JP2019096757A - 測定器のずれ量を求める方法、及び、処理システムにおける搬送位置データを較正する方法 - Google Patents

測定器のずれ量を求める方法、及び、処理システムにおける搬送位置データを較正する方法 Download PDF

Info

Publication number
JP2019096757A
JP2019096757A JP2017225510A JP2017225510A JP2019096757A JP 2019096757 A JP2019096757 A JP 2019096757A JP 2017225510 A JP2017225510 A JP 2017225510A JP 2017225510 A JP2017225510 A JP 2017225510A JP 2019096757 A JP2019096757 A JP 2019096757A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
sensor
sensor electrodes
electrode
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017225510A
Other languages
English (en)
Inventor
吉平 杉田
Kippei Sugita
吉平 杉田
太輔 河野
Tasuke Kono
太輔 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2017225510A priority Critical patent/JP2019096757A/ja
Priority to KR1020180143399A priority patent/KR102520285B1/ko
Priority to TW107141562A priority patent/TWI781253B/zh
Priority to US16/198,924 priority patent/US10903100B2/en
Priority to CN201811407892.1A priority patent/CN109841555B/zh
Publication of JP2019096757A publication Critical patent/JP2019096757A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • H01L21/67265Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】測定器のずれ量を高い精度で求めること。【解決手段】測定器は、ベース基板と、複数のセンサ電極と、高周波発振器と、演算部とを有する。複数のセンサ電極は、複数のセンサ電極からフォーカスリングの内周面までの最短の距離の和Aが一定の値となるように配置されている。方法は、領域内に配置された測定器によって複数の測定値Ciを算出するステップと、算出された複数の測定値Ciを用いて定数aを算出するステップと、算出された定数a及び複数の測定値Ciを用いて、複数の距離を算出するステップであり、該複数の距離はそれぞれ、複数のセンサ電極からフォーカスリングの内周面までの距離を表す、該ステップと、算出された複数の距離から、ずれ量を算出するステップと、を含む。【選択図】図11

Description

本発明の実施形態は、測定器のずれ量を求める方法、及び、処理システムにおける搬送位置データを較正する方法に関するものである。
半導体デバイスといった電子デバイスの製造においては、円盤状の被加工物を処理する処理システムが用いられている。処理システムは、被加工物を搬送するための搬送装置、及び、被加工物を処理するための処理装置を有している。処理装置は、一般的に、チャンバ本体、及び、当該チャンバ本体内に設けられた載置台を有している。載置台は、その上に載置された被加工物を支持するよう構成されている。搬送装置は、載置台上に被加工物を搬送するよう構成されている。
処理装置における被加工物の処理においては、載置台上における被加工物の位置が重要である。したがって、載置台上における被加工物の位置が所定位置からずれている場合には、搬送装置を調整する必要がある。
搬送装置を調整する技術としては、特許文献1に記載された技術が知られている。特許文献1に記載された技術では、被加工物と同様の円盤形状を有し、静電容量測定のための電極を有する測定器が利用されている。特許文献1に記載された技術では、測定器が搬送装置によって載置台上に搬送される。載置台上における電極の位置に依存する静電容量の測定値が取得され、当該測定値に基づいて被加工物の搬送位置を修正するよう搬送装置が調整される。
特開2017−3557号公報
上述した測定器は、電極とこれに対面する対象物との間の静電容量の測定値を取得する。静電容量の測定値は、対象物の形状に応じて変化する。対象物と測定器との間の位置関係が同じ場合であっても、対象物の機差、或いは、対象物の消耗により、異なる静電容量の測定値が取得され得る。そこで、測定器によって取得される静電容量の測定値からその位置に関する測定器のずれ量を高い精度で求める方法が望まれている。また、測定器のずれ量から、処理システムにおける搬送位置データを較正する方法が望まれている。
第1の態様においては、測定器のずれ量を求める方法が提供される。ずれ量は、フォーカスリングによって囲まれた領域の中心位置に対する、該領域内に配置された該測定器の中心位置のずれ量である。測定器は、ベース基板と、複数のセンサ電極と、高周波発振器と、演算部とを有する。ベース基板は、円盤状をなす。複数のセンサ電極は、ベース基板に設けられている。高周波発振器は、複数のセンサ電極に高周波信号を与えるように設けられている。演算部は、複数のセンサ電極における電位に応じた複数の検出値から、複数のセンサ電極それぞれの静電容量を表す複数の測定値をそれぞれ算出するように構成されている。複数のセンサ電極は、ベース基板の周縁に設けられている。領域内に測定器が配置された状態で、複数のセンサ電極からフォーカスリングの内周面までのそれぞれの最短の距離の和Aは一定の値となる。和Aは、下記の式(1)を満たす。
Figure 2019096757

ここで、Nは前記複数のセンサ電極の個数であり、Cは前記複数の測定値であり、aは定数である。該方法は、領域内に配置された測定器によって複数の測定値Cを算出するステップと、算出された複数の測定値Cを用いて式(1)における定数aを算出するステップと、算出された定数a及び複数の測定値Cを用いて、複数の距離を算出するステップであり、該複数の距離はそれぞれ、複数のセンサ電極からフォーカスリングの内周面までの距離を表す、該ステップと、算出された複数の距離から、ずれ量を算出するステップと、を含む。
測定器によって取得される複数の測定値の各々は、センサ電極とフォーカスリングとの間の最短距離に反比例するので、C=a/dで定義される。ここで、dは、センサ電極とフォーカスリングとの間の最短距離である。定数aは、フォーカスリングの中心位置と測定器の中心位置が同一の位置関係を有していても、機差又はフォーカスリングの消耗に応じて、変化する。第1の態様に係る方法では、複数のセンサ電極が(1)式を満たすように配置されているので、複数の測定値Cから(1)式に基づき定数aが求められる。そして、定数aと複数の測定値Cのそれぞれから複数の距離が精度良く求められる。第1の態様に係る方法によれば、このように求められた複数の距離から、高い精度で測定器のずれ量が求められ得る。
第2の態様においては、測定器のずれ量を求める方法が提供される。ずれ量は、静電チャックの中心位置に対する、静電チャック上に配置された測定器の中心位置のずれ量である。測定器は、ベース基板と、複数のセンサ電極と、高周波発振器と、演算部と、を有する。ベース基板は円盤状をなす。複数のセンサ電極は、ベース基板の中心軸線に対して周方向に配列され、ベース基板の底面に沿って設けられている。高周波発振器は、複数のセンサ電極に高周波信号を与えるように設けられている。演算部は、複数のセンサ電極における電位に応じた複数の検出値から、複数のセンサ電極それぞれの静電容量を表す複数の測定値をそれぞれ算出するように構成されている。静電チャックは、該静電チャックの中心に対して周方向に延在する周縁を有するセラミック製の本体と、該本体内に設けられた電極を有する。静電チャックの電極のエッジは、本体の周縁よりも内側で、静電チャックの中心に対して周方向に延在している。複数のセンサ電極それぞれの径方向外側の第1のエッジは、第1の円上で延在している。第1の円は、静電チャックの本体の周縁の半径と同一の半径を有し中心軸線をベース基板と共有する。複数のセンサ電極それぞれの径方向内側の第2のエッジは、第2の円上で延在している。第2の円は、静電チャックの電極のエッジの半径と同一の半径を有し中心軸線をベース基板と共有する。複数のセンサ電極は、静電チャック上に測定器が配置された状態で、該複数のセンサ電極の第2のエッジから静電チャックの周縁までのそれぞれの最短の距離の和Bが一定となるように設けられている。和Bは、下記の式(2)を満たす。
Figure 2019096757

