JP2019091598A - Positive electrode plate and lead storage battery - Google Patents

Positive electrode plate and lead storage battery Download PDF

Info

Publication number
JP2019091598A
JP2019091598A JP2017219070A JP2017219070A JP2019091598A JP 2019091598 A JP2019091598 A JP 2019091598A JP 2017219070 A JP2017219070 A JP 2017219070A JP 2017219070 A JP2017219070 A JP 2017219070A JP 2019091598 A JP2019091598 A JP 2019091598A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
pbo
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017219070A
Other languages
Japanese (ja)
Other versions
JP7010556B2 (en
Inventor
隆之 木村
Takayuki Kimura
隆之 木村
柴原 敏夫
Toshio Shibahara
敏夫 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017219070A priority Critical patent/JP7010556B2/en
Publication of JP2019091598A publication Critical patent/JP2019091598A/en
Application granted granted Critical
Publication of JP7010556B2 publication Critical patent/JP7010556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a positive electrode plate for a lead storage battery with excellent cycle performance.SOLUTION: A positive electrode plate 10 for a lead storage battery includes a positive electrode collector 14 and a positive electrode active material 15 held on the positive electrode collector 14, the positive electrode active material 15 including a carbon fiber having a layered structure.SELECTED DRAWING: Figure 2

Description

本発明は、正極板及び鉛蓄電池に関する。   The present invention relates to a positive electrode plate and a lead storage battery.

鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。近年では、炭酸ガス排出規制対策、低燃費化等を目的として、発電制御、信号待ち等の際にエンジンを停止するシステムを搭載したアイドリングストップシステム車(以下「ISS車」という)の検討が盛んに行われており、鉛蓄電池にもISS車用途に適した特性が求められている。   Lead-acid batteries are widely used in industrial applications, for example, as batteries for automobiles, backup power supplies, and main power supplies for electric vehicles. In recent years, for the purpose of carbon dioxide emission control measures, fuel consumption reduction, etc., examination of idling stop system car (hereinafter referred to as “ISS car”) equipped with a system for stopping the engine at the time of power generation control, signal waiting etc. The lead storage battery is also required to have characteristics suitable for ISS car applications.

例えば、ISS車においては、鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用される。鉛蓄電池がPSOC下で使用される場合、完全充電状態で使用される場合よりも、鉛蓄電池の寿命が短くなる傾向にある。したがって、ISS車用の鉛蓄電池には、PSOC下で繰り返し使用された場合でも、寿命等の特性の低下を抑制できる(サイクル性能に優れる)ことが求められる。   For example, in an ISS vehicle, a lead storage battery is used in a partially charged state called PSOC (Partial State Of Charge). When the lead storage battery is used under PSOC, the life of the lead storage battery tends to be shorter than when it is used in the fully charged state. Therefore, lead storage batteries for ISS vehicles are required to be able to suppress deterioration of characteristics such as lifespan (excellent in cycle performance) even when used repeatedly under PSOC.

これに対して、例えば特許文献1には、活物質比表面積が6m/g以上である正極板と、所定の材料が添加された負極板とを備える鉛蓄電池によって、PSOC下での使用における寿命(サイクル性能)を向上できることが開示されている。 On the other hand, for example, Patent Document 1 discloses a lead storage battery including a positive electrode plate having an active material specific surface area of 6 m 2 / g or more and a negative electrode plate to which a predetermined material is added. It is disclosed that the life (cycle performance) can be improved.

国際公開第2011/108056号International Publication No. 2011/108056

しかし、鉛蓄電池のサイクル性能には、未だ改善の余地がある。そこで、本発明は、サイクル性能に優れる鉛蓄電池、及び該鉛蓄電池用の正極板を提供することを目的とする。   However, the cycle performance of lead acid batteries still has room for improvement. Then, an object of the present invention is to provide a lead storage battery excellent in cycle performance and a positive electrode plate for the lead storage battery.

本発明の一側面は、正極集電体と、正極集電体に保持された正極活物質とを備え、正極活物質は、層状構造を有する炭素繊維を含む、鉛蓄電池用正極板である。   One aspect of the present invention is a positive electrode plate for a lead storage battery, which comprises a positive electrode current collector and a positive electrode active material held by the positive electrode current collector, and the positive electrode active material comprises carbon fiber having a layered structure.

炭素繊維は、カーボンナノチューブであってよい。正極活物質の比表面積は、7.0m/g以上であってよい。正極活物質は、PbOを含んでいてよく、正極活物質におけるα−PbO及びβ−PbOのX線回折パターンのピーク強度の比率(α−PbO/β−PbO)が0.60以下であってよい。 The carbon fibers may be carbon nanotubes. The specific surface area of the positive electrode active material may be 7.0 m 2 / g or more. The positive electrode active material may include a PbO 2, the ratio of the peak intensity of X-ray diffraction pattern of the alpha-PbO 2 and beta-PbO 2 in the positive electrode active material (α-PbO 2 / β- PbO 2) is 0. It may be 60 or less.

本発明の他の一側面は、上記の正極板を備える鉛蓄電池である。   Another aspect of the present invention is a lead storage battery provided with the above-described positive electrode plate.

本発明によれば、サイクル性能に優れる鉛蓄電池、及び該鉛蓄電池用の正極板を提供することができる。   According to the present invention, it is possible to provide a lead storage battery excellent in cycle performance, and a positive electrode plate for the lead storage battery.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows the whole structure and internal structure of the lead acid battery which concern on one Embodiment. 図1に示した鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead storage battery shown in FIG.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は、一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。図1に示すように、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。   FIG. 1 is a perspective view showing an entire configuration and an internal structure of a lead-acid battery according to an embodiment. As shown in FIG. 1, the lead storage battery 1 includes a battery case 2 whose upper surface is open, and a lid 3 for closing the battery case 2. The battery case 2 and the lid 3 are made of, for example, polypropylene. The lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid plug 6 for closing a liquid injection port provided in the lid 3.

電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。   Inside the battery case 2, an electrode group 7, a negative electrode post 8 connecting the electrode group 7 to the negative electrode terminal 4, a positive electrode column (not shown) connecting the electrode group 7 to the positive electrode terminal 5, diluted sulfuric acid And the electrolyte solution of

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、負極板9と、正極板10と、負極板9と正極板10との間に配置されたセパレータ11と、を備えている。負極板9は、負極集電体(負極格子体)12と、負極集電体12に保持された負極活物質13と、を備えている。正極板10は、正極集電体(正極格子体)14と、正極集電体14に保持された正極活物質15と、を備えている。なお、本明細書では、化成後の負極板から負極集電体を除いたものを「負極活物質」、化成後の正極板から正極集電体を除いたものを「正極活物質」とそれぞれ定義する。   FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a negative electrode plate 9, a positive electrode plate 10, and a separator 11 disposed between the negative electrode plate 9 and the positive electrode plate 10. The negative electrode plate 9 includes a negative electrode current collector (negative electrode grid body) 12 and a negative electrode active material 13 held by the negative electrode current collector 12. The positive electrode plate 10 includes a positive electrode current collector (positive electrode grid body) 14 and a positive electrode active material 15 held by the positive electrode current collector 14. In the present specification, the negative electrode plate after formation is the negative electrode collector minus the “negative electrode active material”, and the positive electrode plate after the formation minus the positive electrode collector is the “positive electrode active material”. Define.

