孔6s,6t,6u,6vが設けられている。これにより、ダイアフラム6の背面(+Z側を向いた面)6a側と内面(−Z側を向いた面)6b側との間で貫通孔6s,6t,6u,6vを通して流体が流通可能になっている。
図4によって分かるように、ダイアフラム6は、ヨーク3の側板部3cの環状縁3eにまたがる寸法をもっている。この結果、ダイアフラム6の外径は、コイルばね5の外径と略一致している。ダイアフラム6が外周壁10−3内で一方向(Z方向)に並行移動できるように、ダイアフラム6の外径と主ケース10Bの外周壁10−3の内径との間には、若干の径方向の隙間CGが設けられている。
この例では、ダイアフラム6は、上述のように略円板状であるとともに、磁性材料としてのパーマロイ(Ni−Feの合金)からなっている。これにより、ダイアフラム6は、例えば棒状の可動鉄心に比して、軽く構成され得る。その場合、鉛直方向に対して電磁弁2の姿勢(向き)が様々に変化したとき、電磁弁2の姿勢によって特性(例えば、通電電流対流量特性)が影響を受け難くなる。
図2、図3によって分かるように、ダイアフラム6の中央には、ポールピース4の一端部4eの窪み4d内に形成された開口4oに対向して、開口4oを塞ぐための略円柱状の弾性体8が一体に取り付けられている。この弾性体8は、上記一端部4eの上記開口4oに向かってダイアフラム6から円柱状に突起して、平坦な端面8eを有している。この例では、弾性体8は、シリコーンゴムからなる。しかしながら、これに限られるものではなく、弾性体8は、ニトリルゴム(NBR)、エチレンプロピレンジエンゴム(EPDM)などの他の弾性材料(可撓性材料)からなっていてもよい。この弾性体8の外径は、開口4oの直径よりも大きく、かつ、窪み4dの内径よりも小さく設定されている。これにより、後述の閉状態のとき、平坦な端面8eを有する弾性体8、ポールピース4の一端部4eの、弾性体8に向かって開いた平坦な底4d1をもつ窪み4dに収容された状態で、開口4oを塞ぐ。したがって、弾性体8が開口4oを安定して確実に塞ぐことができる。
また、この例では、弾性体8は、インサート成形によってダイアフラム6と一体に取り付けられている。これにより、ダイアフラム6と弾性体8を簡単に一体に取り付けることができる。しかしながら、これに限られるものではなく、ダイアフラム6へ弾性体8を、圧入、接着などによって取り付けてもよい。
(電磁弁の組み立て手順)
この電磁弁2の組み立ては、図2、図3の状態(分解状態)から、例えば次のような手順で行われる。
i) まず、主ケース10Bにヨーク3とポールピース4を収容する。その際、主ケース10Bの第1の端壁10−1の貫通孔10wに、ポールピース4の突起部4aを通して嵌合させる。これとともに、主ケース10Bの第1の端壁10−1の貫通孔10uに、ヨーク3の端板部3bの貫通孔3uを対応させる。
ii) 次に、ソレノイドコイル7を、ポールピース4とヨーク3の側板部3cとの間の環状の空間SP1に収容する。その際、ソレノイドコイル7から延在する一対のリード線(図示せず)を、ヨーク3の端板部3bの貫通孔3uと主ケース10Bの第1の端壁10−1の貫通孔10uとを通して、主ケース10Bの外部に引き出す。
iii) 次に、引き出した一対のリード線を、第1の端壁10−1の外面に設けられた4つの接続端子71,72,73,74のうちのいずれか2つに1本ずつ半田付けする。なお、4つの接続端子71,72,73,74のうちの残りの2つはダミー端子として残される。
iv) 次に、主ケース10Bにヨーク3を、また、ヨーク3にソレノイドコイル7を、それぞれ接着剤で気密に接着する。その際、上記一対のリード線が通っているヨーク3の端板部3bの貫通孔3u、および/または、主ケース10Bの第1の端壁10−1の貫通孔10uを接着剤で充填して、気密性を得る。
v) 次に、コイルばね5を、ヨーク3の側板部3cと主ケース10Bの外周壁10−3との間の環状の空間SP2(図4参照)に収容する。
vi) 続いて、ダイアフラム6を、コイルばね5の片側(+Z側)から、空間SP1を介してヨーク3の端板部3bに対向するように配する。さらに、蓋ケース10Aでダイアフラム6をコイルばね5の付勢力f2に抗して押しながら、蓋ケース10Aの第2の端壁10−2を、主ケース10Bの外周壁10−3に対して超音波溶着法によって、気密に溶着する。
このようにして、図4に示すように、電磁弁2が組み立てられる。