ここで、Mは前記複数のセンサ電極の個数であり、Dは前記複数の測定値であり、bは定数である。方法は、静電チャック上に配置された測定器によって複数の測定値Dを算出するステップと、算出された複数の測定値Dを用いて式(2)における定数bを算出するステップと、算出された定数b及び複数の測定値Dを用いて、複数の距離を算出するステップであり、該複数の距離はそれぞれ、複数のセンサ電極の第2のエッジから静電チャックの周縁までの距離を表す、該ステップと、算出された複数の距離から、ずれ量を算出するステップと、を含む。
静電容量は電極面積に比例するので、測定器によって取得される複数の測定値の各々は、第2のエッジから静電チャックの周縁までの最短距離に応じて増加する。即ち、測定器によって取得される複数の測定値の各々は、D=1/b×Wで定義される。ここで、Wは、第2のエッジから静電チャックの周縁までの最短距離である。定数bは、静電チャックの中心位置と測定器の中心位置が同一の位置関係を有していても、機差又は静電チャックの消耗に応じて、変化する。第2の態様に係る方法では、複数のセンサ電極が(2)式を満たすように配置されているので、複数の測定値Dから(2)式に基づき定数bが求められる。そして、定数bと複数の測定値Dのそれぞれから複数の距離が精度良く求められる。第2の態様に係る方法によれば、このように求められた複数の距離から、高い精度で測定器のずれ量が求められ得る。
第3の態様においては、第1の態様に係る方法を用いて処理システムにおける搬送位置データを構成する方法が提供される。処理システムは、処理装置と、搬送装置とを含む。処理装置は、チャンバ本体、及び、該チャンバ本体によって提供されるチャンバ内に設けられた載置台を有する。搬送装置は、搬送位置データに基づき載置台上且つフォーカスリングによって囲まれた領域内に被加工物を搬送する。方法は、搬送位置データによって特定される領域内の位置に、搬送装置を用いて測定器を搬送するステップと、第1の態様に係る方法を用いて、ずれ量を算出するステップと、ずれ量を用いて搬送位置データを較正するステップと、を含む。第3の態様に係る方法によれば、第1の態様に係る方法によって求められたずれ量に基づき、処理システムにおける搬送位置データを構成することができる。
第4の態様においては、第2の態様に係る方法を用いて処理システムにおける搬送位置データを構成する方法が提供される。処理システムは、処理装置と、搬送装置とを含む。処理装置は、チャンバ本体、及び、該チャンバ本体によって提供されるチャンバ内に設けられた静電チャックを有する。搬送装置は、搬送位置データに基づき静電チャック上に被加工物を搬送する。方法は、搬送位置データによって特定される静電チャック上の位置に、搬送装置を用いて測定器を搬送するステップと、第2の態様に係る方法を用いて、ずれ量を算出するステップと、ずれ量を用いて搬送位置データを較正するステップと、を含む。第4の態様に係る方法によれば、第2の態様に係る方法によって求められたずれ量に基づき、処理システムにおける搬送位置データを構成することができる。
以上説明したように、測定器によって取得される静電容量の測定値からその位置に関する測定器のずれ量を高い精度で求める方法が提供される。また、測定器のずれ量から、処理システムにおける搬送位置データを構成する方法が提供される。
処理システムを例示する図である。 アライナを例示する斜視図である。 プラズマ処理装置の一例を示す図である。 測定器を上面側から見て示す平面図である。 測定器を底面側から見て示す平面図である。 第1センサの一例を示す斜視図である。 図6のVII−VII線に沿ってとった断面図である。 図7のVIII−VIII線に沿ってとった断面図である。 図5の第2センサの拡大図である。 測定器の回路基板の構成を例示する図である。 フォーカスリングと測定器との位置関係を模式的に示す図である。 静電チャックを模式的に示す断面図である。 静電チャックと測定器との位置関係を模式的に示す断面図である。 オーバーラップ長と測定値との関係を示すグラフである。 静電チャックと測定器との位置関係を模式的に示す図である。 他の形態に係る測定器を上面側から見て示す平面図である。 フォーカスリングと測定器との位置関係を模式的に示す図である。 処理システムにおける搬送位置データを較正する方法の一実施形態を示す流れ図である。 別の実施形態に係る第1センサの縦断面図である。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
まず、円盤状の被加工物を処理するための処理装置、及び、当該処理装置に被処理体を搬送するための搬送装置を有する処理システムについて説明する。図1は、処理システムを例示する図である。処理システム1は、台2a〜2d、容器4a〜4d、ローダモジュールLM、アライナAN、ロードロックモジュールLL1,LL2、プロセスモジュールPM1〜PM6、トランスファーモジュールTF、及び、制御部MCを備えている。なお、台2a〜2dの個数、容器4a〜4dの個数、ロードロックモジュールLL1,LL2の個数、及び、プロセスモジュールPM1〜PM6の個数は限定されるものではなく、一以上の任意の個数であり得る。
台2a〜2dは、ローダモジュールLMの一縁に沿って配列されている。容器4a〜4dはそれぞれ、台2a〜2d上に搭載されている。容器4a〜4dの各々は、例えば、FOUP(Front Opening Unified Pod)と称される容器である。容器4a〜4dのそれぞれは、被加工物Wを収容するように構成されている。被加工物Wは、ウエハのように略円盤形状を有する。
ローダモジュールLMは、大気圧状態の搬送空間をその内部に画成するチャンバ壁を有している。この搬送空間内には搬送装置TU1が設けられている。搬送装置TU1は、例えば、多関節ロボットであり、制御部MCによって制御される。搬送装置TU1は、容器4a〜4dとアライナANとの間、アライナANとロードロックモジュールLL1〜LL2の間、ロードロックモジュールLL1〜LL2と容器4a〜4dの間で被加工物Wを搬送するように構成されている。
アライナANは、ローダモジュールLMと接続されている。アライナANは、被加工物Wの位置の調整(位置の較正)を行うように構成されている。図2は、アライナを例示する斜視図である。アライナANは、支持台6T、駆動装置6D、及び、センサ6Sを有している。支持台6Tは、鉛直方向に延びる軸線中心に回転可能な台であり、その上に被加工物Wを支持するように構成されている。支持台6Tは、駆動装置6Dによって回転される。駆動装置6Dは、制御部MCによって制御される。駆動装置6Dからの動力により支持台6Tが回転すると、当該支持台6T上に載置された被加工物Wも回転するようになっている。
センサ6Sは、光学センサであり、被加工物Wが回転されている間、被加工物Wのエッジを検出する。センサ6Sは、エッジの検出結果から、基準角度位置に対する被加工物WのノッチWN(或いは、別のマーカー)の角度位置のずれ量、及び、基準位置に対する被加工物Wの中心位置のずれ量を検出する。センサ6Sは、ノッチWNの角度位置のずれ量及び被加工物Wの中心位置のずれ量を制御部MCに出力する。制御部MCは、ノッチWNの角度位置のずれ量に基づき、ノッチWNの角度位置を基準角度位置に補正するための支持台6Tの回転量を算出する。制御部MCは、この回転量の分だけ支持台6Tを回転させるよう、駆動装置6Dを制御する。これにより、ノッチWNの角度位置を基準角度位置に補正することができる。また、制御部MCは、搬送装置TU1のエンドエフェクタ(end effector)上の所定位置に被加工物Wの中心位置が一致するよう、アライナANから被加工物Wを受け取る際の搬送装置TU1のエンドエフェクタの位置を、被加工物Wの中心位置のずれ量に基づき、制御する。
図1に戻り、ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、ローダモジュールLMとトランスファーモジュールTFとの間に設けられている。ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、予備減圧室を提供している。
トランスファーモジュールTFは、ロードロックモジュールLL1及びロードロックモジュールLL2にゲートバルブを介して接続されている。トランスファーモジュールTFは、減圧可能な減圧室を提供している。この減圧室には、搬送装置TU2が設けられている。搬送装置TU2は、例えば、多関節ロボットであり、制御部MCによって制御される。搬送装置TU2は、ロードロックモジュールLL1〜LL2とプロセスモジュールPM1〜PM6との間、及び、プロセスモジュールPM1〜PM6のうち任意の二つのプロセスモジュール間において、被加工物Wを搬送するように構成されている。
プロセスモジュールPM1〜PM6は、トランスファーモジュールTFにゲートバルブを介して接続されている。プロセスモジュールPM1〜PM6の各々は、被加工物Wに対してプラズマ処理といった専用の処理を行うよう構成された処理装置である。
この処理システム1において被加工物Wの処理が行われる際の一連の動作は以下の通り例示される。ローダモジュールLMの搬送装置TU1が、容器4a〜4dの何れかから被加工物Wを取り出し、当該被加工物WをアライナANに搬送する。次いで、搬送装置TU1は、その位置が調整された被加工物WをアライナANから取り出して、当該被加工物WをロードロックモジュールLL1及びロードロックモジュールLL2のうち一方のロードロックモジュールに搬送する。次いで、一方のロードロックモジュールが、予備減圧室の圧力を所定の圧力に減圧する。次いで、トランスファーモジュールTFの搬送装置TU2が、一方のロードロックモジュールから被加工物Wを取り出し、当該被加工物WをプロセスモジュールPM1〜PM6のうち何れかに搬送する。そして、プロセスモジュールPM1〜PM6のうち一以上のプロセスモジュールが被加工物Wを処理する。そして、搬送装置TU2が、処理後の被加工物WをプロセスモジュールからロードロックモジュールLL1及びロードロックモジュールLL2のうち一方のロードロックモジュールに搬送する。次いで、搬送装置TU1が被加工物Wを一方のロードロックモジュールから容器4a〜4dの何れかに搬送する。
この処理システム1は、上述したように制御部MCを備えている。制御部MCは、プロセッサ、メモリといった記憶装置、表示装置、入出力装置、通信装置等を備えるコンピュータであり得る。上述した処理システム1の一連の動作は、記憶装置に記憶されたプログラムに従った制御部MCによる処理システム1の各部の制御により、実現されるようになっている。
図3は、プロセスモジュールPM1〜PM6の何れかとして採用され得るプラズマ処理装置の一例を示す図である。図3に示すプラズマ処理装置10は、容量結合型プラズマエッチング装置である。プラズマ処理装置10は、略円筒形状のチャンバ本体12を備えている。チャンバ本体12は、例えば、アルミニウムから形成されており、その内壁面には、陽極酸化処理が施され得る。このチャンバ本体12は保安接地されている。
チャンバ本体12の底部上には、略円筒形状の支持部14が設けられている。支持部14は、例えば、絶縁材料から構成されている。支持部14は、チャンバ本体12内に設けられており、チャンバ本体12の底部から上方に延在している。また、チャンバ本体12によって提供されるチャンバS内には、ステージSTが設けられている。ステージSTは、支持部14によって支持されている。
ステージSTは、下部電極LE及び静電チャックESCを有している。下部電極LEは、第1プレート18a及び第2プレート18bを含んでいる。第1プレート18a及び第2プレート18bは、例えばアルミニウムといった金属から構成されており、略円盤形状をなしている。第2プレート18bは、第1プレート18a上に設けられており、第1プレート18aに電気的に接続されている。
第2プレート18b上には、静電チャックESCが設けられている。静電チャックESCは、導電膜である電極を一対の絶縁層又は絶縁シート間に配置した構造を有しており、略円盤形状を有している。静電チャックESCの電極には、直流電源22がスイッチ23を介して電気的に接続されている。この静電チャックESCは、直流電源22からの直流電圧により生じたクーロン力等の静電力により被加工物Wを吸着する。これにより、静電チャックESCは、被加工物Wを保持することができる。
第2プレート18bの周縁部上には、フォーカスリングFRが設けられている。このフォーカスリングFRは、被加工物Wのエッジ及び静電チャックESCを囲むように設けられている。フォーカスリングFRは、第1部分P1及び第2部分P2を有している(図7参照)。第1部分P1及び第2部分P2は環状板形状を有している。第2部分P2は、第1部分P1上に設けられている。第2部分P2の内縁P2iは第1部分P1の内縁P1iの直径よりも大きい直径を有している。被加工物Wは、そのエッジ領域が、フォーカスリングFRの第1部分P1上に位置するように、静電チャックESC上に載置される。このフォーカスリングFRは、シリコン、炭化ケイ素、酸化シリコンといった種々の材料のうち何れかから形成され得る。
第2プレート18bの内部には、冷媒流路24が設けられている。冷媒流路24は、温調機構を構成している。冷媒流路24には、チャンバ本体12の外部に設けられたチラーユニットから配管26aを介して冷媒が供給される。冷媒流路24に供給された冷媒は、配管26bを介してチラーユニットに戻される。このように、冷媒流路24とチラーユニットとの間では、冷媒が循環される。この冷媒の温度を制御することにより、静電チャックESCによって支持された被加工物Wの温度が制御される。
ステージSTには、当該ステージSTを貫通する複数(例えば、三つ)の貫通孔25が形成されている。これら、複数の貫通孔25には、複数本(例えば、3本)のリフトピン25aがそれぞれ挿入されている。なお、図3においては、一本のリフトピン25aが挿入された一つの貫通孔25が描かれている。
また、プラズマ処理装置10には、ガス供給ライン28が設けられている。ガス供給ライン28は、伝熱ガス供給機構からの伝熱ガス、例えばHeガスを、静電チャックESCの上面と被加工物Wの裏面との間に供給する。
また、プラズマ処理装置10は、上部電極30を備えている。上部電極30は、ステージSTの上方において、当該ステージSTと対向配置されている。上部電極30は、絶縁性遮蔽部材32を介して、チャンバ本体12の上部に支持されている。上部電極30は、天板34及び支持体36を含み得る。天板34はチャンバSに面しており、当該天板34には複数のガス吐出孔34aが設けられている。この天板34は、シリコン又は石英から形成され得る。或いは、天板34は、アルミニウム製の母材の表面に酸化イットリウムといった耐プラズマ性の膜を形成することによって構成され得る。
支持体36は、天板34を着脱自在に支持するものであり、例えばアルミニウムといった導電性材料から構成され得る。この支持体36は、水冷構造を有し得る。支持体36の内部には、ガス拡散室36aが設けられている。このガス拡散室36aからは、ガス吐出孔34aに連通する複数のガス通流孔36bが下方に延びている。また、支持体36には、ガス拡散室36aに処理ガスを導くガス導入口36cが形成されており、このガス導入口36cには、ガス供給管38が接続されている。
ガス供給管38には、バルブ群42及び流量制御器群44を介して、ガスソース群40が接続されている。ガスソース群40は、複数種のガス用の複数のガスソースを含んでいる。バルブ群42は複数のバルブを含んでおり、流量制御器群44はマスフローコントローラといった複数の流量制御器を含んでいる。ガスソース群40の複数のガスソースはそれぞれ、バルブ群42の対応のバルブ及び流量制御器群44の対応の流量制御器を介して、ガス供給管38に接続されている。
また、プラズマ処理装置10では、チャンバ本体12の内壁に沿ってデポシールド46が着脱自在に設けられている。デポシールド46は、支持部14の外周にも設けられている。デポシールド46は、チャンバ本体12にエッチング副生物(デポ)が付着することを防止するものであり、アルミニウム材に酸化イットリウム等のセラミックスを被覆することにより構成され得る。
チャンバ本体12の底部側、且つ、支持部14とチャンバ本体12の側壁との間には排気プレート48が設けられている。排気プレート48は、例えば、アルミニウム材に酸化イットリウム等のセラミックスを被覆することにより構成され得る。排気プレート48には、その板厚方向に貫通する複数の孔が形成されている。この排気プレート48の下方、且つ、チャンバ本体12には、排気口12eが設けられている。排気口12eには、排気管52を介して排気装置50が接続されている。排気装置50は、圧力調整弁及びターボ分子ポンプなどの真空ポンプを有しており、チャンバ本体12内の空間を所望の真空度まで減圧することができる。また、チャンバ本体12の側壁には被加工物Wの搬入出口12gが設けられており、この搬入出口12gはゲートバルブ54により開閉可能となっている。