電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。電極群7において、複数の負極板9における各負極集電体12が有する耳部12a同士は、負極側ストラップ16で集合溶接されている。同様に、複数の正極板10における各正極集電体14が有する耳部14a同士は、正極側ストラップ17で集合溶接されている。負極側ストラップ16及び正極側ストラップ17は、それぞれ、負極柱8及び正極柱を介して負極端子4及び正極端子5に接続されている。   The electrode group 7 has a structure in which a plurality of negative electrode plates 9 and a positive electrode plate 10 are alternately stacked in a direction substantially parallel to the opening surface of the battery case 2 via the separators 11. That is, negative electrode plate 9 and positive electrode plate 10 are arranged such that their main surfaces extend in the direction perpendicular to the opening surface of battery case 2. In the electrode group 7, the ear portions 12 a of the negative electrode current collectors 12 of the plurality of negative electrode plates 9 are collectively welded by the negative electrode side strap 16. Similarly, the ear portions 14 a of the positive electrode current collectors 14 of the plurality of positive electrode plates 10 are collectively welded by the positive electrode side strap 17. The negative electrode side strap 16 and the positive electrode side strap 17 are connected to the negative electrode terminal 4 and the positive electrode terminal 5 via the negative electrode column 8 and the positive electrode column, respectively.

セパレータ11は、例えば袋状に形成されており、負極板9を収容している。セパレータ11は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等で形成されている。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。 The separator 11 is formed, for example, in a bag shape, and accommodates the negative electrode plate 9. The separator 11 is made of, for example, polyethylene (PE), polypropylene (PP) or the like. The separator 11 may be obtained by adhering inorganic particles such as SiO 2 and Al 2 O 3 to a woven fabric, a non-woven fabric, a porous film or the like formed of these materials.

負極集電体12及び正極集電体14は、それぞれ、鉛合金で形成されている。鉛合金は、鉛に加えて、スズ、カルシウム、アンチモン、セレン、銀、ビスマス等を含有する合金であってよく、具体的には、例えば、鉛、スズ及びカルシウムを含有する合金(Pb−Sn−Ca系合金)であってよい。   The negative electrode current collector 12 and the positive electrode current collector 14 are each formed of a lead alloy. The lead alloy may be an alloy containing, in addition to lead, tin, calcium, antimony, selenium, silver, bismuth, etc. Specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn -Ca-based alloy).

負極活物質13は、Pb成分として少なくともPbを含み、必要に応じて、Pb以外のPb成分(例えばPbSO)及び添加剤を更に含む。負極活物質13は、好ましくは、多孔質の海綿状鉛(Spongy Lead)を含む。 The negative electrode active material 13 contains at least Pb as a Pb component, and optionally further contains a Pb component other than Pb (for example, PbSO 4 ) and an additive. The negative electrode active material 13 preferably contains porous sponge lead.

添加剤としては、例えば、スルホ基及び/又はスルホン酸塩基を有する樹脂、硫酸バリウム、炭素材料(炭素繊維を除く)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。   As the additive, for example, a resin having a sulfo group and / or a sulfonate group, barium sulfate, carbon material (excluding carbon fiber) and reinforcing staple fiber (acrylic fiber, polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, carbon Fibers etc.).

スルホ基及び/又はスルホン酸塩基を有する樹脂は、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)からなる群より選ばれる少なくとも一種であってよい。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。   Resins having a sulfo group and / or a sulfonate group are lignin sulfonic acid, lignin sulfonic acid salt, and condensates of phenols, aminoaryl sulfonic acid and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid and formaldehyde) And at least one selected from the group consisting of condensates). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.

負極活物質13は、負極集電体12に保持された負極活物質ペーストを熟成及び乾燥することにより未化成の負極活物質を得た後に、未化成の負極活物質を化成することで得ることができる。負極活物質ペーストは、例えば、鉛粉、添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。負極活物質ペーストは、例えば、鉛粉と添加剤とを混合することにより混合物を得た後に、この混合物に溶媒及び硫酸を加えて混練することにより得られる。   The negative electrode active material 13 is obtained by forming an unformed negative electrode active material after obtaining an unformed negative electrode active material by maturing and drying the negative electrode active material paste held by the negative electrode current collector 12 Can. The negative electrode active material paste contains, for example, lead powder, an additive, a solvent (for example, water or an organic solvent) and sulfuric acid (for example, diluted sulfuric acid). The negative electrode active material paste is obtained, for example, by mixing lead powder and an additive to obtain a mixture, and then adding a solvent and sulfuric acid to the mixture and kneading.

鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。   The lead powder is, for example, a lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of a powder of main component PbO and scaly metallic lead Can be mentioned.

熟成は、温度35〜85℃、湿度50〜98RH%の雰囲気で15〜60時間行われてよい。乾燥は、温度45〜80℃で15〜30時間行われてよい。   Aging may be performed for 15 to 60 hours in an atmosphere at a temperature of 35 to 85 ° C. and a humidity of 50 to 98%. Drying may be performed at a temperature of 45-80 ° C. for 15-30 hours.

正極活物質15は、一実施形態において、Pb成分であるPbOと、層状構造を有する炭素繊維とを含む。正極活物質15は、必要に応じて、PbO以外のPb成分(例えばPbSO)及び添加剤を更に含んでいてよい。 In one embodiment, the positive electrode active material 15 includes PbO 2 which is a Pb component, and carbon fibers having a layered structure. The positive electrode active material 15 may further contain Pb components other than PbO 2 (for example, PbSO 4 ) and additives, as necessary.

Pb成分の含有量は、低温高率放電性能及びサイクル性能が更に向上する観点から、正極活物質の全質量を基準として、好ましくは90質量%以上、より好ましくは95質量%以上である。Pb成分の含有量は、製造コストの低減及び軽量化の観点から、正極活物質の全質量を基準として、好ましくは99.9質量%以下、より好ましくは98質量%以下である。これらの観点から、Pb成分の含有量は、正極活物質の全質量を基準として、90〜99.9質量%、95〜99.9質量%、90〜98質量%又は95〜98質量%であってよい。   The content of the Pb component is preferably 90% by mass or more, and more preferably 95% by mass or more, based on the total mass of the positive electrode active material, from the viewpoint of further improving low-temperature high-rate discharge performance and cycle performance. The content of the Pb component is preferably 99.9% by mass or less, more preferably 98% by mass or less, based on the total mass of the positive electrode active material, from the viewpoint of reducing the manufacturing cost and reducing the weight. From these viewpoints, the content of the Pb component is 90 to 99.9 mass%, 95 to 99.9 mass%, 90 to 98 mass%, or 95 to 98 mass% based on the total mass of the positive electrode active material. May be there.

正極活物質15は、好ましくは、Pb成分としてβ−PbOを含む。正極活物質15は、Pb成分として、α−PbOを更に含んでいてもよい。すなわち、正極活物質15は、一実施形態において、Pb成分としてβ−PbOのみを含んでいてよく、他の一実施形態において、Pb成分としてα−PbO及びβ−PbOを含んでいてよい。 The positive electrode active material 15 preferably contains β-PbO 2 as a Pb component. The positive electrode active material 15 may further contain α-PbO 2 as a Pb component. That is, in one embodiment, the positive electrode active material 15 may contain only β-PbO 2 as the Pb component, and in another embodiment, it may contain α-PbO 2 and β-PbO 2 as the Pb component. Good.

