JP2017155265A5 - - Google Patents

Download PDF

Info

Publication number
JP2017155265A5
JP2017155265A5 JP2016038185A JP2016038185A JP2017155265A5 JP 2017155265 A5 JP2017155265 A5 JP 2017155265A5 JP 2016038185 A JP2016038185 A JP 2016038185A JP 2016038185 A JP2016038185 A JP 2016038185A JP 2017155265 A5 JP2017155265 A5 JP 2017155265A5
Authority
JP
Japan
Prior art keywords
nickel
mixed slurry
powder
nickel powder
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016038185A
Other languages
Japanese (ja)
Other versions
JP2017155265A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2016038185A priority Critical patent/JP2017155265A/en
Priority claimed from JP2016038185A external-priority patent/JP2017155265A/en
Priority to CA3016924A priority patent/CA3016924A1/en
Priority to US16/080,363 priority patent/US20210197266A1/en
Priority to CN201780013765.0A priority patent/CN108698131A/en
Priority to EP17759576.6A priority patent/EP3424625A4/en
Priority to PCT/JP2017/004499 priority patent/WO2017150105A1/en
Priority to AU2017227099A priority patent/AU2017227099A1/en
Publication of JP2017155265A publication Critical patent/JP2017155265A/en
Priority to PH12018501840A priority patent/PH12018501840A1/en
Publication of JP2017155265A5 publication Critical patent/JP2017155265A5/ja
Pending legal-status Critical Current

Links

Description

ニッケル粉の製造方法Method for producing nickel powder

本発明は、硫酸ニッケルアンミン錯体を含有する溶液からニッケル粉を製造する方法において、反応槽内のスケーリングを抑制する方法に関する。特に湿式ニッケル製錬プロセスから発生する工程内の中間生成溶液の処理に適用できる。   The present invention relates to a method for suppressing scaling in a reaction vessel in a method for producing nickel powder from a solution containing a nickel sulfate ammine complex. In particular, it can be applied to the treatment of an intermediate product solution in a process generated from a wet nickel smelting process.

微小なニッケル粉を製造する方法として、溶融させたニッケルをガスまたは水中に分散させ微細粉を得るアトマイズ法や、特許文献1に示されるような、ニッケルを揮発させ、気相中で還元することでニッケル粉を得るCVD法などの乾式法が知られている。   As a method for producing a fine nickel powder, an atomizing method in which molten nickel is dispersed in gas or water to obtain a fine powder, or nickel is volatilized and reduced in the gas phase as disclosed in Patent Document 1. A dry method such as a CVD method for obtaining nickel powder is known.

また、湿式プロセスによりニッケル粉を製造する方法としては、特許文献2に示されるような、還元剤を用いて生成する方法や、特許文献3に示されるような、高温で還元雰囲気中にニッケル溶液を噴霧することにより、熱分解反応によりニッケル粉を得る噴霧熱分解法などがある。
しかし、これらの方法は高価な試薬類や多量のエネルギーを必要とするため、経済的とは言えない。
In addition, as a method for producing nickel powder by a wet process, a method using a reducing agent as shown in Patent Document 2 or a nickel solution in a reducing atmosphere at a high temperature as shown in Patent Document 3 There is a spray pyrolysis method in which nickel powder is obtained by a thermal decomposition reaction by spraying.
However, these methods are expensive because they require expensive reagents and a large amount of energy.