また、プラズマ処理装置10は、第1の高周波電源62及び第2の高周波電源64を更に備えている。第1の高周波電源62は、プラズマ生成用の第1の高周波を発生する電源であり、例えば、27〜100MHzの周波数を有する高周波を発生する。第1の高周波電源62は、整合器66を介して上部電極30に接続されている。整合器66は、第1の高周波電源62の出力インピーダンスと負荷側(上部電極30側)の入力インピーダンスを整合させるための回路を有している。なお、第1の高周波電源62は、整合器66を介して下部電極LEに接続されていてもよい。
第2の高周波電源64は、被加工物Wにイオンを引き込むための第2の高周波を発生する電源であり、例えば、400kHz〜13.56MHzの範囲内の周波数の高周波を発生する。第2の高周波電源64は、整合器68を介して下部電極LEに接続されている。整合器68は、第2の高周波電源64の出力インピーダンスと負荷側(下部電極LE側)の入力インピーダンスを整合させるための回路を有している。
このプラズマ処理装置10では、複数のガスソースのうち選択された一以上のガスソースからのガスがチャンバSに供給される。また、チャンバSの圧力が排気装置50によって所定の圧力に設定される。さらに、第1の高周波電源62からの第1の高周波によってチャンバS内のガスが励起される。これにより、プラズマが生成される。そして、発生した活性種によって被加工物Wが処理される。なお、必要に応じて、第2の高周波電源64の第2の高周波に基づくバイアスにより、被加工物Wにイオンが引き込まれてもよい。
以下、測定器について説明する。図4は、測定器を上面側から見て示す平面図である。図5は、測定器を底面側から見て示す平面図である。図4及び図5に示す測定器100は、ベース基板102を備えている。ベース基板102は、例えば、シリコンから形成されており、被加工物Wの形状と同様の形状、即ち略円盤形状を有している。ベース基板102の直径は、被加工物Wの直径と同様の直径であり、例えば、300mmである。測定器100の形状及び寸法は、このベース基板102の形状及び寸法によって規定される。したがって、測定器100は、被加工物Wの形状と同様の形状を有し、且つ、被加工物Wの寸法と同様の寸法を有する。また、ベース基板102のエッジには、ノッチ102N(或いは、別のマーカー)が形成されている。
ベース基板102には、静電容量測定用の複数の第1センサ104A〜104Cが設けられている。複数の第1センサ104A〜104Cは、ベース基板102のエッジに沿って、例えば当該エッジの全周において等間隔に、配列されている。具体的には、複数の第1センサ104A〜104Cの各々は、ベース基板の上面側のエッジに沿うように設けられている。複数の第1センサ104A〜104Cの各々の前側端面104fは、ベース基板102の側面に沿っている。
また、ベース基板102には、静電容量測定用の複数の第2センサ105A〜105Cが設けられている。複数の第2センサ105A〜105Cは、ベース基板102のエッジに沿って、例えば当該エッジの全周において等間隔に、配列されている。具体的には、複数の第2センサ105A〜105Cの各々は、ベース基板の底面側のエッジに沿うように設けられている。複数の第2センサ105A〜105Cの各々のセンサ電極161は、ベース基板102の底面に沿っている。また、第2センサ105A〜105Cと第1センサ104A〜104Cとは、周方向において60°間隔で交互に配列されている。
ベース基板102の上面の中央には、回路基板106が設けられている。回路基板106と複数の第1センサ104A〜104Cとの間には、互いを電気的に接続するための配線群108A〜108Cが設けられている。また、回路基板106と複数の第2センサ105A〜105Cとの間には、互いを電気的に接続するための配線群208A〜208Cが設けられている。回路基板106、配線群108A〜108C、及び配線群208A〜208Cは、カバー103によって覆われている。カバー103には、複数の開口103aが設けられている。開口103aの位置は、回路基板106に配置された後述する給電コネクタ177a等の位置に一致している。
以下、第1センサについて詳細に説明する。図6は、センサの一例を示す斜視図である。図7は、図6のVII−VII線に沿ってとった断面図である。図8は、図7のVIII−VIII線に沿ってとった断面図である。図6〜図8に示す第1センサ104は、測定器100の複数の第1センサ104A〜104Cとして利用されるセンサであり、一例では、チップ状の部品として構成されている。なお、以下の説明では、XYZ直交座標系を適宜参照する。X方向は、第1センサ104の前方向を示しており、Y方向は、X方向に直交する一方向であって第1センサ104の幅方向を示しており、Z方向は、X方向及びY方向に直交する方向であって第1センサ104の上方向を示している。
図6〜図8に示すように、第1センサ104は、前側端面104f、上面104t、下面104b、一対の側面104s、及び、後側端面104rを有している。前側端面104fは、X方向において第1センサ104の前側表面を構成している。第1センサ104は、前側端面104fが中心軸線AX100に対して放射方向に向くように、測定器100のベース基板102に搭載される(図4参照)。また、第1センサ104がベース基板102に搭載されている状態では、前側端面104fは、ベース基板102のエッジに沿って延在する。したがって、測定器100が静電チャックESC上の領域に配置されるときに、前側端面104fは、フォーカスリングFRの内縁に対面する。
後側端面104rは、X方向において第1センサ104の後側表面を構成している。第1センサ104がベース基板102に搭載されている状態では、後側端面104rは、前側端面104fよりも中心軸線AX100の近くに位置する。上面104tはZ方向において第1センサ104の上側表面を構成しており、下面104bはZ方向において第1センサ104の下側表面を構成している。また、一対の側面104sは、Y方向において第1センサ104の表面を構成している。
第1センサ104は、センサ電極143を有している。第1センサ104は、電極141及びガード電極142を更に有していてもよい。電極141は、導体から形成されている。電極141は、第1部分141aを有している。図6及び図7に示すように、第1部分141aは、X方向及びY方向に延在している。
ガード電極142は、導体から形成されている。ガード電極142は、第2部分142aを有している。第2部分142aは、第1部分141aの上で延在している。第1センサ104内において、ガード電極142は、電極141から絶縁されている。図6及び図7に示すように、第2部分142aは、第1部分141aの上で、X方向及びY方向に延在している。
センサ電極143は、導体から形成されたセンサ電極である。センサ電極143は、電極141の第1部分141a及びガード電極142の第2部分142aの上に設けられている。センサ電極143は、第1センサ104内において電極141及びガード電極142から絶縁されている。センサ電極143は、前面143fを有している。この前面143fは、第1部分141a及び第2部分142aに交差する方向に延びている。また、前面143fは、第1センサ104の前側端面104fに沿って延在している。一実施形態では、前面143fは、第1センサ104の前側端面104fの一部を構成している。或いは、第1センサ104は、センサ電極143の前面143fの前側に当該前面143fを覆う絶縁膜を有していてもよい。
図6〜図8に示すように、電極141及びガード電極142は、センサ電極143の前面143fが配置されている領域の側(X方向)で開口し、且つ、センサ電極143の周囲を囲むように延在していてもよい。即ち、電極141及びガード電極142は、センサ電極143の上方、後方、及び、側方において、当該センサ電極143を囲むように延在していてもよい。
また、第1センサ104の前側端面104fは、所定の曲率を有する曲面であり得る。この場合に、前側端面104fは、当該前側端面の任意の位置で一定の曲率を有しており、当該前側端面104fの曲率は、測定器100の中心軸線AX100と当該前側端面104fとの間の距離の逆数であり得る。この第1センサ104は、前側端面104fの曲率中心が中心軸線AX100に一致するように、ベース基板102に搭載される。
また、第1センサ104は、基板部144、絶縁領域146〜148、パッド151〜153、及び、ヴィア配線154を更に有し得る。基板部144は、本体部144m及び表層部144fを有している。本体部144mは、例えばシリコンから形成されている。表層部144fは、本体部144mの表面を覆っている。表層部144fは、絶縁材料から形成されている。表層部144fは、例えば、シリコンの熱酸化膜である。
ガード電極142の第2部分142aは、基板部144の下方において延在しており、基板部144とガード電極142との間には、絶縁領域146が設けられている。絶縁領域146は、例えば、SiO、SiN、Al、又は、ポリイミドから形成されている。
電極141の第1部分141aは、基板部144及びガード電極142の第2部分142aの下方において延在している。電極141とガード電極142との間には絶縁領域147が設けられている。絶縁領域147は、例えば、SiO、SiN、Al、又は、ポリイミドから形成されている。
絶縁領域148は、第1センサ104の上面104tを構成している。絶縁領域148は、例えば、SiO、SiN、Al、又は、ポリイミドから形成されている。この絶縁領域148には、パッド151〜153が形成されている。パッド153は、導体から形成されており、センサ電極143に接続されている。具体的には、絶縁領域146、ガード電極142、絶縁領域147、及び、電極141を貫通するヴィア配線154によって、センサ電極143とパッド153が互いに接続されている。ヴィア配線154の周囲には絶縁体が設けられており、当該ヴィア配線154は電極141及びガード電極142から絶縁されている。パッド153は、ベース基板102内に設けられた配線183を介して回路基板106に接続されている。パッド151及びパッド152も同様に導体から形成されている。パッド151及びパッド152はそれぞれ、対応のヴィア配線を介して、電極141、ガード電極142に接続されている。また、パッド151及びパッド152は、ベース基板102に設けられた対応の配線を介して回路基板106に接続される。
以下、第2センサについて詳細に説明する。図9は、図5の部分拡大図であり、一つの第2センサを示す。センサ電極161のエッジは部分的に円弧形状をなしている。即ち、センサ電極161は、中心軸線AX100を中心とした異なる半径を有する二つの円弧である内縁(第2のエッジ)161a及び外縁(第1のエッジ)161bによって規定される平面形状を有している。複数の第2センサ105A〜105Cそれぞれのセンサ電極161における径方向外側の外縁161bは、共通する円上で延在する。また、複数の第2センサ105A〜105Cそれぞれのセンサ電極161における径方向内側の内縁161aは、他の共通する円上で延在する。センサ電極161のエッジの一部の曲率は、静電チャックESCのエッジの曲率に一致している。一実施形態では、センサ電極161における径方向外側のエッジを形成する外縁161bの曲率が、静電チャックESCのエッジの曲率に一致している。なお、外縁161bの曲率中心、即ち、外縁161bがその上で延在する円の中心は、中心軸線AX100を共有している。
一実施形態では、第2センサ105A〜105Cの各々は、センサ電極161を囲むガード電極162を更に含んでいる。ガード電極162は、枠状をなしており、センサ電極161をその全周にわたって囲んでいる。ガード電極162とセンサ電極161は、それらの間に絶縁領域164が介在するよう、互いに離間している。また、一実施形態では、第2センサ105A〜105Cの各々は、ガード電極162の外側で当該ガード電極162を囲む電極163を更に含んでいる。電極163は、枠状をなしており、ガード電極162をその全周にわたって囲んでいる。ガード電極162と電極163は、それらの間に絶縁領域165が介在するよう互いに離間している。
以下、回路基板106の構成について説明する。図10は、測定器の回路基板の構成を例示する図である。図10に示すように、回路基板106は、高周波発振器171、複数のC/V変換回路172A〜172C、複数のC/V変換回路272A〜272C、A/D変換器173、プロセッサ(演算部)174、記憶装置175、通信装置176、及び、電源177を有している。
複数の第1センサ104A〜104Cの各々は、複数の配線群108A〜108Cのうち対応の配線群を介して回路基板106に接続されている。また、複数の第1センサ104A〜104Cの各々は、対応の配線群に含まれる幾つかの配線を介して、複数のC/V変換回路172A〜172Cのうち対応のC/V変換回路に接続されている。複数の第2センサ105A〜105Cの各々は、複数の配線群208A〜208Cのうち対応の配線群を介して回路基板106に接続されている。また、複数の第2センサ105A〜105Cの各々は、対応の配線群に含まれる幾つかの配線を介して、複数のC/V変換回路272A〜272Cのうち対応のC/V変換回路に接続されている。以下、複数の第1センサ104A〜104Cの各々と同構成の一つの第1センサ104、複数の配線群108A〜108Cの各々と同構成の一つの配線群108、複数のC/V変換回路172A〜172Cの各々と同構成の一つのC/V変換回路172、複数の第2センサ105A〜105Cの各々と同構成の一つの第2センサ105、複数の配線群208A〜208Cの各々と同構成の一つの配線群208、及び、複数のC/V変換回路272A〜272Cの各々と同構成のC/V変換回路272について説明する。
配線群108は、配線181〜183を含んでいる。配線181の一端は、電極141に接続されたパッド151に接続されている。この配線181は、回路基板106のグランドGに接続されたグランド電位線GLに接続されている。なお、配線181は、グランド電位線GLにスイッチSWGを介して接続されていてもよい。また、配線182の一端は、ガード電極142に接続されたパッド152に接続されており、配線182の他端はC/V変換回路172に接続されている。また、配線183の一端は、センサ電極143に接続されたパッド153に接続されており、配線183の他端はC/V変換回路172に接続されている。
配線群208は、配線281〜283を含んでいる。配線281の一端は、電極163に接続されている。この配線281は、回路基板106のグランドGに接続されたグランド電位線GLに接続されている。なお、配線281は、グランド電位線GLにスイッチSWGを介して接続されていてもよい。また、配線282の一端は、ガード電極162に接続されており、配線282の他端はC/V変換回路272に接続されている。また、配線283の一端は、センサ電極161に接続されており、配線283の他端はC/V変換回路272に接続されている。
高周波発振器171は、バッテリーといった電源177に接続されており、当該電源177からの電力を受けて高周波信号を発生するよう構成されている。なお、電源177は、プロセッサ174、記憶装置175、及び、通信装置176にも接続されている。高周波発振器171は、複数の出力線を有している。高周波発振器171は、発生した高周波信号を複数の出力線を介して、配線182及び配線183、並びに、配線282及び配線283に与えるようになっている。したがって、高周波発振器171は、第1センサ104のガード電極142及びセンサ電極143に電気的に接続されており、当該高周波発振器171からの高周波信号は、ガード電極142及びセンサ電極143に与えられるようになっている。また、高周波発振器171は、第2センサ105のセンサ電極161及びガード電極162に電気的に接続されており、当該高周波発振器171からの高周波信号は、センサ電極161及びガード電極162に与えられるようになっている。
