JP2019113409A - 路面状態判別装置 - Google Patents

路面状態判別装置 Download PDF

Info

Publication number
JP2019113409A
JP2019113409A JP2017246842A JP2017246842A JP2019113409A JP 2019113409 A JP2019113409 A JP 2019113409A JP 2017246842 A JP2017246842 A JP 2017246842A JP 2017246842 A JP2017246842 A JP 2017246842A JP 2019113409 A JP2019113409 A JP 2019113409A
Authority
JP
Japan
Prior art keywords
road surface
tire
data
unit
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017246842A
Other languages
English (en)
Other versions
JP6773015B2 (ja
Inventor
洋一朗 鈴木
Yoichiro Suzuki
洋一朗 鈴木
高俊 関澤
Takatoshi Sekizawa
高俊 関澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Soken Inc filed Critical Denso Corp
Priority to JP2017246842A priority Critical patent/JP6773015B2/ja
Priority to PCT/JP2018/046940 priority patent/WO2019124482A1/ja
Publication of JP2019113409A publication Critical patent/JP2019113409A/ja
Priority to US16/904,260 priority patent/US11565705B2/en
Application granted granted Critical
Publication of JP6773015B2 publication Critical patent/JP6773015B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C2019/004Tyre sensors other than for detecting tyre pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/04Tyres specially adapted for particular applications for road vehicles, e.g. passenger cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Tires In General (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

【課題】応答性良くタイヤの振動波形のサンプリング条件を決められるようにする。【解決手段】路面状態の判別を行う際に用いる路面データを作成するときに、車体側システム2から車速データを送信させる。そして、タイヤ側装置1において、車速データに基づいて波形処理部11cの取込み条件を設定し、振動センサ部10の検出信号の取込みが行われるようにする。【選択図】図2

