JP2012133958A - Composite capacitor negative electrode plate and lead storage battery - Google Patents

Composite capacitor negative electrode plate and lead storage battery Download PDF

Info

Publication number
JP2012133958A
JP2012133958A JP2010284039A JP2010284039A JP2012133958A JP 2012133958 A JP2012133958 A JP 2012133958A JP 2010284039 A JP2010284039 A JP 2010284039A JP 2010284039 A JP2010284039 A JP 2010284039A JP 2012133958 A JP2012133958 A JP 2012133958A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
carbon
composite capacitor
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010284039A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Daisuke Monma
大輔 門馬
Trieu Lan Lam
トリュー ラン ラム
Rosalie Louey
ロザリー ルーエイ
Peter Nigel Haigh
ピーター ニゲル ハイフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Scientific and Industrial Research Organization CSIRO
Furukawa Battery Co Ltd
Original Assignee
Commonwealth Scientific and Industrial Research Organization CSIRO
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commonwealth Scientific and Industrial Research Organization CSIRO, Furukawa Battery Co Ltd filed Critical Commonwealth Scientific and Industrial Research Organization CSIRO
Priority to JP2010284039A priority Critical patent/JP2012133958A/en
Publication of JP2012133958A publication Critical patent/JP2012133958A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite capacitor negative electrode plate thanks to which a lead storage battery having an improved cycle life can be obtained.SOLUTION: The composite capacitor negative electrode plate is obtained by forming, on a surface of a negative electrode plate, a coating layer made of a carbon mixture containing a carbon material having capacitor capacitance and/or pseudo capacitor capacitance. The carbon material has a ratio of a (002) plane spacing to a (10) plane spacing of 1.89 or lower as measured by X-ray diffraction and/or has a ratio of the (002) plane spacing to a (11) plane spacing of 3.26 or lower as measured by X-ray diffraction.

Description

本発明は、ハイブリッド電気自動車用や風力発電や太陽光発電の蓄電用などの各種産業に用いられる複合キャパシタ負極板及び鉛蓄電池に関する。   The present invention relates to a composite capacitor negative electrode plate and a lead storage battery used in various industries such as for hybrid electric vehicles, wind power generation, and solar power storage.

