JP2018145510A - Nickel powder production method - Google Patents

Nickel powder production method Download PDF

Info

Publication number
JP2018145510A
JP2018145510A JP2017044636A JP2017044636A JP2018145510A JP 2018145510 A JP2018145510 A JP 2018145510A JP 2017044636 A JP2017044636 A JP 2017044636A JP 2017044636 A JP2017044636 A JP 2017044636A JP 2018145510 A JP2018145510 A JP 2018145510A
Authority
JP
Japan
Prior art keywords
nickel
nickel powder
slurry
reaction
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017044636A
Other languages
Japanese (ja)
Other versions
JP6921376B2 (en
Inventor
陽平 工藤
Yohei Kudo
陽平 工藤
佳智 尾崎
Keichi Ozaki
佳智 尾崎
伸一 平郡
Shinichi Hiragori
伸一 平郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017044636A priority Critical patent/JP6921376B2/en
Publication of JP2018145510A publication Critical patent/JP2018145510A/en
Application granted granted Critical
Publication of JP6921376B2 publication Critical patent/JP6921376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a nickel powder production method enhancing reduction rate when ammine sulfate complex solution is continuously hydrogen-reduced to obtain the nickel powder.SOLUTION: The nickel powder production method is provided in which a reaction slurry is formed while mixed slurry is supplied to a reaction container in which slurry containing ammonium sulfate and nickel is stored, the mixed slurry being formed by adding the nickel powder with average particle diameter the range of 0.1 to 5 μm and polyacrylic acid at a concentration of 0.1 g/L or more and less than 0.5 g/L to a nickel sulfate ammine complex solution, hydrogen gas is continuously contacted with the reaction slurry to perform reduction treatment on a nickel complex ion in the reaction slurry, and thus the nickel powder in which a nickel deposition is formed on a surface of the nickel power is obtained.SELECTED DRAWING: Figure 1

Description

本発明は硫酸ニッケルアンミン錯体溶液に高温高圧下で水素ガスを接触させてニッケルイオンを還元しニッケル粉を得る方法に関する。   The present invention relates to a method for obtaining nickel powder by reducing nickel ions by bringing hydrogen gas into contact with a nickel sulfate ammine complex solution under high temperature and high pressure.

湿式製錬プロセスを用いてニッケルの粉末を工業的に製造する方法として、特許文献1に示すように、ニッケルを含有する原料を硫酸溶液に溶解後、溶解液に含有する不純物を除去する浄液工程を経て、得た硫酸ニッケル溶液にアンモニアを添加してニッケルのアンミン錯体を形成させ、次いでこの硫酸ニッケルアンミン錯体溶液を高温・高圧の反応容器に入れ、水素ガスを供給して硫酸ニッケルアンミン錯体溶液中のニッケル錯イオンを還元し、ニッケル粉を製造する方法が知られている。   As a method for industrially producing nickel powder using a hydrometallurgical process, as shown in Patent Document 1, after dissolving a nickel-containing raw material in a sulfuric acid solution, a purified solution for removing impurities contained in the solution Through the process, ammonia is added to the resulting nickel sulfate solution to form a nickel ammine complex, then this nickel sulfate ammine complex solution is placed in a high-temperature and high-pressure reaction vessel, and hydrogen gas is supplied to the nickel sulfate ammine complex. A method for producing nickel powder by reducing nickel complex ions in a solution is known.

上記のような製造方法の実施に際しては、高温・高圧の反応で行われることから、取扱いやすさや装置コストの観点からバッチ式を用いた製造方法を用いることが多かった。しかしバッチ式の製造方法では、反応容器を開け、溶液を装入し、密栓して昇温し、温度と圧力を制御し、水素ガスを吹き込んで還元し、冷却し、反応物を取出す一連の操作を段階ごとに行う必要があり、多大な手間と時間を要し、稼働率が低くなり工業的には効率的でなかった。   Since the above-described production method is carried out by a reaction at a high temperature and a high pressure, a production method using a batch method is often used from the viewpoint of ease of handling and apparatus cost. However, in the batch type production method, a series of processes are performed in which a reaction vessel is opened, a solution is charged, a cap is plugged, the temperature is raised, the temperature and pressure are controlled, hydrogen gas is blown in, reduced, cooled, and the reaction product is taken out. It was necessary to perform the operation step by step, requiring a lot of labor and time, and the operating rate was low, which was not industrially efficient.

さらに、上記のようなバッチ反応では、反応前後の加熱途中や降温中の温度変化の影響などが無視できず、この間にスケーリングと称する不均一な析出や粒径のばらつきが生じることがある。また粗大なニッケル粉が混じりやすいが、不均一なニッケル粉が生成するとハンドリング時に設備の摩耗や閉塞を発生しやすくなって稼働率が低下する。このためにスケーリングを除去する手間も増加し、設備稼動率を維持しながら製品品質を一定に保つのは難しかった。   Further, in the batch reaction as described above, the influence of temperature change during heating before and after the reaction or during temperature reduction cannot be ignored, and during this time, non-uniform precipitation called “scaling” and particle size variation may occur. Coarse nickel powder is likely to be mixed, but if non-uniform nickel powder is generated, the equipment is likely to be worn or clogged during handling, resulting in a reduction in operating rate. For this reason, the effort to remove the scaling has increased, and it has been difficult to keep the product quality constant while maintaining the equipment operation rate.