一方、非特許文献1に示されるような、硫酸ニッケルアンミン錯体溶液に水素ガスを供給して錯体溶液中のニッケルイオンを還元してニッケル粉を得る方法は、工業的に安価であり有用である。
この方法では、種結晶と呼ばれる微細な粒子を少量共存させ、そこに還元剤を供給し、種結晶を成長させて所定の粒径の粉末を得る方法が用いられる。しかしながら、この方法では反応槽内に一部のニッケルが種結晶上でなく装置内の反応容器壁などに析出するいわゆるスケーリングを形成し、配管の閉塞などの不具合を引き起こす虞がある。
On the other hand, a method for obtaining nickel powder by supplying hydrogen gas to a nickel sulfate ammine complex solution and reducing nickel ions in the complex solution as shown in Non-Patent Document 1 is industrially inexpensive and useful. .
In this method, a method is used in which a small amount of fine particles called seed crystals coexist, a reducing agent is supplied thereto, and seed crystals are grown to obtain a powder having a predetermined particle size. However, in this method, a so-called scaling is formed in which a part of nickel is deposited not on the seed crystal but on the reaction vessel wall in the apparatus in the reaction tank, which may cause problems such as blockage of piping.

このため、定期的に止めるなどしてスケールを除去する操作が必要であり、生産性が低下したり除去に要するメンテナンス費用が増加したりする問題があり、スケーリングの発生をできるだけ抑制することが課題だった。   For this reason, it is necessary to remove the scale by periodically stopping it, and there is a problem that productivity decreases and maintenance cost required for removal increases. was.

特開2005−505695号公報JP-A-2005-505695 特開2010−242143号公報JP 2010-242143 A 特許4286220号公報Japanese Patent No. 4286220

“The Manufacture and properties of Metal powder produced by the gaseous reduction of aqueous solutions”, Powder metallurgy, No.1/2(1958), pp40−52.“The Manufacture and properties of Metal powder produced by the gaseous reduction of the aquatic solutions”, Powder metallurgy, No. 1/2 (58).

このような状況の中で、本発明は、硫酸ニッケルアンミン錯体を含有する溶液からニッケル粉を製造する過程において、反応槽内のスケーリング生成を抑制し、除去に要する手間とコストを削減する方法を提供するものである。   Under such circumstances, the present invention provides a method for reducing the labor and cost required for removal by suppressing scaling generation in the reaction vessel in the process of producing nickel powder from a solution containing a nickel sulfate ammine complex. It is to provide.

上記の課題を解決するための本発明の第1の発明は、硫酸ニッケルアンミン錯体を含有する溶液に、溶液中のニッケル重量に対して0.3倍以上、3倍以下の粒径1〜20μmの種結晶を加えて形成した混合スラリーを、反応槽内に装入して前記反応槽内を、前記混合スラリーが占有する液相部と前記液相部以外の気相部に維持した後、前記混合スラリーに水素ガスを吹き込み、ニッケル錯イオンを還元して前記種結晶表面にニッケル析出物を形成したニッケル粉を製造、回収後、回収した前記種晶表面にニッケル析出物を形成したニッケル粉に、硫酸ニッケルアンミン錯体を含有する溶液を加え、水素ガスを吹き込み、前記ニッケル析出物上にニッケルを析出させて成長したニッケル粉を製造する水素還元を行うことを特徴とするニッケル粉の製造方法である。 The first invention of the present invention for solving the above-mentioned problems is that a solution containing a nickel sulfate ammine complex has a particle size of 1 to 20 μm that is 0.3 to 3 times the weight of nickel in the solution. After adding the mixed slurry formed by adding the seed crystal to the reaction vessel and maintaining the reaction vessel in the liquid phase part occupied by the mixed slurry and the gas phase part other than the liquid phase part, Hydrogen powder is blown into the mixed slurry, nickel complex ions are reduced to produce nickel powder that forms nickel precipitates on the surface of the seed crystal, and after collection, the nickel powder that forms nickel precipitates on the recovered seed crystal surface the nickel which is characterized in that the hydrogen reduction to produce the addition of a solution containing nickel sulfate ammine complexes, blowing hydrogen gas, nickel powder grown to precipitate nickel on the nickel deposit It is a method of manufacture.