例えば、ハイブリッド電気自動車用として従来の鉛蓄電池に比し高率放電、高率充電に優れた鉛蓄電池が、特表2007-506230号公報に提案されている。該鉛蓄電池の負極は、カーボンブラックなどの導電性を確保するカーボン材料と活性炭などのキャパシタ容量及び/又は擬似キャパシタ容量を確保するカーボン材料とを夫々適量配合し、これに結着剤を含むカーボン合剤をペースト状に調製し、これを負極板の表面に塗布しカーボン合剤被覆層を形成した後、乾燥して複合キャパシタ負極板としたものである。そして、該鉛蓄電池は、この複合キャパシタ負極板と正極板をセパレータを介し積層して組み立てた極板群を常法に従い電槽内に収容し、硫酸電解液を注入して製造したものである。
従来、電気二重層キャパシタに用いられる活性炭は、より大きな二重層容量と急速充放電性能を獲得するため、比表面積と細孔容積の増大と吸着イオン種に合わせた細孔径の最適化が図られてきた。しかし、鉛蓄電池に活性炭を用いる場合は、硫酸電解液に由来する硫酸イオンとプロトンの他に、活物質に由来する鉛イオンが活性炭との吸脱着と酸化還元反応に関与するため、最適な活性炭の選択はより複雑なものとなった。また、活性炭の製造時の出発原料の相異、炭化条件の相異などにより複合キャパシタ負極板による鉛蓄電池のサイクル寿命が必ずしも向上したものが得られず、鉛蓄電池の製造に信頼性がないことが分かった。
また、通常の活性炭は六角網面が積層したグラファイトの結晶構造が大きく乱れたものと言われ、六角網面は維持されるがc軸方向が乱層構造を取るため、X線回折を行ってもピークが不鮮明になり、00l回折線とhk0回折線は認められるが、hkl回折線は認められなくなる。即ち、2θ=20-30°に002回折線、40-45°に10回折線(グラファイトの100,101,102回折線に対応)、45-50°に004回折線が現れる。(非特許文献1参照)。
For example, Japanese Patent Publication No. 2007-506230 has proposed a lead storage battery that is superior in high-rate discharge and high-rate charge compared to conventional lead storage batteries for hybrid electric vehicles. For the negative electrode of the lead storage battery, a carbon material such as carbon black and an appropriate amount of carbon material such as activated carbon and a carbon material that secures a capacitor capacity and / or pseudo-capacitor capacity are blended, and a carbon containing a binder is added thereto. A mixture is prepared in the form of a paste, which is applied to the surface of the negative electrode plate to form a carbon mixture coating layer, and then dried to obtain a composite capacitor negative electrode plate. And this lead acid battery is manufactured by accommodating the electrode plate group assembled by laminating the composite capacitor negative electrode plate and the positive electrode plate via a separator in a battery case and injecting a sulfuric acid electrolyte. .
Conventionally, activated carbon used in electric double layer capacitors has an increased specific surface area and pore volume, and optimized pore diameter according to adsorbed ion species in order to obtain a larger double layer capacity and rapid charge / discharge performance. I came. However, when using activated carbon for lead-acid batteries, in addition to sulfate ions and protons derived from the sulfuric acid electrolyte, lead ions derived from the active material are involved in adsorption / desorption with the activated carbon and oxidation-reduction reactions. The choice became more complex. In addition, the lead life of a lead-acid battery using a composite capacitor negative electrode plate is not necessarily improved due to differences in starting materials during the production of activated carbon, differences in carbonization conditions, etc., and the production of lead-acid batteries is not reliable. I understood.
In addition, normal activated carbon is said to have a large disorder in the crystal structure of the graphite layered with hexagonal mesh surfaces, and the hexagonal mesh surface is maintained, but the c-axis direction takes a disordered layer structure, so X-ray diffraction is performed. However, the peak becomes unclear and the 00l diffraction line and the hk0 diffraction line are recognized, but the hkl diffraction line is not recognized. That is, 002 diffraction lines appear at 2θ = 20-30 °, 10 diffraction lines at 40-45 ° (corresponding to 100, 101, 102 diffraction lines of graphite), and 004 diffraction lines at 45-50 °. (See Non-Patent Document 1).

特表2007-506230号公報Special table 2007-506230 gazette

眞田雄三・鈴木基之・藤本薫編「新版活性炭-基礎と応用」株式会社講談社 2003年8月10日発行 P4〜P5Edited by Yuzo Kajita, Motoyuki Suzuki and Jun Fujimoto “New Edition Activated Carbon-Fundamentals and Applications” Kodansha Co., Ltd. August 10, 2003 P4-P5