Description

本発明は、タイヤ側装置にてタイヤが受ける振動を検出すると共に、振動データに基づいて路面状態を示す路面データを作成して車体側システムに伝え、その路面データに基づいて路面状態を判別する路面状態判別装置に関する。
従来、特許文献1において、タイヤトレッドの裏面に加速度センサを備え、加速度センサにてタイヤに加えられる振動を検出すると共に、その振動の検出結果に基づいて路面状態の推定を行う路面状態判別装置が提案されている。この路面状態判別装置では、加速度センサが検出したタイヤの振動波形に基づいて路面状態に関するデータを作成し、各車輪それぞれのデータを車体側の受信機などに伝えることで、路面状態の推定を行っている。
特開2014−35279号公報
しかしながら、タイヤの振動波形のサンプリングを行う際に、車速を推定してからサンプリング条件を決める必要があり、車速を推定するために、少なくともタイヤ2回転分のサンプリングを行うことが必要となることから、車速の推定に時間が掛かる。このため、タイヤの振動波形のサンプリングを応答性良く行うことができなかった。
本発明は上記点に鑑みて、応答性良くタイヤの振動波形のサンプリング条件を決めることができる路面状態判別装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の路面状態判別装置は、車両に備えられる複数のタイヤ(3)それぞれのトレッド(31)の裏面に取り付けられたタイヤ側装置(1)と、車体に備えられた車体側システム(2)とを有し、タイヤ側装置は、タイヤの振動の大きさに応じた検出信号を出力する振動検出部(10)と、検出信号を取込み、該検出信号の波形に現れる路面状態を示す路面データを生成する制御部(11)と、路面データを送信する第1データ通信部(12)と、を備え、車体側システムは、タイヤ側装置と双方向通信を行い、第1データ通信部から送信された路面データを受信する第2データ通信部(24)と、路面データに基づいて車両の走行路面の路面状態を判別する路面判別部(25)と、を備えている。さらに、車体側システムは、車両の速度である車速に対応するデータである車速データを取得すると共に、第2データ通信部を通じて車速データをタイヤ側装置に送信させる車速データ取得部(26)を有し、制御部は、車体側システムから伝えられた車速データに基づいて、検出信号の取込み条件を設定する取込設定部(11b)を有している。
このように、路面状態の判別を行う際に用いる路面データを作成するときに、車体側システムから車速データを送信させている。そして、車速データに基づいて制御部での取込み条件を設定し、振動検出部の検出信号の取込みが行われるようにしている。これにより、より早くから路面データの取得のためのサンプリングを行うことが可能となる。したがって、応答性良くタイヤの振動波形のサンプリング条件を決めることが可能となる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。
第1実施形態にかかるタイヤ側装置が適用されたタイヤ装置の車両搭載状態でのブロック構成を示した図である。 タイヤ側装置および車体側システムの詳細を示したブロック図である。 タイヤ側装置が取り付けられたタイヤの断面模式図である。 タイヤ回転時における加速度取得部の出力電圧波形図である。 従来の手法による連続するタイヤ回転中の検出信号に基づくサンプリング範囲の設定の様子を示したタイムチャートである。 本実施形態の手法によるタイヤ回転中の検出信号に基づくサンプリング範囲の設定の様子を示したタイムチャートである。 加速度取得部の検出信号を所定の時間幅Tの時間窓毎に区画した様子を示す図である。 タイヤの今回の回転時の時間軸波形と1回転前のときの時間軸波形それぞれを所定の時間幅Tの時間窓で分割した各区画での行列式Xi(r)、Xi(s)と距離yzとの関係を示した図である。 第2実施形態にかかるタイヤ装置に備えられるタイヤ側装置および車体側システムの詳細を示したブロック図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
図1〜図7を参照して、本実施形態にかかる路面状態判別機能を有するタイヤ装置100について説明する。本実施形態にかかるタイヤ装置100は、車両の各車輪に備えられるタイヤの接地面に加わる振動に基づいて走行中の路面状態を判別すると共に、路面状態に基づいて車両の危険性の報知や車両運動制御などを行うものである。
図1および図2に示すようにタイヤ装置100は、車輪側に設けられたタイヤ側装置1と、車体側に備えられた各部を含む車体側システム2とを有する構成とされている。車体側システム2としては、受信機21、ブレーキ制御用の電子制御装置(以下、ブレーキECUという)22、報知装置23などが備えられている。なお、このタイヤ装置100のうち路面状態判別機能を実現する部分が路面状態判別装置に相当する。本実施形態の場合、タイヤ側装置1と車体側システム2のうちの受信機21が路面状態判別装置を構成している。
本実施形態のタイヤ装置100は、タイヤ側装置1よりタイヤ3が走行中の路面状態に応じたデータ(以下、路面データという)を送信すると共に、受信機21で路面データを受信して路面状態の判別を行う。また、タイヤ装置100は、受信機21での路面状態の判別結果を報知装置23に伝え、報知装置23より路面状態の判別結果を報知させる。これにより、例えばドライ路やウェット路もしくは凍結路であることなど、路面状態をドライバに伝えることが可能となり、滑り易い路面である場合にはドライバに警告することも可能となる。また、タイヤ装置100は、車両運動制御を行うブレーキECU22などに路面状態を伝えることで、危険を回避するための車両運動制御が行われるようにする。例えば、凍結時には、ドライ路の場合と比較してブレーキ操作量に対して発生させられる制動力が弱められるようにすることで、路面μが低いときに対応じた車両運動制御となるようにする。具体的には、タイヤ側装置1および車体側システム2は、以下のように構成されている。
タイヤ側装置1は、図2に示すように、振動センサ部10、制御部11、データ通信部12および電源部13を備えた構成とされ、図3に示されるように、タイヤ3のトレッド31の裏面側に設けられる。
振動センサ部10は、タイヤ3に加わる振動を検出するための振動検出部を構成するものである。例えば、振動センサ部10は、加速度センサによって構成される。振動センサ部10が加速度センサとされる場合、振動センサ部10は、タイヤ3が回転する際にタイヤ側装置1が描く円軌道に対して接する方向、つまり図3中の矢印Xで示すタイヤ接線方向の振動の大きさに応じた検出信号として、加速度の検出信号を出力する。より詳しくは、振動センサ部10は、矢印Xで示す二方向のうちの一方向を正、反対方向を負とする出力電圧などを検出信号として発生させる。例えば、振動センサ部10は、タイヤ3が1回転するよりも短い周期に設定される所定のサンプリング周期ごとに加速度検出を行い、それを検出信号として出力している。なお、振動センサ部10の検出信号は、出力電圧もしくは出力電流として表されるが、ここでは出力電圧として表される場合を例に挙げる。
制御部11は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って検出信号の信号処理を行い、検出信号に現れる路面状態を示す路面データを生成する。そして、制御部11は、それらの処理を行う機能部としてピーク検出部11a、取込設定部11bおよび波形処理部11cを備えた構成とされている。
ピーク検出部11aは、振動センサ部10の検出信号となる出力電圧のピークを検出する。
タイヤ回転時における振動センサ部10の検出信号の出力電圧波形は、例えば図4に示す波形となる。この図に示されるように、タイヤ3の回転に伴ってトレッド31のうち振動センサ部10の配置箇所と対応する部分(以下、装置搭載位置という)が接地し始めた接地開始時に、振動センサ部10の出力電圧が極大値をとる。以下、この振動センサ部10の出力電圧が極大値をとる接地開始時のピーク値を第1ピーク値という。さらに、図4に示されるように、タイヤ3の回転に伴って装置搭載位置が接地していた状態から接地しなくなる接地終了時に、振動センサ部10の出力電圧が極小値をとる。以下、この振動センサ部10の出力電圧が極小値をとる接地終了時のピーク値を第2ピーク値という。
振動センサ部10の出力電圧が上記のようなタイミングでピーク値をとるのは、以下の理由による。すなわち、タイヤ3の回転に伴って装置搭載位置が接地する際、振動センサ部10の近傍においてタイヤ3のうちそれまで略円筒面であった部分が押圧されて平面状に変形する。このときの衝撃を受けることで、振動センサ部10の出力電圧が第1ピーク値をとる。また、タイヤ3の回転に伴って装置搭載位置が接地面から離れる際には、振動センサ部10の近傍においてタイヤ3は押圧が解放されて平面状から略円筒状に戻る。このタイヤ3の形状が元に戻るときの衝撃を受けることで、振動センサ部10の出力電圧が第2ピーク値をとる。このようにして、振動センサ部10の出力電圧が接地開始時と接地終了時でそれぞれ第1、第2ピーク値をとるのである。また、タイヤ3が押圧される際の衝撃の方向と、押圧から開放される際の衝撃の方向は逆方向であるため、出力電圧の符号も逆方向となる。