本発明の第2の発明は、第1の発明における混合スラリーにポリアクリル酸塩の分散剤を、混合スラリーに添加された種結晶の種結晶重量に対し、0.5〜5%を添加することを特徴とするニッケル粉の製造方法である。   In the second invention of the present invention, a polyacrylate dispersing agent is added to the mixed slurry in the first invention, and 0.5 to 5% is added to the seed crystal weight of the seed crystal added to the mixed slurry. This is a method for producing nickel powder.

本発明の第3の発明は、第1及び第2の発明における水素還元を繰返し行い、ニッケル析出物上にニッケルを析出させて成長したニッケル粉を得ることを特徴とするニッケル粉の製造方法である。 According to a third aspect of the present invention, there is provided a nickel powder manufacturing method characterized in that the hydrogen reduction in the first and second aspects is repeated to obtain nickel powder grown by depositing nickel on the nickel precipitate. is there.

本発明の第4の発明は、第1から第3の発明における前記混合スラリーに、水素ガスを吹き込む際の混合スラリーの温度が、150〜200℃であることを特徴とするニッケル粉の製造方法である。   According to a fourth aspect of the present invention, there is provided a method for producing nickel powder, characterized in that the temperature of the mixed slurry when hydrogen gas is blown into the mixed slurry according to the first to third aspects is 150 to 200 ° C. It is.

本発明の第5の発明は、第1から第4の発明における前記混合スラリーに、水素ガスを吹き込む際の前記反応槽内気相部の圧力が、1.0〜4.0MPaの範囲であることを特徴とするニッケル粉の製造方法である。
さらには、第1から第5の発明における種結晶が、粒径1〜20μmのニッケル粉であることを特徴とする。
In a fifth aspect of the present invention, the pressure in the gas phase part in the reaction vessel when hydrogen gas is blown into the mixed slurry in the first to fourth aspects is in the range of 1.0 to 4.0 MPa. This is a method for producing nickel powder.
Furthermore, the seed crystal in the first to fifth inventions is nickel powder having a particle size of 1 to 20 μm.

本発明によれば、スケーリングの発生を抑制できる。そのためスケール除去の頻度が低減し、手間とコストを節減できる。   According to the present invention, occurrence of scaling can be suppressed. Therefore, the frequency of descaling is reduced, and labor and cost can be saved.

ニッケル粉添加量と繰り返し回数とスケーリング生成量の関係を示す図である。It is a figure which shows the relationship between nickel powder addition amount, the frequency | count of repetition, and scaling production amount.

本発明は硫酸ニッケルアンミン錯体溶液に種結晶を加え、水素ガスを吹き込むことによりニッケル粉を製造することを特徴とするニッケル粉の製造方法である。
以下、本発明のニッケル粉の製造方法を説明する。
The present invention is a method for producing nickel powder characterized by producing nickel powder by adding seed crystals to a nickel sulfate ammine complex solution and blowing hydrogen gas.
Hereafter, the manufacturing method of the nickel powder of this invention is demonstrated.

[硫酸ニッケルアンミン錯体溶液]
本発明に用いる硫酸ニッケルアンミン錯体溶液は、特に限定はされないが、ニッケルおよびコバルト混合硫化物、粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、ニッケル粉などから選ばれる一種、または複数の混合物から成る工業中間物などのニッケル含有物を、硫酸あるいはアンモニアにより溶解して得られるニッケル浸出液(ニッケルを含む溶液)を、溶媒抽出法、イオン交換法、中和などの浄液工程を施すことにより溶液中の不純物元素を除去して得られる溶液に、アンモニアを添加し、硫酸ニッケルアンミン錯体溶液としたもの等が適している。
[Nickel sulfate ammine complex solution]
The nickel sulfate ammine complex solution used in the present invention is not particularly limited, but one or a mixture selected from nickel and cobalt mixed sulfide, crude nickel sulfate, nickel oxide, nickel hydroxide, nickel carbonate, nickel powder and the like. By subjecting nickel-containing materials, such as industrial intermediates, to nickel leaching solution (solution containing nickel) obtained by dissolving with sulfuric acid or ammonia, and subjecting it to liquid purification processes such as solvent extraction, ion exchange, and neutralization. A solution obtained by adding ammonia to a solution obtained by removing impurity elements from the solution to form a nickel sulfate ammine complex solution is suitable.

