JP2018120820A - Positive electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Positive electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP2018120820A
JP2018120820A JP2017013136A JP2017013136A JP2018120820A JP 2018120820 A JP2018120820 A JP 2018120820A JP 2017013136 A JP2017013136 A JP 2017013136A JP 2017013136 A JP2017013136 A JP 2017013136A JP 2018120820 A JP2018120820 A JP 2018120820A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
lithium ion
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017013136A
Other languages
Japanese (ja)
Inventor
智統 鈴木
Tomomune Suzuki
智統 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2017013136A priority Critical patent/JP2018120820A/en
Publication of JP2018120820A publication Critical patent/JP2018120820A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery, having good charge/discharge characteristics at high rates while maintaining the strength of a positive electrode current collector.SOLUTION: There is provided a positive electrode for a lithium ion secondary battery, including a positive electrode current collector and a positive electrode layer that is provided on both surfaces of the positive electrode current collector. The positive electrode layer contains a positive electrode active material, a conductive material, a water soluble thickener, and a binder. The positive electrode current collector has an uneven portion at only a surface that is provided with the positive electrode layer, the uneven portion having a rough surface with an arithmetic average roughness Ra of 0.5-2.0 μm.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用正極及びリチウムイオン二次電池に関する。   The present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery.

近年、リチウムイオン二次電池は、高エネルギー密度を有する等の理由から広く普及し、携帯電話やデジタルカメラ、ノートパソコン等の携帯用小型機器の電源として搭載されている。また、リチウムイオン二次電池は、エネルギー資源枯渇問題や地球温暖化等の観点から、ハイブリッド自動車や電気自動車、又は太陽光や風力等の自然エネルギー発電による電力貯蔵用等の大型産業用途への開発が進められている。リチウムイオン二次電池は、これらの電源の利用拡大のために更なる高密度化、長寿命化が求められている。   In recent years, lithium ion secondary batteries have become widespread for reasons such as high energy density, and are mounted as power sources for portable small devices such as mobile phones, digital cameras, and notebook computers. In addition, lithium ion secondary batteries are developed for large-scale industrial applications such as hybrid vehicles, electric vehicles, and power storage by natural energy power generation such as solar and wind power from the viewpoint of energy resource depletion and global warming. Is underway. Lithium ion secondary batteries are required to have higher density and longer life in order to expand the use of these power sources.

このようなリチウムイオン二次電池は、正極と負極との間でリチウムイオンを移動させて充放電を行う。正極は、正極集電体と、正極集電体の一方の面又は両面に設けられた正極活物質を含む正極層とを備える。正極活物質は、現在、リチウム金属酸化物であるコバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)、ニッケル酸リチウム(LiNiO2)、リン酸鉄リチウム(LiFePO4)等のリチウムを含む金属酸化物又は金属リン酸化物が実用化され、又は商品化を目指して開発が進められている。 Such a lithium ion secondary battery performs charging / discharging by moving lithium ions between a positive electrode and a negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode layer including a positive electrode active material provided on one or both surfaces of the positive electrode current collector. The positive electrode active materials are lithium metal oxides such as lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and lithium iron phosphate (LiFePO 4 ). Metal oxides or metal phosphorous oxides containing bismuth have been put into practical use or are being developed for commercialization.

負極は、負極集電体と、負極集電体の一方の面又は両面に設けられた負極活物質を含む負極層とを備える。負極活物質は、金属リチウム、リチウム合金、グラファイト等の炭素材料、リチウムチタン酸化物(Li4Ti512)等が用いられる。また、正極と負極の間には、内部短絡を防止するためのセパレータが介在されている。セパレータは、一般的にポリオレフィンからなる微多孔膜が使用されている。 The negative electrode includes a negative electrode current collector and a negative electrode layer including a negative electrode active material provided on one or both surfaces of the negative electrode current collector. As the negative electrode active material, metallic lithium, lithium alloys, carbon materials such as graphite, lithium titanium oxide (Li 4 Ti 5 O 12 ), and the like are used. Further, a separator for preventing an internal short circuit is interposed between the positive electrode and the negative electrode. As the separator, a microporous film made of polyolefin is generally used.

現在、リチウムイオン二次電池には、高エネルギー密度であることのみならず、急速充放電に耐えるため高レートにおける充放電特性が良好であることが求められている。高レートにおける充放電特性を改善するためには、正極集電体と正極層内の正極活物質との間の界面抵抗を低減させ、電気伝導性を向上させることが有効である。   Currently, lithium ion secondary batteries are required not only to have a high energy density but also to have good charge / discharge characteristics at a high rate in order to withstand rapid charge / discharge. In order to improve the charge / discharge characteristics at a high rate, it is effective to reduce the interfacial resistance between the positive electrode current collector and the positive electrode active material in the positive electrode layer and improve the electrical conductivity.