そこで、スケーリングを防止し均一なニッケル粉を得るために、水素還元前にポリアクリル酸などの分散剤を添加し核生成が偏在しないようにさせる試みが行われてきたが、一方で分散剤の使用量によっては、溶液からニッケル粉として回収できる還元率が低下し、生産性にも影響する課題があった。
このように連続して水素還元し、均一なニッケル粉を高い還元率で得るのは容易でなかった。
Therefore, in order to prevent scaling and obtain uniform nickel powder, attempts have been made to add a dispersing agent such as polyacrylic acid before hydrogen reduction so that nucleation is not unevenly distributed. Depending on the amount used, the reduction rate that can be recovered from the solution as nickel powder decreases, and there is a problem that affects productivity.
Thus, it was not easy to carry out hydrogen reduction continuously and obtain uniform nickel powder at a high reduction rate.

特開2015−140480号公報JP2015-140480A

本発明は、硫酸アンミン錯体溶液を連続して水素還元しニッケル粉を得る際の還元率を向上させるニッケル粉の製造方法を提供するものである。   This invention provides the manufacturing method of nickel powder which improves the reduction rate at the time of hydrogen-reducing an ammonium sulfate complex solution continuously and obtaining nickel powder.

上記課題を解決する本発明の第1の発明は、硫酸ニッケルアンミン錯体溶液に、平均粒径が0.1〜5μmの範囲の大きさのニッケル粉と、前記硫酸ニッケルアンミン錯体溶液に対して0.1g/L以上、0.5g/L未満の濃度となるポリアクリル酸を添加して形成した混合スラリーを、硫酸アンモニウムとニッケル粉を含むスラリーが貯留された反応容器に供給しながら反応スラリーを形成し、前記反応スラリーに水素ガスを連続的に接触させて前記反応スラリー中のニッケル錯イオンを還元処理し、前記ニッケル粉の表面にニッケル析出物が形成されたニッケル粉を得ることを特徴とするニッケル粉の製造方法である。   The first invention of the present invention that solves the above-mentioned problems is a nickel sulfate ammine complex solution, a nickel powder having an average particle size in the range of 0.1 to 5 μm, and 0 for the nickel sulfate ammine complex solution. A reaction slurry is formed while supplying a mixed slurry formed by adding polyacrylic acid having a concentration of 1 g / L or more and less than 0.5 g / L to a reaction vessel in which a slurry containing ammonium sulfate and nickel powder is stored. Then, hydrogen gas is continuously brought into contact with the reaction slurry to reduce nickel complex ions in the reaction slurry to obtain nickel powder in which nickel precipitates are formed on the surface of the nickel powder. It is a manufacturing method of nickel powder.

本発明の第2の発明は、硫酸ニッケルアンミン錯体溶液と、平均粒径が0.1〜5μmの範囲の大きさのニッケル粉を含むニッケル粉スラリーと、前記硫酸ニッケルアンミン錯体溶液に対して0.1g/L以上、0.5g/L未満の濃度となるポリアクリル酸を、硫酸アンモニウムとニッケル粉を含むスラリーが貯留された反応容器に供給しながら反応スラリーを形成し、前記反応スラリーに水素ガスを連続的に接触させて前記反応スラリー中のニッケル錯イオンを還元処理し、前記ニッケル粉の表面にニッケル析出物が形成されたニッケル粉を得ることを特徴とするニッケル粉の製造方法である。   According to a second aspect of the present invention, a nickel sulfate ammine complex solution, a nickel powder slurry containing nickel powder having an average particle size in the range of 0.1 to 5 μm, and 0 for the nickel sulfate ammine complex solution. A reaction slurry is formed while supplying polyacrylic acid having a concentration of 1 g / L or more and less than 0.5 g / L to a reaction vessel in which a slurry containing ammonium sulfate and nickel powder is stored, and hydrogen gas is added to the reaction slurry. Is a nickel powder in which nickel complex ions in the reaction slurry are reduced to obtain nickel powder in which nickel precipitates are formed on the surface of the nickel powder.

本発明の第3の発明は、第1及び第2の発明における平均粒径が0.1〜5μmのニッケル粉の添加量が、硫酸ニッケルアンミン錯体溶液中のニッケル重量に対して、1〜100重量%の範囲の量であることを特徴とするニッケル粉の製造方法である。   In the third invention of the present invention, the addition amount of nickel powder having an average particle size of 0.1 to 5 μm in the first and second inventions is 1 to 100 with respect to the weight of nickel in the nickel sulfate ammine complex solution. A method for producing nickel powder, characterized in that the amount is in the range of% by weight.