C/V変換回路172の入力には配線182及び配線183が接続されている。即ち、C/V変換回路172の入力には、第1センサ104のガード電極142及びセンサ電極143が接続されている。また、C/V変換回路272の入力には、センサ電極161及びガード電極162がそれぞれ接続されている。C/V変換回路172及びC/V変換回路272は、その入力における電位差に応じた振幅を有する電圧信号を生成し、当該電圧信号を出力するよう構成されている。なお、C/V変換回路172に接続されたセンサ電極の静電容量が大きいほど、当該C/V変換回路172が出力する電圧信号の電圧の大きさは大きくなる。同様に、C/V変換回路272に接続されたセンサ電極の静電容量が大きいほど、当該C/V変換回路272が出力する電圧信号の電圧の大きさは大きくなる。高周波発振器171と配線282及び配線283とC/V変換回路272とは、高周波発振器171と配線182及び配線183とC/V変換回路172と同様に接続されている。
A/D変換器173の入力には、C/V変換回路172及びC/V変換回路272の出力が接続している。また、A/D変換器173は、プロセッサ174に接続している。A/D変換器173は、プロセッサ174からの制御信号によって制御され、C/V変換回路172の出力信号(電圧信号)及びC/V変換回路272の出力信号(電圧信号)を、デジタル値に変換し、検出値としてプロセッサ174に出力する。
プロセッサ174には記憶装置175が接続されている。記憶装置175は、揮発性メモリといった記憶装置であり、後述する測定データを記憶するよう構成されている。また、プロセッサ174には、別の記憶装置178が接続されている。記憶装置178は、不揮発性メモリといった記憶装置であり、プロセッサ174によって読み込まれて実行されるプログラムが記憶されている。
通信装置176は、任意の無線通信規格に準拠した通信装置である。例えば、通信装置176は、Bluetooth(登録商標)に準拠している。通信装置176は、記憶装置175に記憶されている測定データを無線送信するように構成されている。
プロセッサ174は、上述したプログラムを実行することにより、測定器100の各部を制御するように構成されている。例えば、プロセッサ174は、ガード電極142、センサ電極143、センサ電極161、及び、ガード電極162に対する高周波発振器171からの高周波信号の供給、記憶装置175に対する電源177からの電力供給、通信装置176に対する電源177からの電力供給等を制御するようになっている。さらに、プロセッサ174は、上述したプログラムを実行することにより、A/D変換器173から入力された検出値に基づいて、第1センサ104の測定値及び第2センサ105の測定値を取得する。
以上説明した測定器100では、測定器100がフォーカスリングFRによって囲まれた領域に配置されている状態において、複数のセンサ電極143及びガード電極142はフォーカスリングFRの内縁と対面する。これらセンサ電極143の信号とガード電極142の信号との電位差に基づいて生成される測定値は、複数のセンサ電極143それぞれとフォーカスリングとの間の距離を反映する静電容量を表している。なお、静電容量Cは、C=εS/dで表される。εはセンサ電極143の前面143fとフォーカスリングFRの内縁との間の媒質の誘電率であり、Sはセンサ電極143の前面143fの面積であり、dはセンサ電極143の前面143fとフォーカスリングFRの内縁との間の距離と見なすことができる。したがって、測定器100によれば、被加工物Wを模した当該測定器100とフォーカスリングFRとの相対的な位置関係を反映する測定データが得られる。例えば、測定器100によって取得される複数の測定値は、センサ電極143の前面143fとフォーカスリングFRの内縁との間の距離が大きくなるほど、小さくなる。
また、測定器100が静電チャックESCに載置されている状態では、複数のセンサ電極161は静電チャックESCと対面する。一つのセンサ電極161について考えると、センサ電極161が静電チャックESCに対して径方向の外側にずれた場合、センサ電極161によって測定される静電容量は、所定の搬送位置に測定器100が搬送された場合の静電容量に比べて小さくなる。また、センサ電極161が静電チャックESCに対して径方向の内側にずれた場合、センサ電極161によって測定される静電容量は、所定の搬送位置に測定器100が搬送された場合の静電容量に比べて大きくなる。
以下、フォーカスリングFRによって囲まれた領域の中心位置(中心軸線AXF)に対する、該領域内に配置された測定器100の中心位置(中心軸線AX100)のずれ量を求める方法について説明する。
図11は、フォーカスリングFRとフォーカスリングFRの内側に配置された測定器100との位置関係を模式的に示す。図11では、フォーカスリングFRの内周と測定器100のエッジとが示されている。また、図11では、フォーカスリングFRの中心軸線AXFを原点とするX軸及びY軸による直交座標系と、測定器100の中心軸線AX100を原点とするX’軸及びY’軸による直交座標系とが示されている。図示例では、Y’軸が第1センサ104Aを通るように設定されている。
図示されるように、フォーカスリングFRの中心軸線AXFと測定器100の中心軸線AX100とのずれ量は、ΔX及びΔYによって表されている。以下、ΔX及びΔYの導出方法について説明する。一実施形態では、複数のセンサ電極143からフォーカスリングFRの内周面までのそれぞれの最短の距離の和Aが一定の値となるように、3つの第1センサ104A,104B,104Cがベース基板102の周縁に周方向に120°間隔で均等に設けられている。図示例では、フォーカスリングFRの内径Dは302mmであり、測定器100の外径Dは300mmである。この場合、第1センサ104AからフォーカスリングFRの内周面までの最短距離をG、第1センサ104BからフォーカスリングFRの内周面までの最短距離をG、第1センサ104CからフォーカスリングFRの内周面までの最短距離をG、とすると、以下の式(3)が成立する。
((D−D)/2)×3=G+G+G=3.00mm ・・・式(3)
ここで、上述の通り、静電容量CはC=εS/dによって表されるので、距離dはd=εS/Cで表される。「εS」を定数aとおくと、距離dはd=a/Cとなる。距離dは、上式におけるG、G及びGに対応するので、第1センサ104Aによる測定値(静電容量)をC、第1センサ104Bによる測定値をC、第1センサ104Cによる測定値をC、とすると、G=a/C、G=a/C、G=a/Cが成立する。すなわち、式(3)は以下の式(4)のように変換される。
(a/C)+(a/C)+(a/C)=3.00mm ・・・(4)
なお、式(4)は以下の式(5)のように一般化できる。すなわち、N個の第1センサ104による測定値をC(i=1,2,3,…,N)とすると、式(5)が成立する。N個の第1センサ104からフォーカスリングFRの内周面までの最短の距離の和Aが一定の値となる場合、和Aは、((D−D)/2)×Nによって算出され得る。
Figure 2019096757
ΔX及びΔYを導出する場合、まず、第1センサ104A,104B,104Cのそれぞれの測定値C,C,Cを取得する。これらの測定値C,C,Cを上式(4)に代入することによって、定数aを求めることができる。そして、定数aとそれぞれの測定値C,C,Cとに基づいて、距離G、G、Gが導出される。
本実施形態のように、フォーカスリングFRの内径Dと測定器100の外径Dとの差が、フォーカスリングFRの内径Dに対して十分に小さい場合、Gの大きさは、Y軸上におけるフォーカスリングFRの内周から測定器100のエッジまでの距離Yとして近似できる。すなわち、以下の式(6)が成立する。
≒Y ・・・(6)
原点(中心軸線AX100)を中心として第1センサ104Aに対称な位置からフォーカスリングFRの内周までの距離をG’とすると、同様に、G’の大きさは、Y軸上におけるフォーカスリングFRの内周から測定器100のエッジまでの距離Yに近似できる。すなわち、以下の式(7)が成立する。
’≒Y ・・・(7)
ここで、Y及びYは、いずれもY軸上における距離である。そのため、YとYとの和は、フォーカスリングFRの内径Dと測定器100の外径Dとの差として近似できる。すなわち、式(6)、(7)に基づいて以下の式(8)が成立する。
+Y≒G+G’≒2 ・・・(8)
ΔYは、YとYとの差の1/2として規定できるので、以下の式(9)のように距離GからΔYが求まる。
ΔY=(Y−Y)/2=1−G ・・・(9)
同様に、X軸上において、測定器100のエッジからフォーカスリングFRの内周までの距離をそれぞれX、Xとすると、以下の式(10)が成立する。
+X≒2 ・・・(10)
また、第1センサ104BからフォーカスリングFRまでの最短距離Gと第1センサ104CからフォーカスリングFRまでの最短距離Gとの比は、以下の式(11)ように示される。
:X=G:G ・・・(11)
ここで、G+G=Zとおくと、式(10)、(11)からX、Xはそれぞれ以下の式(12)、(13)で示される。
=2G/Z=2G/(G+G) ・・・(12)
=2G/Z=2G/(G+G) ・・・(13)
よって、ΔXは、以下の式(14)として規定できるので、距離G,GからΔXが求まる。
ΔX=(X−X)/2=(G−G)/(G+G) ・・・(14)
以上のように、一実施形態では、フォーカスリングFRの中心軸線AXFとフォーカスリングFRの内側に配置された測定器100の中心軸線AX100とのずれ量をX軸に沿った方向のずれ量ΔXと、Y軸に沿った方向のずれ量ΔYとして算出することができる。
続いて、静電チャックESCの中心位置(中心軸線AXE)と静電チャックESC上に配置された測定器100の中心軸線AX100とのずれ量を求める方法について説明する。
図12は、静電チャックの断面図であり、静電チャックに被加工物が載置された状態を示す。一実施形態では、静電チャックESCは、セラミック製の本体と、本体内に設けられた電極Eとを有する。本体は、円板形状を有しており、静電チャックESCの中心に対して周方向に延在する周縁を有する。電極Eのエッジは、円板形状を有しており、本体の周縁よりも内側で、静電チャックESCの中心に対して周方向に延在している。静電チャックESCは、被加工物W及び測定器100がその上に載置される載置領域Rを有している。載置領域Rは、円形のエッジを有している。被加工物W及び測定器100は、載置領域Rの外径よりも大きい外径を有している。
図13は、静電チャックの載置領域に対する測定器の搬送位置を示す図である。図13の(a)は、測定器100の中心位置と静電チャックの中心位置とが一致している場合の配置を示す。図13の(b)及び図13の(c)は、測定器100の中心位置と静電チャックの中心位置とが互いにずれている場合の配置を示す。なお、図13の(c)では、フォーカスリングFRと測定器100とが干渉し合っている。すなわち、実際には、図13の(c)に示す配置になることはない。
図13の(a)に示すように、測定器100の中心軸線AX100と静電チャックESCの中心軸線AXEとが一致している場合、センサ電極161の外縁161b(図9参照)と静電チャックESCの外縁とは一致している。また、この場合、センサ電極161の内縁161a(図9参照)と電極Eの外縁とが一致してもよい。すなわち、センサ電極161の外縁161bは中心軸線AX100を中心とする第1の円上で延在しており、第1の円は静電チャックESCの本体の周縁の半径と同一の半径を有している。また、センサ電極161の内縁161aは中心軸線AX100を中心とする第2の円上で延在しており、第2の円は静電チャックESCの電極Eの周縁の半径と同一の半径を有する。
上述のように、静電容量CはC=εS/dによって表される。ここで、距離dは、センサ電極161から静電チャックESCの表面までの距離であり、一定である。一方、Sは、センサ電極161と静電チャックESCとが互いに対面している部分の面積である。そのため、このSは、測定器100と静電チャックESCとの位置関係に応じて変動する。例えば、図13の(b)に示すように、センサ電極161と静電チャックESCとのオーバーラップ長Wが小さくなる配置では、Sは小さくなっている。ここで、オーバーラップ長は、静電チャックESCの周縁からセンサ電極161における内縁161aまでの最短の距離として定義され得る。
センサ電極161の形状は、中心軸線AX100を中心とする円の径方向と、径方向に直交する方向とに辺を有する矩形に近似されることができる。この場合、Sは、径方向に直交する方向の辺の長さとオーバーラップ長Wとの積によって示される。径方向に直交する方向の辺の長さをSとすると、Sは、SとWとの積によって示される。この場合、C=εS/dは、C=ε・S・W/dのように変形することができる。よって、オーバーラップ長Wは、以下の式(15)で示される。
=(d/(ε・S))C ・・・(15)
ここで、d/(ε・S)を定数bとおくことによって、以下の式(16)が導出される。
=b・C ・・・(16)
図13の(c)に示されるように、センサ電極161の内縁161aと静電チャックESCの外縁とが一致した状態では、オーバーラップ長Wがゼロとなる。この場合、理論上、センサ電極161によって計測される静電容量Cはゼロとなる。そこで、本実施形態では、オーバーラップ長Wがゼロのときに静電容量Cがゼロとなるように、第2センサ105が校正される。一方、図13の(a)に示す状態よりもセンサ電極161が静電チャックESCの中心軸線AXE側に移動した場合、オーバーラップ長Wはセンサ電極161の径方向の長さよりも大きくなる。この場合、オーバーラップ長Wが大きくなったとしても、「S」の値は変化しない。しかし、静電チャックESCに電極Eが配置されているので、オーバーラップ長Wの増加に応じて、静電容量Cは増加し得る。
図14は、オーバーラップ長と静電容量Cを示す測定値との関係を示すグラフである。図14のグラフでは、例えば、オーバーラップ長W毎に第2センサ105A〜105Cによって計測された測定値がプロットされている。第2センサ105A〜105Cの測定値は、ch.01〜ch.03にそれぞれ対応している。また、図14では、オーバーラップ長と静電容量との関係を示す理想線が示されている。3つの第2センサによって計測された測定値(静電容量)は、オーバーラップ長Wがセンサ電極161の径方向の長さよりもオーバーラップ長Wが大きくなっても、理想線と略同じように上昇している。なお、本実施形態では、フォーカスリングFRの内径と測定器100の外径との差が2mmである。そのため、実際の運用領域は、オーバーラップ長Wが1.00mm〜3.00mmの間となっている。
図15は、静電チャックESCと静電チャックESC上の位置に配置された測定器100との位置関係を模式的に示す。図11では、静電チャックESCの外縁と測定器100におけるセンサ電極161の内縁に沿った円(第2の円100N)とが示されている。また、図11では、静電チャックESCの中心位置を原点とするX軸及びY軸による直交座標系と、測定器100の中心軸線AX100を原点とするX’軸及びY’軸による直交座標系とが示されている。図示例では、Y’軸が第2センサ105Aと中心位置とを通るように設定されている。
図示されるように、静電チャックESCの中心位置と測定器100の中心軸線AX100とのずれ量は、ΔX及びΔYによって表されている。以下、ΔX及びΔYの導出方法について説明する。一実施形態では、静電チャックESCの外縁から複数のセンサ電極161の内縁までの最短の距離の和Bが一定の値となるように、3つの第2センサ105A,105B,105Cがベース基板102の周縁に周方向に120°間隔で均等に配置されている。図示例では、静電チャックESCの外径Dは297mmであり、センサ電極161の内縁に沿った円の外径Dは297mmであり、センサ電極161の径方向の長さWは2.00mmである。第2センサ105Aのセンサ電極161のオーバーラップ長をW、第2センサ105Bのセンサ電極161のオーバーラップ長をW、第2センサ105Cのセンサ電極161のオーバーラップ長をWとすると、以下の式(17)が成立する。
(W−(W−D)/2)×3=W+W+W=6.00mm ・・・式(17)
ここで、上述の通り、式(16)が成立するので、第2センサ105Aによる測定値(静電容量)をD、第2センサ105Bによる測定値をD、第2センサ105Cによる測定値をD、とすると、W=b・D、W=b・D、W=b・Dが成立する。すなわち、式(17)は式(18)のように変換される。
(b・D)+(b・D)+(b・D)=6.00mm ・・・(18)
なお、この式(18)は、各センサ電極161におけるオーバーラップ長の和Bが一定の値となる場合には、M個の測定値D(i=1,2,3,…,M)を用いて以下の式(19)のように一般化できる。
なお、式(18)は以下の式(19)のように一般化できる。すなわち、M個の第2センサ105による測定値をD(i=1,2,3,…,M)とすると、式(19)が成立する。各センサ電極161におけるオーバーラップ長の和Bが一定の値となる場合、和Bは、(W−(W−D)/2)×Mによって算出され得る。