しかし乍ら、上記の複合キャパシタ負極板を負極として用いた鉛蓄電池は、PSOCで急速充放電を繰り返すハイブリッド自動車や風力発電、太陽光発電の蓄電用などの高率放電や高率充電に適することを確認し得たが、該蓄電池の寿命の点で更なる改善ができないかを検討するべくキャパシタ容量及び/又は擬似キャパシタ容量を有する活性炭などの各種カーボン材料に注目した。
発明者等は、上記従来の考え方とは異なる観点から、キャパシタ容量及び/又は擬似キャパシタ容量を有する活性炭などの各種カーボン材につき検討した結果、a軸方向の面間隔を基準とし、c軸方向の面間隔との比率が或いはa軸とb軸の合成方向の面間隔の比率が夫々ある値よりも小さくなることがイオンの吸脱着を容易にし、また酸化還元反応に対する活性の向上にも影響することを見出した。これは、c軸方向の層間又は上記のa軸とb軸の合成方向の層間に侵入するイオン種の量と同時にa軸方向の末端面に吸着するイオン量も性能に寄与するためと考えられる。かくして、発明者等は、上記の見知から鋭意検討を重ねた結果、上記の課題を解決し、特定のカーボン材料を用いることにより、従来の鉛蓄電池に比し、長寿命の鉛蓄電池を確実に製造できる複合キャパシタ負極板を開発した。
However, lead-acid batteries that use the above-mentioned composite capacitor negative electrode plate as the negative electrode should be suitable for high-rate discharge and high-rate charge, such as for hybrid vehicles, wind power generation, and solar power generation that repeatedly charge and discharge rapidly with PSOC. However, attention was paid to various carbon materials such as activated carbon having a capacitor capacity and / or a pseudo-capacitor capacity in order to examine whether further improvement in terms of the life of the storage battery can be made.
As a result of studying various carbon materials such as activated carbon having a capacitor capacity and / or a pseudo capacitor capacity from a viewpoint different from the above-described conventional concept, the inventors have determined that the surface spacing in the a-axis direction is a reference, and the c-axis direction The ratio of the surface separation or the ratio of the surface separation in the synthesis direction of the a-axis and b-axis is smaller than a certain value, respectively, which facilitates the adsorption / desorption of ions and also affects the improvement of the activity for the oxidation-reduction reaction. I found out. This is thought to be because the amount of ions adsorbed on the end surface in the a-axis direction at the same time as the amount of ionic species entering between the c-axis direction interlayer or the above-described a-axis and b-axis synthesis direction layer also contributes to the performance. . Thus, as a result of intensive studies based on the above knowledge, the inventors have solved the above-mentioned problems and have ensured a long-life lead-acid battery compared to conventional lead-acid batteries by using a specific carbon material. Has developed a composite capacitor negative electrode plate that can be manufactured in

本発明は、請求項1に記載の通り、負極板の表面にキャパシタ容量及び/又は擬似キャパシタ容量を有するカーボン材料を含有するカーボン合剤の被覆層を形成して成る複合キャパシタ負極板において、該カーボン材料は、X線回折による002面と10面の面間隔比が1.89以下及び/又は、002面と11面の面間隔比が3.26以下であることを特徴とする複合キャパシタ負極板に存する。
該カーボン材料としては、請求項2に列挙した各種のカーボン材料である。
更に本発明は、請求項3に記載の通り、請求項1又は2に記載の複合キャパシタ負極板を具備した鉛蓄電池に存する。
According to the present invention, as described in claim 1, in the composite capacitor negative electrode plate formed by forming a coating layer of a carbon mixture containing a carbon material having a capacitor capacity and / or a pseudo capacitor capacity on the surface of the negative electrode plate, The carbon material is present in the composite capacitor negative electrode plate characterized in that the plane spacing ratio between the 002 plane and the 10 plane by X-ray diffraction is 1.89 or less and / or the plane spacing ratio between the 002 plane and the 11 plane is 3.26 or less.
Examples of the carbon material include various carbon materials listed in claim 2.
Furthermore, the present invention resides in a lead storage battery including the composite capacitor negative electrode plate according to claim 1 or 2 as described in claim 3.

請求項1に係る発明によれば、該複合キャパシタ負極板は、上記の特性を有する請求項2に記載の各種カーボン材料から選択した少なくとも1種をカーボン合剤被覆層に含有するので、これを鉛蓄電池の負極として具備せしめることにより、従来の長寿命の鉛蓄電池の製造に信頼性を欠く不都合を解消し、サイクル寿命の向上した鉛蓄電池を確実に得られる。   According to the invention of claim 1, the composite capacitor negative electrode plate contains at least one selected from the various carbon materials according to claim 2 having the above characteristics in the carbon mixture coating layer. By providing as a negative electrode of a lead storage battery, the disadvantage of lack of reliability in the production of a conventional long life lead storage battery is eliminated, and a lead storage battery with improved cycle life can be obtained reliably.

各種活性炭の002面の面間隔と10面の面間隔の比と鉛蓄電池のサイクル寿命の関係を示す特性図。The characteristic view which shows the relationship of the cycle life of lead acid battery, and the ratio of the surface interval of 002 surface and the surface interval of 10 surfaces of various activated carbon. 各種活性炭の002面の面間隔と11面の面間隔の比と鉛蓄電池のサイクル寿命の関係を示す特性図。The characteristic view which shows the relationship of the cycle life of lead storage battery, and the ratio of the surface interval of 002 surface of various activated carbons, and the surface interval of 11 surfaces.