[混合スラリー作製]
この工程では、上記の硫酸ニッケルアンミン錯体溶液に、種結晶を添加して混合スラリーとするものである。
ここで添加する種結晶は、粒径が20μm以下の粉末が好ましく、最終のニッケル析出物を汚染しない物質として、ニッケル粉が好適である。この種結晶として使用するニッケル粉は、例えば上記硫酸ニッケルアンミン錯体溶液にヒドラジンなどの還元剤を添加することにより作製することができる。
[Mixed slurry preparation]
In this step, seed crystals are added to the nickel sulfate ammine complex solution to form a mixed slurry.
The seed crystal added here is preferably a powder having a particle size of 20 μm or less, and nickel powder is suitable as a substance that does not contaminate the final nickel deposit. The nickel powder used as the seed crystal can be produced, for example, by adding a reducing agent such as hydrazine to the nickel sulfate ammine complex solution.

ここで添加する種結晶の重量は、溶液中のニッケルの重量に対して0.3倍以上、3倍以下の量が好ましい。0.3倍未満では、スケーリング抑制の効果が十分に得ることができず、3倍を超える量を添加しても効果に影響はなく、過剰な添加となる。   The weight of the seed crystal added here is preferably 0.3 to 3 times the weight of nickel in the solution. If the amount is less than 0.3 times, the effect of suppressing the scaling cannot be sufficiently obtained, and even if an amount exceeding 3 times is added, the effect is not affected, and the addition is excessive.

次いで、混合スラリーに種結晶を分散させるために、分散剤を添加することもできる。ここで用いる分散剤としては、ポリアクリル酸塩であれば特に限定されないが、工業的に安価に入手できるものとしてポリアクリル酸ナトリウムが好適である。その添加する分散剤の量は、種結晶重量に対し0.5〜5%が好適である。0.5%未満では分散効果が得られず、また、5%を超えて添加しても分散効果に影響はなく、過剰な添加となる。   Next, a dispersant can be added to disperse the seed crystals in the mixed slurry. The dispersant used here is not particularly limited as long as it is a polyacrylate, but sodium polyacrylate is preferred as an industrially available product. The amount of the dispersant added is preferably 0.5 to 5% based on the seed crystal weight. If it is less than 0.5%, the dispersion effect cannot be obtained, and even if added over 5%, the dispersion effect is not affected, and the addition is excessive.

次に、種結晶或いは種結晶と分散剤を添加して形成したスラリーを、耐高圧高温容器の反応槽内に装入し、反応槽内にスラリーが占有する液相部と気相部を形成する。その後、反応槽内のスラリーに水素ガスを吹き込み、溶液中のニッケル錯イオンを還元して添加した種結晶上にニッケルを析出させる。   Next, the slurry formed by adding seed crystals or seed crystals and a dispersing agent is charged into a reaction tank of a high pressure resistant high temperature vessel, and a liquid phase part and a gas phase part occupied by the slurry are formed in the reaction tank. To do. Thereafter, hydrogen gas is blown into the slurry in the reaction tank to reduce nickel complex ions in the solution and deposit nickel on the added seed crystals.

このときの反応温度は、150〜200℃の範囲が好ましい。150℃未満では還元効率が低下し、200℃以上にしても反応への影響はなく、むしろ熱エネルギー等のロスが増加するので適さない。   The reaction temperature at this time is preferably in the range of 150 to 200 ° C. If it is less than 150 degreeC, reduction efficiency will fall, and even if it is 200 degreeC or more, there is no influence on reaction, rather, since loss, such as a heat energy, increases, it is not suitable.