ここで、装置搭載位置が路面に接地した瞬間を「踏み込み領域」、路面から離れる瞬間を「蹴り出し領域」とする。「踏み込み領域」には、第1ピーク値となるタイミングが含まれ、「蹴り出し領域」には、第2ピーク値となるタイミングが含まれる。また、踏み込み領域の前を「踏み込み前領域」、踏み込み領域から蹴り出し領域までの領域、つまり装置搭載位置が接地中の領域を「蹴り出し前領域」、蹴り出し領域後を「蹴り出し後領域」とする。このように、装置搭載位置が接地する期間およびその前後を5つの領域に区画することができる。なお、図4中では、検出信号のうちの「踏み込み前領域」、「踏み込み領域」、「蹴り出し前領域」、「蹴り出し領域」、「蹴り出し後領域」を順に5つの領域R1〜R5として示してある。
このように、振動センサ部10の検出信号の出力電圧波形は、装置搭載位置の接地開始時や接地終了時にピーク値を取るため、ピーク検出部11aは、このピーク値を取るときのタイミングを検出している。なお、ピーク値については、第1ピーク値と第2ピーク値のいずれを検出しても良いが、ここでは第1ピーク値を検出している。
取込設定部11bは、路面データを作成するための振動センサ部10の検出信号の取込み条件を設定する。取込み条件とは、検出信号のサンプリング条件を意味している。取込設定部11bは、路面データを作成するために、サンプリング条件として、サンプリング範囲、つまり検出信号の取込み範囲を設定し、取込み開始タイミングや終了タイミングを設定している。また、サンプリング条件としては、サンプリング周波数、換言すればサンプリング間隔等などもある。サンプリング周波数等については、路面データの作成のための固定値としてあっても良いが、例えば車速が高くなるほどサンプリング周波数を高くして、車速が高くなっても詳細な路面データが得られるようにすることもできる。
上記したように、振動センサ部10の検出信号の出力電圧波形は図4のような波形となる。そして、路面データを作成するためには、タイヤ1回転中において装置搭載位置が接地している接地区間の少なくとも一部を含む範囲で検出信号を取り込むことになる。このため、どのタイミングを取込み開始タイミングとし、終了タイミングとするかを把握する必要がある。このとき、基本的にはタイヤ1回転分の全域において検出信号を取り込むのが好ましいが、必ずしもタイヤ1回転分の全域において検出信号を取り込む必要はなく、路面データの作成に必要な領域が含まれる狭い領域を取込み範囲としても良い。逆に、タイヤ1回転分よりも広い領域を取込み範囲とすることもできる。しかしながら、取込み範囲にかかわらず、検出信号の取込みを行うために、取込み開始タイミングと終了タイミングを把握しておく必要がある。
このため、従来では、タイヤが複数回転する際に連続する第1ピーク値の時間間隔から車速を求め、この車速に基づいて、検出信号の取込み範囲を設定していた。具体的には、図5Aに示すように、タイヤが複数回転する際に、装置搭載位置の接地開始時および接地終了時に第1ピーク値および第2ピーク値を取る出力電圧波形が繰り返されることになる。車速については、連続する第1ピーク値の間の時間間隔から求められる。そして、車速に基づいてタイヤ1回転分の検出信号の取込み範囲、例えば取込み開始タイミングと終了タイミングを求め、車速を求める際に用いた2回目の第1ピーク値からの経過時間を計測し、取込み開始タイミングになると取込みを始める。この後、検出信号の取込みを続け、取込み終了タイミングになると取込みを終了する。
このようにして、タイヤ1回転分の検出信号の取込みを行うことができる。しかしながら、車速を求めるためにタイヤ2回転分を要し、それから検出信号の取込みが行われる。このため、路面データを作成するための検出信号の取込みまでに、少なくともタイヤ3回転分は必要になる。路面状態の急変等に早急に対応するためには、より短時間で路面データを作成できるようにすることが望まれ、タイヤ1回転分でも速く作成できるようにするのが好ましい。
また、電池寿命の観点からも、路面データを作成するための検出信号の取込みまでに掛かる時間は短い方が好ましい。
具体的には、例えば20m走行する毎に1回の割合、すなわちタイヤ1回転が2mであると想定するとタイヤ10回転に1回の割合で路面データの送信を行っている。そして、車速計測時や路面データの取得時以外には、サンプリングを行わず、制御部11がスリープ状態に切り替わることで電力消費量の低減を図り、車速計測時に再び制御部11がウェイクアップ状態となるようにしている。また、路面データを作成する際の検出信号の取込み時には出力電圧波形の詳細データが必要になるためサンプリング周期が短くなるが、車速計測については詳細データまでは必要ないためサンプリング周期を長くできる。具体的には、車速計測については出力電圧波形のうちのピーク値となるタイミングを検出できれば良い。このため、電力消費量の低減を図るために、車速計測の際と検出信号の取込みの際とで、サンプリング周期を切り替えることもできる。
しかし、路面データの送信間隔中におけるウェイクアップ時間が長いほど消費電力が増加するため、タイヤ1回転分でも早く作成できるようにするのが好ましい。車速計測時にサンプリング周期を長くしたとしても、ウェイクアップ状態であることには変わりないため、十分には電力消費量を低減できない。
このため、本実施形態では、後述するように車体側システム2に車速データ取得機能を備え、取得した車速データをタイヤ側装置1に伝えるようにしている。これにより、より早くから路面データの取得のためのサンプリングを行うことが可能となる。
すなわち、取込設定部11bでは、車体側システム2から伝えられた車速データに基づいて既に車速を把握できているため、その車速に基づいて検出信号の取込み範囲を設定する。そして、図5Bに示すように、路面データの送信タイミングが来て直ぐの1回目の第1ピーク値からの経過時間を計測し、取込み開始タイミングになると取込みを始め、この後、取込み終了タイミングになると取込みを終了する。このようにすることで、路面データの作成のための検出信号の取込みをタイヤ1回転分少なく済ませることが可能となる。
なお、本実施形態においても、制御部11は、路面データの送信タイミング毎に自動的にウェイクアップ状態と切り替わるようになっている。これは、前回の路面データの取得時に車体側システム2から送られてきた車速データから次回の路面データの送信タイミングを推定することによって行っている。すなわち、車体側システム2から送られてきた車速データから、所定距離もしくは所定のタイヤ回転数に至るまでに掛かる時間を算出できる。このため、算出した次の送信タイミングの際にウェイクアップ状態に切り替わるように、制御部11は図示しないタイマをセットしておくようにしている。
波形処理部11cは、振動センサ部10が出力する検出信号をタイヤ接線方向の振動データを表す検出信号として用いて、この検出信号が示す振動波形の波形処理を行うことで路面データを作成する。波形処理部11cによる振動センサ部10の検出信号の波形取込みについては、取込設定部11bで設定される取込み条件に沿って行われ、取込み開始タイミングから終了タイミングまでの間、所定のサンプリング周波数で行っている。そして、本実施形態の場合、波形処理部11cは、タイヤ3の加速度(以下、タイヤGという)の検出信号を信号処理することでタイヤGの特徴量を抽出し、この特徴量を含むデータを路面データとしている。そして、波形処理部11cは、路面データを作成すると、それをデータ通信部12に伝えている。なお、ここでいう特徴量の詳細については後で説明する。
また、波形処理部11cは、データ通信部12からのデータ送信を制御しており、データ送信を行わせたいタイミングでデータ通信部12に対して路面データを伝えることで、データ通信部12からデータ通信が行われるようにする。例えば、波形処理部11cは、タイヤ3が複数回転するごとにタイヤGの特徴量の抽出を行い、タイヤ3が複数回転する毎、例えば10回転する毎に1回もしくは複数回の割合で、データ通信部12に対して路面データを伝えている。例えば、波形処理部11cは、データ通信部12に対して路面データを伝えるときのタイヤ3の1回転中に抽出されたタイヤGの特徴量を含んだ路面データをデータ通信部12に対して伝えている。
データ通信部12は、第1データ通信部を構成する部分であり、例えば、波形処理部11cから路面データが伝えられると、そのタイミングで路面データの送信を行う。データ通信部12からのデータ送信のタイミングについては、波形処理部11cによって制御され、波形処理部11cからタイヤ3が複数回転するごとに路面データが送られてくるたびに、データ通信部12からのデータ送信が行われるようになっている。