この図4の組立状態では、ケース10は、密閉ケースとして、ポールピース4の突起部4a(他端部4fを含む。)が外部に露出した状態で、ヨーク3と、ポールピース4の主部4bと、ソレノイドコイル7と、ダイアフラム6(および弾性体8)と、コイルばね5とを、一括して気密に覆う。主ケース10Bの第1の端壁10−1はヨーク3の端板部3bの外面(−Z側を向いた面)に沿う一方、蓋ケース10Aの第2の端壁10−2はダイアフラム6の背面(+Z側を向いた面)6aに沿った状態になる。特に、この例では、第1の流体出入口11をなすポールピース4の突起部4aが第1の端壁10−1から外部へ突出し、また、第2の流体出入口12をなす円筒部10aが第2の端壁10−2から外部へ突出している。したがって、それらの第1の流体出入口11、第2の流体出入口12をそれぞれ流路の例えば下流側、上流側に流体流通可能に容易に接続することができる。これにより、この電磁弁2は、流路に容易に介挿され得る。
(電磁弁の開閉動作)
この電磁弁2が使用される場合、上述のように第1の流体出入口11、第2の流体出入口12をそれぞれ流路の下流側、上流側に流体流通可能に接続することによって、電磁弁2が流路に介挿される。図6に示すように、この電磁弁2では、ソレノイドコイル7が無通電状態にある非作動時には、コイルばね5による付勢力f2によって、ダイアフラム6がポールピース4の一端部4eから離間し、これにより、弾性体8の端面8eがポールピース4の一端部4eの開口4oから離間して上記開口4oが開放された開状態になる。つまり、この電磁弁2は常開弁となる。
この開状態にある場合は、この電磁弁2を通した流体の流通が許容される。この電磁弁2が開状態であれば、例えば、第2の流体出入口12から矢印LC1で示すように流体が入る。この流体は、矢印LC2s,LC2uで示すように、ダイアフラム6の貫通孔6s,6t,6u,6vを通り、続いて、ポールピース4の一端部4eの窪み4dと弾性体8との間の隙間を通り、一端部4eの開口4oを経て、矢印LC3で示すように第1の流体出入口11から外部へ流出する。このように、第2の流体出入口12から第1の流体出入口11へ向かって、またはその逆向きに、この電磁弁2を通して流体が流通し得る。
ソレノイドコイル7が通電状態にある作動時には、図7に示すように、ソレノイドコイル7が発生する磁力F0(ダイアフラム6の各部に加わる磁力f0,f0,…の合力)によって、コイルばね5による付勢力f2とポールピース4の一端部4eの窪み4dから弾性体8が受ける反発力f2′(これらのf2とf2′の合力を抗力F2と表す。)に抗して、ダイアフラム6がポールピース4の一端部4eに接近し、これにより、弾性体8の端面8eによってポールピース4の一端部4eの開口4oが塞がれた閉状態になり得る。具体的には、ソレノイドコイル7が通電状態(作動時)にあるとき、ソレノイドコイル7が発生する磁力線は、主に、例えば図7中に2点鎖線Mで示すように、ヨーク3の側板部3cを通して端板部3bの周縁に達し、端板部3bの周縁から端板部3bを通して端板部3bとポールピース4との直交箇所に達し、この直交箇所からポールピース4を通してポールピース4の一端部4eに達し、一端部4eからこの一端部4eとダイアフラム6との接近箇所に達し、さらに、ダイアフラム6を通してヨーク3の側板部3cの環状縁3eに達する経路(磁気回路)を循環する。ソレノイドコイル7に対する通電の向きが逆になれば、ソレノイドコイル7が発生する磁力線は、この経路を逆向きに循環する。これにより、ソレノイドコイル7は、ダイアフラム6に対してコイルばね5による付勢力f2に抗した磁力F0を発生する。この磁力F0によってダイアフラム6がポールピース4の一端部4eに対して接近して、弾性体8の端面8eによって開口4oが塞がれた閉状態になり得る。閉状態にある場合は、ポールピース4内を通した流体の流通は遮断される。このように、この電磁弁2では、ソレノイドコイル7が無通電状態(非作動時)であるか、ソレノイドコイル7が通電状態(作動時)であるかに応じて、開状態または閉状態になることができる。これにより、ポールピース4内、つまり、この電磁弁2を通した流体の流通を許容または遮断することができる。
なお、図7に示す閉状態では、ダイアフラム6の内面6bが、ポールピース4の一端部4eの周端面4e1に当接する。しかし、流体は、矢印LX2s,LX2uで示すように、ダイアフラム6の貫通孔6s,6t,6u,6vを通り、ダイアフラム6の内面6bと周端面4e1との間を通して、ポールピース4の一端部4eの窪み4dと弾性体8との間の隙間へ入り得る。このため、ダイアフラム6の背面6aに加わる流体の圧力(背面側圧力)P0が、通電電流(または駆動電圧)対流量特性に与える影響は緩和されている。
例えば、図10は、電磁弁2について、ソレノイドコイル7が発生する磁力F0と弁の開度との関係を示している。弁の開度は、弁が全開のとき100%、弁が全閉のとき0%とそれぞれ表している。なお、簡単のため、各弁の開状態と閉状態との間の中間状態については、無視して説明する。