本発明の複合キャパシタ負極板は、従来の製造法に従い製造する。即ち、鉛又は鉛合金系から成る集電用格子基板に鉛活物質を充填して成る負極板の表面に、その少なくとも片面又は両面に、カーボン合剤のペーストを塗布して湿潤状態の該負極活物質に密着したカーボン合剤被覆層を形成し、次いで乾燥せしめることによりその表面に一体に密着したポーラスなカーボン合剤被覆層を有する複合キャパシタ負極板が製造される。   The composite capacitor negative electrode plate of the present invention is manufactured according to a conventional manufacturing method. That is, the anode in a wet state by applying a carbon mixture paste on at least one side or both sides of a negative electrode plate formed by filling a lead active material into a current collecting grid substrate made of lead or lead alloy. By forming a carbon mixture coating layer in close contact with the active material and then drying, a composite capacitor negative electrode plate having a porous carbon mixture coating layer in close contact with the surface is manufactured.

従来、カーボン合剤は、導電性を確保する公知の各種のカーボン材料から選択した少なくとも1種とキャパシタ容量及び/又は擬似キャパシタ容量を確保する公知の各種カーボン材料から選択した少なくとも1種とを混合したもので、このカーボン合剤を増粘剤と水を適当に添加混練してペースト状として負極板に塗布し、前記のように複合キャパシタ負極板としたものを鉛蓄電池の負極として用いたので、そのサイクル寿命がまちまちな鉛蓄電池が得られ、サイクル寿命の向上した鉛蓄電池を確実に製造できない不都合があった。   Conventionally, a carbon mixture is a mixture of at least one selected from various known carbon materials that ensure conductivity and at least one selected from various known carbon materials that ensure capacitor capacity and / or pseudo capacitor capacity. Since this carbon mixture was appropriately added and kneaded with a thickener and water and applied to the negative electrode plate as a paste, and the composite capacitor negative electrode plate was used as the negative electrode of the lead storage battery as described above. There is a disadvantage that lead-acid batteries with various cycle lives can be obtained, and lead-acid batteries with improved cycle life cannot be reliably manufactured.

かかる従来の事情に鑑み、カーボン合剤に含有せしめる鉛蓄電池の寿命に大きく影響する特にキャパシタ容量及び/又は擬似キャパシタ容量を有する各種のカーボン材料につき、カーボン合剤に用いる前に、発明者等の上記の知見から夫々のカーボン材料につき、X線粉末回折法により下記するような面間隔の測定を行った。
その代表例として、出発原料の種類、炭化条件の相異、賦活条件の相異などにより製造された市販の11種類の活性炭の夫々につき、X線回折により002面間隔、10面間隔、11面間隔を夫々測定算出し、面間隔比(002面/10面)及び面間隔比(002面/11面)を求めた。
In view of such conventional circumstances, especially for various carbon materials having a capacitor capacity and / or a pseudo-capacitor capacity that greatly affect the life of the lead storage battery to be included in the carbon mixture, before using the carbon mixture, the inventors etc. From the above findings, the following interplanar spacing was measured for each carbon material by the X-ray powder diffraction method.
As representative examples, for each of 11 types of commercially available activated carbon produced according to the types of starting materials, differences in carbonization conditions, differences in activation conditions, etc., 002 plane spacing, 10 plane spacing, 11 planes by X-ray diffraction The distances were measured and calculated to determine the face spacing ratio (002 plane / 10 plane) and the plane spacing ratio (002 plane / 11 plane).