本発明の第4の発明は、第1から第3の発明におけるニッケル錯イオンの還元処理が、2.5〜3.5MPaの範囲の圧力下で、150〜185℃の温度範囲に維持されて行われることを特徴とするニッケル粉の製造方法である。   In the fourth invention of the present invention, the reduction treatment of the nickel complex ions in the first to third inventions is maintained in a temperature range of 150 to 185 ° C. under a pressure of 2.5 to 3.5 MPa. This is a method for producing nickel powder.

また、本発明の第5の発明は、第1から第4の発明における還元処理を行う時間が、5分から120分になるように混合スラリーが反応容器に供給されることを特徴とするニッケル粉の製造方法である。   The fifth aspect of the present invention is a nickel powder characterized in that the mixed slurry is supplied to the reaction vessel so that the time for performing the reduction treatment in the first to fourth aspects is from 5 minutes to 120 minutes. It is a manufacturing method.

本発明によれば、還元処理時に発生するスケーリングや不均一な核生成を抑制しつつ還元処理が可能となり、高い還元率でニッケル粉を得ることができるようになった。   According to the present invention, it is possible to perform a reduction process while suppressing scaling and non-uniform nucleation generated during the reduction process, and nickel powder can be obtained at a high reduction rate.

本発明の実施例1と比較例1に係る分散剤濃度における還元率の推移を示す図である。It is a figure which shows transition of the reduction rate in the dispersing agent density | concentration which concerns on Example 1 and Comparative Example 1 of this invention.

本発明は、硫酸アンモニウム及びニッケル粉を含むスラリーが貯留された加圧容器である反応容器内に、硫酸アンモニウムを含む硫酸ニッケルアンミン錯体溶液と、種結晶のニッケル粉と、分散剤を、連続的に供給しつつ形成した反応スラリーに、水素ガスを吹き込み、その吹き込まれた水素ガスによる硫酸ニッケルアンミン錯体溶液に含まれていたニッケル錯イオンに対する還元処理によりニッケル粉を製造し、そのニッケル粉を加圧容器から連続的に排出することを特徴とするもので、その際に、添加する分散剤の濃度範囲を特定の範囲に維持することで、還元率を高く維持できることを見出し、完成に至ったものである。
以下、本発明のニッケル粉の製造方法を説明する。
The present invention continuously supplies a nickel sulfate ammine complex solution containing ammonium sulfate, a seed crystal nickel powder, and a dispersing agent into a reaction vessel that is a pressurized vessel in which a slurry containing ammonium sulfate and nickel powder is stored. Then, hydrogen gas is blown into the reaction slurry formed, nickel powder is produced by reduction treatment of nickel complex ions contained in the nickel sulfate ammine complex solution by the blown hydrogen gas, and the nickel powder is pressed into a pressure vessel. In this case, it was found that the reduction rate can be maintained high by maintaining the concentration range of the dispersant to be added within a specific range, and the process was completed. is there.
Hereafter, the manufacturing method of the nickel powder of this invention is demonstrated.

本発明に用いる硫酸ニッケルアンミン錯体溶液は、特に限定はされないが、ニッケルおよびコバルト混合硫化物、粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、ニッケル粉などから選ばれる一種、または複数の混合物から成る工業中間物などのニッケル含有物を、硫酸あるいはアンモニアにより溶解して得られるニッケル浸出液(ニッケルを含む溶液)を、溶媒抽出法、イオン交換法、中和などの浄液工程を施すことにより溶液中の不純物元素を除去して得られる溶液に、アンモニアを添加し、硫酸ニッケルアンミン錯体溶液としたもの等が適している。   The nickel sulfate ammine complex solution used in the present invention is not particularly limited, but one or a mixture selected from nickel and cobalt mixed sulfide, crude nickel sulfate, nickel oxide, nickel hydroxide, nickel carbonate, nickel powder and the like. By subjecting nickel-containing materials, such as industrial intermediates, to nickel leaching solution (solution containing nickel) obtained by dissolving with sulfuric acid or ammonia, and subjecting it to liquid purification processes such as solvent extraction, ion exchange, and neutralization. A solution obtained by adding ammonia to a solution obtained by removing impurity elements from the solution to form a nickel sulfate ammine complex solution is suitable.

本発明では、そのような硫酸ニッケルアンミン錯体溶液に、種結晶を添加して形成した混合スラリーを、反応容器に連続供給して還元処理に供する、或いは硫酸ニッケルアンミン錯体溶液と種結晶を別個に反応容器に連続供給して還元処理に供する。
本発明で添加する種結晶は、平均粒径が0.1μm以上、5μm以下の大きさのニッケル粉を用いる。
種晶にニッケルの粉末を用いることで、従来の多くの例のように種晶に使用した鉄などの影響によって回収するニッケル粉の不純物品位が増加することを抑制できる。また種結晶として使用するニッケル粉は、例えば上記硫酸ニッケルアンミン錯体溶液にヒドラジンなどの還元剤を添加することにより作製することができる。
In the present invention, a mixed slurry formed by adding a seed crystal to such a nickel sulfate ammine complex solution is continuously supplied to the reaction vessel for reduction treatment, or the nickel sulfate ammine complex solution and the seed crystal are separately provided. Continuously supplied to the reaction vessel and subjected to reduction treatment.
The seed crystal added in the present invention uses nickel powder having an average particle size of 0.1 μm or more and 5 μm or less.
By using nickel powder as a seed crystal, it is possible to suppress an increase in the impurity quality of nickel powder recovered due to the influence of iron or the like used in the seed crystal as in many conventional examples. The nickel powder used as a seed crystal can be prepared, for example, by adding a reducing agent such as hydrazine to the nickel sulfate ammine complex solution.