正極活物質15におけるα−PbO及びβ−PbOのX線回折パターンのピーク強度の比率(α−PbO/β−PbO)は、充電受入性能及び低温高率放電性能に優れる観点から、好ましくは0.60以下、より好ましくは0.50以下、更に好ましくは0.40以下、特に好ましくは0.30以下である。比率α−PbO/β−PbOは、サイクル性能に更に優れる観点から、好ましくは0.01以上、より好ましくは0.10以上、更に好ましくは0.25以上である。これらの観点から、比率α−PbO/β−PbOは、0.01〜0.60、0.01〜0.50、0.01〜0.40、0.01〜0.30、0.10〜0.60、0.10〜0.50、0.10〜0.40、0.10〜0.30、0.25〜0.60、0.25〜0.50、0.25〜0.40、又は0.25〜0.30であってよい。 The ratio (α-PbO 2 / β-PbO 2 ) of the peak intensity of the X-ray diffraction pattern of α-PbO 2 and β-PbO 2 in the positive electrode active material 15 is excellent in charge acceptance performance and low-temperature high-rate discharge performance. Preferably it is 0.60 or less, More preferably, it is 0.50 or less, More preferably, it is 0.40 or less, Especially preferably, it is 0.30 or less. The ratio α-PbO 2 / β-PbO 2 is preferably 0.01 or more, more preferably 0.10 or more, and still more preferably 0.25 or more from the viewpoint of further excellent cycle performance. From these viewpoints, the ratio α-PbO 2 / β-PbO 2 is 0.01 to 0.60, 0.01 to 0.50, 0.01 to 0.40, 0.01 to 0.30, 0. .10 to 0.60, 0.10 to 0.50, 0.10 to 0.40, 0.10 to 0.30, 0.25 to 0.60, 0.25 to 0.50, 0.25 -0.40, or 0.25-0.30.

比率α−PbO/β−PbOは、化成後(満充電状態)の正極活物質15における比率である。比率α−PbO/β−PbOは、例えば、正極活物質15の製造時に用いる希硫酸の量、化成時の温度等により調整することができる。例えば、正極活物質15の製造時に用いる希硫酸の量を多くするほど比率α−PbO/β−PbOは低くなり、化成温度を高くするほど比率α−PbO/β−PbOは高くなる。 The ratio α-PbO 2 / β-PbO 2 is a ratio in the positive electrode active material 15 after formation (full charge state). The ratio α-PbO 2 / β-PbO 2 can be adjusted, for example, by the amount of dilute sulfuric acid used at the time of production of the positive electrode active material 15, the temperature at the time of formation, and the like. For example, the ratio α-PbO 2 / β-PbO 2 as to increase the amount of dilute sulfuric acid used in the production of the positive electrode active material 15 is low, the ratio α-PbO 2 / β-PbO 2 Higher conversion temperatures are high Become.

比率α−PbO/β−PbOは、正極活物質15の広角X線回折測定により算出される。正極活物質15の広角X線回折測定では、例えば、主な化合物としてα−PbO、β−PbO及びPbSOに由来するピークが検出される。α−PbO及びβ−PbOのそれぞれとして特定されるメインピーク強度(cps)を用いて、「α−PbOのメインピーク強度」/「β−PbOのメインピーク強度」の比率を比率α−PbO/β−PbOとして算出する。 The ratio α-PbO 2 / β-PbO 2 is calculated by wide-angle X-ray diffraction measurement of the positive electrode active material 15. In the wide-angle X-ray diffraction measurement of the positive electrode active material 15, for example, peaks derived from α-PbO 2 , β-PbO 2 and PbSO 4 as main compounds are detected. Using the main peak intensities (cps) identified as α-PbO 2 and β-PbO 2 respectively, the ratio of “main peak intensity of α-PbO 2 ” / “main peak intensity of β-PbO 2 ” is a ratio Calculated as α-PbO 2 / β-PbO 2 .

広角X線回折測定は、例えば、以下のような方法で行う。
・測定装置:全自動多目的水平型X線回折装置 SmartLab(株式会社リガク製)
・X線源:Cu−Kα / 1.541862Å
・フィルター:Cu−Kβ
・出力:40kV、30mA
・スキャンモード:CONTINUOUS
・スキャン範囲:20.0000度〜60.0000度
・ステップ幅:0.0200度
・スキャン軸:2θ/θ
・スキャンスピード:10.0000度/分
・試料ホルダー:ガラス製、深さ0.2mm
・試料作製方法:測定試料は、下記の手順により作製できる。まず、化成した電池を解体して正極板を取り出し水洗をした後、50℃で24時間乾燥する。次に、前記正極板の中央部から正極活物質を3g採取してすり潰す。
・算出方法:正極活物質の厚みが試料ホルダーの深さと同等になるように正極活物質を試料ホルダーに充填し、平滑な試料面を作製する。広角X線回折を測定し、回折角(2θ)と回折ピーク強度とのX線回折パターン(X線回折チャート)を得る。X線回折パターンにおいては、例えば、回折角度28.6度に位置するα−PbO、及び、回折角度25.3度に位置するβ−PbOが検出される。α−PbO(110面)及びβ−PbO(111面)のそれぞれとして特定されるピーク強度(cps)を用いて、「α−PbOのピーク強度」/「β−PbOのピーク強度」の比率を比率α−PbO/β−PbOとして算出する。
The wide-angle X-ray diffraction measurement is performed, for example, by the following method.
・ Measurement device: Fully-automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Corporation)
・ X-ray source: Cu-Kα / 1.541862 Å
Filter: Cu-Kβ
・ Output: 40kV, 30mA
・ Scan mode: CONTINUOUS
Scan range: 20.0000 degrees to 60. 0000 degrees Step width: 0.0200 degrees Scan axis: 2θ / θ
-Scanning speed: 10.0000 degree / minute-Sample holder: made of glass, depth 0.2 mm
Sample preparation method: A measurement sample can be prepared by the following procedure. First, the battery formed is disassembled and the positive electrode plate is taken out and washed with water, and then dried at 50 ° C. for 24 hours. Next, 3 g of the positive electrode active material is collected from the center of the positive electrode plate and ground.
Calculation method: The positive electrode active material is filled in the sample holder so that the thickness of the positive electrode active material is equal to the depth of the sample holder, and a smooth sample surface is produced. Wide-angle X-ray diffraction is measured to obtain an X-ray diffraction pattern (X-ray diffraction chart) of the diffraction angle (2θ) and the diffraction peak intensity. In the X-ray diffraction pattern, for example, α-PbO 2 located at a diffraction angle of 28.6 degrees and β-PbO 2 located at a diffraction angle of 25.3 degrees are detected. Using the peak intensities (cps) identified as α-PbO 2 (110 plane) and β-PbO 2 (111 plane) respectively, “peak intensity of α-PbO 2 ” / peak intensity of β-PbO 2 Ratio is calculated as a ratio α-PbO 2 / β-PbO 2 .