電磁弁2が、最初に磁力F0=0、したがって開度100%である点ST21にあるものとする。ソレノイドコイル7の通電量を増して、実線XQ1で示すように磁力F0を大きくしてゆくと、この例では磁力F01のときに開状態から閉状態に移行する。この例では、磁力F0がF01を少し超えた点ST22で一旦止められている。ここで、この電磁弁2では、ソレノイドコイル7の通電量を減らして磁力F0を小さくしてゆくと、実線XQ1上を逆行して、概ね磁力F01のときに開状態に復帰する。そして、最初の点ST21に戻る。
例えば、コイルばね5等による抗力をF2=5.0×10−2[N]とする。すると、背面側圧力P0=0mmHg、開口側圧力(第1の流体出入口11側から開口4oに加わる流体の圧力)P1=0mmHgの条件下では、図10中の矢印XQ1に沿って開状態から閉状態に移行するとき(または、その逆に閉状態から開状態に移行するとき)の磁力はF01≒F2=5.0×10−2[N]となる。背面側圧力P0=300mmHg、開口側圧力P1=300mmHgの条件下でも同様に、F01≒F2=5.0×10−2[N]となる。なお、開口4oの直径をΦ=0.5mm、ポールピース4の一端部4eの窪み4dの直径をΦa=1.2mmとする。すると、例えば、背面側圧力P0=0mmHg、開口側圧力P1=300mmHgの条件下では、開口4oの面積(これをS0とする。)がS0=πΦ/4であることから、開口側圧力P1よるダイアフラム6への押圧力(これをF1とする。)はF1=7.84×10−3[N]となる。このため、F01≒F1+F2=5.8×10−2[N]となる。
電磁弁2の開閉状態としては、閉状態と開状態との間に、ソレノイドの通電量に応じて流量が制御される中間状態が存在する。開状態から閉状態へ遷移するとき、ダイアフラム6の弾性体8が、ポールピース4の一端部4eの開口4oに接近する。これにより、安定した通電電流(または駆動電圧)対流量特性が得られる。
ここで、この電磁弁2では、流体の流通を許容または遮断するために、板状のダイアフラム6が、ヨーク3の端板部3bに対向した姿勢でポールピース4の一端部4eに対して接近または離間する向きに一方向(Z方向)に並行移動する構成になっている。すなわち、従来例(可動鉄心が棒状で、かつその長手方向に沿って移動する)とは異なり、この電磁弁2では、板状のダイアフラム6が、このダイアフラム6の板面に対して垂直な一方向(Z方向)に移動する。したがって、ダイアフラム6が移動する一方向(Z方向)に関して電磁弁2のサイズを小さくできる。この結果、電磁弁2を小型に構成できる。
特に、この電磁弁2では、ケース10の第1の端壁10−1から第2の端壁10−2までのサイズを小さく設定することによって、第1及び第2の端壁10−1,10−2に沿った偏平な外形をもつことができる。そのような外形は、この電磁弁2(ケース10)を例えば配線基板に沿って取り付けて、電磁弁2(ケース10)と配線基板とを併せて全体として偏平に構成するのに適する。
この例では、図1に示すように、ケース10の厚さ(Z方向寸法)Hは約2.5mmに設定されている。また、ケース10の平面方向の寸法(XY方向寸法)W1,W2はそれぞれ約5.5mmに設定されている。このように、ケース10は偏平な外形をもつ。また、この例では、蓋ケース10Aの円筒部10aが第2の端壁10−2から+Z側に突出する寸法は、約1.6mmに設定されている。円筒部10aの外径、内径は、それぞれ約1.3mm、約0.8mmに設定されている。また、ポールピース4の突起部4aが主ケース10Bの第1の端壁10−1から−Z側に突出する寸法は、約1.6mmに設定されている。ポールピース4の突起部4aの外径、内径は、それぞれ約1.3mm、約0.5mmに設定されている。このように、電磁弁2を小型に構成できる。
また、このように電磁弁2を小型に構成できる結果、電磁弁2を軽量化できる。特に、従来の電磁弁の棒状の可動鉄心に代えて、この電磁弁2はパーマロイからなる板状のダイアフラム6を備えているので、電磁弁2を軽量化できる。また、鉛直方向に対して電磁弁2の姿勢が様々に変化したとしても、特性(例えば、通電電流対流量特性)の変化が少ない。したがって、電磁弁2の開閉を安定して確実に行うことができる。
(血圧計への適用)
図8は、この発明の一実施形態の電子血圧計(全体を符号100で示す。)の概略的なブロック構成を示している。この血圧計100は、大別して、手首または上腕などの被測定部位に装着されるカフ20と、本体100Mとを備えている。
カフ20は、被測定部位を圧迫するための流体袋22を含んでいる。この流体袋22と本体100Mとは、可撓性を有するエアチューブ38によって流体流通可能に接続されている。