また、添加する種結晶の重量は、硫酸ニッケルアンミン錯体溶液中のニッケルの重量に対して1重量%以上、100重量%以下の量とすることが好ましい。1重量%未満では、不均一な析出を抑制する効果を十分に得ることができず、100重量%を超える量を添加しても効果に影響はなく、過剰な添加となる。   Further, the weight of the seed crystal to be added is preferably 1% by weight or more and 100% by weight or less based on the weight of nickel in the nickel sulfate ammine complex solution. If the amount is less than 1% by weight, the effect of suppressing non-uniform precipitation cannot be sufficiently obtained, and even if an amount exceeding 100% by weight is added, the effect is not affected and excessive addition is caused.

さらに、本発明では混合スラリーや反応スラリー中で種結晶を分散させるために、分散剤も添加する。分散剤には、ポリアクリル酸塩であれば特に限定されないが、工業的に安価に入手できるものとしてポリアクリル酸ナトリウムが好適である。
その分散剤の添加量は、硫酸ニッケルアンミン錯体溶液の液量に対して0.1g/L以上で0.5g/L未満の濃度になるように添加する。
Furthermore, in the present invention, a dispersant is also added to disperse the seed crystals in the mixed slurry or reaction slurry. The dispersant is not particularly limited as long as it is a polyacrylate, but sodium polyacrylate is preferred as an industrially available material.
The addition amount of the dispersant is 0.1 g / L or more and less than 0.5 g / L with respect to the amount of the nickel sulfate ammine complex solution.

また、この還元処理に際しては、還元処理で錯体溶液に含まれる全てのニッケルを錯体形態とするアンモニア濃度を維持するための硫酸アンモニウムが、反応スラリーに含まれるように各スラリー及び溶液に含まれている。
なお、錯体溶液中のニッケルが十分に錯体形態を形成している錯体溶液を使用する場合では、この硫酸アンモニウムの含有がなくても、満足すべき還元率が得られる。そこで、反応スラリーや反応容器に貯留したスラリーは硫酸アンモニウムを含まない成分でも良い。
In addition, in this reduction treatment, ammonium sulfate for maintaining the ammonia concentration in which all nickel contained in the complex solution in the complex treatment form a complex form is contained in each slurry and solution so as to be contained in the reaction slurry. .
In the case of using a complex solution in which nickel in the complex solution sufficiently forms a complex form, a satisfactory reduction rate can be obtained even if this ammonium sulfate is not contained. Therefore, the reaction slurry or the slurry stored in the reaction vessel may be a component not containing ammonium sulfate.

次に、上記範囲に調整した種結晶と分散剤を含み、さらに硫酸アンモニウムを硫酸ニッケルアンミン錯体溶液に添加して形成した混合スラリーを、濃度が100〜500g/Lの硫酸アンモニウムと、濃度が10〜1000g/Lのニッケル粉を含むスラリーが貯留し、水素ガスによる内圧制御が成された耐高圧高温容器の反応槽内に連続的に装入して反応スラリーを形成し、反応槽内に反応スラリーが占有する液相部と気相部を形成する。
或いは、種結晶を含むスラリー又は種結晶と分散剤を含むスラリーと、硫酸アンモニウムを含む硫酸ニッケルアンミン錯体溶液を個別に、硫酸アンモニウムとニッケル粉を含むスラリーが貯留し、水素ガスによる内圧制御が成された耐高圧高温容器の反応槽内に、連続的に装入して反応スラリーを形成し、反応槽内に反応スラリーが占有する液相部と水素ガスにより内圧制御された気相部を形成する。
Next, a mixed slurry containing a seed crystal and a dispersing agent adjusted to the above range and further formed by adding ammonium sulfate to a nickel sulfate ammine complex solution is mixed with ammonium sulfate having a concentration of 100 to 500 g / L and a concentration of 10 to 1000 g A slurry containing nickel powder of / L is stored and continuously charged into a reaction vessel of a high-pressure and high-pressure vessel with internal pressure control by hydrogen gas to form a reaction slurry. The reaction slurry is contained in the reaction vessel. Occupied liquid phase part and gas phase part are formed.
Alternatively, a slurry containing seed crystals or a slurry containing seed crystals and a dispersing agent, and a nickel sulfate ammine complex solution containing ammonium sulfate were separately stored in a slurry containing ammonium sulfate and nickel powder, and the internal pressure was controlled by hydrogen gas. The reaction slurry is continuously charged into the reaction tank of the high pressure and high temperature vessel to form a reaction slurry, and a liquid phase part occupied by the reaction slurry and a gas phase part whose internal pressure is controlled by hydrogen gas are formed in the reaction tank.