層状構造を有する炭素繊維は、繊維状(細長形状)の炭素材料である。本明細書では、「層状構造を有する炭素繊維」における「炭素繊維」(繊維状(細長形状)の炭素材料)は、アスペクト比が100以上である炭素材料として定義される。当該アスペクト比は、炭素材料の走査型電子顕微鏡写真から算出される、炭素材料の最大長さと、当該最大長さを有する方向に垂直な方向における炭素材料の最小長さとの比(最大長さ/最小長さ)として定義される。   The carbon fiber having a layered structure is a fibrous (elongated shape) carbon material. In the present specification, “carbon fiber” (a fibrous (long-shaped) carbon material) in “carbon fiber having a layered structure” is defined as a carbon material having an aspect ratio of 100 or more. The aspect ratio is the ratio of the maximum length of the carbon material to the minimum length of the carbon material in the direction perpendicular to the direction having the maximum length, which is calculated from the scanning electron micrograph of the carbon material (maximum length / Defined as minimum length).

層状構造を有する炭素繊維は、層状構造として、例えば、炭素繊維の長手方向に垂直な断面をみたときに、複数の炭素原子で構成された1又は2以上の層を有している。層状構造を有する炭素繊維は、例えば、複数の炭素原子で構成された筒状の層を1又は2以上有している。層状構造を有する炭素繊維は、耐酸化性に更に優れる観点から、好ましくは2以上の層を有する多層構造の炭素繊維である。層状構造を有する炭素繊維は、長手方向に貫通する中空部を有する中空筒状であってよい。炭素繊維が層状構造を有していることは、例えば、粉末X線回折法によって、回折プロファイルから積層(格子面)間隔を求めることによって確認することができる。層状構造を有する炭素繊維は、特に限定されないが、例えばカーボンナノチューブであってよい。   The carbon fiber having a layered structure has, for example, one or more layers composed of a plurality of carbon atoms when viewed in a cross section perpendicular to the longitudinal direction of the carbon fiber as a layered structure. The carbon fiber having a layered structure has, for example, one or more cylindrical layers composed of a plurality of carbon atoms. The carbon fiber having a layered structure is preferably a carbon fiber of a multilayer structure having two or more layers, from the viewpoint of further excellent oxidation resistance. The carbon fiber having a layered structure may be in the form of a hollow cylinder having a hollow portion penetrating in the longitudinal direction. The layered structure of the carbon fiber can be confirmed, for example, by determining the lamination (lattice plane) distance from the diffraction profile by powder X-ray diffraction. The carbon fiber having a layered structure is not particularly limited, and may be, for example, a carbon nanotube.

鉛蓄電池1では、正極活物質15がこのような層状構造を有する炭素繊維を含んでいることにより、優れたサイクル性能が得られる。その理由として、炭素材料が、繊維状であることにより、正極活物質15中のPb成分(PbO、PbSO等)同士をつなぎとめて正極活物質15の泥状化を抑制すると共に、層状構造を有していることにより、正極活物質15の耐酸化性を向上させるためである、と本発明者らは推察している。 In the lead storage battery 1, excellent cycle performance can be obtained because the positive electrode active material 15 contains the carbon fiber having such a layered structure. The reason is that the carbon material is in a fibrous form, thereby connecting the Pb components (PbO 2 , PbSO 4, etc.) in the positive electrode active material 15 together to suppress the muddy formation of the positive electrode active material 15 and The present inventors infer that the reason is to improve the oxidation resistance of the positive electrode active material 15 by having the above.

層状構造を有する炭素繊維の含有量は、電気伝導性を更に好適に付与し、Pb成分(PbO、PbSO等)同士を更に良好に結合させる観点から、正極活物質の全質量を基準として、好ましくは0.02質量%以上、より好ましくは0.1質量%以上、更に好ましくは1.5質量%以上である。層状構造を有する炭素繊維の含有量は、電解液の減液量を抑制する観点から、正極活物質の全質量を基準として、好ましくは3.0質量%以下、より好ましくは1.0質量%以下、更に好ましくは0.5質量%以下である。 The content of the carbon fiber having a layered structure more preferably imparts electrical conductivity, and the Pb components (PbO 2 , PbSO 4, etc.) are further favorably bonded to each other, based on the total mass of the positive electrode active material. Preferably it is 0.02 mass% or more, More preferably, it is 0.1 mass% or more, More preferably, it is 1.5 mass% or more. The content of the carbon fiber having a layered structure is preferably 3.0% by mass or less, more preferably 1.0% by mass, based on the total mass of the positive electrode active material, from the viewpoint of suppressing the amount of liquid reduction of the electrolytic solution The content is more preferably 0.5% by mass or less.

添加剤としては、例えば、炭素材料(層状構造を有する炭素繊維を除く。)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等。層状構造を有する炭素繊維を除く。)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。   Examples of additives include carbon materials (excluding carbon fibers having a layered structure) and reinforcing staple fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, etc. Except carbon fibers having a layered structure). Can be mentioned. Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.

以上のような正極活物質15の比表面積は、充電受入性能及び低温高率放電性能に優れる観点から、好ましくは7.0m/g以上、より好ましくは9.0m/g以上、更に好ましくは12.0m/g以上である。正極活物質15の比表面積は、サイクル性能に更に優れる観点から、好ましくは20.0m/g以下、より好ましくは15.0m/g以下、より好ましくは10.0m/g以下である。これらの観点から、正極活物質15の比表面積は、7.0〜20.0m/g、7.0〜15.0m/g、7.0〜10.0m/g、9.0〜20.0m/g、9.0〜15.0m/g、9.0〜10.0m/g、12.0〜20.0m/g、又は12.0〜15.0m/gであってもよい。 The specific surface area of the positive electrode active material 15 as described above is preferably 7.0 m 2 / g or more, more preferably 9.0 m 2 / g or more, further preferably from the viewpoint of excellent charge acceptance and low-temperature high-rate discharge performance. Is 12.0 m 2 / g or more. The specific surface area of the positive electrode active material 15, from the viewpoint of further excellent cycle performance, preferably 20.0 m 2 / g or less, more preferably 15.0 m 2 / g or less, and more preferably is less 10.0 m 2 / g . From these viewpoints, the specific surface area of the cathode active material 15, 7.0~20.0m 2 /g,7.0~15.0m 2 /g,7.0~10.0m 2 /g,9.0 ~20.0m 2 /g,9.0~15.0m 2 /g,9.0~10.0m 2 /g,12.0~20.0m 2 / g, or 12.0~15.0m 2 It may be / g.

正極活物質の比表面積は、化成後(満充電状態)の正極活物質の比表面積であり、BET法により測定される。BET法は、一つの分子の大きさが既知の不活性ガス(例えば窒素ガス)を測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積の一般的な測定手法である。正極活物質の比表面積は、例えば、後述する正極活物質ペーストを作製する際の硫酸及び水の添加量を調整する方法、未化成の段階で活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。   The specific surface area of the positive electrode active material is the specific surface area of the positive electrode active material after formation (fully charged), and is measured by the BET method. The BET method is a method of adsorbing an inert gas (for example, nitrogen gas) whose size of one molecule is known on the surface of a measurement sample, and determining the surface area from the adsorbed amount and the occupied area of the inert gas. It is a general measurement method of surface area. The specific surface area of the positive electrode active material is, for example, a method of adjusting the addition amount of sulfuric acid and water at the time of producing a positive electrode active material paste described later, a method of refining the active material in an unformed stage, and changing formation conditions. It can adjust by a method etc.