Figure 2019096757
ΔX及びΔYを導出する場合、まず、第2センサ105A,105B,105Cのそれぞれの測定値D,D,Dを取得する。これらの測定値D,D,Dを上式(18)に代入することによって、定数bを求めることができる。そして、定数bとそれぞれの測定値D,D,Dとによって、W、W、Wが導出される。
の大きさは、Y軸上における静電チャックESCの外縁から第2の円100Nまでの距離Yに近似できる。すなわち、以下の式(20)が成立する。
≒Y ・・・(20)
第2の円100Nの原点(中心軸線AX100)を中心として第2センサ105Aに対称な位置から静電チャックESCの外縁までの距離をW’とすると、同様に、W’の大きさは、Y軸上における静電チャックESCの外縁から第2の円100Nまでの距離Yに近似できる。すなわち、以下の式(21)が成立する。
’≒Y ・・・(21)
ここで、Y及びYは、いずれもY軸上における距離である。そのため、YとYとの和は、静電チャックESCの外径と第2の円100Nの径との差に近似できる。すなわち、以下の式(22)が成立する。
+Y≒W+W’≒4 ・・・(22)
ΔYは、YとYとの差の1/2として規定できるので、以下の式(23)のように距離WからΔYが求まる。
ΔY=(Y−Y)/2=W−2 ・・・(23)
同様に、X軸上において、第2の円100Nから静電チャックESCの外縁までの距離をそれぞれX、Xとすると、以下の式(24)が成立する。
+X≒4 ・・・(24)
また、第2センサ105Bにおけるオーバーラップ長Wと第2センサ105Cにおけるオーバーラップ長Wとの比は、以下の式(25)のように示される。
:X=W:W ・・・式(25)
ここで、W+W=Zとおくと、X、Xはそれぞれ以下の式(26)、(27)で示される。
=4W/Z=4W/(W+W) ・・・(26)
=4W/Z=4W/(W+W) ・・・(27)
よって、ΔXは、以下の式(28)として規定できるので、オーバーラップ長W,WからΔXが求まる。
ΔX=(X−X)/2=2(W−W)/(W+W) ・・・(28)
以上のように、一実施形態では、静電チャックESCの中心軸線AXFと静電チャックESC上に配置された測定器100の中心軸線AX100とのずれ量を、X軸に沿った方向のずれ量ΔXと、Y軸に沿った方向のずれ量ΔYとして算出することができる。
以下、測定器100を用いて処理システム1における搬送位置データを較正する方法について説明する。なお、上述の通り、処理システム1における搬送装置TU2は、制御部MCによって制御される。一実施形態では、搬送装置TU2は、制御部MCから送信される搬送位置データに基づき静電チャックESCの載置領域R上に被加工物W及び測定器100を搬送し得る。図18は、一実施形態に係る処理システムの搬送装置の較正方法を示す流れ図である。
図18に示す方法MTでは、まず、ステップST1が実行される。ステップST1では、搬送位置データによって特定される載置領域R上の位置に、搬送装置TU2によって測定器100が搬送される。具体的には、搬送装置TU1が、ロードロックモジュールLL1及びロードロックモジュールLL2のうち一方のロードロックモジュールに測定器100を搬送する。そして、搬送装置TU2が、搬送位置データに基づいて、一方のロードロックモジュールから、プロセスモジュールPM1〜PM6のうち何れかに測定器100を搬送し、当該測定器100を静電チャックESCの載置領域R上に載置する。搬送位置データは、例えばフォーカスリングFR又は載置領域Rの中心位置に測定器100の中心軸線AX100の位置が一致するように予め定められた座標データである。中心位置の基準として、フォーカスリングFR及び載置領域Rのいずれを選択するかは、オペレータによって決定され得る。
続くステップST2では、測定器100が静電容量の測定を行う。具体的には、測定器100は、フォーカスリングFRと第1センサ104A〜104Dのそれぞれのセンサ電極161との間の静電容量の大きさに応じた複数のデジタル値(測定値)を取得し、当該複数のデジタル値を記憶装置175に記憶する。また、測定器100は、静電チャックESCの載置領域Rと第2センサ105A〜105Dのそれぞれのセンサ電極161との間の静電容量の大きさに応じた複数のデジタル値(測定値)を取得し、当該複数のデジタル値を記憶装置175に記憶する。なお、複数のデジタル値は、プロセッサ174による制御の下で予め定められたタイミングで取得され得る。
続くステップST3では、測定器100がプロセスモジュールから搬出され、トランスファーモジュールTF、ロードロックモジュールLL1,LL2、ローダモジュールLM及び容器4a〜4dの何れかに戻される。続くステップST4では、上述したずれ量を求める方法を用いて、ステップST2で取得された測定値から、フォーカスリングFRの中心位置と測定器100の中心位置とのずれ量、及び、静電チャックESCの中心位置と測定器100の中心位置とのずれ量が搬送位置の誤差として導出される。一実施形態のステップST4では、まず、記憶装置175に記憶されている複数のデジタル値が制御部MCに送信される。複数のデジタル値は、制御部MCからの指令によって通信装置176から制御部MCに送信されてもよく、或いは、回路基板106Aに設けられたタイマのカウントに基づくプロセッサ174の制御により、所定のタイミングで制御部MCに送信されてもよい。続いて、制御部MCが、受信した複数のデジタル値に基づき、測定器100の搬送位置のずれ量を導出する。
測定器100の搬送位置のずれ量が、所定の閾値よりも大きい場合には、続くステップST5において、搬送位置データの較正が必要であると判定される。この場合、ステップST6において、ずれ量を除去するように搬送位置データが制御部MCによって修正される。そして、ステップST7において、直前に測定器100が搬送されていたプロセスモジュールと同じプロセスモジュールに再び測定器100が搬送され、ステップST2〜ステップST5が再度実行される。一方、測定器100の搬送位置のずれ量が、所定の閾値よりも小さい場合には、ステップST5において、搬送位置データの較正が必要ないものと判定される。この場合、ステップST8において、次に測定器100が搬送されるべき別のプロセスモジュールに測定器100を搬送するか否かが判定される。次に測定器100が搬送されるべき別のプロセスモジュールが残っている場合には、続くステップST9において、当該別のプロセスモジュールに測定器100が搬送され、ステップST2〜ステップST5が実行される。一方、次に測定器100が搬送されるべき別のプロセスモジュールが残っていない場合には、方法MTが終了する。
このように測定器100を用いる方法MTによれば、搬送装置TU2による搬送に利用される搬送位置データの較正において利用可能な複数のデジタル値が測定器100によって提供される。かかる複数のデジタル値を用いることにより、必要に応じて搬送位置データを較正することが可能となる。このように較正された搬送位置データを搬送装置TU2による被加工物Wの搬送に用いることにより、被加工物Wを所定の搬送位置に搬送することが可能となる。また、フォーカスリングFRを基準とした場合のずれ量と、静電チャックESCを基準とした場合のずれ量とを別々に取得できるので、処理内容に応じてフォーカスリングFR及び静電チャックESCのいずれを基準とするのかを選択することができる。
以上説明したように、測定器によって取得される複数の測定値の各々は、センサ電極とフォーカスリングとの間の最短距離に反比例するので、C=a/dで定義される。ここで、dは、センサ電極とフォーカスリングとの間の最短距離である。定数aは、フォーカスリングの中心位置と測定器の中心位置が同一の位置関係を有していても、機差又はフォーカスリングの消耗に応じて、変化する。第1の態様に係る方法では、複数のセンサ電極が(1)式を満たすように配置されているので、複数の測定値Cから(1)式に基づき定数aが求められる。そして、定数aと複数の測定値Cのそれぞれから複数の距離が精度良く求められる。第1の態様に係る方法によれば、このように求められた複数の距離から、高い精度で測定器のずれ量が求められ得る。
また、静電容量は電極面積に比例するので、測定器によって取得される複数の測定値の各々は、第2のエッジから静電チャックの周縁までの最短距離に応じて増加する。即ち、測定器によって取得される複数の測定値の各々は、Di=1/b×Wで定義される。ここで、Wは、第2のエッジから静電チャックの周縁までの最短距離である。定数bは、静電チャックの中心位置と測定器の中心位置が同一の位置関係を有していても、機差又は静電チャックの消耗に応じて、変化する。第2の態様に係る方法では、複数のセンサ電極が(2)式を満たすように配置されているので、複数の測定値Diから(2)式に基づき定数bが求められる。そして、定数bと複数の測定値Diのそれぞれから複数の距離が精度良く求められる。第2の態様に係る方法によれば、このように求められた複数の距離から、高い精度で測定器のずれ量が求められ得る。
続いて、測定器の他の実施形態について説明する。図16は、一形態に係る測定器の平面図である。図16に示す測定器200は、上側部分102b及び下側部分102aを有するベース基板102を備えている。ベース基板102の上側部分102bには、複数の第1センサ104A〜104Hが設けられている。複数の第1センサ104A〜104Hは、ベース基板102のエッジに沿って、例えば当該エッジの全周において等間隔に、配列されている。すなわち、第1センサ104Aと第1センサ104Eとは中心軸線AX200を中心として対象の位置に配置されている。第1センサ104Bと第1センサ104Fとは中心軸線AX200を中心として対象の位置に配置されている。第1センサ104Cと第1センサ104Gとは中心軸線AX200を中心として対象の位置に配置されている。第1センサ104Dと第1センサ104Hとは中心軸線AX200を中心として対象の位置に配置されている。
ベース基板102の上側部分102bの上面は、凹部102rを提供している。凹部102rは、中央領域102c及び複数の放射領域102hを含んでいる。中央領域102cは、中心軸線AX200と交差する領域である。中心軸線AX200は、ベース基板102の中心を板厚方向に通過する軸線である。中央領域102cには、回路基板106が設けられている。複数の放射領域102hは、中央領域102cから複数の第1センサ104A〜104Hのそれぞれが配置されている領域に向かって、中心軸線AX200に対して放射方向に延在している。複数の放射領域102hには、複数の第1センサ104A〜104Hを、回路基板106に電気的に接続するための配線群108A〜108Hが設けられている。配線群108A〜108Hは、測定器100における配線群108と同様の構成を有している。
以下、フォーカスリングFRの中心位置とフォーカスリングFRの内側に配置された測定器200の中心位置とのずれ量を求める方法について説明する。
図17は、フォーカスリングFRとフォーカスリングFRの内側に配置された測定器200との位置関係を模式的に示す。図17では、フォーカスリングFRの内周と測定器200のエッジとが示されている。また、図17では、フォーカスリングFRの中心位置を原点とするX軸及びY軸による直交座標系と、測定器200の中心位置を原点とするX’軸及びY’軸による直交座標系とが示されている。図示例では、Y’軸が第1センサ104A、104E、及び中心位置を通るように設定されている。また、X’軸が第1センサ104C、104G、及び中心位置を通るように設定されている。なお、以下に示す方法では、第1センサ104A、104Eに基づいてY軸方向のずれ量ΔYを算出し、第1センサ104C、104Gに基づいてX軸方向のずれ量ΔXを算出する。そのため、図17では、他の第1センサ104B,104D,104F,104Hは示されていない。
以下、ΔX及びΔYの導出方法について説明する。本実施形態では、第1センサ104Aと第1センサ104Eとにおいて、複数のセンサ電極143からフォーカスリングFRの内周面までのそれぞれの最短の距離の和Aが一定の値となる。また、第1センサ104Cと第1センサ104Gとにおいて、複数のセンサ電極143からフォーカスリングFRの内周面までのそれぞれの最短の距離の和Aが一定の値となる。図示例では、フォーカスリングFRの内径Dfは302mmであり、測定器100の外径Dwは300mmである。この場合、第1センサ104AからフォーカスリングFRの内周までの最短距離をG、第1センサ104CからフォーカスリングFRの内周までの最短距離をG、第1センサ104EからフォーカスリングFRの内周までの最短距離をG、第1センサ104GからフォーカスリングFRの内周までの最短距離をG、とすると、以下の式(29)、(30)が成立する。
+G=2.00mm ・・・(29)
+G=2.00mm ・・・(30)
第1センサ104Aによる測定値(静電容量)をC、第1センサ104Cによる測定値をC、第1センサ104Eによる測定値をC、第1センサ104Gによる測定値をC、とすると、G=a/C、G=a/C、G=a/C、G=a/Cが成立する。すなわち、上式は下式(31)、(32)のように変換される。
(a/C)+(a/C)=2.00mm ・・・(31)
(a/C)+(a/C)=2.00mm ・・・(32)
ΔX及びΔYを導出する場合、まず、測定値C,C,C,Cを取得する。これらの測定値C,C,C,Cを上式(31)、(32)に代入することによって、定数aを求めることができる。そして、定数aとそれぞれの測定値C,C,C,Cとによって、G,G,G,Gが導出される。
ΔYは、YとYとの差の1/2として規定できるので、以下の式(33)のように距離G、GからΔYが求まる。
ΔY=(G−G)/2 ・・・(33)
同様にΔXは、XとXとの差の1/2として規定できるので、以下の式(34)ように距離G、GからΔXが求まる。
ΔX=(G−G)/2 ・・・(34)
以上のように、本実施形態では、フォーカスリングFRの中心位置とフォーカスリングFRの内側に配置された測定器100の中心軸線AX100とのずれ量をX軸に沿った方向のずれ量ΔXと、Y軸に沿った方向のずれ量ΔYとして算出することができる。
以上、実施形態について説明してきたが、上述した実施形態に限定されることなく種々の変形態様を構成可能である。
例えば、測定器に搭載される第1センサ及び第2センサの数は、上記の実施形態に限定されない。第1センサ及び第2センサの数は、いずれも3つ以上の任意の数であってよい。また、一軸方向におけるずれ量のみを取得したい場合には、センサの数は2つであってもよい。
また、別の実施形態として測定器100,200に搭載することができる第1センサは別のセンサであってよい。図19は、別の実施形態に係る第1センサの断面図である。図19には、第1センサ204の縦断面図が示されており、また、第1センサ204と共にフォーカスリングFRが示されている。
第1センサ204は、第1電極241、第2電極242、及び第3電極243を有している。また、一実施形態では、第1センサ204は、基板部244及び絶縁領域247を更に有し得る。
基板部244は、例えばホウケイ酸ガラスまたは石英から形成されている。基板部244は、上面244a、下面244b、及び前側端面244cを有している。第2電極242は、基板部244の下面244bの下方に設けられており、X方向及びY方向に延在している。また、第1電極241は、絶縁領域247を介して第2電極242の下方に設けられており、X方向及びY方向に延在している。
基板部244の前側端面244cは、段状に形成されている。前側端面244cの下側部分244dは、当該前側端面244cの上側部分244uよりもフォーカスリングFRの側に向けて突出している。第3電極243は、前側端面244cの上側部分244uに沿って延在している。
この第1センサ204を測定器100のセンサとして用いる場合には、第1電極241が配線181に接続され、第2電極242が配線182に接続され、第3電極243が配線183に接続される。
第1センサ204においては、センサ電極である第3電極243が、第1電極241及び第2電極242によって、第1センサ204の下方に対して遮蔽されている。したがって、この第1センサ204によれば、特定方向、即ち、第3電極243の前面243fが向いている方向(X方向)に高い指向性をもって静電容量を測定することが可能となる。
100…測定器、102…ベース基板、104…第1センサ、105…第2センサ、143…センサ電極、161…センサ電極、106…回路基板、ESC…静電チャック、FR…フォーカスリング。