本体100Mは、制御部110と、表示器50と、記憶部としてのメモリ51と、操作部52と、電源部53と、圧力センサ31と、ポンプ32と、既述の電磁弁2からなる排気弁33とを搭載している。さらに、本体100Mは、圧力センサ31からの出力を周波数に変換する発振回路310と、ポンプ32を駆動するポンプ駆動回路320と、排気弁33を駆動する弁駆動回路330とを搭載している。圧力センサ31、ポンプ32、および排気弁33は、本体100Mに設けられた共通のエア配管39を通して、エアチューブ38に流体流通可能に接続されている。この例では、排気弁33は、第2の流体出入口12がエア配管39に連通して接続され、第1の流体出入口11が大気900へ向かって開放されている。
表示器50は、ディスプレイおよびインジケータ等を含み、制御部110からの制御信号に従って所定の情報(例えば、血圧測定結果など)を表示する。
操作部52は、電源部53をON(オン)またはOFF(オフ)するための指示の入力を受け付ける電源スイッチ52Aと、血圧の測定開始の指示を受け付けるための測定スイッチ52Bと、測定停止の指示を受け付けるための停止スイッチ52Cとを有する。これらのスイッチ52A,52B,52Cは、ユーザによる指示に応じた操作信号を制御部110に入力する。
メモリ51は、血圧計100を制御するためのプログラムのデータ、血圧計100を制御するために用いられるデータ、血圧計100の各種機能を設定するための設定データ、および血圧値の測定結果のデータなどを記憶する。また、メモリ51は、プログラムが実行されるときのワークメモリなどとして用いられる。
制御部110は、CPU(Central Processing Unit)を含み、この血圧計100全体の動作を制御する。具体的には、制御部110は、メモリ51に記憶された血圧計100を制御するためのプログラムに従って圧力制御部として働いて、操作部52からの操作信号に応じて、ポンプ32や排気弁33を駆動する制御を行う。また、制御部110は、血圧算出部として働いて、血圧値を算出し、表示器50およびメモリ51を制御する。具体的な血圧測定の仕方については後述する。
電源部53は、制御部110、圧力センサ31、ポンプ32、排気弁33、表示器50、メモリ51、発振回路310、ポンプ駆動回路320、および弁駆動回路330の各部に電力を供給する。
ポンプ32は、カフ20に内包された流体袋22内の圧力(カフ圧)を加圧するために、流体袋22に流体としての空気を供給する。排気弁33は、流体袋22の空気を排出し、または封入してカフ圧を制御するために開閉される。ポンプ駆動回路320は、ポンプ32を制御部110から与えられる制御信号に基づいて駆動する。弁駆動回路330は、排気弁33を制御部110から与えられる制御信号に基づいて開閉する。
圧力センサ31と発振回路310は、カフの圧力を検出する圧力検出部として働く。圧力センサ31は、例えば、ピエゾ抵抗式圧力センサであり、エア配管39とエアチューブ38を介して、カフ20に内包された流体袋22内の圧力(カフ圧)を検出する。この例では、発振回路310は、圧力センサ31からのピエゾ抵抗効果による電気抵抗の変化に基づく電気信号値に基づき発振して、圧力センサ31の電気信号値に応じた周波数を有する周波数信号を制御部110に出力する。
図9Aは、ユーザが血圧計100によって血圧測定を行う際の動作フローを示している。
カフ20が被測定部位に装着された装着状態で、ユーザが本体100Mに設けられた操作部52によって測定開始を指示すると、制御部110は、初期設定を行う(図9AのステップS1)。具体的には、制御部110は、処理用メモリ領域を初期化するとともに、ポンプ32をオフ(停止)し、排気弁33を開いた状態で、圧力センサ31の0mmHg調整(大気圧を0mmHgに設定する。)を行う。
次に、制御部110は、弁駆動回路330を介して排気弁33を閉鎖し、続いて、ポンプ駆動回路320を介してポンプ32をオン(起動)して、カフ20(流体袋22)の加圧を開始する(ステップS2)。制御部110は、ポンプ32からエア配管39とエアチューブ38を通して流体袋22に空気を供給しながら、圧力センサ31の出力に基づいて、加圧速度を制御する(ステップS3)。
詳しくは、この例では、図9Bの加圧速度制御のフローに示すように、制御部110は、加圧速度が目標速度に一致しているか否かを判断する(図9BのステップS81)。ここで、加圧速度が目標速度に一致していれば(ステップS81でYES)、そのまま図9Aのフローにリターンする。一方、加圧速度が目標速度に一致していなければ(図9BのステップS81でNO)、図9BのステップS82に進んで、加圧速度が目標速度よりも大きいか否かを判断する。ここで、加圧速度が目標速度よりも大きければ(ステップS82でYES)、ポンプ32の駆動電圧を現在の制御電圧から一定値β[V]だけ低下させる(ステップS83)。一方、加圧速度が目標速度よりも小さければ(ステップS82でNO)、ポンプ32の駆動電圧を現在の制御電圧から一定値β[V]だけ上昇させる(ステップS84)。しかる後、図9Aのフローにリターンする。