正極活物質15は、正極集電体14に保持された正極活物質ペーストを、負極活物質作製時と同様の条件で熟成及び乾燥することにより未化成の正極活物質を得た後に、未化成の正極活物質を化成することで得ることができる。正極活物質ペーストは、例えば、負極活物質ペーストに用いられるものと同様の鉛粉、層状構造を有する炭素繊維、必要に応じて添加される添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。正極活物質ペーストは、化成時間を短縮できる観点から、鉛丹(Pb)を更に含んでいてもよい。 The positive electrode active material 15 is not formed after the positive electrode active material paste held by the positive electrode current collector 14 is matured and dried under the same conditions as in the preparation of the negative electrode active material to obtain an unformed positive electrode active material. It can obtain by forming the positive electrode active material of the above. The positive electrode active material paste includes, for example, the same lead powder as that used for the negative electrode active material paste, a carbon fiber having a layered structure, an additive optionally added, a solvent (for example, water or an organic solvent) and sulfuric acid For example, dilute sulfuric acid). The positive electrode active material paste may further contain red lead (Pb 3 O 4 ) from the viewpoint of shortening the formation time.

以上説明した鉛蓄電池1は、例えば、電極板(負極板及び正極板)を得る電極板製造工程と、電極板を含む構成部材を組み立てて鉛蓄電池1を得る組立工程とを備える製造方法により製造される。   The lead storage battery 1 described above is manufactured, for example, by a manufacturing method including an electrode plate manufacturing process for obtaining an electrode plate (a negative electrode plate and a positive electrode plate) and an assembly process for assembling a component including the electrode plate to obtain a lead storage battery 1 Be done.

電極板製造工程では、例えば、負極集電体12に負極活物質ペーストを保持させた後に、上述した条件で熟成及び乾燥することにより未化成の負極板9を得ると共に、正極集電体14に正極活物質ペーストを保持させた後に、上述した条件で熟成及び乾燥することにより未化成の正極板10を得る。   In the electrode plate manufacturing process, for example, after holding the negative electrode active material paste on the negative electrode current collector 12, aging and drying are performed under the above-described conditions to obtain the unformed negative electrode plate 9 and the positive electrode current collector 14. After holding the positive electrode active material paste, the unformed positive electrode plate 10 is obtained by aging and drying under the conditions described above.

組立工程では、例えば、得られた負極板及び正極板を、セパレータ11を介して積層し、同極性の電極板の集電部をストラップで溶接させて電極群を得る。この電極群を電槽内に配置して未化成の鉛蓄電池を作製する。次に、未化成の鉛蓄電池に希硫酸を入れて、直流電流を通電して電槽化成する。続いて、化成後の硫酸の比重(20℃)を適切な電解液の比重に調整することで、鉛蓄電池1が得られる。化成に用いる硫酸の比重(20℃)は、1.15〜1.25であってよい。化成後の硫酸の比重(20℃)は、好ましくは1.25〜1.33、より好ましくは1.26〜1.30である。化成条件及び硫酸の比重は、電極板のサイズに応じて調整することができる。化成処理は、組立工程において実施されてもよく、電極板製造工程において実施されてもよい(タンク化成)。   In the assembly process, for example, the obtained negative electrode plate and positive electrode plate are stacked via the separator 11, and the current collecting portion of the electrode plate of the same polarity is welded with a strap to obtain an electrode group. This electrode group is disposed in a battery case to produce an unformed lead-acid battery. Next, dilute sulfuric acid is put into an unformed lead storage battery, and direct current is applied to form a battery. Subsequently, the lead storage battery 1 is obtained by adjusting the specific gravity (20 ° C.) of sulfuric acid after formation to an appropriate specific gravity of the electrolytic solution. The specific gravity (20 ° C.) of the sulfuric acid used for formation may be 1.15 to 1.25. The specific gravity (20 ° C.) of sulfuric acid after formation is preferably 1.25 to 1.33, and more preferably 1.26 to 1.30. The formation conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode plate. The chemical conversion treatment may be performed in the assembly process or may be performed in the electrode plate manufacturing process (tank formation).

以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.

<実施例1>
(正極板の作製)
鉛粉100質量部に対して、カーボンナノチューブ(多層構造の炭素繊維、Sigma−Aldrich社製、商品名:SWeNTSMW 200)0.2質量部を加えて乾式混合した。次に、鉛粉及びカーボンナノチューブからなる混合物100質量部に対して、水3質量部を加えると共に、希硫酸(比重1.28)9質量部を段階的に加え、1時間混練して正極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式正極集電体に、正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極板を得た。
Example 1
(Production of positive plate)
To 100 parts by mass of lead powder, 0.2 parts by mass of carbon nanotubes (multi-layered carbon fiber, manufactured by Sigma-Aldrich, trade name: SWeNTSMW 200) was added and dry-mixed. Next, 3 parts by mass of water is added to 100 parts by mass of a mixture consisting of lead powder and carbon nanotubes, 9 parts by mass of dilute sulfuric acid (specific gravity 1.28) are added stepwise, and kneading is performed for 1 hour A substance paste was made. After filling a positive electrode active material paste into an expanded positive electrode current collector produced by subjecting a rolled sheet made of a lead alloy to expand processing, it was aged for 24 hours in an atmosphere with a temperature of 50 ° C. and a humidity of 98%. Thereafter, the resultant was dried at a temperature of 50 ° C. for 16 hours to obtain an unformed positive electrode plate.

(負極板の作製)
鉛粉100質量部に対して、ビスパーズP215(ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物、商品名、日本製紙株式会社製)0.2質量部(樹脂固形分)、アクリル繊維0.1質量部、硫酸バリウム1.0質量部、及びファーネスブラック0.2質量部の混合物を添加し、乾式混合した。次に、この混合物に水を加えて混練した後、比重1.280の希硫酸を少量ずつ添加しながら更に混練して、負極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式負極集電体に、この負極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の負極板を得た。
(Fabrication of negative electrode plate)
Bispars P 215 (condensate of bisphenol, aminobenzene sulfonic acid and formaldehyde, trade name, manufactured by Nippon Paper Industries Co., Ltd.) 0.2 parts by mass (solid resin content), acrylic fiber 0.1 parts based on 100 parts by mass of lead powder A mixture of parts by mass, 1.0 parts by mass of barium sulfate, and 0.2 parts by mass of furnace black was added and dry mixed. Next, water was added to the mixture and the mixture was kneaded, and then, while the dilute sulfuric acid having a specific gravity of 1.280 was added little by little, the mixture was further kneaded to prepare a negative electrode active material paste. The negative electrode active material paste was filled into an expanded negative electrode current collector produced by subjecting a rolled sheet made of a lead alloy to expand processing, and then it was aged for 24 hours in an atmosphere with a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and obtained the unformed negative electrode plate.

(鉛蓄電池の組み立て)
袋状に加工したポリエチレン製のセパレータに、未化成の負極板を挿入した。次に、未化成の正極板7枚と、袋状セパレータに挿入された未化成の負極板8枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の電極板の耳部同士を溶接して電極群を作製した。電極群を電槽に挿入して2V単セル電池(JIS D 5301規定のD23サイズの単セルに相当)を組み立てた。その後、比重1.240の硫酸を注入し、40℃の水槽に入れて1時間静置した。その後、17Aにて18時間の定電流で化成を行った。なお、化成後の電解液(硫酸溶液)の比重を1.29(20℃)に調整した。
(Assembly lead acid battery)
An unformed negative electrode plate was inserted into a polyethylene separator processed into a bag shape. Next, seven unformed positive electrode plates and eight unformed negative electrode plates inserted in the bag-like separator were alternately laminated. Subsequently, the ear parts of the electrode plates of the same polarity were welded together by a cast-on-strap (COS) method to produce an electrode group. The electrode group was inserted into the battery case to assemble a 2 V single cell battery (corresponding to a single cell of D23 size defined in JIS D 5301). Thereafter, sulfuric acid having a specific gravity of 1.240 was injected, and the solution was placed in a 40 ° C. water bath and allowed to stand for 1 hour. Thereafter, formation was performed at 17 A with a constant current of 18 hours. The specific gravity of the electrolytic solution (sulfuric acid solution) after formation was adjusted to 1.29 (20 ° C.).