その後、連続的に装入状態にある反応槽内の反応スラリーが水素ガスによって、反応スラリーを構成する硫酸ニッケルアンミン錯体溶液に含まれていたニッケル錯イオンが還元され、添加した種結晶上にニッケルの析出物を析出させて成長したニッケル粉とすると共に、その成長したニッケル粉を含むスラリーであるニッケル粉スラリーを形成し、その成長したニッケル粉スラリーを連続的に排出する。   Thereafter, the reaction slurry in the continuously charged reaction tank is reduced by hydrogen gas to reduce the nickel complex ions contained in the nickel sulfate ammine complex solution constituting the reaction slurry, and nickel is added onto the added seed crystal. A nickel powder is formed by depositing the precipitates, and a nickel powder slurry that is a slurry containing the grown nickel powder is formed, and the grown nickel powder slurry is continuously discharged.

このときの還元処理時の反応温度は、150℃以上、185℃以下の範囲が好ましい。150℃未満では還元効率が低下し、185℃を超える温度にしても反応への影響はなく、むしろ熱エネルギー等のロスが増加するので適さない。
また、還元処理に要する反応時間は、5分から120分の間で、5分未満では還元処理が十分ではなく望ましいニッケル粉が得られず、120分を超える還元処理は、還元率の向上に寄与せず、いたずらに生産効率や生産コストを低下させるので望ましくはない。
The reaction temperature during the reduction treatment at this time is preferably in the range of 150 ° C. or higher and 185 ° C. or lower. If it is less than 150 degreeC, reduction efficiency will fall, and even if it exceeds 185 degreeC, there is no influence on reaction, rather, since loss, such as a heat energy, increases, it is unsuitable.
Also, the reaction time required for the reduction treatment is between 5 minutes and 120 minutes, and if it is less than 5 minutes, the reduction treatment is not sufficient and the desired nickel powder cannot be obtained, and the reduction treatment exceeding 120 minutes contributes to the improvement of the reduction rate. Without unnecessarily reducing the production efficiency and production cost.

なお本発明では、この反応時間は反応スラリーが反応容器内に貯留されている時間であり、原料の供給量と、得られたニッケル粉を含むスラリーの排出量を同期させることで、平衡状態後のサンプリングとなるように、上記反応時間の範囲内で適宜調整する。
さらに、還元処理時の反応槽の気相部の圧力は2.5〜3.5MPaの範囲に維持することが好ましい。2.5MPa未満では反応効率が低下し、3.5MPaを超えても反応への影響はなく、水素ガスのロスが増加する。
このような条件によるニッケルの析出を伴う還元処理によって、種結晶上にニッケルの析出物が形成、成長したニッケル粉が形成され、大きさのばらつきが少ないニッケル粉を連続して得ることができる。
In the present invention, this reaction time is the time during which the reaction slurry is stored in the reaction vessel. By synchronizing the supply amount of the raw material and the discharge amount of the slurry containing the obtained nickel powder, In order to achieve this sampling, the reaction time is adjusted as appropriate within the above reaction time range.
Furthermore, it is preferable to maintain the pressure in the gas phase part of the reaction tank during the reduction treatment in the range of 2.5 to 3.5 MPa. If it is less than 2.5 MPa, the reaction efficiency decreases, and if it exceeds 3.5 MPa, there is no influence on the reaction, and the loss of hydrogen gas increases.
By the reduction treatment accompanied by nickel precipitation under such conditions, nickel powder is formed and grown on the seed crystal, and nickel powder with little variation in size can be obtained continuously.

なお、錯体溶液に含まれるニッケルが十分に錯体形態を採っている硫酸ニッケルアンミン錯体溶液、即ち溶液中のニッケル濃度に対し、モル比で2.0以上になるようなアンモニア濃度を示す硫酸ニッケルアンミン錯体溶液を使用する場合には、反応容器内に所定のスラリーを貯留させる必要はなく、反応容器が空の状態から、分散剤を含む混合スラリーを反応容器内に連続して供給し、内圧調整をしつつ水素ガスを吹き込み、所定の反応時間で還元処理が行われるように、生成したニッケル粉を含むニッケル粉スラリーを容器外に排出する。   The nickel sulfate ammine complex solution in which the nickel contained in the complex solution is sufficiently in a complex form, that is, nickel sulfate ammine exhibiting an ammonia concentration such that the molar ratio is 2.0 or more with respect to the nickel concentration in the solution. When using a complex solution, it is not necessary to store a predetermined slurry in the reaction vessel. When the reaction vessel is empty, a mixed slurry containing a dispersing agent is continuously supplied into the reaction vessel to adjust the internal pressure. While blowing, hydrogen gas is blown, and the nickel powder slurry containing the generated nickel powder is discharged out of the container so that the reduction process is performed in a predetermined reaction time.

以上のようにして製造したニッケル粉は、例えば積層セラミックコンデンサーの内部構成物質であるニッケルペースト用途として用いることができる他、上記水素還元を繰り返すことにより粒子を成長させ、高純度で取扱いに適した均一で20μm以下の微細なニッケルメタルを製造することができる。   The nickel powder produced as described above can be used, for example, as a nickel paste, which is an internal constituent material of a multilayer ceramic capacitor. In addition, the particles are grown by repeating the hydrogen reduction described above, and high purity and suitable for handling. A uniform fine nickel metal of 20 μm or less can be produced.