さらに、反応時の反応槽気相部の圧力は1.0〜4.0MPaが好ましい。1.0MPa未満では反応効率が低下し、4.0MPaを超えても反応への影響はなく、水素ガスのロスが増加する。
このような条件による還元・析出処理によって、種結晶上にニッケルの析出物が形成され、分散剤の効果により微細な粉状の析出物としてニッケルを溶液から抽出、回収できる。
Furthermore, the pressure in the gas phase part of the reaction tank during the reaction is preferably 1.0 to 4.0 MPa. If it is less than 1.0 MPa, the reaction efficiency decreases, and if it exceeds 4.0 MPa, there is no effect on the reaction, and the loss of hydrogen gas increases.
By reduction / precipitation treatment under such conditions, nickel precipitates are formed on the seed crystals, and nickel can be extracted and recovered from the solution as fine powdery precipitates by the effect of the dispersant.

以上のようにして製造したニッケル粉は、例えば積層セラミックコンデンサーの内部構成物質であるニッケルペースト用途として用いることができる他、上記水素還元を繰り返すことにより粒子を成長させ、高純度のニッケルメタルを製造することができる。   The nickel powder produced as described above can be used, for example, as a nickel paste, which is an internal constituent material of a multilayer ceramic capacitor. In addition, the above-described hydrogen reduction is repeated to grow particles to produce high-purity nickel metal. can do.

以下に本発明を、実施例を用いて説明する。   Hereinafter, the present invention will be described with reference to examples.

ニッケル75g相当を含む硫酸ニッケル溶液と硫酸アンモニウム330gを含む混合溶液に、25%アンモニア水を191ml、種晶として1μmのニッケル粉22.5g(混合溶液中のニッケル重量の0.3倍)、ポリアクリル酸ナトリウム(42%溶液)0.4gを添加し、合計の液量が1000mlになるように調整した混合スラリーを作製した。
次いで、作製した混合スラリーを反応槽として用いたオートクレーブの内筒缶に装入し、液相部と気相部を設けた後、撹拌しながら185℃に昇温、保持した状態で、水素ガスを吹き込み、オートクレーブの内筒缶内気相部の圧力が3.5MPaになるように水素ガスを供給して還元処理を行い、還元スラリーを生成した。水素ガスの供給から60分が経過した後に、水素ガスの供給を停止し、内筒缶を冷却した。
To a mixed solution containing nickel sulfate equivalent containing 75 g of nickel and 330 g of ammonium sulfate, 191 ml of 25% ammonia water, 22.5 g of 1 μm nickel powder as a seed crystal (0.3 times the weight of nickel in the mixed solution), polyacrylic A mixed slurry was prepared by adding 0.4 g of sodium acid (42% solution) and adjusting the total liquid volume to 1000 ml.
Next, the prepared mixed slurry was charged into an inner can of an autoclave used as a reaction tank, and after a liquid phase part and a gas phase part were provided, the temperature was raised to 185 ° C. while being stirred and hydrogen gas was maintained. Then, hydrogen gas was supplied to perform a reduction treatment so that the pressure in the gas phase portion in the inner cylinder can of the autoclave was 3.5 MPa, and reduced slurry was generated. After 60 minutes had passed since the supply of hydrogen gas, the supply of hydrogen gas was stopped and the inner cylinder can was cooled.

冷却後、内筒缶内の還元スラリーを濾過してニッケル粉を回収した。その回収したニッケル析出物にニッケル75g相当を含む硫酸ニッケル溶液、硫酸アンモニウム330gを含む溶液と25%アンモニア水191mlを添加し、合計の液量が1000mlになるように調整した混合スラリーを作製した。
その調整した混合スラリーを上記と同じ方法でオートクレーブにて反応させ、回収したニッケル析出物を再び上記の方法で反応させる操作を繰返し、ニッケル粉を成長させた。
After cooling, the reducing slurry in the inner cylinder can was filtered to recover nickel powder. A nickel sulfate solution containing 75 g of nickel, a solution containing 330 g of ammonium sulfate, and 191 ml of 25% aqueous ammonia were added to the collected nickel deposits to prepare a mixed slurry adjusted to a total liquid volume of 1000 ml.
The adjusted mixed slurry was reacted in an autoclave in the same manner as described above, and the operation of reacting the recovered nickel precipitates again in the above manner was repeated to grow nickel powder.

