JP6641632B2 - Nickel powder manufacturing method - Google Patents

Nickel powder manufacturing method Download PDF

Info

Publication number
JP6641632B2
JP6641632B2 JP2016042668A JP2016042668A JP6641632B2 JP 6641632 B2 JP6641632 B2 JP 6641632B2 JP 2016042668 A JP2016042668 A JP 2016042668A JP 2016042668 A JP2016042668 A JP 2016042668A JP 6641632 B2 JP6641632 B2 JP 6641632B2
Authority
JP
Japan
Prior art keywords
nickel
weight
dispersant
insoluble solid
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016042668A
Other languages
Japanese (ja)
Other versions
JP2017155319A5 (en
JP2017155319A (en
Inventor
伸一 平郡
伸一 平郡
佳智 尾崎
佳智 尾崎
龍馬 山隈
龍馬 山隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016042668A priority Critical patent/JP6641632B2/en
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to PCT/JP2017/006623 priority patent/WO2017150305A1/en
Priority to US16/081,980 priority patent/US20190009343A1/en
Priority to CN201780015054.7A priority patent/CN108778577A/en
Priority to EP17759771.3A priority patent/EP3424626A4/en
Priority to CA3016415A priority patent/CA3016415A1/en
Priority to AU2017227207A priority patent/AU2017227207B2/en
Publication of JP2017155319A publication Critical patent/JP2017155319A/en
Priority to PH12018501872A priority patent/PH12018501872A1/en
Publication of JP2017155319A5 publication Critical patent/JP2017155319A5/ja
Application granted granted Critical
Publication of JP6641632B2 publication Critical patent/JP6641632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Description

本発明は、硫酸ニッケルアンミン錯体を含有する溶液から、種結晶として利用できる微小ニッケル粉末を製造する方法に関するもので、特に発生個数を必要量に制御しようとする処理に適用できる。   The present invention relates to a method for producing fine nickel powder that can be used as seed crystals from a solution containing a nickel sulfate amine complex, and is particularly applicable to a process for controlling the number of generated nickel particles to a required amount.

微小なニッケル粉を製造する方法として、溶融させたニッケルをガスまたは水中に分散させ微細粉を得るアトマイズ法や、特許文献1に開示されるニッケルを揮発させ、気相中で還元することでニッケル粉を得るCVD法などの乾式法が知られている。
また、湿式プロセスによりニッケル粉を製造する方法として、特許文献2に開示される還元剤を用いて生成する方法や、特許文献3に開示される高温で還元雰囲気中にニッケル溶液を噴霧することにより、熱分解反応によりニッケル粉を得る噴霧熱分解法などが知られている。しかし、これらの方法は高価な試薬類や多量のエネルギーを必要とするため、経済的とは言えない。
Examples of a method for producing fine nickel powder include an atomizing method in which molten nickel is dispersed in gas or water to obtain a fine powder, and nickel by volatilizing nickel disclosed in Patent Document 1 and reducing it in a gas phase. A dry method such as a CVD method for obtaining powder is known.
As a method for producing nickel powder by a wet process, a method using a reducing agent disclosed in Patent Document 2 or a method in which a nickel solution is sprayed in a reducing atmosphere at a high temperature disclosed in Patent Document 3 can be used. A spray pyrolysis method for obtaining nickel powder by a pyrolysis reaction is known. However, these methods are not economical because they require expensive reagents and a large amount of energy.

一方、非特許文献1に示されるような、硫酸ニッケルアンミン錯体溶液に水素ガスを供給して錯体溶液中のニッケルイオンを還元してニッケル粉を得る方法は、工業的に安価であり有用である。けれども、この方法においては得られるニッケル粉粒子は粗大化しやすく、種結晶に使えるような微細な粉末を製造することは困難であった。   On the other hand, a method as described in Non-Patent Document 1 in which hydrogen gas is supplied to a nickel ammine complex solution to reduce nickel ions in the complex solution to obtain nickel powder is industrially inexpensive and useful. . However, in this method, the obtained nickel powder particles are easily coarsened, and it has been difficult to produce a fine powder that can be used for a seed crystal.

そこで、水溶液中から粒子を発生させ成長させようとする場合、種結晶と呼ばれる微細な結晶を少量共存させ、そこに還元剤を供給し、種結晶を成長させて所定の粒径の粉末を得る方法が用いられる。
この方法で用いる種結晶は、製品を粉砕するなどして得ることが多いが、手間も要し、また収率が減少するのでコスト増加につながる。また、粉砕によって必ずしも最適な粒径や性状の種結晶が得られるとは限らない。
Therefore, when generating and growing particles from an aqueous solution, a small amount of fine crystals called seed crystals coexist, a reducing agent is supplied thereto, and the seed crystals are grown to obtain a powder having a predetermined particle size. A method is used.
The seed crystal used in this method is often obtained by pulverizing the product, but it requires much labor, and the yield is reduced, which leads to an increase in cost. In addition, seed crystals having an optimum particle size and properties are not always obtained by pulverization.

さらに、ニッケル粉の製造に係る操業を安定して進めるには、常に適切な量の種結晶が供給されることが必要だが、過剰に準備しておくことは仕掛品の増加や管理の手間が増加するなど、それだけ生産効率の低下になる。
このように実操業に必要な量の種結晶を安定して得る方法が求められていた。
Furthermore, it is necessary to always supply an appropriate amount of seed crystals in order to stably operate the operations related to the production of nickel powder, but excessive preparation requires an increase in work in process and labor for management. As a result, production efficiency will decrease.
Thus, there has been a demand for a method for stably obtaining an amount of seed crystals necessary for actual operation.

特開2005−505695号公報JP 2005-505695 A 特開2010−242143号公報JP 2010-242143 A 特許4286220号公報Japanese Patent No. 4286220

“The Manufacture and properties of metal powder produced by the gaseous reduction of aqueous solutions”,Powder metallurgy,No.1/2(1958),40−52."The Manufacture and properties of metal powder produced by the gaseous reduction of aqueous solutions, Powermetallurgy." 1/2 (1958), 40-52.

このような状況の中で、本発明は、硫酸ニッケルアンミン錯体を含有する溶液からニッケル粉の製造に必要な種結晶となる微小なニッケル粉を、そのニッケル粉の製造に必要な量に応じて製造するニッケル粉の製造方法を提供するものである。   Under such circumstances, the present invention provides a fine nickel powder that becomes a seed crystal necessary for the production of nickel powder from a solution containing a nickel ammine complex, according to the amount required for the production of the nickel powder. The present invention provides a method for producing nickel powder to be produced.