特許文献1では、金属アルミニウムからなる正極集電体をエッチング処理し、正極集電体を粗面化して表面積を増加させて、正極集電体と正極活物質との間の電気導電性を向上させた非水電解質二次電池用正極の製造方法が記載されている。正極集電体を粗面化することで、正極集電体と正極層との間の接触面積を増加させて、正極集電体と正極層との間の界面抵抗を低減させることができる。その結果、正極集電体と正極層内の正極活物質との間の電気伝導性を向上でき、得られるリチウムイオン二次電池の高レートにおける充放電特性を改善することができる。   In Patent Document 1, the positive electrode current collector made of metallic aluminum is etched, and the positive electrode current collector is roughened to increase the surface area, thereby improving the electrical conductivity between the positive electrode current collector and the positive electrode active material. A method for producing a positive electrode for a non-aqueous electrolyte secondary battery is described. By roughening the positive electrode current collector, the contact area between the positive electrode current collector and the positive electrode layer can be increased, and the interface resistance between the positive electrode current collector and the positive electrode layer can be reduced. As a result, the electrical conductivity between the positive electrode current collector and the positive electrode active material in the positive electrode layer can be improved, and the charge / discharge characteristics at a high rate of the obtained lithium ion secondary battery can be improved.

特許第4945016号公報Japanese Patent No. 4945016

しかしながら、特許文献1に開示された方法では、エッチング処理により正極集電体を粗面化しているため、正極集電体の強度が低下する問題があった。正極集電体の強度が低下すると、塗工時、ロールプレスによる圧延時、スリット加工時などにおいて箔切れが発生する恐れがある。又、正極集電体に対する正極端子の溶接時における正極集電体の破断等の危険性が高まる。更に、正極集電体をエッチング処理する工程が増加するため、正極を製造するコストや時間が増加する。   However, the method disclosed in Patent Document 1 has a problem in that the strength of the positive electrode current collector is reduced because the positive electrode current collector is roughened by etching. If the strength of the positive electrode current collector is reduced, foil breakage may occur during coating, rolling with a roll press, slitting, or the like. In addition, the risk of breakage of the positive electrode current collector during welding of the positive electrode terminal to the positive electrode current collector is increased. Furthermore, since the number of steps for etching the positive electrode current collector increases, the cost and time for manufacturing the positive electrode increase.

本発明は上記課題を解決し、正極集電体の強度を保ちつつ、高レートでの充放電特性の良好なリチウムイオン二次電池用正極及びリチウムイオン二次電池を提供するものである。   The present invention solves the above-described problems and provides a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery having good charge / discharge characteristics at a high rate while maintaining the strength of the positive electrode current collector.

上記の課題を解決するために、一つの実施形態によると、正極集電体と、当該正極集電体の両面に設けられた正極層とを備えるリチウムイオン二次電池用正極であって、前記正極層は、正極活物質、導電材、水溶性増粘剤及びバインダを含み、前記正極集電体は、前記正極層が設けられた面のみに凸凹部を有し、その凸凹部は算術平均粗さRaが0.5μm〜2.0μmの粗面であることを特徴とするリチウムイオン二次電池用正極が提供される。   In order to solve the above problems, according to one embodiment, a positive electrode for a lithium ion secondary battery comprising a positive electrode current collector and a positive electrode layer provided on both surfaces of the positive electrode current collector, The positive electrode layer includes a positive electrode active material, a conductive material, a water-soluble thickener, and a binder, and the positive electrode current collector has a convex concave portion only on a surface provided with the positive electrode layer, and the convex concave portion is an arithmetic average. Provided is a positive electrode for a lithium ion secondary battery, wherein the roughness Ra is a rough surface of 0.5 μm to 2.0 μm.

上記の課題を解決するために、別の実施形態によると、上述するリチウムイオン二次電池用正極を備えることを特徴とするリチウムイオン二次電池が提供される。   In order to solve the above problems, according to another embodiment, a lithium ion secondary battery comprising the above-described positive electrode for a lithium ion secondary battery is provided.

本発明によれば、正極集電体の強度を保ちつつ、高レートにおける充放電特性の良好なリチウムイオン二次電池用正極及びリチウムイオン二次電池を提供できる。   According to the present invention, it is possible to provide a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery having good charge / discharge characteristics at a high rate while maintaining the strength of the positive electrode current collector.

実施形態に係るリチウムイオン二次電池用正極の概略断面図である。It is a schematic sectional drawing of the positive electrode for lithium ion secondary batteries which concerns on embodiment. 実施形態に係る積層型のリチウムイオン二次電池の一例を示す斜視図である。1 is a perspective view illustrating an example of a stacked lithium ion secondary battery according to an embodiment. 図2の積層型のリチウムイオン二次電池のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line | wire of the laminated type lithium ion secondary battery of FIG.