(X線回折パターンのピーク強度に基づく比率α−PbO/β−PbOの測定)
測定試料は、下記の手順により作製した。まず、上記の手順で化成した電池を解体して、一つの電極群を取り出した。次に、取り出した電極群から全ての正極板を取り出して水洗をした後、50℃で24時間乾燥した。次に、正極板の中央部から正極活物質を3g採取してすり潰した。続いて、正極活物質の厚みが試料ホルダーの深さと同等になるように正極活物質を試料ホルダーに充填して平滑な試料面を作製した後、比率α−PbO/β−PbOの測定を行った。比率α−PbO/β−PbOは電極群から取り出した全ての正極板について算出した比率α−PbO/β−PbOの平均値とした。比率α−PbO/β−PbOの測定条件を下記に示す。
(Measurement of ratio α-PbO 2 / β-PbO 2 based on peak intensity of X-ray diffraction pattern)
The measurement sample was prepared by the following procedure. First, the battery formed in the above procedure was disassembled, and one electrode group was taken out. Next, all positive electrode plates were taken out from the taken out electrode group, washed with water, and then dried at 50 ° C. for 24 hours. Next, 3 g of the positive electrode active material was collected from the center of the positive electrode plate and ground. Subsequently, the positive electrode active material is filled in the sample holder so that the thickness of the positive electrode active material is equal to the depth of the sample holder to prepare a smooth sample surface, and then the ratio α-PbO 2 / β-PbO 2 measurement Did. The ratio α-PbO 2 / β-PbO 2 was an average value of the ratio α-PbO 2 / β-PbO 2 calculated for all positive electrode plates taken out of the electrode group. The measurement conditions of the ratio α-PbO 2 / β-PbO 2 are shown below.

[比率α−PbO/β−PbOの測定条件]
・測定装置:全自動多目的水平型X線回折装置 SmartLab(株式会社リガク製)
・X線源:Cu−Kα / 1.541862Å
・フィルター:Cu−Kβ
・出力:40kV、30mA
・スキャンモード:CONTINUOUS
・スキャン範囲:20.0000度〜60.0000度
・ステップ幅:0.0200度
・スキャン軸:2θ/θ
・スキャンスピード:10.0000度/分
・試料ホルダー:ガラス製、深さ0.2mm
・算出方法:作製した試料(正極活物質)3gを用いて広角X線回折を測定した結果、得られた回折角(2θ)と回折ピーク強度のX線回折チャートから、回折角度28.6度に位置するα−PbO、及び、回折角度25.3度に位置するβ−PbOが検出された。α−PbO(110面)及びβ−PbO(111面)それぞれの化合物として特定される波形のピーク強度(cps)を用いて、「α−PbOのピーク強度」/「β−PbOのピーク強度」の比率を比率α−PbO/β−PbOとして算出した。
[Measurement conditions of ratio α-PbO 2 / β-PbO 2 ]
・ Measurement device: Fully-automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Corporation)
・ X-ray source: Cu-Kα / 1.541862 Å
Filter: Cu-Kβ
・ Output: 40kV, 30mA
・ Scan mode: CONTINUOUS
Scan range: 20.0000 degrees to 60. 0000 degrees Step width: 0.0200 degrees Scan axis: 2θ / θ
-Scanning speed: 10.0000 degree / minute-Sample holder: made of glass, depth 0.2 mm
Calculation method: As a result of measuring wide-angle X-ray diffraction using 3 g of the prepared sample (positive electrode active material), a diffraction angle 28.6 degrees is obtained from the obtained diffraction angle (2θ) and the X-ray diffraction chart of the diffraction peak intensity Situated in alpha-PbO 2, and, the beta-PbO 2 is located at a diffraction angle 25.3 degrees is detected. Using the peak intensity (cps) of the waveform specified as the compound of α-PbO 2 (110 plane) and β-PbO 2 (111 plane), “peak intensity of α-PbO 2 ” / “β-PbO 2 The ratio of “peak intensity” was calculated as a ratio α-PbO 2 / β-PbO 2 .

(正極活物質の比表面積の測定)
比表面積の測定試料は、下記の手順により作製した。まず、上記の手順で化成した電池を解体して、一つの電極群を取り出した。次に、取り出した電極群から全ての正極板を取り出して水洗をした後、50℃で24時間乾燥した。次に、正極板の中央部から正極活物質を2g採取して、130℃で30分乾燥して測定試料を作製した。
(Measurement of specific surface area of positive electrode active material)
The measurement sample of the specific surface area was prepared by the following procedure. First, the battery formed in the above procedure was disassembled, and one electrode group was taken out. Next, all positive electrode plates were taken out from the taken out electrode group, washed with water, and then dried at 50 ° C. for 24 hours. Next, 2 g of the positive electrode active material was collected from the central portion of the positive electrode plate and dried at 130 ° C. for 30 minutes to prepare a measurement sample.

上記のとおり作製した測定試料を液体窒素で冷却しながら、液体窒素温度で窒素ガス吸着量を多点法で測定し、BET法に従って正極活物質の比表面積を算出した。正極活物質の比表面積は、電極群から取り出した全ての正極板について算出した正極活物質の比表面積の平均値とした。測定条件を下記に示す。   While cooling the measurement sample prepared as described above with liquid nitrogen, the nitrogen gas adsorption amount was measured by the multipoint method at liquid nitrogen temperature, and the specific surface area of the positive electrode active material was calculated according to the BET method. The specific surface area of the positive electrode active material was taken as the average value of the specific surface areas of the positive electrode active materials calculated for all the positive electrode plates taken out of the electrode group. The measurement conditions are shown below.

[比表面積の測定条件]
・装置:Macsorb1201(株式会社マウンテック製)
・脱気時間:130℃で10分
・冷却:液体窒素で5分間
・吸着ガス流量:25mL/分
[Measurement conditions of specific surface area]
・ Apparatus: Macsorb 1201 (made by Mountech Co., Ltd.)
Degassing time: 10 minutes at 130 ° C. Cooling: 5 minutes with liquid nitrogen Adsorbed gas flow rate: 25 mL / min

<比較例1>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
Comparative Example 1
A lead storage battery was prepared and each measurement was performed in the same manner as in Example 1 except that carbon nanotubes were not used at the time of preparation of the positive electrode active material paste.

<実施例2>
正極活物質ペースト作製時に用いる希硫酸を、希硫酸(比重1.28)11質量部に変更し、化成時に注入する硫酸の比重を1.235に変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
Example 2
The same procedure as in Example 1 was carried out except that the dilute sulfuric acid used in preparing the positive electrode active material paste was changed to 11 parts by weight of dilute sulfuric acid (specific gravity 1.28) and the specific gravity of sulfuric acid injected in forming was changed to 1.235. , And prepared lead-acid battery and each measurement.