このような課題を解決する本発明の第1の発明は、反応槽内に、連続して硫酸ニッケルアンミン錯体を含有する溶液と不溶性固体と分散剤を供給、攪拌して形成したニッケル錯イオンを含む溶液に、水素ガスを吹き込み、ニッケル錯イオンを含む溶液中のニッケル錯イオンを還元処理して不溶性固体の表面にニッケル粒子の析出物を備えた複合体を形成し、その複合体を含む還元スラリーを得た後、反応槽から還元スラリーを抜出する際に、反応槽の液量が一定となるように、硫酸ニッケルアンミン錯体を含有する溶液と不溶性固体と分散剤の供給量と、還元スラリーの排出量を調整して前記反応槽内から還元スラリーを抜出することを特徴とするニッケル粉の製造方法である。 The first invention of the present invention that solves such a problem is to supply a nickel sulfate ammine complex-containing solution, an insoluble solid, and a dispersant continuously into a reaction tank, and to form a nickel complex ion formed by stirring. Hydrogen gas is blown into the solution containing the nickel complex ions, and the nickel complex ions in the solution containing the nickel complex ions are reduced to form a complex having a precipitate of nickel particles on the surface of the insoluble solid. After obtaining the slurry, when extracting the reduced slurry from the reaction tank, the supply amount of the solution containing the nickel ammine complex, the insoluble solid and the dispersant, and the reduction so that the liquid volume in the reaction tank becomes constant. A method for producing nickel powder, wherein a reduced slurry is extracted from the reaction tank by adjusting a discharge amount of the slurry.

本発明の第2の発明は、第1の発明における分散剤の添加量を制御して前記還元処理におけるニッケル析出物の生成により得られるニッケル粉の個数を制御することを特徴とするニッケル粉の製造方法である。A second invention of the present invention provides a method of producing a nickel powder, comprising: controlling the amount of a nickel powder obtained by forming nickel precipitates in the reduction treatment by controlling the amount of the dispersant added in the first invention. It is a manufacturing method.

本発明の第3の発明は、第1及び第2の発明における分散剤がポリアクリル酸塩で、前記添加量が前記反応槽内の不溶性固体の重量の1.0重量%を越えて、10.0重量%以下の量であることを特徴とするニッケル粉の製造方法である。In a third aspect of the present invention, the dispersant in the first and second aspects is a polyacrylate, and the amount of the dispersant exceeds 1.0% by weight of the weight of the insoluble solid in the reaction vessel. A method for producing nickel powder, characterized in that the amount is not more than 0.0% by weight.

本発明の第4の発明は、第1及び第2の発明における分散剤がリグニンスルホン酸で、前記添加量が前記反応槽内の不溶性固体の重量の2.0重量%を越えて、20.0重量%以下の量であることを特徴とするニッケル粉の製造方法である。According to a fourth aspect of the present invention, the dispersant of the first and second aspects is ligninsulfonic acid, and the amount of the dispersant exceeds 2.0% by weight of the weight of the insoluble solid in the reaction vessel. A method for producing nickel powder, characterized in that the amount is 0% by weight or less.

本発明によれば、硫酸ニッケルアンミン錯体溶液から、水素ガスを用いた還元析出法により、経済的で効率よくニッケル粉の製造に使用する種結晶に最適な微小なニッケル粉を、必要な量に応じて製造する方法の提供を可能とするもので、工業上顕著な効果を奏するものである。   According to the present invention, from the nickel sulfate ammine complex solution, the fine nickel powder optimal for the seed crystal used for the production of the nickel powder is economically and efficiently produced by the reduction precipitation method using hydrogen gas to a required amount. It is possible to provide a method for producing the same according to the present invention, and has an industrially remarkable effect.

本発明に係る分散剤及び不溶性固体を添加したニッケル粉の製造方法における製造フロー図である。It is a manufacturing flow figure in the manufacturing method of the nickel powder to which the dispersing agent and the insoluble solid were added according to the present invention. 参考例1〜4におけるポリアクリル酸ナトリウムを用いた場合の反応終了後の溶液中のニッケル濃度の変化を示した図である。FIG. 5 is a diagram showing a change in nickel concentration in a solution after completion of a reaction when sodium polyacrylate in Reference Examples 1 to 4 is used. 参考比較例2(分散剤無添加)に係る水素還元時の分散剤濃度による混合スラリー中のニッケル濃度の反応時間による変化を示す図である。It is a figure which shows the change by the reaction time of the nickel density | concentration in the mixed slurry by the dispersing agent density | concentration at the time of hydrogen reduction concerning reference comparative example 2 (no dispersing agent addition). 参考例5に係るニッケル粉の個数とポリアクリル酸ナトリウムの添加量との関係を示す図である。It is a figure which shows the relationship between the number of nickel powder and the addition amount of sodium polyacrylate concerning Reference Example 5. 参考例6に係るニッケル粉の個数とリグニンスルホン酸ナトリウムの添加量との関係を示す図である。It is a figure which shows the relationship between the number of the nickel powder and the addition amount of sodium lignin sulfonate which concern on the reference example 6. 実施例7に係る種晶の不溶性固体(ニッケル粉)と産出されたニッケル粉の粒度分布を比較する図である。It is a figure which compares the particle size distribution of the insoluble solid (nickel powder) of the seed crystal and the produced nickel powder which concerns on Example 7.

本発明は、硫酸ニッケルアンミン錯体溶液に分散剤と種晶の不溶性固体を加え、水素ガスを吹き込むことによりニッケル粉を製造する方法において、分散剤の添加量の制御により、目的とする量の微小ニッケル粉を製造することを特徴とするニッケル粉の製造方法である。
以下、本発明のニッケル粉の製造方法を図1に示す製造フロー図を参照して説明する。
The present invention provides a method for producing nickel powder by adding a dispersant and an insoluble solid of a seed crystal to a nickel ammine sulfate solution, and blowing hydrogen gas into the nickel ammine complex solution. A method for producing nickel powder, characterized by producing nickel powder.
Hereinafter, the method for producing nickel powder of the present invention will be described with reference to the production flowchart shown in FIG.

[硫酸ニッケルアンミン錯体溶液]
本発明に用いる硫酸ニッケルアンミン錯体溶液は、特に限定はされないが、ニッケルおよびコバルト混合硫化物、粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、ニッケル粉などから選ばれる一種、または複数の混合物から成る工業中間物などのニッケル含有物を、その成分に合わせて硫酸あるいはアンモニアにより溶解して得られるニッケル浸出液(ニッケルを含む溶液)を、溶媒抽出法、イオン交換法、中和などの浄液工程を施すことにより溶液中の不純物元素を除去して得られる溶液に、アンモニアを添加し、硫酸ニッケルアンミン錯体溶液としたもの等が適している。
[Nickel ammine sulfate solution]
The nickel sulfate ammine complex solution used in the present invention is not particularly limited, but is a mixture of nickel and cobalt mixed sulfide, crude nickel sulfate, nickel oxide, nickel hydroxide, nickel carbonate, nickel powder, and the like, or a mixture thereof. A nickel leaching solution (solution containing nickel) obtained by dissolving a nickel-containing substance such as an industrial intermediate composed of sulfuric acid or ammonia according to its components, and purifying the solution by solvent extraction, ion exchange, neutralization, etc. A solution obtained by adding ammonia to a solution obtained by removing an impurity element in the solution by performing the process to form a nickel sulfate ammine complex solution is suitable.