次に、図9AのステップS4で、制御部110は血圧算出部として働いて、この時点で取得されている脈波信号(圧力センサ31の出力に含まれた脈波による変動成分)に基づいて、公知のオシロメトリック法により血圧値(収縮期血圧SBP(Systolic Blood Pressure)と拡張期血圧DBP(Diastolic Blood Pressure))の算出を試みる。
この時点で、データ不足のために未だ血圧値を算出できない場合は(ステップS5でNO)、カフ圧が上限圧力(安全のために、例えば300mmHgというように予め定められている。)に達していない限り、ステップS3〜S5の処理を繰り返す。
このようにして血圧値の算出ができたら(ステップS5でYES)、制御部110は、血圧値の測定結果を表示器50に表示する。さらに、制御部110は、ポンプ32をオフし、排気弁33を開いて(ステップS6)、カフ20(流体袋22)内の空気を排気する制御を行う。
この後、制御部110は、算出した血圧値を表示器50へ表示し(ステップS7)、血圧値をメモリ51へ保存する制御を行う。
なお、血圧算出は、カフ20(流体袋22)の加圧過程でなく、減圧過程で行われてもよい。
この血圧計100では、排気弁33が小型で軽量に構成される電磁弁2からなっている。したがって、本体100M、ひいては血圧計100全体を、小型で軽量に構成できる。また、鉛直方向に対して排気弁33(電磁弁2)の姿勢が様々に変化したとしても、特性(例えば、通電電流対流量特性)の変化が少ない。したがって、排気弁33の開閉を安定して確実に行うことができ、したがって血圧計100の動作を安定化できる。
(ケースに関する変形例)
上の例では、電磁弁2の第2の流体出入口12は、蓋ケース10Aの第2の端壁10−2から外部(+Z側)に突出した円筒部10aによって構成された。その場合、電磁弁2をストレートの流路に介挿することが容易になる。しかしながら、これに限られるものではない。
例えば、図11(A)、図11(B)は、上述の電磁弁2のケース10を変形してなる一例の電磁弁2Dを示している。図11(A)は、この電磁弁2Dを+Z側から見たところを示している。また、図11(B)は、図11(A)における下側(−Y側)から見た断面構造を示している。この図から分かるように、この電磁弁2Dでは、第2の流体出入口12をなす円筒部10bは、主ケース10Bの外周壁10−3から、外部(+X側)へ突出して配置されている。その他の点は、電磁弁2と同様に構成されている(なお、図11(B)では、簡単のため、図4、図6、図7に比してダイアフラム6の構造が簡素化して図示されている。この点は、後述の図12(B)でも同様である。)。
この電磁弁2Dが開状態にあるとき、第2の流体出入口12から図11(B)中に矢印LD1で示すように流体が入る。この流体は、矢印LD2で示すように、ダイアフラム6の内面6bとヨーク3の側板部3cの環状縁3eとの間の隙間、ダイアフラム6の内面6bとポールピース4の一端部4eとの間の隙間、ポールピース4の一端部4eの窪み4dと弾性体8との間の隙間を順に通り、一端部4eの開口4oを経て、矢印LD3で示すように第1の流体出入口11から外部へ流出する。このように、第2の流体出入口12から第1の流体出入口11へ向かって、またはその逆向きに、この電磁弁2D通して流体が流通し得る。
この電磁弁2Dが閉状態にあるときは、電磁弁2におけるのと同様に、ダイアフラム6がポールピース4の一端部4eに対して接近して、弾性体8によって開口4oが塞がれる。
この電磁弁2Dでは、第2の流体出入口12をなす円筒部10bが蓋ケース10Aの第2の端壁10−2から外部(+Z側)へ突出するのを避けることができる。これにより、電磁弁を薄型化できる。例えば、主ケース10Bを配線基板(図示せず)の上面に沿って取り付け、第1の流体出入口11をなす突起部4aを上記配線基板を貫通して下方へ延在させて、電磁弁2Dと上記配線基板とを併せて全体として偏平に構成することができる。
また、図12(A)、図12(B)は、電磁弁2のケース10を変形してなる別の例の電磁弁2Eを示している。図12(A)は、この電磁弁2Eを+Z側から見たところを示している。また、図12(B)は、図12(A)における下側(−Y側)から見た断面構造を示している。この図から分かるように、この電磁弁2Eでは、第2の流体出入口12をなす円筒部10cは、主ケース10Bの第1の端壁10−1から、外部(−Z側)へ突出して配置されている。その他の点は、電磁弁2と同様に構成されている。