また、データ通信部12は、双方向通信可能とされており、車体側システム2から送られてくるデータを受信する役割も果たす。例えば、データ通信部12は、車体側システム2からの車速データを受信し、それを取込設定部11bに伝える。
なお、データ通信部12は、ここでは1つの構成として記載されているが、送信部と受信部それぞれ別々に構成されたものであっても良い。また、双方向通信の形態については、様々なものを適用することができ、BLE(Bluetooth Low Energyの略)通信を含むブルートゥース通信、wifiなどの無線LAN(Local Area Networkの略)、Sub-GHz通信、ウルトラワイドバンド通信、ZigBeeなどを適用できる。なお、ブルートゥースは「登録商標」である。
電源部13は、タイヤ側装置1の電源となるものであり、タイヤ側装置1に備えられる各部への電力供給を行うことで、各部が作動させられるようにしている。電源部13は、例えばボタン電池等の電池で構成される。タイヤ側装置1がタイヤ3内に備えられることから、容易に電池交換を行うことができないため、消費電力の軽減を図ることが必要となっている。
一方、車体側システム2を構成する受信機21やブレーキECU22および報知装置23は、図示しないイグニッションスイッチなどの起動スイッチがオンされると駆動されるものである。
受信機21は、図2に示すように、データ通信部24と路面判別部25および車速データ取得部26を有した構成とされている。
データ通信部24は、第2データ通信部を構成するものであり、タイヤ側装置1のデータ通信部12との間において双方向通信を行う。具体的には、データ通信部24は、データ通信部12より送信された特徴量を含む路面データを受信し、路面判別部25に伝える役割を果たす。また、データ通信部24は、車速データ取得部26から送られてくる車速データを各タイヤ側装置1に送信する役割も果たす。なお、データ通信部24は、ここでは1つの構成として記載されているが、送信部と受信部それぞれ別々に構成されたものであっても良い。
路面判別部25は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って各種処理を行って、路面状態を判定する。具体的には、路面判別部25は、サポートベクタを保存しており、制御部11から伝えられる路面データとサポートベクタとを比較することで路面状態の判別を行っている。
サポートベクタは、路面の種類ごとに記憶され、保存されている。サポートベクタは、手本となる特徴量のことであり、例えばサポートベクタマシンを用いた学習によって得ている。タイヤ側装置1を備えた車両を実験的に路面の種類別に走行させ、そのときに制御部11で抽出した特徴量を所定のタイヤ回転数分学習し、その中から典型的な特徴量を所定数分抽出したものがサポートベクタとされる。例えば、路面の種類別に、100万回転分の特徴量を学習し、その中から100回転分の典型的な特徴量を抽出したものをサポートベクタとしている。
そして、路面判別部25は、データ通信部24が受信したタイヤ側装置1より送られてきた路面データに含まれる特徴量と、保存された路面の種類別のサポートベクタとを比較することで、路面状態を判別する。例えば、今回受信した路面データに含まれる特徴量を路面の種類別のサポートベクタと対比して、その特徴量が最も近いサポートベクタの路面を現在の走行路面と判別している。
また、路面判別部25は、路面状態を判別すると、判別した路面状態を報知装置23に伝え、必要に応じて報知装置23より路面状態をドライバに伝える。これにより、ドライバは路面状態に対応した運転を心掛けるようになり、車両の危険性を回避することが可能となる。例えば、報知装置23を通じて判別された路面状態を常に表示するようにしても良いし、判別された路面状態がウェット路や凍結路等のように運転をより慎重に行う必要があるときにのみ路面状態を表示してドライバに警告するようにしても良い。また、受信機21からブレーキECU22などの車両運動制御を実行するためのECUに対して路面状態を伝えており、伝えられた路面状態に基づいて車両運動制御が実行されるようにしている。
車速データ取得部26は、車速に対応するデータである車速データを取得し、それをデータ通信部24に伝えることで、タイヤ側装置1に伝える役割を果たす。例えば、車速データ取得部26は、車速が路面状態判別が必要と想定される所定速度、例えば20km/h以上になると、路面データの送信タイミング毎に車速データをデータ通信部24に伝える。車速データ取得部26は、車速そのものを示すデータを直接取得し、それを車速データとしてデータ通信部24に伝えても良いし、車速を算出するために必要なデータを取得し、算出結果を車速データとしてデータ通信部24に伝えても良い。例えば、ブレーキECU22では、ブレーキ制御を行うために車速そのものを示すデータを扱っているため、それを車速データとしてブレーキECU22から車速データ取得部26に伝えられるようにすることができる。
ブレーキECU22は、様々なブレーキ制御を行う制動制御装置を構成するものであり、ブレーキ液圧制御用のアクチュエータを駆動することで自動的にブレーキ液圧を発生させ、ホイールシリンダを加圧して制動力を発生させる。また、ブレーキECU22は、各車輪の制動力を独立して制御することもできる。このブレーキECU22により、受信機21から路面状態が伝えられると、それに基づいて車両運動制御として制動力の制御を行っている。例えば、ブレーキECU22は、伝えられた路面状態が凍結路であることを示していた場合、ドライ路面と比較して、ドライバによるブレーキ操作量に対して発生させる制動力を弱めるようにする。これにより、車輪スリップを抑制でき、車両の危険性を回避することが可能となる。
報知装置23は、例えばメータ表示器などで構成され、ドライバに対して路面状態を報知する際に用いられる。報知装置23をメータ表示器で構成する場合、ドライバが車両の運転中に視認可能な場所に配置され、例えば車両におけるインストルメントパネル内に設置される。メータ表示器は、受信機21から路面状態が伝えられると、その路面状態が把握できる態様で表示を行うことで、視覚的にドライバに対して路面状態を報知することができる。
なお、報知装置23をブザーや音声案内装置などで構成することもできる。その場合、報知装置23は、ブザー音や音声案内によって、聴覚的にドライバに対して路面状態を報知することができる。また、視覚的な報知を行う報知装置23としてメータ表示器を例に挙げたが、ヘッドアップディスプレイなどの情報表示を行う表示器によって報知装置23を構成しても良い。
このようにして、本実施形態にかかるタイヤ装置100が構成されている。なお、車体側システム2を構成する各部は、例えばCAN(Controller Area Networkの略)通信などによる車内LAN(Local Area Networkの略)を通じて接続されている。このため、車内LANを通じて各部が互いに情報伝達できるようになっている。
次に、上記した制御部11で抽出する特徴量の詳細について説明する。
ここでいう特徴量とは、振動センサ部10が取得したタイヤ3に加わる振動の特徴を示す量であり、例えば特徴ベクトルとして表される。
上記したように、振動センサ部10の検出信号の出力電圧波形は、図4に示すような波形となり、例えば図4中に示した各領域R1〜R5に区画される。そして、路面状態に応じて、区画した各領域でタイヤ3に生じる振動が変動し、振動センサ部10の検出信号が変化することから、各領域での振動センサ部10の検出信号を周波数解析することで、車両の走行路面における路面状態を検出する。例えば、圧雪路のような滑り易い路面状態では蹴り出し時の剪断力が低下するため、蹴り出し領域R4や蹴り出し後領域R5において、1kHz〜4kHz帯域から選択される帯域値が小さくなる。このように、路面状態に応じて振動センサ部10の検出信号の各周波数成分が変化することから、検出信号の周波数解析に基づいて路面状態を判定することが可能になる。
このため、波形処理部11cは、連続した時間軸波形となっているタイヤ3の1回転分の振動センサ部10の検出信号を、図6に示すように所定の時間幅Tの時間窓毎に複数の区画に分割し、各区画で周波数解析を行うことで特徴量を抽出している。具体的には、各区画で周波数解析を行うことで、各周波数帯域でのパワースペクトル値、つまり特定周波数帯域の振動レベルを求め、このパワースペクトル値を特徴量としている。
なお、時間幅Tの時間窓で分割された区画の数は車速に応じて、より詳しくはタイヤ3の回転速度に応じて変動する値である。以下の説明では、タイヤ1回転分の区画数をn(ただし、nは自然数)としている。
例えば、各区画それぞれの検出信号を複数の特定周波数帯域のフィルタ、例えば0〜1kHz、1〜2kHz、2〜3kHz、3〜4kHz、4〜5kHzの5つのバンドパスフィルタに通して得られたパワースペクトル値を特徴量としている。この特徴量は、特徴ベクトルと呼ばれるもので、ある区画i(ただし、iは1≦i≦nの自然数)の特徴ベクトルXiは、各特定周波数帯域のパワースペクトル値をaikで示すと、これを要素とする行列として、次式のように表される。