[混合工程]
この工程では、先ず硫酸ニッケルアンミン錯体溶液に分散剤を添加する。
この工程で用いる分散剤は、ポリアクリル酸塩又はリグニンスルホン酸塩であれば特に限定されないが、工業的に安価に入手できるものとしてポリアクリル酸塩では、ポリアクリル酸カルシウム、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、リグニンスルホン酸塩では、リグニンスルホン酸カルシウム、リグニンスルホン酸ナトリウム、リグニンスルホン酸カリウムが好適である。
[Mixing process]
In this step, a dispersant is first added to the nickel sulfate ammine complex solution.
The dispersant used in this step is not particularly limited as long as it is a polyacrylate or a lignin sulfonate, but as a commercially available polyacrylate, polyacrylate, calcium polyacrylate, sodium polyacrylate, Among potassium polyacrylate and lignin sulfonate, calcium lignin sulfonate, sodium lignin sulfonate and potassium lignin sulfonate are preferred.

また、溶液中の硫酸アンモニウム濃度は、図1に示す製造方法共に、10〜500g/Lの範囲とすることが好ましい。500g/L以上では溶解度を超えてしまい結晶が析出する。また、反応により硫酸アンモニウムが新たに生成するため、10g/L未満を達成するのは困難である。   Further, the concentration of ammonium sulfate in the solution is preferably in the range of 10 to 500 g / L in both the production methods shown in FIG. If it is more than 500 g / L, the solubility will be exceeded and crystals will precipitate. In addition, since ammonium sulfate is newly generated by the reaction, it is difficult to achieve an amount of less than 10 g / L.

<不溶性固体の添加>
次に、図1に示す本発明に係る製造方法では、上記により分散剤濃度が調整された硫酸ニッケルアンミン錯体溶液に、少なくとも、その錯体溶液に不溶であり、析出の母体となる不溶性固体を添加する。
ここで添加する不溶性固体は、硫酸ニッケルアンミン錯体溶液、硫酸アンモニウム水溶液或いはアルカリ溶液への溶解度が小さいものであれば、特に限定はされず、例えば、ニッケル粉、鉄粉、アルミナ粉、ジルコニア粉、シリカ粉などを用いることができる。
<Addition of insoluble solid>
Next, in the production method according to the present invention shown in FIG. 1, at least an insoluble solid that is insoluble in the complex solution and serves as a base for precipitation is added to the nickel ammine sulfate complex solution having the dispersant concentration adjusted as described above. I do.
The insoluble solid to be added here is not particularly limited as long as it has a low solubility in a nickel ammine complex solution, an aqueous solution of ammonium sulfate or an alkaline solution, and examples thereof include nickel powder, iron powder, alumina powder, zirconia powder, and silica. Powder or the like can be used.

本発明では、従来一般に使われてきた種結晶を用いて粉末を析出させ、種結晶ごと製品とする方法でなく、不溶性固体表面に必要な析出が終わった後に、不溶性固体と析出、成長した析出物とを切り離し、その切り離した析出物の粉末部分のみを製品としようとするものである。本発明のこのような方法によれば、種結晶自身がもつ不純物による製品への影響を回避するものである。   In the present invention, the method of precipitating a powder using a seed crystal that has been generally used in the past, and forming the seed crystal as a product, after the necessary precipitation on the surface of the insoluble solid is completed, the insoluble solid precipitates, and the grown precipitate The product is separated from the material, and only the powder portion of the separated precipitate is intended to be a product. According to such a method of the present invention, it is possible to avoid the influence on the product due to impurities contained in the seed crystal itself.

不溶性固体の添加量は、特に限定されず、固体の種類に応じて、硫酸ニッケルアンミン錯体溶液に添加した時に撹拌による混合が可能な量を選択する。一例として50〜100g/L程度の量を添加すればよい。
形状や大きさも特に限定はしないが、後述するように互いに衝突させたり、振動を与えたりして表面のニッケル析出物を分離することがあるので、衝撃や摩擦に耐える強度を有し、ニッケル析出物が効果的に分離できるように表面がなだらかな形状であるものが適している。
The amount of the insoluble solid to be added is not particularly limited, and an amount that can be mixed by stirring when added to the nickel ammine sulfate solution is selected according to the type of the solid. As an example, an amount of about 50 to 100 g / L may be added.
The shape and size are not particularly limited, but they may collide with each other or give vibrations to separate nickel precipitates on the surface, as described later. It is suitable that the surface has a gentle shape so that objects can be effectively separated.

また、不溶性固体と、その表面のニッケル析出物との効果的な分離を考えると、実操業では例えば直径0.05〜3mm程度の球状もしくは楕円形等の角が無い形状であるものが使いやすい。なお、ニッケルを析出させるのに先立ってあらかじめ衝突や衝撃を与えて、不溶性固体表面の付着物等を取り除いてから本発明の不溶性固体として用いることが好ましい。
さらに、ニッケル析出物を分離した後の不溶性固体は、必要に応じて洗浄等の前処理を行った後で再び繰り返して使用することもできる。
Considering the effective separation of the insoluble solid and the nickel precipitate on the surface thereof, it is easy to use a shape having no corners such as a sphere or an ellipse having a diameter of about 0.05 to 3 mm in actual operation. . In addition, it is preferable to apply a collision or an impact in advance before depositing nickel to remove deposits and the like on the surface of the insoluble solid, and then use it as the insoluble solid of the present invention.
Further, the insoluble solid after the nickel precipitate is separated can be used again after performing a pretreatment such as washing as necessary.

<分散剤の添加>
本発明では、上記不溶性固体を種晶として用い、分散剤を添加することを特徴とするものであり、加えた不溶性固体を錯体溶液中で十分な分散状態を形成し、その不溶性固体表面に微細なニッケル析出物を生成可能な分散剤を用いるもので、錯体溶液に加えられた不溶性固体の重量の1.0〜20.0重量%の範囲での適量の添加が望ましく、特にポリアクリル酸塩、リグニンスルホン酸塩が好ましい。
<Addition of dispersant>
The present invention is characterized in that the insoluble solid is used as a seed crystal and a dispersant is added, and the added insoluble solid forms a sufficiently dispersed state in a complex solution, and the fine particles are formed on the surface of the insoluble solid. It is preferable to use a dispersant capable of forming a stable nickel precipitate in an amount of 1.0 to 20.0% by weight based on the weight of the insoluble solid added to the complex solution. And lignin sulfonates are preferred.

1.分散剤にポリアクリル酸塩を用いる場合
上記不溶性固体を種晶として用い、分散剤にポリアクリル酸塩を用いる場合(図1の製造フローで示す製造方法)、その添加量は混合スラリーに加えられた不溶性固体の重量の1.0重量%を越えて、10.0重量%以下の量とし、望ましくは2.0重量%以上、6.0重量%以下とする。
1. When a polyacrylate is used as a dispersant When the insoluble solid is used as a seed crystal and a polyacrylate is used as a dispersant (the production method shown in the production flow of FIG. 1), the amount of the polyacrylate is added to the mixed slurry. The amount is more than 1.0% by weight and not more than 10.0% by weight, preferably not less than 2.0% by weight and not more than 6.0% by weight based on the weight of the insoluble solid.