毎回、内筒缶内の還元スラリーを取り出した後に、乾燥させ、内筒缶の重量を測定し、反応前後の重量変化を測定した。
その結果を図1(凡例22.5g参照)示す。
図1から判るように、「繰返し回数」にしたがい、種結晶ニッケル粉が22.5g(添加比率30%)のときは、重量変化が小さく、スケーリングの発生が抑制できていることがわかる。
Each time, the reduced slurry in the inner cylinder can was taken out and dried, and the weight of the inner cylinder can was measured to measure the change in weight before and after the reaction.
The results are shown in FIG. 1 (see legend 22.5g).
As can be seen from FIG. 1, according to the “number of repetitions”, when the seed crystal nickel powder is 22.5 g (addition ratio 30%), it is understood that the change in weight is small and the occurrence of scaling can be suppressed.

種晶としてニッケル粉を、混合溶液中のニッケル重量の3.0倍の225gを添加した以外は、実施例1と同様の条件にてニッケル粉を成長させた。
その結果は、実施例1と同程度であり、繰返し回数が増えても、発生したスケーリングの重量は、毎回20g以下であった。
Nickel powder was grown under the same conditions as in Example 1 except that 225 g of nickel powder as a seed crystal was added, which was 3.0 times the weight of nickel in the mixed solution.
The result was similar to that of Example 1, and the weight of the generated scaling was 20 g or less each time even when the number of repetitions was increased.

(比較例1)
初期に1μmのニッケル粉15.0g(添加比率20%)、ポリアクリル酸ナトリウム(42%溶液)0.3gを添加した以外は実施例1と同様の方法にて繰返し成長を行なった。
その結果、図1(凡例15g参照)に示すように繰返し反応が増えるに従い、緩やかではあるが、繰返し反応の回数につれてスケーリングの量が増加しているのが判る。
(Comparative Example 1)
Growth was repeated in the same manner as in Example 1 except that 15.0 g of nickel powder of 1 μm (addition ratio 20%) and 0.3 g of sodium polyacrylate (42% solution) were added in the initial stage.
As a result, as shown in FIG. 1 (see legend 15g), it can be seen that the amount of scaling increases with the number of repeated reactions, although it is moderate as the number of repeated reactions increases.

(比較例2)
初期に1μmのニッケル粉7.5g(添加比率10%)、ポリアクリル酸ナトリウム(42%溶液)0.1gを添加した以外は実施例1と同様の方法にて繰返し成長を行なった。
その結果、図1(凡例7.5g参照)に示すように、繰返し反応が2回目には、スケーリングの量の大幅な増加が見られ、それ以降もその傾向が続きているのが判る。
(Comparative Example 2)
The growth was repeated in the same manner as in Example 1 except that 7.5 g of 1 μm nickel powder (addition ratio 10%) and 0.1 g of sodium polyacrylate (42% solution) were added initially.
As a result, as shown in FIG. 1 (refer to legend 7.5g), it can be seen that a large increase in the amount of scaling was observed in the second repeated reaction, and the trend continued thereafter.