X線粉末回折法による活性炭の面間隔の測定は次のように行った。X線回折装置は、理学電気工業株式会社製RINT2200 Ultimaを用いた。上記11種類の活性炭の夫々の試料を平均粒径が30ミクロン以下になるように機械粉砕したものをサンプルとし、これをガラス製サンプルホルダーにセットした。そして、X線源としてCu Kα線を用い2θ=10-90°の測定を行った。得られた回折線はX線回折総合解析ソフトJADE+を用いてラインブロードニングとバックグラウンドの処理を行い、更に40-50°付近に現れる10回折線と004回折線から成るブロードな回折線は2つの回折線が正規分布であると仮定して10回折線を分離した。これらの回折線のピークを2θとして夫々の面間隔を算出した。その結果を図1及び図2に示す。   Measurement of the interplanar spacing of the activated carbon by the X-ray powder diffraction method was performed as follows. As the X-ray diffractometer, RINT2200 Ultima manufactured by Rigaku Denki Kogyo Co., Ltd. was used. Each of the above 11 kinds of activated carbon was mechanically pulverized so that the average particle size was 30 microns or less, and this was set in a glass sample holder. Then, measurement was performed at 2θ = 10-90 ° using Cu Kα ray as an X-ray source. The resulting diffraction lines are subjected to line broadening and background processing using the X-ray diffraction comprehensive analysis software JADE +. Furthermore, there are 2 broad diffraction lines consisting of 10 diffraction lines and 004 diffraction lines appearing around 40-50 °. Ten diffraction lines were separated assuming that the two diffraction lines were normally distributed. The distance between the planes was calculated with the peak of these diffraction lines as 2θ. The results are shown in FIG. 1 and FIG.

次に、これら11種類の活性炭の夫々を用い、下記表1に示す配合組成から成る11種類のペースト状のカーボン合剤を作製し、その各ペーストを負極板の耳部を除き、その両面に、該ペーストの乾燥重量換算で負極活物質の重量の5wt.%を塗布し、空気中で60℃で1時間乾燥して11種類の複合キャパシタ負極板を製造した。次いで、夫々の複合キャパシタ負極板5枚と正極板4枚とをセパレータを介して交互に積層し極板群を組み立て、電槽内に収容した。この場合、極板群の両端と電槽の対向面にスペーサーを介して群の圧迫度が50kPaになるようにした。次いで、制御弁を具備した蓋を施した後、電槽に硫酸アルミニウム18水塩を30g/L溶解した比重1.30の硫酸水溶液を注入した。次に1Aで20時間充電を行い、その後セル電圧が1.75Vに達するまで2Aで放電した。その後、再び1Aで15時間の充電と2Aでセル電圧1.75Vまで放電し、かくして、正極容量規制で、5時間率容量が10Ahの制御弁式鉛蓄電池を11種類製造した。   Next, using each of these 11 types of activated carbon, 11 types of paste-like carbon mixtures having the composition shown in Table 1 below were prepared, and each paste was removed on both sides except for the ears of the negative electrode plate. Then, 5 wt.% Of the weight of the negative electrode active material in terms of dry weight of the paste was applied, and dried in air at 60 ° C. for 1 hour to produce 11 types of composite capacitor negative electrode plates. Next, five composite capacitor negative electrode plates and four positive electrode plates were alternately laminated via separators to assemble an electrode plate group, and accommodated in the battery case. In this case, the degree of compression of the group was set to 50 kPa through spacers between both ends of the electrode plate group and the opposite surface of the battery case. Next, after a lid equipped with a control valve was applied, a sulfuric acid aqueous solution having a specific gravity of 1.30 in which 30 g / L of aluminum sulfate 18 hydrate was dissolved was poured into the battery case. Next, the battery was charged at 1A for 20 hours, and then discharged at 2A until the cell voltage reached 1.75V. Thereafter, the battery was charged again at 1A for 15 hours and discharged at 2A to a cell voltage of 1.75V. Thus, 11 types of control valve type lead-acid batteries having a 5-hour rate capacity of 10 Ah were manufactured under the positive electrode capacity regulation.