Claims (4)

  1. 測定器のずれ量を求める方法であって、該ずれ量は、フォーカスリングによって囲まれた領域の中心位置に対する、該領域内に配置された該測定器の中心位置のずれ量であり、 前記測定器は、
    円盤状のベース基板と、
    前記ベース基板に設けられた複数のセンサ電極と、
    前記複数のセンサ電極に高周波信号を与えるように設けられた高周波発振器と、
    前記複数のセンサ電極における電位に応じた複数の検出値から、前記複数のセンサ電極それぞれの静電容量を表す複数の測定値をそれぞれ算出するように構成された演算部と、を有し、
    前記複数のセンサ電極は、前記領域内に前記測定器が配置された状態で、前記複数のセンサ電極から前記フォーカスリングの内周面までのそれぞれの最短の距離の和Aが一定の値となるように、前記ベース基板の周縁に設けられており、
    前記和Aは、下記の式(1)を満たし、
    Figure 2019096757

    ここで、Nは前記複数のセンサ電極の個数であり、Cは前記複数の測定値であり、aは定数であり、
    該方法は、
    前記領域内に配置された前記測定器によって前記複数の測定値Cを算出するステップと、
    算出された前記複数の測定値Cを用いて前記式(1)における前記定数aを算出するステップと、
    算出された前記定数a及び前記複数の測定値Cを用いて、複数の距離を算出するステップであり、該複数の距離はそれぞれ、前記複数のセンサ電極から前記フォーカスリングの内周面までの距離を表す、該ステップと、
    算出された前記複数の距離から、前記ずれ量を算出するステップと、
    を含む、方法。
  2. 測定器のずれ量を求める方法であって、該ずれ量は、静電チャックの中心位置に対する、前記静電チャック上に配置された測定器の中心位置のずれ量であり、
    前記測定器は、
    円盤状のベース基板と、
    前記ベース基板の中心軸線に対して周方向に配列され、前記ベース基板の底面に沿って設けられた複数のセンサ電極と、
    前記複数のセンサ電極に高周波信号を与えるように設けられた高周波発振器と、
    前記複数のセンサ電極における電位に応じた複数の検出値から、前記複数のセンサ電極それぞれの静電容量を表す複数の測定値をそれぞれ算出するように構成された演算部と、を有し、
    前記静電チャックは、該静電チャックの中心に対して周方向に延在する周縁を有するセラミック製の本体と、該本体内に設けられた電極を有し、該静電チャックの該電極のエッジは、前記本体の前記周縁よりも内側で、該静電チャックの該中心に対して周方向に延在しており、
    前記複数のセンサ電極それぞれの径方向外側の第1のエッジが、前記静電チャックの前記本体の前記周縁の半径と同一の半径を有し前記中心軸線を前記ベース基板と共有する第1の円上で延在しており、
    前記複数のセンサ電極それぞれの径方向内側の第2のエッジが、前記静電チャックの前記電極の前記エッジの半径と同一の半径を有し前記中心軸線を前記ベース基板と共有する第2の円上で延在しており、
    前記複数のセンサ電極は、前記静電チャック上に前記測定器が配置された状態で、該複数のセンサ電極の前記第2のエッジから前記静電チャックの前記周縁までのそれぞれの最短の距離の和Bが一定となるように設けられており、
    前記和Bは、下記の式(2)を満たし、
    Figure 2019096757