この電磁弁2Eが開状態にあるとき、第2の流体出入口12から図12(B)中に矢印LE1で示すように流体が入る。この流体は、矢印LE2で示すように、主ケース10Bの外周壁10−3とヨーク3の側板部3cとの間の隙間、ダイアフラム6の内面6bとヨーク3の側板部3cの環状縁3eとの間の隙間、ダイアフラム6の内面6bとポールピース4の一端部4eとの間の隙間、ポールピース4の一端部4eの窪み4dと弾性体8との間の隙間を順に通り、一端部4eの開口4oを経て、矢印LE3で示すように第1の流体出入口11から外部へ流出する。このように、第2の流体出入口12から第1の流体出入口11へ向かって、またはその逆向きに、この電磁弁2E通して流体が流通し得る。
この電磁弁2Eが閉状態にあるときは、電磁弁2におけるのと同様に、ダイアフラム6がポールピース4の一端部4eに対して接近して、弾性体8によって開口4oが塞がれる。
この電磁弁2Eでは、電磁弁2Dにおけるのと同様に、第2の流体出入口12をなす円筒部10cが蓋ケース10Aの第2の端壁10−2から外部(+Z側)へ突出するのを避けることができる。これにより、電磁弁を薄型化できる。さらに、この電磁弁2Eでは、第2の流体出入口12をなす円筒部10cを第1の流体出入口11をなす突起部4aと同じ向き(−Z向き)に突出させることとができる。例えば、主ケース10Bを配線基板(図示せず)の上面に沿って取り付け、円筒部10cと突起部4aを両方とも上記配線基板を貫通して下方へ延在させて、電磁弁2Eと上記配線基板とを併せて全体として偏平に構成することができる。また、その場合、この電磁弁2Eにつながる流路を、上記配線基板の下方のみに配置することができる。
(機器への適用)
上述の実施形態では、この発明の電磁弁が血圧計に適用されたが、これに限られるものではない。この発明の電磁弁は、血圧計以外の様々な機器に適用され得る。また、この発明の電磁弁は、血圧測定機能と他の様々な機能を実行する機能部を含む機器にも適用され得る。その場合、機器を、小型で軽量に構成できる。また、鉛直方向に対して電磁弁の姿勢が様々に変化したとしても、特性(例えば、通電電流対流量特性)の変化が少ないので、電磁弁の開閉を安定して確実に行うことができ、したがって機器の動作を安定化できる。
以上の実施形態は例示であり、この発明の範囲から離れることなく様々な変形が可能である。上述した複数の実施の形態は、それぞれ単独で成立し得るものであるが、実施の形態同士の組みあわせも可能である。また、異なる実施の形態の中の種々の特徴も、それぞれ単独で成立し得るものであるが、異なる実施の形態の中の特徴同士の組みあわせも可能である。
2,2D,2E 電磁弁
3 ヨーク
4 ポールピース
5 コイルばね
6 ダイアフラム
7 ソレノイドコイル
8 弾性体
10 ケース
10−1 第1の端壁
10−2 第2の端壁
10−3 外周壁
11 第1の流体出入口
12 第2の流体出入口
100 血圧計

Claims (9)

  1. 流体の流通を許容または遮断する電磁弁であって、
    環状の周縁をもつ端板部と、この端板部の周縁に連なり、上記端板部の片側に隣り合う空間を環状に取り囲む側板部とを含むヨークと、
    上記ヨークの上記端板部に直交して、上記片側の空間に存する一端部から反対側の他端部まで一方向に延在するポールピースとを備え、このポールピースは、上記一端部に開口を有し、上記他端部に、上記ポールピース内を通して上記開口と連通した第1の流体出入口を有し、
    上記ポールピースと上記ヨークの上記側板部との間の環状の空間に収容されたソレノイドコイルと、
    上記ヨークの上記端板部に上記空間を介して対向するとともに上記ヨークの上記側板部の環状縁にまたがる寸法をもつ板状の磁性材料からなるダイアフラムと、
    上記ダイアフラムを、上記一方向に並行移動させる態様で、上記ポールピースの上記一端部から離間する向きに付勢するコイルばね
    上記ポールピースの上記他端部が外部に露出した状態で、上記ヨークと、上記ポールピースのうち上記片側の空間に延在する部分と、上記ソレノイドコイルと、上記ダイアフラムと、上記コイルばねとを、一括して覆う筐体と
    を備え、
    上記コイルばねは、上記ヨークの上記側板部と、上記筐体のうち上記側板部に対向する環状の外周壁との間の環状の空間に沿って配置され、上記ダイアフラムの上記端板部に対向する面の周縁部に沿って環状に接し、
    上記筐体の上記環状の外周壁と上記ダイアフラムの周縁部との間に、径方向の隙間が設けられ、