Figure 2019113409
なお、パワースペクトル値aikにおけるkは、特定周波数帯域の数、つまりバンドパスフィルタの数であり、上記のように0〜5kHzの帯域を5つに分ける場合、k=1〜5となる。そして、全区画1〜nの特徴ベクトルX1〜Xnを総括して示した行列式Xは、次式となる。
Figure 2019113409
この行列式Xがタイヤ1回転分の特徴量を表した式となる。制御部11では、この行列式Xで表される特徴量を振動センサ部10の検出信号を周波数解析することによって抽出している。
続いて、本実施形態にかかるタイヤ装置100の作動について説明する。
まず、受信機21において、車速データ取得部26が車速データを取得する。車速データについては、例えばブレーキECU22で扱われているものを車内LANなどを通じて取得することができる。そして、車速データ取得部26は、その車速データを所定のタイミングでデータ通信部24に伝え、データ通信部24を通じて各タイヤ側装置1に対して送信する。例えば、車速データ取得部26は、車速データに基づいて車両が所定距離走行するのに掛かる時間、換言すればタイヤ3が所定数回転するのに掛かる時間を想定できる。このため、車速データ取得部26は、各タイヤ側装置1が路面データの送信を行うタイミング毎に車速データを送信させるようにしている。
一方、各タイヤ側装置1は、車両走行前にはスリープ状態となっているが、走行開始すると起動させられる。例えば、制御部11は、振動センサ部10の検出信号を入力し、検出信号の波形が所定の閾値を超えることに基づいてタイヤ3の回転、つまり車両の走行を検知してスリープされていた各機能を起動させる。そして、受信機21から車速データが送信されると、それが取込設定部11bに伝えられる。これにより、取込設定部11bは、取込み条件、つまりサンプリング条件を設定する。具体的には、路面データを作成するための振動センサ部10の検出信号の取込み範囲を設定し、取込み開始タイミングや終了タイミングを設定している。また、必要に応じて、車速に応じたサンプリング周波数の設定などを行っても良い。
そして、各タイヤ側装置1では、ピーク検出部11aが振動センサ部10の検出信号から第1ピーク値となったタイミングを検出し、取込設定部11bで第1ピーク値となったタイミングからの経過時間を計測する。この後、その経過時間が取込み開始タイミングになると、取込設定部11bで設定された取込み条件に沿って、波形処理部11cが振動センサ部10の検出信号の波形取込みを行う。このとき、第1ピーク値となったタイミングの検出の際には、サンプリング周波数を比較的低くして消費電力の低減を図るようにし、波形取込みの際には、それよりもサンプリング周波数を高くしてより詳細データを取得できるようにしている。
なお、検出信号の取込み範囲ついてはタイヤ1回転分を行うことを想定しているが、必要とする路面データに応じて、タイヤ1回転分よりも少ない範囲としても良い。例えば、路面状態が検出信号の出力電圧波形の変化として特に現れるのが、「踏み込み領域」、「蹴り出し前領域」、「蹴り出し領域」を含めたその前後の期間である。このため、この期間中のデータが入力されていれば良く、必ずしもタイヤ1回転中における振動センサ部10の検出信号すべてのデータを入力していなくても良い。例えば、「踏み込み前領域」や「蹴り出し後領域」については、「踏み込み領域」の近傍や「蹴り出し領域」の近傍のデータがあれば良い。このため、振動センサ部10の検出信号のうちの振動レベルが所定の閾値よりも小さくなる領域については、「踏み込み前領域」や「蹴り出し後領域」の中でも路面状態の影響を受け難い期間として、検出信号の入力を行わないようにしても良い。
また、車両が走行を開始して直ぐのときには、制御部11に車速データが届いていないことから、車速に基づいてスリープ状態とウェイクアップ状態の切り替えを行うことができない。しかしながら、受信機21から車速が所定速度、例えば20km/hになると車速データが送信されるため、その間は制御部11がウェイクアップ状態のままとされていても、あまり電力消費しないで済むようにできる。
その後、波形処理部11cは、取り込んだ検出信号について信号処理することで、タイヤGの特徴量を抽出し、この特徴量を含む路面データを作成してデータ通信部12に伝える。これにより、データ通信部12を通じて、各タイヤ側装置1から路面データが車体側システム2に向けて送信される。
そして、路面データが送信されると、受信機21におけるデータ通信部24で受信され、それが路面判別部25に伝えられる。そして、路面判別部25において、路面状態判別が行われる。具体的には、受信した路面データに含まれる特徴量と、路面判別部25に保存された路面の種類別のサポートベクタとを比較することで、路面状態を判別する。例えば、特徴量を路面の種類別の全サポートベクタとの類似度を求め、最も類似度が高かったサポートベクタの路面を現在の走行路面と判別している。
例えば、特徴量を路面の種類別の全サポートベクタとの類似度の算出は、次のような手法によって行うことができる。
上記したように特徴量を表す行列式Xについて、特徴量の行列式をX(r)、サポートベクタの行列式をX(s)とし、それぞれの行列式の各要素となるパワースペクトル値aikをa(r)ik,a(s)ikで表すとする。その場合、特徴量の行列式X(r)とサポートベクタの行列式X(s)は、それぞれ次のように表される。
Figure 2019113409
Figure 2019113409
類似度は、2つの行列式で示される特徴量とサポートベクタとの似ている度合いを示しており、類似度が高いほどより似ていることを意味している。本実施形態の場合、路面判別部25は、カーネル法を用いて類似度を求め、その類似度に基づいて路面状態を判別する。ここでは、特徴量の行列式X(r)とサポートベクタの行列式X(s)の内積、換言すれば特徴空間内において所定の時間幅Tの時間窓毎で分割した区画同士の特徴ベクトルXiが示す座標間の距離を算出し、それを類似度として用いている。
例えば、図7に示すように、振動センサ部10の検出信号の時間軸波形について、今回のタイヤ3の回転時の時間軸波形とサポートベクタの時間軸波形それぞれを所定の時間幅Tの時間窓で各区画に分割する。図示例の場合、各時間軸波形を5つの区画に分割しているため、n=5となり、iは、1≦i≦5で表される。ここで、図中に示したように、今回のタイヤ3の回転時の各区画の特徴ベクトルXiをXi(r)、サポートベクタの各区画の特徴ベクトルをXi(s)とする。その場合、各区画の特徴ベクトルXiが示す座標間の距離Kyzについては、今回のタイヤ3の回転時の各区画の特徴ベクトルXi(r)を含む横の升とサポートベクタの各区画の特徴ベクトルXi(s)を含む縦の升とが交差する升のように示される。なお、距離Kyzについて、yはXi(s)におけるiを書き換えたものであり、zはXi(r)におけるiを書き換えたものである。なお、実際には、車速に応じて、今回のタイヤ3の回転時とサポートベクタとの区画数は異なったものとなり得るが、ここでは等しくなる場合を例に挙げてある。
本実施形態の場合、5つの特定周波数帯域に分けて特徴ベクトルを取得している。このため、時間軸と合わせた6次元空間において各区画の特徴ベクトルXiが表されることとなり、区画同士の特徴ベクトルがXi示す座標間の距離は、6次元空間における座標間の距離となる。ただし、各区画の特徴ベクトルが示す座標間の距離については、特徴量とサポートベクタとが似ているほど小さく、似ていないほど大きくなることから、当該距離が小さいほど類似度が高く、距離が大きいほど類似度が低いことを示している。
例えば、時分割によって区画1〜nとされている場合、区画1同士の特徴ベクトルが示す座標間の距離Kyzについては、次式で示される。
Figure 2019113409
このようにして、時分割による区画同士の特徴ベクトルが示す座標間の距離Kyzを全区画について求め、全区画分の距離Kyzの総和Ktotalを演算し、この総和Ktotalを類似度に対応する値として用いている。そして、総和Ktotalを所定の閾値Thと比較し、総和Ktotalが閾値Thよりも大きければ類似度が低く、総和Ktotalが閾値Thよりも小さければ類似度が高いと判定する。そして、このような類似度の算出を全サポートベクタに対して行い、最も類似度が高かったサポートベクタと対応する路面の種類が現在走行中の路面状態であると判別する。このようにして、路面状態判別を行うことができる。
なお、ここでは類似度に対応する値として各区画の特徴ベクトルが示す2つの座標間の距離Kyzの総和Ktotalを用いているが、類似度を示すパラメータとして他のものを用いることもできる。例えば、類似度を示すパラメータとして、総和Ktotalを区画数で割って求めた距離Kyzの平均値である平均距離Kaveを用いたり、特許文献1に示されているように、様々なカーネル関数を用いて類似度を求めることもできる。また、特徴ベクトルのすべてを用いるのではなく、その中から類似度の低いパスを除いて類似度の演算を行うようにしても良い。