<比較例2>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例2と同様にして、鉛蓄電池の作製及び各測定を行った。
Comparative Example 2
A lead storage battery was prepared and each measurement was performed in the same manner as in Example 2 except that carbon nanotubes were not used at the time of preparation of the positive electrode active material paste.

<実施例3>
正極活物質ペースト作製時に、水の配合量を12質量部に、用いる希硫酸を希硫酸(比重1.28)15質量部に、化成時に注入する硫酸の比重を1.230にそれぞれ変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
Example 3
Other than changing the compounding amount of water to 12 parts by mass, preparing the diluted sulfuric acid to be used to 15 parts by mass of diluted sulfuric acid (specific gravity 1.28), and changing the specific gravity of sulfuric acid injected at the time of formation to 1.230. In the same manner as in Example 1, preparation and measurement of a lead storage battery were performed.

<比較例3>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例3と同様にして、鉛蓄電池の作製及び各測定を行った。
Comparative Example 3
A lead storage battery was produced and each measurement was performed in the same manner as in Example 3 except that carbon nanotubes were not used at the time of production of the positive electrode active material paste.

<実施例4>
化成時に注入する硫酸の比重を1.200に、硫酸注入後の静置時間を5時間にそれぞれ変更した以外は、実施例3と同様にして、鉛蓄電池の作製及び各測定を行った。
Example 4
A lead storage battery was produced and each measurement was performed in the same manner as in Example 3, except that the specific gravity of sulfuric acid injected during formation was changed to 1.200, and the standing time after sulfuric acid injection was changed to 5 hours.

<比較例4>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例4と同様にして、鉛蓄電池の作製及び各測定を行った。
Comparative Example 4
A lead storage battery was produced and each measurement was performed in the same manner as in Example 4 except that carbon nanotubes were not used when producing the positive electrode active material paste.

<実施例5>
正極活物質ペースト作製時に、水の配合量を9質量部に、用いる希硫酸を希硫酸(比重1.34)25質量部に、化成時に注入する硫酸の比重を1.200にそれぞれ変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
Example 5
At the time of preparation of the positive electrode active material paste, except that the compounding amount of water was changed to 9 parts by mass, the diluted sulfuric acid used was changed to 25 parts by mass of diluted sulfuric acid (specific gravity 1.34), and the specific gravity of sulfuric acid injected during formation was changed to 1.200. In the same manner as in Example 1, preparation and measurement of a lead storage battery were performed.

<比較例5>
正極活物質ペースト作製時にカーボンナノチューブを用いなかった以外は、実施例5と同様にして、鉛蓄電池の作製及び各測定を行った。
Comparative Example 5
A lead storage battery was produced and each measurement was performed in the same manner as in Example 5 except that carbon nanotubes were not used at the time of production of the positive electrode active material paste.

<実施例6>
硫酸注入後の静置時間を5時間に変更した以外は、実施例3と同様にして、鉛蓄電池の作製及び各測定を行った。
Example 6
A lead storage battery was produced and each measurement was performed in the same manner as in Example 3 except that the standing time after sulfuric acid injection was changed to 5 hours.

<実施例7>
化成時の水槽温度を45℃に変更した以外は、実施例5と同様にして、鉛蓄電池の作製及び各測定を行った。
Example 7
A lead storage battery was produced and each measurement was performed in the same manner as in Example 5 except that the temperature of the water tank at the time of formation was changed to 45 ° C.

<実施例8>
正極活物質ペースト作製時に、水の配合量を11質量部に、用いる希硫酸を希硫酸(比重1.55)23質量部に、化成時に注入する硫酸の比重を1.185にそれぞれ変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
Example 8
Other than changing the compounding amount of water to 11 parts by mass, the dilute sulfuric acid to be used to 23 parts by mass of dilute sulfuric acid (specific gravity 1.55), and changing the specific gravity of sulfuric acid to be injected at the time of formation to 1.185. In the same manner as in Example 1, preparation and measurement of a lead storage battery were performed.

<実施例9>
正極活物質ペースト作製時に、水の配合量を3質量部に、用いる希硫酸を希硫酸(比重1.55)30質量部に、化成時に注入する硫酸の比重を1.170にそれぞれ変更した以外は、実施例1と同様にして、鉛蓄電池の作製及び各測定を行った。
Example 9
Other than changing the compounding amount of water to 3 parts by mass, preparing the diluted sulfuric acid to be used to 30 parts by mass of diluted sulfuric acid (specific gravity 1.55), and changing the specific gravity of sulfuric acid injected at the time of formation to 1.170. In the same manner as in Example 1, preparation and measurement of a lead storage battery were performed.

各実施例及び比較例の鉛蓄電池の性能を以下のとおり評価した。
(充電受入性能)
作製した鉛蓄電池について、化成後、約12時間放置した後、25℃で10.4Aの電流値で30分間定電流放電を行い、さらに、6時間放置した後、2.33Vで100Aの制限電流として60秒間の定電圧充電を行い、その開始から5秒目までの電流値を測定し、正極活物質の単位質量あたりの電流値(「電流値」/「正極活物質の含有量(g)」)を算出した。比較例1の測定結果(正極活物質の単位質量あたりの電流値)を100として相対評価した。
The performances of the lead storage batteries of the examples and the comparative examples were evaluated as follows.
(Charge acceptance performance)
The prepared lead storage battery is left for about 12 hours after formation, and then subjected to constant current discharge for 30 minutes at a current value of 10.4 A at 25 ° C., and further left for 6 hours, then limiting current of 100 A at 2.33 V Constant-voltage charge for 60 seconds, and measuring the current value from the start to the 5th second, the current value per unit mass of the positive electrode active material (“current value” / “content of positive electrode active material (g) ") Was calculated. The measurement result (the current value per unit mass of the positive electrode active material) of Comparative Example 1 was relatively evaluated as 100.

(低温高率放電性能)
作製した鉛蓄電池の電池温度を−15℃に調整した後、300Aで定電流放電を行い、セル電圧が1.0Vを下回るまでの放電持続時間を測定し、正極活物質の単位質量あたりの放電持続時間(「放電持続時間」/「正極活物質の含有量(g)」)を算出した。低温高率放電性能は、比較例1の測定結果(正極活物質の単位質量あたりの放電持続時間)を100として相対評価した。
(Low-temperature high-rate discharge performance)
After adjusting the battery temperature of the prepared lead storage battery to -15 ° C, constant current discharge is performed at 300 A, and the discharge duration time until the cell voltage falls below 1.0 V is measured, and the discharge per unit mass of the positive electrode active material The duration ("discharge duration" / "content of positive electrode active material (g)") was calculated. The low-temperature high-rate discharge performance was evaluated relative to the measurement result of Comparative Example 1 (discharge duration time per unit mass of positive electrode active material) as 100.