    上記ダイアフラムのうち上記ポールピースの上記一端部の上記開口に対向する部分に、上記開口を塞ぐための弾性体が一体に取り付けられ、この弾性体は、上記一端部の上記開口に向かって上記ダイアフラムから柱状に突起して平坦な端面を有し、
    上記ポールピースは、上記一端部に、上記ダイアフラムに取り付けられた上記弾性体に向かって開いた平坦な底をもつ窪みを有し、この窪みの上記底に上記開口が開いており、
    上記ソレノイドコイルが無通電状態にある非作動時には、上記コイルばねによる付勢力によって、上記ダイアフラムが上記ポールピースの上記一端部から離間し、これにより、上記弾性体の上記端面が上記開口から離間して上記開口が開放された開状態になり、
    上記ソレノイドコイルが通電状態にある作動時には、上記ソレノイドコイルが発生する磁力によって上記コイルばねによる付勢力に抗して、上記ダイアフラムが上記ポールピースの上記一端部に接近して、上記弾性体の上記端面によって上記開口が塞がれた閉状態になり得る
    ことを特徴とする電磁弁。
  2. 請求項1に記載の電磁弁において、
    上記ポールピースと上記ヨークは一体に構成されていることを特徴とする電磁弁。
  3. 請求項1または2に記載の電磁弁において、
    上記ダイアフラムをなす磁性材料はパーマロイであることを特徴とする電磁弁。
  4. 請求項1からまでのいずれか一つに記載の電磁弁において、
    上記筐体は、上記ポールピースの上記他端部が外部に露出した状態で、上記ヨークと、上記ポールピースのうち上記片側の空間に延在する部分と、上記ソレノイドコイルと、上記ダイアフラムと、上記コイルばねとを、一括して流体密に覆う密閉ケースであり
    上記密閉ケースの外壁を貫通して第2の流体出入口が設けられていることを特徴とする電磁弁。
  5. 請求項に記載の電磁弁において、
    上記密閉ケースは、上記ヨークの上記端板部の外面に沿った第1の端壁と、上記ダイアフラムの上記端板部とは反対側を向いた背面に沿った第2の端壁と、上記第1の端壁の周縁部と上記第2の端壁の周縁部とをつなぐ上記環状の外周壁とを含むことを特徴とする電磁弁。
  6. 請求項に記載の電磁弁において、
    上記第1の流体出入口が設けられた上記ポールピースの上記他端部は、上記密閉ケースの上記第1の端壁から外部へ突出して配置されていることを特徴とする電磁弁。
  7. 請求項またはに記載の電磁弁において、
    上記第2の流体出入口は、上記密閉ケースの上記第1の端壁、上記第2の端壁、または上記外周壁から、外部へ突出して配置されていることを特徴とする電磁弁。
  8. 被測定部位の血圧を測定する血圧計であって、
    本体と、
    被測定部位に装着されるカフと、
    上記本体に搭載され、流路を通して上記カフに流体を供給するためのポンプと、
    上記本体に搭載され、上記ポンプまたは上記流路と大気との間に介挿された、請求項1からまでのいずれか一つに記載の電磁弁と、
    上記ポンプによって上記流路を通して上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する圧力制御部と、
    上記カフに収容された上記流体の圧力に基づいて血圧を算出する血圧算出部と
    を備えたことを特徴とする血圧計。
  9. 被測定部位の血圧を測定可能な機器であって、
    本体と、
    被測定部位に装着されるカフと、
    上記本体に搭載された、上記カフに流体を供給するためのポンプと、
    上記本体に搭載された、請求項1からまでのいずれか一つに記載の電磁弁と、
    上記ポンプによって上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する圧力制御部と、
    上記カフに収容された上記流体の圧力に基づいて血圧を算出する血圧算出部と
    を備えたことを特徴とする機器。
JP2018023421A 2018-02-13 2018-02-13 電磁弁、血圧計および機器 Active JP6989405B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018023421A JP6989405B2 (ja) 2018-02-13 2018-02-13 電磁弁、血圧計および機器
BR112020016367-8A BR112020016367A2 (pt) 2018-02-13 2019-01-24 Válvula eletrônica, esfigmomanômetro, e, aparelho capaz de medir pressão arterial de uma parte a ser medida.