以上説明したようにして、本実施形態にかかるタイヤ装置100により、車両の走行路面の路面状態を判別することができる。このような路面状態の判別を行う際に用いる路面データを作成するときに、車体側システム2から車速データを送信するようにしている。そして、タイヤ側装置1において、車速データに基づいて波形処理部11cの取込み条件を設定し、振動センサ部10の検出信号の取込みが行われるようにしている。
これにより、路面データの送信タイミングが来て直ぐの検出信号の1回目の第1ピーク値からの経過時間を計測し、取込み開始タイミングになると取込みをはじめることができる。そして、路面データの作成のための検出信号の取込みをタイヤ1回転分少なく済ませることができ、より早くから路面データの取得のためのサンプリングを行うことが可能となる。したがって、応答性良くタイヤ3の振動波形のサンプリング条件を決めることができる路面状態判別装置を備えたタイヤシステムとすることができる。また、応答性良くタイヤ3の振動波形のサンプリング条件を決められるため、路面状態の急変等に早急に対応することができるし、路面データを作成するために制御部11をウェイクアップ状態にする時間を短くできるため、消費電力低減を図ることもできる。
(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対してタイヤ側装置1の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図8に示すように、本実施形態では、タイヤ側装置1に、開始指示部15を備えると共に、制御部11に要求指示部11dを備えるようにしている。
開始指示部15は、車両の走行開始を検出する共に、車両の走行開始を検出すると制御部11を起動し、制御部11が路面データの作成を開始できるようにする。例えば、開始指示部15は、タイヤ3の径方向の加速度を検出する加速度センサなどによって構成されており、タイヤ3の径方向の加速度に応じた検出信号を出力する。この検出信号が示す電気出力、すなわち出力電圧もしくは出力電流が制御部11に入力されており、その電気出力が所定の閾値を超えると、制御部11が起動させられるようになっている。
また、制御部11は、開始指示部15からの指示、つまり開始指示部15の検出信号に基づいて起動させられると、その後は、要求指示部11dから車速データの要求信号を出力し、データ通信部12を通じて車体側システム2に送信する。そして、車体側システム2では、タイヤ側装置1からの要求信号を受信すると、車速データ取得部26よりデータ通信部24を通じて車速データを送信させる。このように、タイヤ側装置1からの要求信号に基づいて車体側システム2から車速データを送信させるようにしている。
要求指示部11dからの車速データの要求信号については、制御部11が起動したらタイヤ3の回転速度にかかわらず出力されるようにしても良いが、例えば車速が所定速度以上になったと想定される際に出力されるようにしても良い。開始指示部5の検出信号には、タイヤ3の遠心加速度と重力加速度が含まれていることから、これらいずれかに基づいて車速を推定できる。また、制御部11が起動したら波形処理部11cも作動させられることから、波形処理部11cにて比較的低いサンプリング周波数で振動センサ部10の検出信号のサンプリングを行って車速を推定することができる。したがって、開始指示部15の検出信号もしくは波形処理部11cの検出信号に基づいて、車速を推定し、その車速が所定速度以上になったときに要求指示部11dから車速データの要求信号が出力されるようにすることができる。
ここで、タイヤ側装置1でも車速を推定していることから、車体側システム2に対して車速データを要求しなくても、自身で推定した車速に基づいて、振動センサ部10の検出信号のサンプリング条件を設定できるように考えられる。しかしながら、以下の理由で、タイヤ側装置1で車速を推定していても、車体側システム2に対して車速データを要求している。
上記したように、波形処理部11cでサンプリングを行う際に電力を消費し、サンプリングを長時間継続して行うと消費電力が増加することになる。このため、車速が所定速度以上になった後には、路面データの送信タイミング以外のときには制御部11がスリープ状態となるようにするのが好ましい。しかしながら、制御部11がスリープ状態になれば、スリープ状態となっている期間中は波形処理部11cでのサンプリングが行えないため、車速を推定することができない。このため、制御部11の起動制御にためにタイヤ側装置1で車速を推定しても、それを振動センサ部10の検出信号のサンプリング条件の設定に用いることはできない。したがって、車体側システム2に対して車速データを要求するようにしている。
また、要求指示部11dは、車速が所定速度以上になった後には、所定速度以上の車速が継続している期間中、路面データの送信タイミング毎、例えば車両が20m走行する毎に車体側システム2に対して車速データを要求する。このとき、上記したように、路面データの送信タイミング以外のときには制御部11がスリープ状態となるようにしている。このため、要求指示部11dは、前回の路面データの送信タイミングの際に受信した路面データが示す車速、もしくは、前回の路面データの送信タイミングのときの第1ピーク値同士の時間間隔から算出される車速から、次の送信タイミングを算出している。そして、算出した送信タイミングの際にウェイクアップ状態に切り替わるように、制御部11は図示しないタイマをセットしておくようにしている。
このように、タイヤ側装置1からの要求信号に基づいて車体側システム2から車速データを送信させるようにしても良い。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
(1)例えば、上記各実施形態では、車体側システム2からの車速データに基づいて、振動センサ部10の検出信号の第1ピーク値からの経過時間を計測し、取込み開始タイミングになると検出信号の取込みを行うようにしている。しかしながら、車速データに基づいて車速が判り、タイヤ1回転に掛かる時間が分かるため、タイヤ1回転分に掛かる時間中、振動センサ部10の検出信号の取込みを行えば、第1ピーク値からの経過時間を計測しなくても路面データを作成できる。ただし、その場合、装置搭載位置が接地している期間中の途中から取込みが行われる可能性がある。このため、装置搭載位置が接地している期間中は少なくとも全域含まれるように、タイヤ1回転分の時間にタイヤ1回転分の時間よりも短い所定時間、例えばタイヤ1/3回転分の時間を加算して、検出信号の取込みが行われるようにすると好ましい。
このようにして検出信号の取込みを行う場合、第1ピーク値からの経過時間を計測して検出信号の取込みを行う場合と比較して、サンプリング期間が長くなるため、消費電力の低減の面では不利であるが、より早くからサンプリングが可能となる。したがって、より早くから路面データを車体側システム2に伝えることが可能となる。
(2)また、上記各実施形態では、ピーク値からの経過時間に基づいて、取込み開始タイミングおよび終了タイミングを計測する一例として、第1ピーク値からの経過時間を用いたが、第2ピーク値からの経過時間を用いても良い。
(3)また、上記実施形態では、振動センサ部10を加速度センサによって構成する場合を例示したが、他の振動検出を行うことができる素子、例えば圧電素子などによって振動センサ部10を構成することもできる。
(4)また、上記実施形態では、タイヤ側装置1から振動センサ部10の検出信号に現れる路面状態を示す路面データとして、特徴量を含むデータを用いている。しかしながら、これも一例を示したに過ぎず、他のデータを路面データとして用いても良い。例えば、タイヤ3の1回転中の振動データに含まれる5つの領域R1〜R5それぞれの振動波形の積分値データを路面データとして良いし、検出信号そのものの生データを路面データとしても
(5)また、上記各実施形態では、車体側システム2に備えられる受信機21の路面判別部25によって特徴量とサポートベクタとの類似度を求めて路面状態の判別を行っている。
しかしながら、これも一例を示したに過ぎず、車体側システム2のいずれかの場所、例えばブレーキECU22などのような他のECUによって類似度を求めたり、路面状態の判別を行ったり、指示信号の送信を行うようにしても良い。また、タイヤ側装置1にサポートベクタを記憶しておき、タイヤ側装置1で路面状態の判別を行えるようにし、路面状態の判別結果を示すデータを路面データとして、車体側システム2に送るようにしても良い。
1 タイヤ側装置
2 車体側システム
10 振動センサ部
11 制御部
11a ピーク検出部
11b 取込設定部
11c 波形処理部
12、24 データ通信部
21 受信機
25 路面判別部