Figure 2012133958
Figure 2012133958

次に、これら11種類の鉛蓄電池の夫々を用いて、HEVによる走行を模擬してPSOCで急速充放電を繰り返すことによる寿命試験を行った。その試験は該電池を2Aで1時間放電してPSOC 80%とした後、40℃の雰囲気中で50Aで1秒放電と20Aで1秒充電を500回繰り返した後、30Aで1秒充電と1秒の休止を510回繰り返した。これを1サイクルとした。そして、放電時のセル電圧が0Vに達した時点を寿命として、寿命に至るまでのサイクル数を測定した。その結果を図1及び図2に示す。
図1及び図2で、符号a,b,…jは11種類の活性炭を示す。
これらの図から明らかな通り、X線回折による002面/10面の面間隔比が1.89以下の活性炭e,f,g,h,i,j,k及び002面/11面の面間隔比が3.26以下である活性炭e,f,g,h,i,j,kは、サイクル寿命が500サイクルを超える長寿命の鉛蓄電池をもたらすことが判明した。これに対し、002面/10面の面間隔比が1.90以上の活性炭a,b,c,d及び002面/11面の面間隔比が3.28以上の活性炭a,b,c,dはサイクル寿命が500サイクル未満の短寿命の鉛蓄電池をもたらすことが判明した。
従って、活性炭e,f,g,h,i,j,kをカーボン合剤に用いるときは、500サイクル以上の長寿命の鉛蓄電池を確実に製造することができる。
Next, using each of these 11 types of lead-acid batteries, a life test was conducted by simulating running with HEV and repeating rapid charge and discharge with PSOC. In the test, the battery was discharged at 2A for 1 hour to give PSOC 80%, and then discharged at 50A for 1 second and charged at 20A for 1 second 500 times in an atmosphere of 40 ° C, and then charged at 30A for 1 second. The one-second pause was repeated 510 times. This was one cycle. Then, the time when the cell voltage at the time of discharge reached 0 V was defined as the lifetime, and the number of cycles until the lifetime was reached was measured. The results are shown in FIG. 1 and FIG.
In FIG. 1 and FIG. 2, symbols a, b,... J indicate 11 types of activated carbon.
As is clear from these figures, the surface separation ratio of activated carbon e, f, g, h, i, j, k, and 002 surface / 11 surface is less than 1.89 by X-ray diffraction. Activated carbon e, f, g, h, i, j, k, which is 3.26 or less, was found to yield a long-life lead-acid battery with a cycle life exceeding 500 cycles. On the other hand, activated carbon a, b, c, d with a 002 plane / 10 plane spacing ratio of 1.90 or more and activated carbon a, b, c, d with a 002 plane / 11 spacing ratio of 3.28 or more are cycle life. Has been found to result in short-life lead-acid batteries of less than 500 cycles.
Therefore, when activated carbon e, f, g, h, i, j, k is used as a carbon mixture, a lead-acid battery having a long life of 500 cycles or more can be reliably produced.

以上から明らかなように、上記の比較試験に試料として用いた活性炭のうち、サイクル寿命が500サイクル以上を有する鉛蓄電池は、(a)002面/10面の面間隔比が1.89以下であり、且つ(b)002面/11面の面間隔比が3.26以下である活性炭e,f,g,h,i,j,kを用いて複合キャパシタ負極板得られることが判明したが、その他の市販の複数種の活性炭を夫々試料として上記と同様のX線回折により測定し、上記(a)及び(b)の面間隔比を予め求めた後、上記の比較試験例と同様にして複数種の複合キャパシタ負極板を作製し、その夫々を負極とした鉛蓄電池を夫々製造し、上記のサイクル寿命試験を行った。その結果、002面/10面の面間隔比が1.89以下であるという条件及び002面/11面の面間隔比が3.26以下であるという条件のいずれか一方の条件を満足する活性炭を用い、複合キャパシタ負極板を製造することにより、500サイクル以上のサイクル寿命を有する鉛蓄電池が得られることを確認した。   As is clear from the above, among the activated carbons used as samples in the above comparative test, the lead storage battery having a cycle life of 500 cycles or more has a (a) 002 plane / 10 plane spacing ratio of 1.89 or less, And (b) it was found that a composite capacitor negative electrode plate can be obtained using activated carbon e, f, g, h, i, j, k with a surface spacing ratio of 002 plane / 11 plane of 3.26 or less. Measured by X-ray diffraction similar to the above as a sample of each of the activated carbons of the above, and after determining the interplanar spacing ratios of (a) and (b) in advance, a plurality of types of activated carbon were obtained in the same manner as the above comparative test example. Composite capacitor negative electrode plates were prepared, lead storage batteries each having the negative electrode were manufactured, and the cycle life test was conducted. As a result, using activated carbon that satisfies either the condition that the 002 plane / 10 plane spacing ratio is 1.89 or less and the 002 plane / 11 spacing ratio is 3.26 or less, a composite It was confirmed that a lead storage battery having a cycle life of 500 cycles or more can be obtained by manufacturing a capacitor negative electrode plate.