以下、実施例を用い、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

容量が190Lの加圧容器(オートクレーブ)に、硫酸アンモニウム205g/L、粒径が0.1μm〜5μmの大きさにばらついたニッケル粉を種晶として105g/L、およびポリアクリル酸0.1g/Lを混合した溶液90Lを貯留始液として張り込み、昇温して温度185℃に保ち、水素ガスを吹込んで加圧容器内の圧力を3.5MPaに維持した。   A pressure vessel (autoclave) having a capacity of 190 L, 205 g / L of ammonium sulfate, 105 g / L of nickel powder with a particle size varying from 0.1 μm to 5 μm as a seed crystal, and 0.1 g / L of polyacrylic acid 90 L was added as a storage starting solution, and the temperature was raised and maintained at 185 ° C., and hydrogen gas was blown to maintain the pressure in the pressurized container at 3.5 MPa.

次いで、その加圧容器に、還元処理原料としてニッケル濃度が83g/Lの硫酸ニッケルアンミン錯体溶液および硫酸アンモニウム120g/Lの組成の始液を1L/分の流量で連続的に供給した。さらに0.3g/Lの濃度のポリアクリル酸と150g/Lのスラリー濃度のニッケル粉スラリーを0.5L/分の流量で連続的に前記加圧容器に供給した。また水素ガスを加圧容器内部の圧力が3.5MPaを維持するよう吹き込み量を調整しながら吹き込んだ。   Next, a nickel sulfate ammine complex solution having a nickel concentration of 83 g / L and a starting solution having a composition of 120 g / L ammonium sulfate were continuously supplied to the pressurized container at a flow rate of 1 L / min. Furthermore, polyacrylic acid having a concentration of 0.3 g / L and nickel powder slurry having a slurry concentration of 150 g / L were continuously supplied to the pressure vessel at a flow rate of 0.5 L / min. Further, hydrogen gas was blown in while adjusting the blow amount so that the pressure inside the pressurized container was maintained at 3.5 MPa.

加圧容器内でのポリアクリル酸濃度は0.1g/Lとなる。また、還元反応時間は60分に相当する。
なお、上記で種結晶に使用したニッケル粉は、本実施例と同じ条件でニッケル粉を生成させ、1時間の反応後に得たニッケル粉を目開きが5μmの振動篩を用いて篩上と篩下に分類し、篩下のニッケル粉を繰返し種結晶として用いている。
The polyacrylic acid concentration in the pressurized container is 0.1 g / L. The reduction reaction time corresponds to 60 minutes.
The nickel powder used for the seed crystal was produced under the same conditions as in this example, and the nickel powder obtained after the reaction for 1 hour was screened and sieved using a vibrating sieve with an opening of 5 μm. The nickel powder under the sieve is repeatedly used as a seed crystal.

加圧容器の液量を85から95Lの範囲に維持、管理することで平衡状態後のサンプリングとなるように、加圧容器の排出口から還元後のニッケル粉スラリーを連続的に抜き出した。抜き出したニッケル粉スラリーは、ヌッチェを用いてニッケル粉と反応後液とに固液分離した。
上記の運転を24時間継続した。
供給した水素ガス量が理論的に還元できるニッケル量に対して実際に還元されたニッケル量の割合を還元率と定義すると、図1に示すように、本実施例により95%程度の高い還元率が得られた。
The reduced nickel powder slurry was continuously extracted from the outlet of the pressurized container so that sampling after the equilibrium state was maintained by maintaining and managing the amount of liquid in the pressurized container in the range of 85 to 95 L. The extracted nickel powder slurry was solid-liquid separated into nickel powder and post-reaction liquid using Nutsche.
The above operation was continued for 24 hours.
When the ratio of the nickel amount actually reduced to the nickel amount that can be theoretically reduced by the supplied hydrogen gas amount is defined as the reduction rate, as shown in FIG. was gotten.

また図1では、還元開始3時間経過時点で95%程度の還元率に達し、その後変化が少ないなど還元速度がきわめて速い特徴を示し、その分コンパクトな設備で還元できるなど、高い稼働率すなわち生産性が得られることがわかる。
なお、図1中のPAAはポリアクリル酸を示す。
In addition, in FIG. 1, the reduction rate reaches about 95% after 3 hours from the start of reduction, and the rate of reduction is extremely fast, such as little change thereafter. It can be seen that sex is obtained.
In addition, PAA in FIG. 1 indicates polyacrylic acid.