Claims (5)

  1. 車両に備えられる複数のタイヤ(3)それぞれのトレッド(31)の裏面に取り付けられたタイヤ側装置(1)と、車体に備えられた車体側システム(2)とを有する路面状態判別装置であって、
    前記タイヤ側装置は、
    前記タイヤの振動の大きさに応じた検出信号を出力する振動検出部(10)と、
    前記検出信号を取込み、該検出信号の波形に現れる路面状態を示す路面データを生成する制御部(11)と、
    前記路面データを送信する第1データ通信部(12)と、を備え、
    前記車体側システムは、
    前記タイヤ側装置と双方向通信を行い、前記第1データ通信部から送信された前記路面データを受信する第2データ通信部(24)と、
    前記路面データに基づいて前記車両の走行路面の路面状態を判別する路面判別部(25)と、を備え、
    さらに、前記車体側システムは、前記車両の速度である車速に対応するデータである車速データを取得すると共に、前記第2データ通信部を通じて前記車速データを前記タイヤ側装置に送信させる車速データ取得部(26)を有し、
    前記制御部は、前記車体側システムから伝えられた前記車速データに基づいて、前記検出信号の取込み条件を設定する取込設定部(11b)を有している路面状態判別装置。
  2. 前記制御部は、前記取込み条件として、前記検出信号の取込み範囲を設定する請求項1に記載の路面状態判別装置。
  3. 前記制御部は、前記検出信号が、前記タイヤの1回転中における前記トレッドのうちの前記振動検出部の配置箇所と対応する部分となる装置搭載位置の接地開始時にとる第1ピーク値と前記装置搭載位置が接地終了時にとる第2ピーク値の少なくとも一方を検出するピーク検出部(11a)を有し、
    前記取込設定部は、前記第1ピーク値もしくは前記第2ピーク値からの経過時間により、前記車速データに基づいて設定された前記取込み範囲の取込み開始タイミングおよび終了タイミングを計測する請求項2に記載の路面状態判別装置。
  4. 前記取込設定部は、前記取込み条件として、前記検出信号を取り込むときのサンプリング周波数を設定する請求項1ないし3のいずれか1つに記載の路面状態判別装置。
  5. 前記タイヤ側装置は、前記車両の走行開始を検出すると前記制御部を起動する開始指示部(15)を有し、
    前記制御部には、前記車速データ取得部に対して前記車速データの送信を要求する要求指示部(11d)が備えられ、
    前記要求指示部は、前記開始指示部にて前記走行開始が検出されて前記制御部が起動させられると、前記要求指示部に対して前記車速データの送信を要求する請求項1ないし4のいずれか1つに記載の路面状態判別装置。
JP2017246842A 2017-12-22 2017-12-22 路面状態判別装置 Active JP6773015B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017246842A JP6773015B2 (ja) 2017-12-22 2017-12-22 路面状態判別装置
PCT/JP2018/046940 WO2019124482A1 (ja) 2017-12-22 2018-12-20 路面状態判別装置
US16/904,260 US11565705B2 (en) 2017-12-22 2020-06-17 Road surface state determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246842A JP6773015B2 (ja) 2017-12-22 2017-12-22 路面状態判別装置