    ここで、Mは前記複数のセンサ電極の個数であり、Dは前記複数の測定値であり、bは定数であり、
    該方法は、
    前記静電チャック上に配置された前記測定器によって前記複数の測定値Dを算出するステップと、
    算出された前記複数の測定値Dを用いて前記式(2)における前記定数bを算出するステップと、
    算出された前記定数b及び前記複数の測定値Dを用いて、複数の距離を算出するステップであり、該複数の距離はそれぞれ、前記複数のセンサ電極の前記第2のエッジから前記静電チャックの前記周縁までの距離を表す、該ステップと、
    算出された前記複数の距離から、前記ずれ量を算出するステップと、
    を含む、方法。
  3. 請求項1に記載の方法を用いて処理システムにおける搬送位置データを較正する方法であって、
    前記処理システムは、
    チャンバ本体、及び、該チャンバ本体によって提供されるチャンバ内に設けられた載置台を有する処理装置と、
    搬送位置データに基づき前記載置台上且つ前記フォーカスリングによって囲まれた前記領域内に被加工物を搬送する搬送装置と、
    を備え、
    該方法は、
    前記搬送位置データによって特定される前記領域内の位置に、前記搬送装置を用いて前記測定器を搬送するステップと、
    請求項1に記載の方法を用いて、前記ずれ量を算出するステップと、
    前記ずれ量を用いて前記搬送位置データを較正するステップと、
    を含む方法。
  4. 請求項2に記載の方法を用いて処理システムにおける搬送位置データを較正する方法であって、
    前記処理システムは、
    チャンバ本体、及び、該チャンバ本体によって提供されるチャンバ内に設けられた前記静電チャックを有する処理装置と、
    搬送位置データに基づき前記静電チャック上に被加工物を搬送する搬送装置と、
    を備え、
    該方法は、
    前記搬送位置データによって特定される前記静電チャック上の位置に、前記搬送装置を用いて前記測定器を搬送するステップと、
    請求項2に記載の方法を用いて、前記ずれ量を算出するステップと、
    前記ずれ量を用いて前記搬送位置データを較正するステップと、を含む方法。
JP2017225510A 2017-11-24 2017-11-24 測定器のずれ量を求める方法、及び、処理システムにおける搬送位置データを較正する方法 Pending JP2019096757A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017225510A JP2019096757A (ja) 2017-11-24 2017-11-24 測定器のずれ量を求める方法、及び、処理システムにおける搬送位置データを較正する方法
KR1020180143399A KR102520285B1 (ko) 2017-11-24 2018-11-20 측정기의 어긋남량을 구하는 방법, 및, 처리 시스템에 있어서의 반송 위치 데이터를 교정하는 방법
TW107141562A TWI781253B (zh) 2017-11-24 2018-11-22 獲得測量器之偏離量的方法以及校正處理系統之搬送位置資料的方法
US16/198,924 US10903100B2 (en) 2017-11-24 2018-11-23 Method of obtaining amount of deviation of a measuring device, and method of calibrating transfer position data in a processing system
CN201811407892.1A CN109841555B (zh) 2017-11-24 2018-11-23 求出偏离量的方法和校准搬送位置数据的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017225510A JP2019096757A (ja) 2017-11-24 2017-11-24 測定器のずれ量を求める方法、及び、処理システムにおける搬送位置データを較正する方法