Claims (6)

硫酸ニッケルアンミン錯体を含有する溶液に、溶液中のニッケル重量に対して0.3倍以上、3倍以下の粒径1〜20μmの種結晶を加えて形成した混合スラリーを、反応槽内に装入して前記反応槽内を、前記混合スラリーが占有する液相部と前記液相部以外の気相部に維持した後、前記混合スラリーに水素ガスを吹き込み、ニッケル錯イオンを還元して
前記種結晶表面にニッケル析出物を形成したニッケル粉を製造、回収後、
回収した前記種晶表面にニッケル析出物を形成したニッケル粉に、硫酸ニッケルアンミン錯体を含有する溶液を加え、水素ガスを吹き込み、前記ニッケル析出物上にニッケルを析出させて成長したニッケル粉を製造する水素還元を行うことを特徴とするニッケル粉の製造方法。
A mixed slurry formed by adding a seed crystal having a particle size of 1 to 20 μm , which is 0.3 to 3 times the weight of nickel in the solution, to a solution containing a nickel sulfate ammine complex is placed in the reaction vessel. And the inside of the reaction vessel is maintained in a liquid phase portion occupied by the mixed slurry and a gas phase portion other than the liquid phase portion, and then hydrogen gas is blown into the mixed slurry to reduce nickel complex ions.
After producing and recovering nickel powder with nickel precipitates formed on the seed crystal surface,
A nickel powder in which nickel precipitates are formed on the recovered seed crystal surface is added to a solution containing a nickel sulfate ammine complex, hydrogen gas is blown, and nickel is deposited on the nickel precipitates to produce a grown nickel powder. A method for producing nickel powder, comprising performing hydrogen reduction .
前記混合スラリーにポリアクリル酸塩の分散剤を、前記混合スラリーに添加された種結晶の種結晶重量に対し、0.5〜5%を添加することを特徴とする請求項1に記載のニッケル粉の製造方法。   The nickel according to claim 1, wherein a polyacrylate dispersant is added to the mixed slurry in an amount of 0.5 to 5% based on a seed crystal weight of the seed crystal added to the mixed slurry. Powder manufacturing method. 前記水素還元を繰返し行い、ニッケル析出物上にニッケルを析出させて成長したニッケル粉を得ることを特徴とする請求項1又は2に記載のニッケル粉の製造方法。 The nickel powder production method according to claim 1 or 2, wherein the hydrogen reduction is repeatedly performed to obtain nickel powder grown by depositing nickel on the nickel deposit . 前記混合スラリーに、水素ガスを吹き込む際の混合スラリーの温度が、150〜200℃であることを特徴とする請求項1〜3のいずれか1項に記載のニッケル粉の製造方法。   The method for producing nickel powder according to any one of claims 1 to 3, wherein the temperature of the mixed slurry when hydrogen gas is blown into the mixed slurry is 150 to 200 ° C. 前記混合スラリーに、水素ガスを吹き込む際の前記反応槽内気相部の圧力が、1.0〜4.0MPaの範囲であることを特徴とする請求項1〜4のいずれか1項に記載のニッケル粉の製造方法。   The pressure of the gas phase part in the reaction tank when hydrogen gas is blown into the mixed slurry is in a range of 1.0 to 4.0 MPa. Of manufacturing nickel powder. 前記種結晶が、粒径1〜20μmのニッケル粉であることを特徴とする請求項1〜5のいずれか1項に記載のニッケル粉の製造方法。The said seed crystal is nickel powder with a particle diameter of 1-20 micrometers, The manufacturing method of the nickel powder of any one of Claims 1-5 characterized by the above-mentioned.
JP2016038185A 2016-02-29 2016-02-29 Manufacturing method of nickel powder Pending JP2017155265A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016038185A JP2017155265A (en) 2016-02-29 2016-02-29 Manufacturing method of nickel powder
AU2017227099A AU2017227099A1 (en) 2016-02-29 2017-02-08 Nickel powder production method
EP17759576.6A EP3424625A4 (en) 2016-02-29 2017-02-08 Nickel powder production method
US16/080,363 US20210197266A1 (en) 2016-02-29 2017-02-08 Method for producing nickel powder
CN201780013765.0A CN108698131A (en) 2016-02-29 2017-02-08 The manufacturing method of nickel powder
CA3016924A CA3016924A1 (en) 2016-02-29 2017-02-08 Method for producing nickel powder
PCT/JP2017/004499 WO2017150105A1 (en) 2016-02-29 2017-02-08 Nickel powder production method
PH12018501840A PH12018501840A1 (en) 2016-02-29 2018-08-29 Method for producing nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038185A JP2017155265A (en) 2016-02-29 2016-02-29 Manufacturing method of nickel powder