加圧容器(オートクレーブ)に連続して供給する還元処理原料として、ニッケル濃度が83g/Lの硫酸ニッケルアンミン錯体溶液と、硫酸アンモニウム120g/Lと、濃度0.15g/Lのポリアクリル酸と、濃度75g/Lのニッケル粉スラリーを含む混合スラリーを、1L/分の流量で連続的に供給した以外は、実施例1と同じ条件で還元処理を行って、ニッケル粉を得た。
その結果、実施例1とほぼ同等の還元率が得られた。
As a reduction treatment raw material continuously supplied to a pressure vessel (autoclave), a nickel sulfate ammine complex solution having a nickel concentration of 83 g / L, ammonium sulfate 120 g / L, a concentration of 0.15 g / L polyacrylic acid, and a concentration A nickel slurry was obtained by performing a reduction treatment under the same conditions as in Example 1 except that a mixed slurry containing a 75 g / L nickel powder slurry was continuously supplied at a flow rate of 1 L / min.
As a result, a reduction rate substantially equivalent to that in Example 1 was obtained.

(比較例1)
上記実施例1と同じ加圧容器に同組成の始液90Lを張り込み、昇温して温度185℃に保ち、水素ガスを吹込んで圧力を3.5MPaとした。
この加圧容器に硫酸ニッケルアンミン錯体溶液(Ni濃度83g/L)、硫安120g/Lの始液を1L/分にて、加えて1.5g/Lのポリアクリル酸(加圧容器内で0.5g/Lとなる量)を含む150g/Lのニッケル粉スラリーを0.5L/分にて連続的に加圧容器に添加した。水素ガスは加圧容器の圧力が3.5MPaに保持されるよう吹き込んだ。
加圧容器の液量を85から95Lの範囲で管理しながらニッケル粉スラリーを連続的に抜き出し、運転を24時間継続した。
(Comparative Example 1)
90 L of starting liquid having the same composition was put into the same pressurized container as in Example 1 above, the temperature was raised and the temperature was maintained at 185 ° C., and hydrogen gas was blown to a pressure of 3.5 MPa.
To this pressure vessel, a nickel sulfate ammine complex solution (Ni concentration 83 g / L) and an ammonium sulfate 120 g / L starting solution were added at 1 L / min, and 1.5 g / L polyacrylic acid (0% in the pressure vessel). 150 g / L of nickel powder slurry containing 0.5 g / L) was continuously added to the pressure vessel at 0.5 L / min. Hydrogen gas was blown so that the pressure in the pressurized container was maintained at 3.5 MPa.
The nickel powder slurry was continuously extracted while the amount of liquid in the pressure vessel was controlled in the range of 85 to 95 L, and the operation was continued for 24 hours.

その結果は図1に示すように還元率は75%以下の低い水準にとどまり、また反応開始後21時間を経るくらいまでは漸増する傾向を示した。この漸増傾向を示すことから、反応速度が遅いことがわかる。   As a result, the reduction rate remained at a low level of 75% or less as shown in FIG. 1, and showed a tendency to gradually increase until about 21 hours after the start of the reaction. From this gradual increase tendency, it can be seen that the reaction rate is slow.

Claims (5)

硫酸ニッケルアンミン錯体溶液に、平均粒径が0.1〜5μmの範囲の大きさのニッケル粉と、前記硫酸ニッケルアンミン錯体溶液に対して0.1g/L以上、0.5g/L未満の濃度となるポリアクリル酸を添加して形成した混合スラリーを、硫酸アンモニウムとニッケル粉を含むスラリーが貯留された反応容器に供給しながら反応スラリーを形成し、前記反応スラリーに水素ガスを連続的に接触させて前記反応スラリー中のニッケル錯イオンを還元処理し、前記ニッケル粉の表面にニッケル析出物が形成されたニッケル粉を得ることを特徴とするニッケル粉の製造方法。   In the nickel sulfate ammine complex solution, a nickel powder having an average particle size in the range of 0.1 to 5 μm and a concentration of 0.1 g / L or more and less than 0.5 g / L with respect to the nickel sulfate ammine complex solution The reaction slurry is formed while supplying the mixed slurry formed by adding polyacrylic acid to the reaction vessel in which the slurry containing ammonium sulfate and nickel powder is stored, and hydrogen gas is continuously contacted with the reaction slurry. And reducing the nickel complex ions in the reaction slurry to obtain nickel powder having nickel deposits formed on the surface of the nickel powder. 硫酸ニッケルアンミン錯体溶液と、平均粒径が0.1〜5μmの範囲の大きさのニッケル粉を含むニッケル粉スラリーと、前記硫酸ニッケルアンミン錯体溶液に対して0.1g/L以上、0.5g/L未満の濃度となるポリアクリル酸を、硫酸アンモニウムとニッケル粉を含むスラリーが貯留された反応容器に供給しながら反応スラリーを形成し、前記反応スラリーに水素ガスを連続的に接触させて前記反応スラリー中のニッケル錯イオンを還元処理し、前記ニッケル粉の表面にニッケル析出物が形成されたニッケル粉を得ることを特徴とするニッケル粉の製造方法。   Nickel sulfate ammine complex solution, nickel powder slurry containing nickel powder having an average particle size in the range of 0.1 to 5 μm, and 0.1 g / L or more, 0.5 g relative to the nickel sulfate ammine complex solution A reaction slurry is formed while supplying polyacrylic acid having a concentration of less than / L to a reaction vessel in which a slurry containing ammonium sulfate and nickel powder is stored, and hydrogen gas is continuously brought into contact with the reaction slurry to react the reaction. A method for producing nickel powder, comprising reducing nickel complex ions in a slurry to obtain nickel powder having nickel precipitates formed on a surface of the nickel powder. 前記平均粒径が0.1〜5μmのニッケル粉の添加量が、硫酸ニッケルアンミン錯体溶液中のニッケル重量に対して、1〜100重量%の範囲の量であることを特徴とする請求項1又は2に記載のニッケル粉の製造方法。   2. The addition amount of nickel powder having an average particle diameter of 0.1 to 5 [mu] m is an amount in the range of 1 to 100% by weight with respect to the weight of nickel in the nickel sulfate ammine complex solution. Or the manufacturing method of the nickel powder of 2. ニッケル錯イオンの還元処理が、2.5〜3.5MPaの範囲の圧力下で、150〜185℃の温度範囲に維持されて行われることを特徴とする請求項1から3のいずれか1項に記載のニッケル粉の製造方法。   4. The reduction treatment of nickel complex ions is performed while maintaining a temperature range of 150 to 185 [deg.] C. under a pressure of 2.5 to 3.5 MPa. The manufacturing method of the nickel powder as described in 2. 前記還元処理を行う時間が、5分から120分になるように混合スラリーを反応容器に供給することを特徴とする請求項1から4のいずれか1項に記載のニッケル粉の製造方法。
The method for producing nickel powder according to any one of claims 1 to 4, wherein the mixed slurry is supplied to the reaction vessel so that the time for performing the reduction treatment is 5 minutes to 120 minutes.
JP2017044636A 2017-03-09 2017-03-09 Nickel powder manufacturing method Active JP6921376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044636A JP6921376B2 (en) 2017-03-09 2017-03-09 Nickel powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044636A JP6921376B2 (en) 2017-03-09 2017-03-09 Nickel powder manufacturing method