Publications (1)

Publication Number Publication Date
JP2019096757A true JP2019096757A (ja) 2019-06-20

Family

ID=66632611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225510A Pending JP2019096757A (ja) 2017-11-24 2017-11-24 測定器のずれ量を求める方法、及び、処理システムにおける搬送位置データを較正する方法

Country Status (5)

Country Link
US (1) US10903100B2 (ja)
JP (1) JP2019096757A (ja)
KR (1) KR102520285B1 (ja)
CN (1) CN109841555B (ja)
TW (1) TWI781253B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074876A1 (ja) * 2021-11-01 2023-05-04 東京エレクトロン株式会社 測定方法及び測定システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360400B2 (en) 2017-05-19 2022-06-14 Massachusetts Institute Of Technology Transport system having a magnetically levitated transportation stage
US11404296B2 (en) * 2018-09-04 2022-08-02 Applied Materials, Inc. Method and apparatus for measuring placement of a substrate on a heater pedestal
JP7129325B2 (ja) * 2018-12-14 2022-09-01 東京エレクトロン株式会社 搬送方法及び搬送システム
JP7240980B2 (ja) * 2019-07-29 2023-03-16 東京エレクトロン株式会社 基板処理装置及び基板搬送方法
WO2022104028A1 (en) * 2020-11-13 2022-05-19 Massachusetts Institute Of Technology Reticle exchange device with reticle levitation
KR20220072183A (ko) 2020-11-25 2022-06-02 비전코웍 주식회사 인라인 치수 측정 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012657A (ja) * 1998-06-17 2000-01-14 Olympus Optical Co Ltd 半導体ウェハの位置決め装置
US6502054B1 (en) * 1999-11-22 2002-12-31 Lam Research Corporation Method of and apparatus for dynamic alignment of substrates
JP4003750B2 (ja) * 2003-04-17 2007-11-07 セイコーエプソン株式会社 静電容量検出装置
JP5633021B2 (ja) * 2009-06-29 2014-12-03 株式会社ブイ・テクノロジー アライメント方法、アライメント装置及び露光装置
JP6150490B2 (ja) * 2012-10-19 2017-06-21 キヤノン株式会社 検出装置、露光装置、それを用いたデバイスの製造方法
WO2015029827A1 (ja) * 2013-08-28 2015-03-05 株式会社クリエイティブ テクノロジー 静電容量センサ,検出システム及びロボットシステム
US9558981B2 (en) * 2013-11-19 2017-01-31 Applied Materials, Inc. Control systems employing deflection sensors to control clamping forces applied by electrostatic chucks, and related methods
JP6512954B2 (ja) * 2015-06-11 2019-05-15 東京エレクトロン株式会社 フォーカスリングを検査するためのシステム、及びフォーカスリングを検査する方法
US9903739B2 (en) 2015-06-11 2018-02-27 Tokyo Electron Limited Sensor chip for electrostatic capacitance measurement and measuring device having the same
JP6537433B2 (ja) * 2015-06-11 2019-07-03 東京エレクトロン株式会社 静電容量測定用のセンサチップ及び同センサチップを備えた測定器
US10074549B2 (en) * 2016-03-28 2018-09-11 Tokyo Electron Limited Method for acquiring data indicating electrostatic capacitance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074876A1 (ja) * 2021-11-01 2023-05-04 東京エレクトロン株式会社 測定方法及び測定システム

Also Published As

Publication number Publication date
KR102520285B1 (ko) 2023-04-10
CN109841555A (zh) 2019-06-04
US20190164791A1 (en) 2019-05-30
TWI781253B (zh) 2022-10-21
KR20190060687A (ko) 2019-06-03
CN109841555B (zh) 2022-12-02
US10903100B2 (en) 2021-01-26
TW201937628A (zh) 2019-09-16

Similar Documents

Publication Publication Date Title
KR102520285B1 (ko) 측정기의 어긋남량을 구하는 방법, 및, 처리 시스템에 있어서의 반송 위치 데이터를 교정하는 방법
KR102636225B1 (ko) 측정기를 교정하는 방법 및 케이스
KR20170142905A (ko) 정전 용량 측정용 측정기, 및 측정기를 이용하여 처리 시스템에 있어서의 반송 위치 데이터를 교정하는 방법
KR20160146574A (ko) 정전 용량 측정용의 센서 칩 및 센서 칩을 구비한 측정기
JP6586394B2 (ja) 静電容量を表すデータを取得する方法
TWI794563B (zh) 搬送方法及搬送系統
CN110243273B (zh) 测定器和用于检查聚焦环的***的动作方法
CN110246796B (zh) 测定器和求出测定器的偏离量的方法
CN108693409B (zh) 静电电容测量用的测量器
KR102675477B1 (ko) 반송 방법 및 반송 시스템
KR20230099647A (ko) 측정기
JP2022107401A (ja) 測定器及び測定方法
JP2024036173A (ja) 測定方法、測定システムおよび測定器
KR20230125758A (ko) 측정 방법, 측정기 및 측정 시스템