その添加量が、1.0重量%以下ではニッケル粉が析出せず、2.0重量%以上になると不溶性固体が十分に分散され、添加量に比例して発生するニッケル粉の数を制御できて好ましい。
一方、その上限は6.0重量%を越えても増加傾向だが、あまりに多数の種結晶が生じることはハンドリングや分散剤同士が凝集してしまい、添加量に見合う効果を考えると好ましくないために10.0重量%以下、より好ましくは6.0重量%以下とする。
If the addition amount is 1.0% by weight or less, nickel powder does not precipitate, and if it is 2.0% by weight or more, the insoluble solid is sufficiently dispersed, and the number of nickel powders generated can be controlled in proportion to the addition amount. Preferred.
On the other hand, the upper limit tends to increase even if it exceeds 6.0% by weight. However, if too many seed crystals are formed, the handling and the dispersing agent aggregate, and it is not preferable in view of the effect corresponding to the added amount. The content is 10.0% by weight or less, more preferably 6.0% by weight or less.

2.分散剤にリグニンスルホン酸塩を用いる場合
また、分散剤にリグニンスルホン酸塩を用いる場合(図1の製造フローで示す製造方法)、その添加量は混合スラリーに加えられた不溶性固体の重量の2.0重量%以上、20.0重量%以下の量とする。その添加量が2.0重量%以下では、ニッケル粉を得ることができず、2.0重量%を超えることが必要だが、特に5.0重量%を越えると添加量に比例して発生するニッケル粉の数を制御できて好ましい。
2. When Lignin Sulfonate is Used as Dispersant When lignin sulfonate is used as the dispersant (the production method shown in the production flow of FIG. 1), the amount of addition is 2% of the weight of the insoluble solid added to the mixed slurry. The amount is set to not less than 0.0% by weight and not more than 20.0% by weight. If the addition amount is 2.0% by weight or less, nickel powder cannot be obtained, and it is necessary to exceed 2.0% by weight. In particular, if it exceeds 5.0% by weight, it is generated in proportion to the addition amount. It is preferable because the number of nickel powder can be controlled.

[還元・析出工程]
次に、混合スラリー中のニッケル錯イオンを水素により還元処理して不溶性固体表面上にニッケル析出物が生成した複合体を形成する「還元・析出工程」は、バッチ処理にて行う方法、及び連続処理にて行う方法を採ることが可能である。
先ず、バッチ処理において還元・析出処理を行う「還元・析出工程」は、分散剤及び不溶性固体を添加して形成した混合スラリーを、耐高圧高温容器の反応槽内に装入し、反応槽内に貯留された混合スラリーに水素ガスを吹き込んで、混合スラリー中のニッケル錯イオンを還元し、含まれる不溶性固体表面上にニッケルを析出物として生成した複合体を含む還元スラリーを形成する工程である。
[Reduction / precipitation process]
Next, the “reduction / precipitation step” of reducing the nickel complex ions in the mixed slurry with hydrogen to form a composite in which nickel precipitates are formed on the insoluble solid surface is performed by a batch process or a continuous process. It is possible to adopt a method of performing processing.
First, the "reduction / precipitation step" in which the reduction / precipitation treatment is performed in the batch processing is performed by charging a mixed slurry formed by adding a dispersant and an insoluble solid into a reaction vessel of a high-pressure resistant high-temperature vessel, and A hydrogen gas is blown into the mixed slurry stored in the mixed slurry to reduce nickel complex ions in the mixed slurry and form a reduced slurry containing a composite formed as a precipitate of nickel on the surface of the insoluble solid contained therein. .

このときの反応温度は、150〜200℃の範囲が好ましい。その反応温度が、150℃未満では還元効率が低下し、200℃以上にしても反応への影響はなく、むしろ熱エネルギー等のロスが増加するので適さない。
さらに、反応時の圧力は1.0〜4.0MPaが好ましい。圧力が、1.0MPa未満では反応効率が低下し、4.0MPaを超えても反応への影響はなく、水素ガスのロスが増加する。
The reaction temperature at this time is preferably in the range of 150 to 200 ° C. If the reaction temperature is lower than 150 ° C., the reduction efficiency is reduced, and if the reaction temperature is higher than 200 ° C., there is no effect on the reaction, but the loss of heat energy and the like increases, which is not suitable.
Further, the pressure during the reaction is preferably from 1.0 to 4.0 MPa. When the pressure is less than 1.0 MPa, the reaction efficiency decreases, and when it exceeds 4.0 MPa, there is no effect on the reaction, and the loss of hydrogen gas increases.

次に、分散剤及び不溶性固体を添加して形成した混合スラリーを、耐高圧高温容器の反応槽内に連続して供給し、その反応槽内を流動する混合スラリーに水素ガスを連続して吹き込んで、混合スラリー中のニッケル錯イオンを還元し、含まれる不溶性固体表面上にニッケルの析出物が生成した複合体を含む還元スラリーを得る。そのニッケル析出物を生成する還元反応後、得られた還元スラリーは反応槽から連続して抜出されて回収され、次工程に供される。
即ち、還元反応の工程を連続処理化することにより、スラリーの入れ替えや、還元処理の条件設定に掛かる時間の削減が可能であり、生産効率の向上が期待できる。また、混合スラリーの流入量を制御することによって、生産量の調製が可能であり、反応槽を小容量化可能となり、設備投資や補修に係る費用が圧縮でき、経済的である。
Next, the mixed slurry formed by adding the dispersant and the insoluble solid is continuously supplied into the reaction tank of the high-pressure resistant high-temperature container, and hydrogen gas is continuously blown into the mixed slurry flowing in the reaction tank. Then, the nickel complex ions in the mixed slurry are reduced to obtain a reduced slurry containing a complex in which nickel precipitates are formed on the surface of the insoluble solid contained therein. After the reduction reaction producing the nickel precipitate, the obtained reduced slurry is continuously withdrawn from the reaction tank, collected, and provided for the next step.
That is, by making the process of the reduction reaction continuous, it is possible to replace the slurry and to reduce the time required for setting the conditions of the reduction process, and it is possible to expect an improvement in production efficiency. Further, by controlling the inflow amount of the mixed slurry, the production amount can be adjusted, the capacity of the reaction tank can be reduced, and the cost for equipment investment and repair can be reduced, which is economical.