Publications (2)

Publication Number Publication Date
JP2018145510A true JP2018145510A (en) 2018-09-20
JP6921376B2 JP6921376B2 (en) 2021-08-18

Family

ID=63589647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044636A Active JP6921376B2 (en) 2017-03-09 2017-03-09 Nickel powder manufacturing method

Country Status (1)

Country Link
JP (1) JP6921376B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119415A (en) * 1975-11-26 1977-10-06 Sherritt Gordon Mines Ltd Method of producing copper by gas reduction
US6702871B1 (en) * 1999-11-09 2004-03-09 Outokumpu Oyj Method for the reduction of nickel
CN101428348A (en) * 2008-07-29 2009-05-13 张建玲 Process for producing spherical submicron metal with hydro-thermal treatment
JP2015140480A (en) * 2014-01-30 2015-08-03 国立大学法人高知大学 Method for manufacturing nickel powder
WO2015125650A1 (en) * 2014-02-21 2015-08-27 国立大学法人高知大学 Method for producing nickel powder
WO2016117138A1 (en) * 2015-01-22 2016-07-28 住友金属鉱山株式会社 Method for producing nickel powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119415A (en) * 1975-11-26 1977-10-06 Sherritt Gordon Mines Ltd Method of producing copper by gas reduction
US6702871B1 (en) * 1999-11-09 2004-03-09 Outokumpu Oyj Method for the reduction of nickel
CN101428348A (en) * 2008-07-29 2009-05-13 张建玲 Process for producing spherical submicron metal with hydro-thermal treatment
JP2015140480A (en) * 2014-01-30 2015-08-03 国立大学法人高知大学 Method for manufacturing nickel powder
WO2015125650A1 (en) * 2014-02-21 2015-08-27 国立大学法人高知大学 Method for producing nickel powder
WO2016117138A1 (en) * 2015-01-22 2016-07-28 住友金属鉱山株式会社 Method for producing nickel powder

Also Published As

Publication number Publication date
JP6921376B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
AU2015211866B2 (en) Manufacturing method for nickel powder
JP5936783B2 (en) Method for producing nickel powder
JP6099601B2 (en) Method for producing nickel powder
JP6816755B2 (en) Nickel powder manufacturing method
WO2017006795A1 (en) Method for producing cobalt powder
JP2015166488A5 (en)
WO2016117138A1 (en) Method for producing nickel powder
JP5796696B1 (en) Method for producing nickel powder
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
JP2018145510A (en) Nickel powder production method
JP2017082270A5 (en)
JP6641632B2 (en) Nickel powder manufacturing method
JP5881091B2 (en) Method for producing nickel powder
JP2017155319A5 (en)
JP2017155253A (en) Production method of nickel powder
JP2017214605A (en) Manufacturing method of nickel powder
JP2018154883A (en) Method for producing a nickel powder
WO2017150105A1 (en) Nickel powder production method
JP2018178232A (en) Method for manufacturing nickel powder
JP7272761B2 (en) Nickel powder manufacturing method
JP2020012138A (en) Manufacturing method of nickel powder
JP2017155265A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210506

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210517

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210711

R150 Certificate of patent or registration of utility model

Ref document number: 6921376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150