Publications (2)

Publication Number Publication Date
JP2019113409A true JP2019113409A (ja) 2019-07-11
JP6773015B2 JP6773015B2 (ja) 2020-10-21

Family

ID=66993546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246842A Active JP6773015B2 (ja) 2017-12-22 2017-12-22 路面状態判別装置

Country Status (3)

Country Link
US (1) US11565705B2 (ja)
JP (1) JP6773015B2 (ja)
WO (1) WO2019124482A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022111502A (ja) * 2021-01-20 2022-08-01 広和株式会社 分配弁の診断システム
JP2022111503A (ja) * 2021-01-20 2022-08-01 広和株式会社 分配弁の診断システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006351A (ja) * 2017-06-28 2019-01-17 株式会社ブリヂストン 路面状態推定方法及び路面状態推定装置
JP6946970B2 (ja) * 2017-11-23 2021-10-13 株式会社デンソー 路面状態判別装置
JP6773015B2 (ja) * 2017-12-22 2020-10-21 株式会社Soken 路面状態判別装置
JP7415380B2 (ja) * 2019-09-04 2024-01-17 株式会社Soken タイヤ側装置およびそれを含む路面状態判別装置
US11321976B2 (en) * 2019-11-06 2022-05-03 Schrader Electronics Limited Adaptively configuring a tire mounted sensor (TMS) with a vehicle-provided parameter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098123A1 (en) * 2000-06-23 2001-12-27 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel
JP2007055284A (ja) * 2005-08-22 2007-03-08 Bridgestone Corp 路面状態推定方法、路面状態推定用タイヤ、路面状態推定装置、及び、車両制御装置
JP2007064888A (ja) * 2005-09-01 2007-03-15 Tokai Rika Co Ltd 路面状態検出装置
JP2015174638A (ja) * 2014-03-18 2015-10-05 株式会社日本自動車部品総合研究所 路面状況推定装置
JP2017167048A (ja) * 2016-03-17 2017-09-21 株式会社デンソー ハイドロプレーニング判定装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620628B2 (ja) * 1998-02-05 2005-02-16 オムロン株式会社 路面状態検出装置
JP5937921B2 (ja) 2012-08-09 2016-06-22 株式会社ブリヂストン 路面状態判別方法とその装置
JP6544302B2 (ja) * 2016-06-22 2019-07-17 株式会社Soken 路面状況推定装置
JP6624152B2 (ja) * 2017-04-26 2019-12-25 株式会社Soken タイヤ側装置およびそれを含むタイヤ装置
JP2019006351A (ja) * 2017-06-28 2019-01-17 株式会社ブリヂストン 路面状態推定方法及び路面状態推定装置
JP6930355B2 (ja) * 2017-10-11 2021-09-01 株式会社Soken 路面状態判別装置およびそれを備えたタイヤシステム
JP6733707B2 (ja) * 2017-10-30 2020-08-05 株式会社デンソー 路面状態判別装置およびそれを備えたタイヤシステム
JP6828716B2 (ja) * 2017-10-30 2021-02-10 株式会社デンソー 路面状態推定装置
JP6946970B2 (ja) * 2017-11-23 2021-10-13 株式会社デンソー 路面状態判別装置
JP6915507B2 (ja) * 2017-11-23 2021-08-04 株式会社デンソー 路面状態判別装置
JP6773015B2 (ja) * 2017-12-22 2020-10-21 株式会社Soken 路面状態判別装置
JP6791114B2 (ja) 2017-12-28 2020-11-25 株式会社Soken 路面状態判別装置
JP6777103B2 (ja) 2018-01-19 2020-10-28 株式会社Soken 路面状態判別装置およびそれを含むタイヤシステム
JP7047466B2 (ja) * 2018-03-02 2022-04-05 株式会社Soken 路面状態判別装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098123A1 (en) * 2000-06-23 2001-12-27 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel
JP2007055284A (ja) * 2005-08-22 2007-03-08 Bridgestone Corp 路面状態推定方法、路面状態推定用タイヤ、路面状態推定装置、及び、車両制御装置
JP2007064888A (ja) * 2005-09-01 2007-03-15 Tokai Rika Co Ltd 路面状態検出装置
JP2015174638A (ja) * 2014-03-18 2015-10-05 株式会社日本自動車部品総合研究所 路面状況推定装置
JP2017167048A (ja) * 2016-03-17 2017-09-21 株式会社デンソー ハイドロプレーニング判定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022111502A (ja) * 2021-01-20 2022-08-01 広和株式会社 分配弁の診断システム
JP2022111503A (ja) * 2021-01-20 2022-08-01 広和株式会社 分配弁の診断システム
JP7144815B2 (ja) 2021-01-20 2022-09-30 広和株式会社 分配弁の診断システム
JP7144816B2 (ja) 2021-01-20 2022-09-30 広和株式会社 分配弁の診断システム

Also Published As

Publication number Publication date
US11565705B2 (en) 2023-01-31
JP6773015B2 (ja) 2020-10-21
WO2019124482A1 (ja) 2019-06-27
US20200317203A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2019124482A1 (ja) 路面状態判別装置
JP6777103B2 (ja) 路面状態判別装置およびそれを含むタイヤシステム
WO2019142869A1 (ja) タイヤシステム
JP7047466B2 (ja) 路面状態判別装置
JP6930355B2 (ja) 路面状態判別装置およびそれを備えたタイヤシステム
WO2019103095A1 (ja) 路面状態判別装置
JP7091877B2 (ja) タイヤシステム
JP2019081530A (ja) 路面状態推定装置
JP2018009974A (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
WO2019131568A1 (ja) 路面状態判別装置
US11648947B2 (en) Road surface state determination device and tire system including the same
WO2020054658A1 (ja) タイヤシステム
JP2020093748A (ja) タイヤ摩耗検知装置
WO2019142870A1 (ja) タイヤシステム
WO2019103094A1 (ja) 路面状態判別装置
WO2019151415A1 (ja) 路面状態判別装置
US11467028B2 (en) Road surface state determination device
JP2019089532A (ja) 路面状態判別装置
WO2018003693A1 (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
WO2019088023A1 (ja) 路面状態推定装置
JP2019117181A (ja) 路面状態判別装置
WO2019093437A1 (ja) 路面状態判別装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250