このような還元・析出工程における反応温度は、150〜200℃の範囲が好ましい。その反応温度が、150℃未満では還元効率が低下し、200℃以上にしても反応への影響はなく、むしろ熱エネルギー等のロスが増加するので適さない。
さらに、反応時の反応槽気相部の圧力は、1.0〜4.0MPaが好ましい。圧力が、1.0MPa未満では反応効率が低下し、4.0MPaを超えても反応への影響はなく、水素ガスのロスが増加する。
The reaction temperature in such a reduction / precipitation step is preferably in the range of 150 to 200 ° C. If the reaction temperature is lower than 150 ° C., the reduction efficiency is reduced, and if the reaction temperature is 200 ° C. or higher, there is no effect on the reaction, but the loss of heat energy and the like increases.
Further, the pressure in the gas phase of the reaction tank during the reaction is preferably 1.0 to 4.0 MPa. When the pressure is less than 1.0 MPa, the reaction efficiency decreases, and when the pressure exceeds 4.0 MPa, there is no effect on the reaction, and the loss of hydrogen gas increases.

本発明に係る還元・析出処理における分散剤の効果によって、不溶性固体が混合スラリーで、十分な分散状態を形成し、そのような状態においては、不溶性固体表面上により微細な粉状の析出物としてニッケルの析出物が形成でき、ニッケルを硫酸ニッケルアンミン錯体溶液から抽出、回収、さらに分散剤の添加量を調整することにより、析出して生成するニッケル粉の量も調整可能となる。   Due to the effect of the dispersant in the reduction / precipitation treatment according to the present invention, the insoluble solid forms a sufficiently dispersed state in the mixed slurry, and in such a state, as a finer powdery precipitate on the surface of the insoluble solid. A precipitate of nickel can be formed, and by extracting and recovering nickel from the nickel ammine complex solution and adjusting the amount of the dispersant added, the amount of nickel powder generated by precipitation can be adjusted.

[分離工程]
この工程は、不溶性固体を使用した場合に行われる工程で、還元・析出工程で生成したニッケル析出物は不溶性固体表面上に付着した状態であり、その状態では利用できないので、表面に形成されたニッケル析出物を不溶性固体と分離、回収するものである。
具体的な分離方法として、例えば発熱で酸化しないように、不溶性固体ごと水中に入れ、回転して不溶性固体同士を衝突させて表面のニッケル析出物を分離し、篩い分けしてニッケル粉を得る方法、湿式篩上で回転させて、分離したニッケル析出物を同時に篩い分けてニッケル粉を得る方法、あるいは、液中に超音波を加えて振動を与え、分離し、篩い分けてニッケル粉を得るなどの方法がある。篩い分けに際しては、目開きが不溶性固体の大きさより細かいものであれば用いることができる。
[Separation step]
This step is a step performed when an insoluble solid is used, and the nickel precipitate generated in the reduction / precipitation step is in a state attached to the surface of the insoluble solid and cannot be used in that state, so it is formed on the surface. The nickel precipitate is separated and recovered from the insoluble solid.
As a specific separation method, for example, a method in which insoluble solids are put into water, rotated to collide the insoluble solids with each other to separate nickel precipitates on the surface, and sieved to obtain nickel powder, so as not to oxidize due to heat generation. Rotating on a wet sieve, sieving the separated nickel precipitates simultaneously to obtain nickel powder, or applying ultrasonic waves to the liquid to apply vibration, separating, sieving and obtaining nickel powder, etc. There is a method. In sieving, any mesh can be used as long as the mesh size is smaller than the size of the insoluble solid.

以上のようにして製造したニッケル粉は、例えば積層セラミックコンデンサーの内部構成物質であるニッケルペースト用途として用いることができる他、回収したニッケル粉を種晶として上記水素還元を繰り返すことにより粒子を成長させ、高純度のニッケルメタルを製造することができる。   The nickel powder produced as described above can be used, for example, for nickel paste, which is an internal constituent material of a multilayer ceramic capacitor, and grows particles by repeating the above-described hydrogen reduction using the recovered nickel powder as a seed crystal. , High-purity nickel metal can be manufactured.

以下に本発明を、実施例、参考例を用いて説明する。 Hereinafter, the present invention will be described with reference to Examples and Reference Examples .

参考例1
[混合工程]
ニッケル分で75gに相当する硫酸ニッケル六水和物336gと硫酸アンモニウム330g、25%アンモニア水を191mlを加えて硫酸ニッケルアンミン錯体溶液を形成した後、図1の製造フローに沿って、先ず、その溶液に種晶とする析出母体となる不溶性固体として、平均粒径(D50)が85μmのサイズのニッケル粉75gを、分散剤として分子量4000のポリアクリル酸ナトリウムを、種晶とする不溶性固体の重量の2重量%に相当する1.5gを添加した後に加え、液量が1000mlになるように純水を加えて調整し、混合スラリーを形成した。
[ Reference Example 1 ]
[Mixing process]
336 g of nickel sulfate hexahydrate, equivalent to 75 g of nickel, 330 g of ammonium sulfate, and 191 ml of 25% aqueous ammonia were added to form a nickel sulfate ammine complex solution. 75 g of nickel powder having an average particle diameter (D50) of 85 μm as a dispersing agent, sodium polyacrylate having a molecular weight of 4000 as a dispersant, and a weight of the insoluble solid as a seed crystal. After adding 1.5 g corresponding to 2% by weight, the mixture was added, and the mixture was adjusted by adding pure water so that the liquid volume became 1000 ml, thereby forming a mixed slurry.

[還元・析出工程]
次いで、上記で作製した混合スラリーをオートクレーブの内筒缶に装入し、撹拌しながら185℃に昇温後、その温度を保持した状態で、ボンベから水素ガスを吹き込み、オートクレーブの内筒缶内の圧力が3.5MPaになるように水素ガスを供給した。
[Reduction / precipitation process]
Next, the mixed slurry prepared above was charged into an inner cylinder can of an autoclave, and the temperature was raised to 185 ° C. with stirring. Then, while maintaining the temperature, hydrogen gas was blown from a cylinder, and the inner cylinder of the autoclave was cooled. Hydrogen gas was supplied such that the pressure of the gas became 3.5 MPa.

水素ガスを供給開始してから2分毎にオートクレーブのサンプル口からサンプルの還元されたスラリーを抜き出し、固液分離して濾液のニッケル濃度を分析した。
反応が進行するに伴ってニッケルが粉末として析出し、その分濾液のニッケル濃度は低下する。図2に示すように、その濃度変化から計算して30分間で80%以上のニッケルを還元し回収することができた。
Every 2 minutes after the supply of hydrogen gas was started, the reduced slurry of the sample was extracted from the sample port of the autoclave, separated into a solid and a liquid, and the nickel concentration of the filtrate was analyzed.
As the reaction proceeds, nickel precipitates as a powder, and the nickel concentration of the filtrate decreases accordingly. As shown in FIG. 2, 80% or more of nickel was reduced and recovered in 30 minutes calculated from the change in the concentration.