活性炭以外のキャパシタ容量及び/又は擬似キャパシタ容量を有するカーボン材料であるカーボンブラック、ケッチェンブラック、グラファイト、ハードカーボン、ソフトカーボンについて、夫々市販品を用いて、上記と同様にX線回折による上記(a)及び(b)の面間隔比の測定を行った後、上記と同様にしてこれらを用いて複合キャパシタ負極板を夫々作製し、上記の同様にしてこれらを負極とした鉛蓄電池を製造し、その夫々につき上記と同様にサイクル寿命試験を行った結果、上記(a)及び(b)の少なくともいずれか一方の面間隔比の条件を満たしたカーボン材料により、500サイクル以上の寿命を有する鉛蓄電池が確実に得られることが判った。   For carbon black, ketjen black, graphite, hard carbon, and soft carbon, which are carbon materials having a capacitor capacity and / or pseudo capacitor capacity other than activated carbon, respectively, using commercially available products, the above by X-ray diffraction as described above ( After measuring the surface spacing ratios of a) and (b), composite capacitor negative plates were prepared using these in the same manner as described above, and lead storage batteries using these as negative electrodes were manufactured in the same manner as described above. As a result of carrying out a cycle life test in the same manner as described above, lead having a life of 500 cycles or more by the carbon material satisfying the condition of the surface spacing ratio of at least one of the above (a) and (b) It turned out that a storage battery is obtained reliably.

このように、本発明によれば、複合キャパシタ負極板のカーボン合剤被覆層の形成に用いるカーボン材料としてX線回折による002面/10面の面間隔比が1.89以下、及び/又は002面/11面の面間隔比3.26以下のものを使用することにより、長寿命の鉛蓄電池が確実に得られ、従来の此種鉛蓄電池の製造の信頼性を高めることができ、産業上極めて有用である。   Thus, according to the present invention, the carbon material used for forming the carbon mixture coating layer of the composite capacitor negative electrode plate has a plane spacing ratio of 002 plane / 10 plane by X-ray diffraction of 1.89 or less and / or 002 plane / By using 11 surfaces with a surface spacing ratio of 3.26 or less, a long-life lead-acid battery can be reliably obtained, and the reliability of manufacturing this type of lead-acid battery can be improved, which is extremely useful in industry. .

a,b,c,d,e,f,g,h,i,j,k 各種活性炭   a, b, c, d, e, f, g, h, i, j, k Various activated carbons

Claims (3)

負極板の表面にキャパシタ容量及び/又は擬似キャパシタ容量を有するカーボン材料を含有するカーボン合剤の被覆層を形成して成る複合キャパシタ負極板において、該カーボン材料は、X線回折による002面と10面の面間隔比が1.89以下及び/又は、002面と11面の面間隔比が3.26以下であることを特徴とする複合キャパシタ負極板。   In the composite capacitor negative electrode plate formed by forming a coating layer of a carbon mixture containing a carbon material having a capacitor capacity and / or a pseudo capacitor capacity on the surface of the negative electrode plate, the carbon material is composed of 002 plane and 10 by X-ray diffraction. A composite capacitor negative electrode plate, wherein the face spacing ratio of the faces is 1.89 or less and / or the face spacing ratio of the 002 and 11 faces is 3.26 or less. 該カーボン材料は、活性炭、アセチレンブラック、ファーネスブラック、サーマルブラック又はチャンネルブラックなどのカーボンブラック、ケッチェンブラック、グラファイト、ハードカーボン、ソフトカーボンである請求項1に記載の複合キャパシタ負極板。   2. The composite capacitor negative electrode plate according to claim 1, wherein the carbon material is carbon black such as activated carbon, acetylene black, furnace black, thermal black or channel black, ketjen black, graphite, hard carbon, or soft carbon. 請求項1又は2に記載の複合キャパシタ負極板を具備した鉛蓄電池。   3. A lead-acid battery comprising the composite capacitor negative electrode plate according to claim 1 or 2.
JP2010284039A 2010-12-21 2010-12-21 Composite capacitor negative electrode plate and lead storage battery Withdrawn JP2012133958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284039A JP2012133958A (en) 2010-12-21 2010-12-21 Composite capacitor negative electrode plate and lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284039A JP2012133958A (en) 2010-12-21 2010-12-21 Composite capacitor negative electrode plate and lead storage battery