DE112019000772.6T DE112019000772T5 (de) 2018-02-13 2019-01-24 Elektronisches ventil, sphygmomanometer und gerät
CN201980013083.9A CN111712661B (zh) 2018-02-13 2019-01-24 电磁阀、血压计以及设备
PCT/JP2019/002310 WO2019159640A1 (ja) 2018-02-13 2019-01-24 電磁弁、血圧計および機器
US16/942,845 US20200352454A1 (en) 2018-02-13 2020-07-30 Electronic valve, sphygmomanometer, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023421A JP6989405B2 (ja) 2018-02-13 2018-02-13 電磁弁、血圧計および機器

Publications (3)

Publication Number Publication Date
JP2019138403A JP2019138403A (ja) 2019-08-22
JP2019138403A5 true JP2019138403A5 (ja) 2021-02-25
JP6989405B2 JP6989405B2 (ja) 2022-01-05

Family

ID=67619391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023421A Active JP6989405B2 (ja) 2018-02-13 2018-02-13 電磁弁、血圧計および機器

Country Status (6)

Country Link
US (1) US20200352454A1 (ja)
JP (1) JP6989405B2 (ja)
CN (1) CN111712661B (ja)
BR (1) BR112020016367A2 (ja)
DE (1) DE112019000772T5 (ja)
WO (1) WO2019159640A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220142709A (ko) * 2021-04-15 2022-10-24 한화에어로스페이스 주식회사 방폭 구조를 구비하는 솔레노이드 밸브, 연료 공급 시스템 및 그 제조방법
US11674611B2 (en) * 2021-04-22 2023-06-13 Fisher Controls International Llc Wear-resistant electro-pneumatic converters
CN114396503A (zh) * 2022-02-25 2022-04-26 惠州市盈毅电机有限公司 一种簧片型微电磁阀
CN117287549A (zh) * 2022-06-20 2023-12-26 华为技术有限公司 一种电磁阀及设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1273945B (de) * 1965-03-11 1968-07-25 Buehler Ag Geb Hydralischer Druckregler mit elektromagnetischem Stellglied
GB1164043A (en) * 1966-12-30 1969-09-10 United Aircraft Corp Electromechanical Actuator
DE3424913A1 (de) * 1984-07-06 1986-01-16 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisches ventil
DE3704504A1 (de) * 1987-02-13 1988-08-25 Siegfried Schertler Ventil
JPH0338540Y2 (ja) * 1987-03-30 1991-08-14
US4858886A (en) * 1987-03-31 1989-08-22 Aisin Seiki Kabushiki Kaisha Electromagnetic valve
US6948697B2 (en) * 2000-02-29 2005-09-27 Arichell Technologies, Inc. Apparatus and method for controlling fluid flow
JP3385262B2 (ja) * 2000-05-29 2003-03-10 日本コーリン株式会社 血圧測定装置
JP2001346769A (ja) * 2000-06-09 2001-12-18 Nippon Colin Co Ltd 循環状態監視装置
JP2002034933A (ja) * 2000-07-26 2002-02-05 Nippon Colin Co Ltd 術後回復状態評価装置
JP2002221279A (ja) * 2001-01-25 2002-08-09 Foster Electric Co Ltd 流量コントロール弁
JP2006242232A (ja) * 2005-03-01 2006-09-14 Nippon Seimitsu Sokki Kk 電動排気弁及び血圧計
US7427267B2 (en) * 2006-03-06 2008-09-23 Welch Allyn, Inc. Blood pressure determining method
JP4943748B2 (ja) * 2006-06-27 2012-05-30 テルモ株式会社 血圧測定装置、その測定方法及び記憶媒体
US8047997B2 (en) * 2007-08-27 2011-11-01 General Electric Company Non-invasive blood pressure monitor apparatus and system
JP2016138573A (ja) * 2015-01-26 2016-08-04 オムロンヘルスケア株式会社 電磁弁およびそれを備えた電子血圧計

Similar Documents

Publication Publication Date Title
JP6989405B2 (ja) 電磁弁、血圧計および機器
JP2019138403A5 (ja)
US10502328B2 (en) Valve and fluid control appratus
US8905940B2 (en) Flow rate control valve and blood pressure information measurement device including the same
US9033683B2 (en) Valve, fluid control device
CN110693477B (zh) 流量控制阀以及具有其的血压信息测量装置
US11293427B2 (en) Valve, and fluid control device including valve
US10639661B2 (en) Device of a wearable type for dispensing a fluid, and corresponding dispensing method
JP5364592B2 (ja) ソレノイドバルブ
JP6805558B2 (ja) 流量制御弁およびその製造方法、ならびに血圧情報測定装置
JP2006029394A (ja) ソレノイドエアーバルブ
WO2019159639A1 (ja) 電磁弁、血圧計、血圧測定方法、および機器
EP3456255B1 (en) Valve, fluid control device, and blood-pressure monitor
JP6790467B2 (ja) 流量制御弁および血圧情報測定装置
JP2009063119A (ja) ソレノイドバルブ
JP2016138573A (ja) 電磁弁およびそれを備えた電子血圧計
JP5500310B2 (ja) アクティブバルブ、流体制御装置
JP2005144140A (ja) 流量調節装置
JP2005155898A (ja) 弁体及びこの弁体を備えた流量調節装置並びに血圧計