水素ガスの供給から30分が経過した後に、水素ガスの供給を停止し、内筒缶を冷却した。冷却後、内筒缶内のスラリーを濾過し、析出したニッケル粉42.7gを回収した。
回収したニッケル粉を観察したところ、種結晶に使用できるほど微細なニッケル粉が生成していることを確認した。
After a lapse of 30 minutes from the supply of the hydrogen gas, the supply of the hydrogen gas was stopped, and the inner cylinder can was cooled. After cooling, the slurry in the inner cylinder can was filtered to recover 42.7 g of precipitated nickel powder.
Observation of the recovered nickel powder confirmed that fine nickel powder was generated that could be used for seed crystals.

参考例2
ポリアクリル酸ナトリウムを、種晶重量の6重量%に相当する4.5g添加したこと以外は、上記参考例1と同じ条件と方法でニッケル粉を製造して回収した。
その結果を図2に示す。図2に示されるように、参考例1と同様に30分間で80%以上のニッケルを還元し回収することができた。
[ Reference Example 2 ]
Nickel powder was produced and recovered under the same conditions and in the same manner as in Reference Example 1 except that 4.5 g of sodium polyacrylate, which corresponds to 6% by weight of the seed crystal, was added.
The result is shown in FIG. As shown in FIG. 2, 80% or more of nickel was reduced and recovered in 30 minutes as in Reference Example 1 .

参考例3
ポリアクリル酸ナトリウムを種晶重量の10重量%に相当する7.5g添加したこと以外は、上記参考例1と同じ条件と方法でニッケル粉を製造し回収した。
その結果を図2に示す。図2に示されるように、参考例1と同様に30分間で80%以上のニッケルを還元して回収することができた。
[ Reference Example 3 ]
A nickel powder was produced and recovered under the same conditions and in the same manner as in Reference Example 1 except that 7.5 g of sodium polyacrylate, which corresponds to 10% by weight of the seed crystal, was added.
The result is shown in FIG. As shown in FIG. 2, 80% or more of nickel could be reduced and recovered in 30 minutes as in Reference Example 1.

参考例4
ポリアクリル酸ナトリウムを種晶重量の1重量%に相当する0.75g添加した以外は参考例1と同じ条件と方法でニッケル粉を製造して回収した。
その結果を図2に示す。図2に示されるように、濃度変化から計算して30分間で50%程度のニッケルを還元し回収できた。
[ Reference Example 4 ]
Nickel powder was produced and recovered under the same conditions and in the same manner as in Reference Example 1 except that 0.75 g of sodium polyacrylate, which was equivalent to 1% by weight of the seed crystal, was added.
The result is shown in FIG. As shown in FIG. 2, about 30% of nickel was reduced and recovered in 30 minutes calculated from the change in concentration.

参考比較例1
分散剤と不溶性固体を添加せず、それ以外の液組成や還元条件は参考例1と同様にしてニッケル粉を作製した。
サンプリングした溶液のニッケル濃度は75g/Lから45g/L程度まで低下した。しかし、水素ガス吹き込み終了後の溶液からはニッケル粉は回収できず、内筒缶内の側壁や攪拌機に板状のニッケルのスケーリングが生成している様子が確認できた。
( Reference Comparative Example 1 )
A nickel powder was prepared in the same manner as in Reference Example 1 except that the dispersant and the insoluble solid were not added, and the other liquid compositions and reduction conditions were the same.
The nickel concentration of the sampled solution decreased from 75 g / L to about 45 g / L. However, nickel powder could not be recovered from the solution after the completion of the hydrogen gas injection, and it was confirmed that plate-like nickel scaling was generated on the side wall and the stirrer in the inner cylinder can.

参考比較例2
分散剤を添加せず、不溶性固体としてニッケル粉を75g添加した以外は、参考例1と同じ方法でニッケル粉を製造した。
その結果を図3に示す。図3に示されるように、濃度変化から計算して30分間で20%程度のニッケルしか還元できなかった。
( Reference Comparative Example 2 )
A nickel powder was produced in the same manner as in Reference Example 1, except that 75 g of nickel powder was added as an insoluble solid without adding a dispersant.
The result is shown in FIG. As shown in FIG. 3, only about 20% of nickel could be reduced in 30 minutes calculated from the change in concentration.

参考例5
ニッケル75gに相当する硫酸ニッケル六水和物336g、硫酸アンモニウム330gを含む溶液に、25%アンモニア水を191mlを加えて硫酸ニッケルアンミン錯体溶液を作製した。さらに図1に示す製造フローに沿って、分子量4000、濃度40%のポリアクリル酸ナトリウム溶液、0.38g、1.88g、3.75g、7.5g、11.3gを、作製した硫酸ニッケルアンミン錯体溶液、それぞれに添加して合計の液量が1000mlになるように調整した5つの溶液を作製した。
[ Reference Example 5 ]
To a solution containing 336 g of nickel sulfate hexahydrate equivalent to 75 g of nickel and 330 g of ammonium sulfate, 191 ml of 25% ammonia water was added to prepare a nickel ammine complex solution. Further, according to the manufacturing flow shown in FIG. 1, nickel ammonium sulfate prepared by preparing 0.38 g, 1.88 g, 3.75 g, 7.5 g, and 11.3 g of a sodium polyacrylate solution having a molecular weight of 4,000 and a concentration of 40%. Five solutions were prepared which were added to each of the complex solutions and adjusted so that the total liquid volume was 1000 ml.

作製した溶液のそれぞれに、析出母体となる不溶性固体として、平均粒径(D50)が85μmのニッケル粉75gを添加し、所望の混合スラリーを作製した。ここで添加したポリアクリル酸ナトリウムは、純分で不溶性固体量のそれぞれ0.2重量%、1.0重量%、2.0重量%、4.0重量%、6.0重量%に相当するものである。   To each of the prepared solutions, 75 g of nickel powder having an average particle diameter (D50) of 85 μm was added as an insoluble solid to be a precipitation matrix to prepare a desired mixed slurry. The sodium polyacrylate added here corresponds to 0.2% by weight, 1.0% by weight, 2.0% by weight, 4.0% by weight, and 6.0% by weight of the insoluble solids as pure components, respectively. Things.

次いで、作製した混合スラリーをオートクレーブの内筒缶に装入し、撹拌しながら185℃に昇温、保持した状態で、水素ガスを吹き込み、オートクレーブ内の圧力が3.5MPaになるように水素ガスを供給した。水素ガスの供給から60分が経過した後に、水素ガスの供給を停止し、内筒缶を冷却した。   Next, the prepared mixed slurry was charged into an inner cylinder of an autoclave, and while being heated and maintained at 185 ° C. while stirring, hydrogen gas was blown into the autoclave so that the pressure inside the autoclave became 3.5 MPa. Was supplied. After a lapse of 60 minutes from the supply of the hydrogen gas, the supply of the hydrogen gas was stopped, and the inner cylinder can was cooled.

[分離工程]
冷却後、内筒缶内のスラリーを濾過して不溶性固体とニッケル析出物の複合体を回収し、次いで目開きが75μmの湿式篩を使用して、振動を加えて母体の不溶性固体と、表面のニッケル析出物とを分離してニッケル粉を回収した。
[Separation process]
After cooling, the slurry in the inner cylinder can was filtered to recover a complex of the insoluble solid and the nickel precipitate, and then the mother insoluble solid was shaken by applying vibration using a wet sieve having a mesh size of 75 μm. Was separated from the nickel precipitate to recover nickel powder.