Publications (1)

Publication Number Publication Date
JP2012133958A true JP2012133958A (en) 2012-07-12

Family

ID=46649347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284039A Withdrawn JP2012133958A (en) 2010-12-21 2010-12-21 Composite capacitor negative electrode plate and lead storage battery

Country Status (1)

Country Link
JP (1) JP2012133958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030275A (en) * 2011-07-26 2013-02-07 Sumitomo Heavy Ind Ltd Electricity storage device and work machine mounted with electricity storage device
CN104659350A (en) * 2015-02-26 2015-05-27 中南大学 Method for secondary modification of surface of active carbon material for super battery
WO2022113730A1 (en) * 2020-11-30 2022-06-02 古河電気工業株式会社 Lead alloy, lead storage battery electrode, lead storage battery, and power storage system
WO2022113731A1 (en) * 2020-11-30 2022-06-02 古河電気工業株式会社 Lead alloy, electrode for lead storage batteries, lead storage battery, and power storage system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030275A (en) * 2011-07-26 2013-02-07 Sumitomo Heavy Ind Ltd Electricity storage device and work machine mounted with electricity storage device
CN104659350A (en) * 2015-02-26 2015-05-27 中南大学 Method for secondary modification of surface of active carbon material for super battery
WO2022113730A1 (en) * 2020-11-30 2022-06-02 古河電気工業株式会社 Lead alloy, lead storage battery electrode, lead storage battery, and power storage system
WO2022113731A1 (en) * 2020-11-30 2022-06-02 古河電気工業株式会社 Lead alloy, electrode for lead storage batteries, lead storage battery, and power storage system

Similar Documents

Publication Publication Date Title
US9812703B2 (en) Electrode and electrical storage device for lead-acid system
RU2576670C2 (en) Hybrid negative plate for lead-acid accumulator battery and lead-acid accumulator battery
Xu et al. Design and synthesis of 3D interconnected mesoporous NiCo 2 O 4@ Co x Ni 1− x (OH) 2 core–shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors
Mandal et al. Positive electrode active material development opportunities through carbon addition in the lead-acid batteries: A recent progress
EP3288107B1 (en) Lead storage battery
RU2672675C2 (en) Tungsten-based material, super battery and supercapacitor
US20130171502A1 (en) Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same
Yeung et al. Enhanced cycle life of lead-acid battery using graphene as a sulfation suppression additive in negative active material
Enos et al. Understanding function and performance of carbon additives in lead-acid batteries
Chen et al. Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage
US10553873B2 (en) Graphitic carbon-based cathode for aluminum secondary battery and manufacturing method
JP2012133958A (en) Composite capacitor negative electrode plate and lead storage battery
Lang et al. High‐performance porous lead/graphite composite electrode for bipolar lead‐acid batteries
US11936032B2 (en) Absorbent glass mat battery
Inguanta et al. Growth and electrochemical performance of lead and lead oxide nanowire arrays as electrodes for lead-acid batteries
JP2010257673A (en) Lead storage battery
JP2019091598A (en) Positive electrode plate and lead storage battery
CN112786879B (en) Negative electrode material for sodium ion battery and sodium ion battery
JP2011171035A (en) Negative electrode plate for lead storage battery, and lead storage battery
JPH10233207A (en) Negative electrode for lithium secondary cell
JPWO2018199124A1 (en) Lead storage battery
US9892865B2 (en) Super hybrid capacitor
JP2013137880A (en) Secondary battery
RU109610U1 (en) LITHIUM-ION BATTERY NEGATIVE ELECTRODE
JP2007173112A (en) Anode active material for secondary battery, secondary battery and their manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120813

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131030