Publications (2)

Publication Number Publication Date
JP2017155265A JP2017155265A (en) 2017-09-07
JP2017155265A5 true JP2017155265A5 (en) 2018-10-25

Family

ID=59743801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038185A Pending JP2017155265A (en) 2016-02-29 2016-02-29 Manufacturing method of nickel powder

Country Status (8)

Country Link
US (1) US20210197266A1 (en)
EP (1) EP3424625A4 (en)
JP (1) JP2017155265A (en)
CN (1) CN108698131A (en)
AU (1) AU2017227099A1 (en)
CA (1) CA3016924A1 (en)
PH (1) PH12018501840A1 (en)
WO (1) WO2017150105A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7007650B2 (en) * 2018-07-31 2022-01-24 住友金属鉱山株式会社 Nickel powder manufacturing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2359347A1 (en) 2001-10-18 2003-04-18 Cesur Celik Laminated ceramic capacitor internal electrode material
JP4286220B2 (en) 2002-08-28 2009-06-24 東邦チタニウム株式会社 Metallic nickel powder and method for producing the same
JP2009079239A (en) * 2007-09-25 2009-04-16 Sumitomo Electric Ind Ltd Nickel powder or alloy powder composed mainly of nickel, its manufacturing method, conductive paste and multilayer ceramic capacitor
CN101428349B (en) * 2008-07-29 2011-06-22 张建玲 Method for producing nickel-cobalt metal powder
JP5407495B2 (en) 2009-04-02 2014-02-05 住友電気工業株式会社 Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
JP5828923B2 (en) * 2014-01-30 2015-12-09 国立大学法人高知大学 Method for producing nickel powder
JP5881091B2 (en) * 2014-02-17 2016-03-09 住友金属鉱山株式会社 Method for producing nickel powder
AU2015220105B2 (en) * 2014-02-21 2016-09-22 Kochi University, National University Corporation Method for producing nickel powder
JP6442298B2 (en) * 2014-03-26 2018-12-19 国立大学法人高知大学 Method for producing nickel powder
JP5796696B1 (en) * 2015-01-22 2015-10-21 住友金属鉱山株式会社 Method for producing nickel powder
JP6610425B2 (en) * 2015-08-31 2019-11-27 住友金属鉱山株式会社 Method for producing nickel powder

Similar Documents

Publication Publication Date Title
WO2015115427A1 (en) Manufacturing method for nickel powder
JP6099601B2 (en) Method for producing nickel powder
JP6610425B2 (en) Method for producing nickel powder
JP2015166488A5 (en)
WO2017006795A1 (en) Method for producing cobalt powder
WO2016117138A1 (en) Method for producing nickel powder
JP5796696B1 (en) Method for producing nickel powder
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
WO2017150105A1 (en) Nickel powder production method
JP2017155265A5 (en)
JP6241617B2 (en) Method for producing cobalt powder
JP2017082270A5 (en)
JP5881091B2 (en) Method for producing nickel powder
JP6531913B2 (en) Method of producing nickel powder
JP6641632B2 (en) Nickel powder manufacturing method
WO2017038589A1 (en) Process for producing nickel powder
JP7272761B2 (en) Nickel powder manufacturing method
JP2018154883A (en) Method for producing a nickel powder
JP2020012138A (en) Manufacturing method of nickel powder
JP2018141203A (en) Method of producing nickel powder for seed crystals