その回収した篩下のニッケル粉を、粒度分布装置(マイクロトラック社製、商品名9320−X100型)により粒径を測定し粒度分布を求めた。
回収したニッケル粉を真球と仮定し、測定した平均粒径:Dとニッケルの密度:ρ=8.9g/cmを用いて、その回収したニッケル粉の個数を下記(1)式により算出した。
The collected nickel powder under the sieve was measured for particle size by a particle size distribution device (trade name: 9320-X100, manufactured by Microtrac Co., Ltd.) to obtain a particle size distribution.
Assuming that the recovered nickel powder is a true sphere, the number of the recovered nickel powder is calculated by the following formula (1) using the measured average particle diameter: D and the density of nickel: ρ = 8.9 g / cm 3. did.

Figure 0006641632
Figure 0006641632

上記(1)式を用いて算出したニッケル粉の個数とポリアクリル酸ナトリウムの添加量との関係を図4に示す。
図4から、ポリアクリル酸ナトリウム添加量とニッケル粉個数には相関がみられ、ポリアクリル酸ナトリウムの添加量によりニッケル粉発生量を調整できることがわかる。特に、ポリアクリル酸ナトリウムの添加量が1.0重量%以下ではニッケル粉を得ることができないが、1.0重量%を超えると添加量に比例して発生するニッケル粉の数を制御できることがわかる。
FIG. 4 shows the relationship between the number of nickel powders calculated using the above equation (1) and the amount of sodium polyacrylate added.
FIG. 4 shows that there is a correlation between the amount of added sodium polyacrylate and the number of nickel powders, and that the amount of generated nickel powder can be adjusted by the amount of sodium polyacrylate added. In particular, when the added amount of sodium polyacrylate is 1.0% by weight or less, nickel powder cannot be obtained, but when it exceeds 1.0% by weight, the number of nickel powders generated can be controlled in proportion to the added amount. Understand.

参考例6
分散剤にリグニンスルホン酸ナトリウムを用い、1.5g、3.0g、4.5g、7.5g、11.3g、15.0gを用いた以外は、参考例1と同様の方法を用いてニッケル粉を製造した。添加したリグニンスルホン酸ナトリウムは不活性固体量のそれぞれ2.0重量%、4.0重量%、6.0重量%、10.0重量%、15.0重量%、20.0重量%に相当する。
得られたニッケル粉を、参考例5と同様に、上記(1)式を用いた算出方法によりニッケル粉の個数を算出した。
上記(1)式を用いて算出したニッケル粉の個数とリグニンスルホン酸ナトリウムの添加量との関係を図5に示す。
[実施例7]
[ Reference Example 6 ]
Nickel was prepared in the same manner as in Reference Example 1 except that sodium ligninsulfonate was used as the dispersant, and 1.5 g, 3.0 g, 4.5 g, 7.5 g, 11.3 g, and 15.0 g were used. Powder was produced. The added sodium ligninsulfonate corresponds to 2.0% by weight, 4.0% by weight, 6.0% by weight, 10.0% by weight, 15.0% by weight and 20.0% by weight of the inert solids, respectively. I do.
The number of nickel powders in the obtained nickel powder was calculated in the same manner as in Reference Example 5 by the calculation method using the above formula (1).
FIG. 5 shows the relationship between the number of nickel powders calculated using the above equation (1) and the amount of sodium ligninsulfonate added.
[Example 7]

ニッケルイオン83g/Lと硫酸アンモニウム120g/L、25%アンモニア水を182g/Lを含む硫酸ニッケルアンミン錯体溶液と、不溶性固体として平均粒径(D50)が90μmのサイズのニッケル粉に水と分散剤のポリアクリル酸ナトリウムを不溶性固体の重量の2重量%に相当する3g/lを加え、ニッケル粉濃度が165g/Lとなる種晶スラリーを作製した。   A nickel sulfate ammine complex solution containing 83 g / L of nickel ions, 120 g / L of ammonium sulfate, and 182 g / L of 25% aqueous ammonia, and nickel powder having an average particle size (D50) of 90 μm as an insoluble solid were mixed with water and a dispersant. Sodium polyacrylate was added at 3 g / l corresponding to 2% by weight of the weight of the insoluble solid to prepare a seed slurry having a nickel powder concentration of 165 g / L.

次いで、上記で作製した硫酸ニッケルアンミン錯体溶液と種晶スラリーをポンプでオートクレーブへ連続して供給し、オートクレーブを撹拌しながら185℃に保持した状態で、ボンベから水素ガスを吹き込み、オートクレーブの内筒缶内の圧力が3.5MPaになるように水素ガスを供給して保持した。その際に、水素ガスを吹き込み後、オートクレーブ内に1時間滞留と、オートクレーブ内の液量が一定となるように、硫酸ニッケルアンミン錯体溶液と種晶スラリーの供給量と、排出量を調整し、連続的にオートクレーブから反応後のスラリーを抜出し、回収した。   Next, the nickel sulfate ammine complex solution and the seed crystal slurry prepared above were continuously supplied to the autoclave by a pump, and while the autoclave was kept at 185 ° C. while stirring, hydrogen gas was blown from a bomb and the inner cylinder of the autoclave was blown. Hydrogen gas was supplied and maintained so that the pressure in the can became 3.5 MPa. At that time, after blowing hydrogen gas, the supply amount and the discharge amount of the nickel ammine complex solution and the seed crystal slurry were adjusted so that the liquid stayed in the autoclave for one hour and the liquid amount in the autoclave became constant, The slurry after the reaction was continuously withdrawn from the autoclave and collected.

得られたニッケル粉の重量から上記(1)式を用いた算出方法によりニッケル粉の個数を算出した。
その結果、表1に示すように粒子数が増加しており、また、図6に示す粒度分布より、微細なニッケル粉が生成していることがわかる。
The number of nickel powders was calculated from the weight of the obtained nickel powders by a calculation method using the above formula (1).
As a result, the number of particles is increased as shown in Table 1, and the particle size distribution shown in FIG. 6 indicates that fine nickel powder is generated.