(サイクル性能)
作製した鉛蓄電池について、電池温度が25℃になるように雰囲気温度を調整し、45A−59秒間の定電流放電及び300A−1秒間の定電流放電を行った後に制限電流100A−2.33V−60秒間の定電流・定電圧充電を行う操作を1サイクルとする試験を行った。この試験は、ISS車での鉛蓄電池の使われ方を模擬したサイクル試験である。このサイクル試験では、放電量に対して充電量が少ないため、充電が完全に行われないと徐々に充電不足になり、その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。すなわち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。このサイクル試験では、300A放電時の1秒目電圧を測定し、1.2Vを下回ったときのサイクル数を求め、正極活物質の単位質量あたりのサイクル数(「1.2Vを下回ったときのサイクル数」/「正極活物質の含有量(g)」)を求めた。サイクル性能は、比較例1の測定結果(正極活物質の単位質量あたりのサイクル数)を100として相対評価した。
(Cycle performance)
About the produced lead acid battery, the ambient temperature is adjusted so that the battery temperature is 25 ° C, and after performing constant current discharge for 45A-59 seconds and constant current discharge for 300A-1 seconds, limiting current 100A-2.33V- A test was conducted with one cycle of operation for performing constant current and constant voltage charging for 60 seconds. This test is a cycle test that simulates how lead storage batteries are used in ISS cars. In this cycle test, since the amount of charge is small relative to the amount of discharge, if the charge is not completely performed, the charge will gradually become insufficient. As a result, the first second voltage when discharged for 1 second with a discharge current of 300 A Gradually decline. That is, when the negative electrode is polarized at the time of constant current / constant voltage charging and switching to constant voltage charging at an early stage, the charge current is attenuated and charging becomes insufficient. In this cycle test, the first-second voltage at 300 A discharge is measured, and the number of cycles when the voltage is less than 1.2 V is determined. The number of cycles per unit mass of the positive electrode active material (“when The number of cycles / the content of the positive electrode active material (g) was determined. The cycle performance was evaluated relative to the measurement result of Comparative Example 1 (the number of cycles per unit mass of the positive electrode active material) as 100.

各実施例及び比較例における正極活物質の特性及び鉛蓄電池の性能を表1に示す。

Figure 2019091598
The characteristics of the positive electrode active material and the performance of the lead storage battery in each example and comparative example are shown in Table 1.
Figure 2019091598

1…鉛蓄電池、9…負極板、10…正極板、11…セパレータ、12…負極集電体、13…負極活物質、14…正極集電体、15…正極活物質。   DESCRIPTION OF SYMBOLS 1 ... Lead-acid battery, 9 ... Negative electrode plate, 10 ... Positive electrode plate, 11 ... Separator, 12 ... Negative electrode collector, 13 ... Negative electrode active material, 14 ... Positive electrode collector, 15 ... Positive electrode active material.

Claims (5)

正極集電体と、前記正極集電体に保持された正極活物質とを備え、
前記正極活物質は、層状構造を有する炭素繊維を含む、鉛蓄電池用正極板。
A positive electrode current collector, and a positive electrode active material held by the positive electrode current collector;
The positive electrode plate for a lead storage battery, wherein the positive electrode active material comprises a carbon fiber having a layered structure.
前記炭素繊維がカーボンナノチューブである、請求項1に記載の正極板。   The positive electrode plate according to claim 1, wherein the carbon fiber is a carbon nanotube. 前記正極活物質の比表面積が7.0m/g以上である、請求項1又は2に記載の正極板。 The positive electrode plate according to claim 1, wherein a specific surface area of the positive electrode active material is 7.0 m 2 / g or more. 前記正極活物質がPbOを含み、
前記正極活物質におけるα−PbO及びβ−PbOのX線回折パターンのピーク強度の比率(α−PbO/β−PbO)が0.60以下である、請求項1〜3のいずれか一項に記載の正極板。
The positive electrode active material contains PbO 2 ,
The peak intensity ratio (α-PbO 2 / β-PbO 2 ) of the X-ray diffraction pattern of α-PbO 2 and β-PbO 2 in the positive electrode active material is 0.60 or less. The positive electrode plate according to any one of the preceding claims.
請求項1〜4のいずれか一項に記載の正極板を備える、鉛蓄電池。   A lead storage battery comprising the positive electrode plate according to any one of claims 1 to 4.
JP2017219070A 2017-11-14 2017-11-14 Positive electrode plate and lead acid battery Active JP7010556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017219070A JP7010556B2 (en) 2017-11-14 2017-11-14 Positive electrode plate and lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219070A JP7010556B2 (en) 2017-11-14 2017-11-14 Positive electrode plate and lead acid battery

Publications (2)

Publication Number Publication Date
JP2019091598A true JP2019091598A (en) 2019-06-13
JP7010556B2 JP7010556B2 (en) 2022-02-10

Family

ID=66837469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219070A Active JP7010556B2 (en) 2017-11-14 2017-11-14 Positive electrode plate and lead acid battery

Country Status (1)

Country Link
JP (1) JP7010556B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021111625A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021163615A (en) * 2020-03-31 2021-10-11 古河電池株式会社 Lead-acid battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077475A (en) * 2001-08-30 2003-03-14 Univ Shinshu Additive for electrode of lead acid storage battery, electrode for lead acid storage battery and lead acid battery using the same
JP2008098009A (en) * 2006-10-12 2008-04-24 Furukawa Battery Co Ltd:The Cathode plate for lead-acid battery
WO2016084858A1 (en) * 2014-11-27 2016-06-02 日立化成株式会社 Lead storage cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077475A (en) * 2001-08-30 2003-03-14 Univ Shinshu Additive for electrode of lead acid storage battery, electrode for lead acid storage battery and lead acid battery using the same
JP2008098009A (en) * 2006-10-12 2008-04-24 Furukawa Battery Co Ltd:The Cathode plate for lead-acid battery
WO2016084858A1 (en) * 2014-11-27 2016-06-02 日立化成株式会社 Lead storage cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021111625A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP7011023B2 (en) 2020-01-07 2022-01-26 古河電池株式会社 Liquid lead-acid battery
JP2021163615A (en) * 2020-03-31 2021-10-11 古河電池株式会社 Lead-acid battery
JP7097403B2 (en) 2020-03-31 2022-07-07 古河電池株式会社 Lead-acid battery

Also Published As

Publication number Publication date
JP7010556B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP5797384B2 (en) Composite capacitor negative electrode plate for lead acid battery and lead acid battery
JP5621841B2 (en) Lead acid battery
JP5783170B2 (en) Lead acid battery
JP5598532B2 (en) Lead acid battery
JP6311799B2 (en) Lead acid battery
JP6977770B2 (en) Liquid lead-acid battery
JP7010556B2 (en) Positive electrode plate and lead acid battery
JP5396216B2 (en) Lead acid battery
JP6954353B2 (en) Lead-acid battery
JP2012133958A (en) Composite capacitor negative electrode plate and lead storage battery
WO2010122874A1 (en) Lead storage battery
WO2020066763A1 (en) Lead battery
JP2011171035A (en) Negative electrode plate for lead storage battery, and lead storage battery
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JP2017183160A (en) Lead storage battery
JP7285206B2 (en) Method for determining electrode performance, lead-acid battery, and method for manufacturing the same
CN110603671A (en) Lead-acid battery
WO2019234860A1 (en) Lead storage battery
JP2020161316A (en) Positive electrode plate and lead acid battery
WO2019235216A1 (en) Lead storage battery
JP2021096900A (en) Lead acid battery
JP2017016970A (en) Lead storage battery
WO2019234862A1 (en) Lead storage battery
JP2022138753A (en) Lead-acid battery
JP5332535B2 (en) Lead-acid battery electrode and lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7010556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350