Figure 0006641632
Figure 0006641632

Claims (4)

反応槽内に、連続して硫酸ニッケルアンミン錯体を含有する溶液と不溶性固体と分散剤を供給、攪拌して形成したニッケル錯イオンを含む溶液に、水素ガスを吹き込み、前記ニッケル錯イオンを含む溶液中のニッケル錯イオンを還元処理して前記不溶性固体の表面にニッケル粒子の析出物を備えた複合体を形成し、前記複合体を含む還元スラリーを得た後、前記反応槽から前記還元スラリーを抜出する際に、
前記反応槽の液量が一定となるように、
前記硫酸ニッケルアンミン錯体を含有する溶液と不溶性固体と分散剤の供給量と、
前記還元スラリーの排出量を調整して
前記反応槽内から前記還元スラリーを抜出することを特徴とするニッケル粉の製造方法。
A hydrogen gas is blown into a solution containing a nickel complex ion formed by stirring and supplying a solution containing a nickel sulfate amine complex, an insoluble solid and a dispersant into a reaction vessel, and the solution containing the nickel complex ion. After forming a composite having precipitates of nickel particles on the surface of the insoluble solid by performing a reduction treatment on the nickel complex ions therein, and obtaining a reduced slurry containing the composite, the reduced slurry is removed from the reaction tank. When pulling out,
So that the liquid volume of the reaction tank is constant,
A supply amount of the solution containing the nickel sulfate amine complex, the insoluble solid and the dispersant,
A method for producing nickel powder, comprising adjusting the discharge amount of the reduced slurry and extracting the reduced slurry from the inside of the reaction tank.
前記分散剤の添加量を制御して前記還元処理におけるニッケル析出物の生成により得られるニッケル粉の個数を制御することを特徴とする請求項1に記載のニッケル粉の製造方法。The method for producing nickel powder according to claim 1, wherein the number of nickel powders obtained by forming nickel precipitates in the reduction treatment is controlled by controlling the amount of the dispersant added. 前記分散剤がポリアクリル酸塩で、前記添加量が前記反応槽内の不溶性固体の重量の1.0重量%を越えて、10.0重量%以下の量であることを特徴とする請求項1又は2に記載のニッケル粉の製造方法。The dispersant is a polyacrylate, and the amount of the dispersant is more than 1.0% by weight and not more than 10.0% by weight of the weight of the insoluble solid in the reaction vessel. 3. The method for producing a nickel powder according to 1 or 2. 前記分散剤がリグニンスルホン酸で、前記添加量が前記反応槽内の不溶性固体の重量の2.0重量%を越えて、20.0重量%以下の量であることを特徴とする請求項1又は2に記載のニッケル粉の製造方法。2. The method according to claim 1, wherein the dispersant is ligninsulfonic acid, and the amount of the dispersant is more than 2.0% by weight and not more than 20.0% by weight based on the weight of the insoluble solid in the reaction vessel. Or the method for producing nickel powder according to 2.
JP2016042668A 2016-03-04 2016-03-04 Nickel powder manufacturing method Active JP6641632B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016042668A JP6641632B2 (en) 2016-03-04 2016-03-04 Nickel powder manufacturing method
US16/081,980 US20190009343A1 (en) 2016-03-04 2017-02-22 Method for producing nickel powder
CN201780015054.7A CN108778577A (en) 2016-03-04 2017-02-22 The manufacturing method of nickel powder
EP17759771.3A EP3424626A4 (en) 2016-03-04 2017-02-22 Nickel powder production method
PCT/JP2017/006623 WO2017150305A1 (en) 2016-03-04 2017-02-22 Nickel powder production method
CA3016415A CA3016415A1 (en) 2016-03-04 2017-02-22 Method for producing nickel powder
AU2017227207A AU2017227207B2 (en) 2016-03-04 2017-02-22 Nickel powder production method
PH12018501872A PH12018501872A1 (en) 2016-03-04 2018-09-03 Method for producing nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016042668A JP6641632B2 (en) 2016-03-04 2016-03-04 Nickel powder manufacturing method

Publications (3)

Publication Number Publication Date
JP2017155319A JP2017155319A (en) 2017-09-07
JP2017155319A5 JP2017155319A5 (en) 2019-03-14
JP6641632B2 true JP6641632B2 (en) 2020-02-05

Family

ID=59743856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016042668A Active JP6641632B2 (en) 2016-03-04 2016-03-04 Nickel powder manufacturing method

Country Status (8)

Country Link
US (1) US20190009343A1 (en)
EP (1) EP3424626A4 (en)
JP (1) JP6641632B2 (en)
CN (1) CN108778577A (en)
AU (1) AU2017227207B2 (en)
CA (1) CA3016415A1 (en)
PH (1) PH12018501872A1 (en)
WO (1) WO2017150305A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624464B2 (en) * 2017-12-21 2019-12-25 住友金属鉱山株式会社 Nickel powder manufacturing method
JP7034439B2 (en) * 2018-06-19 2022-03-14 住友金属鉱山株式会社 Nickel powder recovery method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853380A (en) * 1957-05-20 1958-09-23 Sherritt Gordon Mines Ltd Method of recovering metal values from solutions
US3833351A (en) * 1973-02-15 1974-09-03 Univ Eng Inc Continuous preparation of pure metals by hydrogen reduction
FI106635B (en) * 1999-11-09 2001-03-15 Outokumpu Oy Process for reducing nickel out of an aqueous solution
AU2003233732A1 (en) * 2002-06-12 2003-12-31 Sulzer Metco (Canada) Inc. Hydrometallurgical process for production of supported catalysts
CN103273074B (en) * 2013-03-27 2014-12-10 深圳市中金岭南科技有限公司 Process method of continuously producing ultra-fine nickel powder
JP6099601B2 (en) * 2014-02-17 2017-03-22 国立大学法人高知大学 Method for producing nickel powder
AU2015220105B2 (en) * 2014-02-21 2016-09-22 Kochi University, National University Corporation Method for producing nickel powder
JP5796696B1 (en) * 2015-01-22 2015-10-21 住友金属鉱山株式会社 Method for producing nickel powder
JP6459879B2 (en) * 2015-09-28 2019-01-30 住友金属鉱山株式会社 Nickel powder manufacturing method and reaction facility operation method

Also Published As

Publication number Publication date
PH12018501872A1 (en) 2019-05-15
CN108778577A (en) 2018-11-09
EP3424626A1 (en) 2019-01-09
EP3424626A4 (en) 2019-10-30
CA3016415A1 (en) 2017-09-08
AU2017227207B2 (en) 2019-11-21
AU2017227207A1 (en) 2018-09-27
WO2017150305A1 (en) 2017-09-08
US20190009343A1 (en) 2019-01-10
JP2017155319A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6099601B2 (en) Method for producing nickel powder
WO2016117138A1 (en) Method for producing nickel powder
JP2015166488A5 (en)
JP5796696B1 (en) Method for producing nickel powder
JP6489315B2 (en) Method for producing cobalt powder
JP6816755B2 (en) Nickel powder manufacturing method
JP6641632B2 (en) Nickel powder manufacturing method
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
JP2017155319A5 (en)
JP6241617B2 (en) Method for producing cobalt powder
JP5881091B2 (en) Method for producing nickel powder
JP7007650B2 (en) Nickel powder manufacturing method
JP7194349B2 (en) Nickel powder manufacturing method
JP7272761B2 (en) Nickel powder manufacturing method
JP2018141203A (en) Method of producing nickel powder for seed crystals
JP2018178232A (en) Method for manufacturing nickel powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191212

R150 Certificate of patent or registration of utility model

Ref document number: 6641632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150