以下、実施形態に係るリチウムイオン二次電池用正極を詳細に説明する。   Hereinafter, the positive electrode for a lithium ion secondary battery according to the embodiment will be described in detail.

実施形態に係るリチウムイオン二次電池用正極は、正極集電体と、正極集電体の両面に設けられた正極層とを備えている。正極層は、正極活物質、導電材、水溶性増粘剤及びバインダを含む。正極層が設けられた正極集電体の両表面は、算術平均粗さRaが0.5μm〜2.0μmの粗面である。   The positive electrode for lithium ion secondary batteries according to the embodiment includes a positive electrode current collector and a positive electrode layer provided on both surfaces of the positive electrode current collector. The positive electrode layer includes a positive electrode active material, a conductive material, a water-soluble thickener, and a binder. Both surfaces of the positive electrode current collector provided with the positive electrode layer are rough surfaces having an arithmetic average roughness Ra of 0.5 μm to 2.0 μm.

まず、正極層を構成する材料について説明する。   First, the material which comprises a positive electrode layer is demonstrated.

正極活物質は、リチウムを吸蔵及び放出することが可能なリチウム含有化合物であれば特に限定されない。当該リチウム含有化合物は、例えばリチウム含有金属酸化物又はリン酸金属リチウムである。リチウム含有金属酸化物は、例えばリチウムコバルト複合酸化物(例えばLiCoO2)、リチウムマンガン複合酸化物(例えばLiMnO2、Li2MnO3又はLiMn24)、リチウムニッケル複合酸化物(例えばLiNiO2)、リチウムコバルト鉄複合酸化物(例えばLiCo0.5Fe0.52)、リチウムニッケルコバルトマンガン複合酸化物(例えばLi(NiCoMn1-x-y)O2(0<x<1、0<y<1))、リチウム鉄リン系複合酸化物(例えばLiFePO4)等が挙げられる。 The positive electrode active material is not particularly limited as long as it is a lithium-containing compound capable of inserting and extracting lithium. The lithium-containing compound is, for example, a lithium-containing metal oxide or lithium metal phosphate. Examples of the lithium-containing metal oxide include lithium cobalt composite oxide (for example, LiCoO 2 ), lithium manganese composite oxide (for example, LiMnO 2 , Li 2 MnO 3, or LiMn 2 O 4 ), lithium nickel composite oxide (for example, LiNiO 2 ). , lithium iron cobalt composite oxide (e.g., LiCo 0.5 Fe 0.5 O 2), lithium-nickel-cobalt-manganese composite oxide (e.g., Li (Ni x Co y Mn 1 -x-y) O 2 (0 <x <1,0 < y <1)), lithium iron phosphorus complex oxide (for example, LiFePO 4 ) and the like.

正極活物質の平均粒子径は、0.1μm以上100μm以下が好ましく、より好ましくは0.5μm以上50μm以下である。なお、本明細書において平均粒子径とは、メジアン径(D50)を示すものとする。正極活物質の平均粒子径を0.1μm未満にすると、正極層を作製する際にバインダの割合を増加させる必要があり、正極層の内部の導電性が低下する傾向があるため好ましくない。一方、正極活物質の平均粒子径が100μmを超えると、正極活物質の充填率が低下して、得られるリチウムイオン二次電池の充放電容量が低下する傾向があるため好ましくない。なお、正極活物質の一次粒子が集合して二次粒子を形成している場合、正極活物質の平均粒子径とは二次粒子の平均粒子径を表すものとする。   The average particle diameter of the positive electrode active material is preferably 0.1 μm or more and 100 μm or less, more preferably 0.5 μm or more and 50 μm or less. In addition, in this specification, an average particle diameter shall show a median diameter (D50). If the average particle size of the positive electrode active material is less than 0.1 μm, it is necessary to increase the binder ratio when producing the positive electrode layer, which is not preferable because the conductivity inside the positive electrode layer tends to decrease. On the other hand, if the average particle diameter of the positive electrode active material exceeds 100 μm, the filling rate of the positive electrode active material decreases, and the charge / discharge capacity of the resulting lithium ion secondary battery tends to decrease, such being undesirable. When primary particles of the positive electrode active material are aggregated to form secondary particles, the average particle size of the positive electrode active material represents the average particle size of the secondary particles.

正極活物質は、一般式LiFe1-xPO4にて表されるリチウム鉄リン系複合酸化物が特に好ましい。一般式中のMは、Al、Mg、Ti、Nb、Co、Ni及びMnからなる群より選ばれる少なくとも1つ以上の元素、xは0≦x<0.3である。リチウム鉄リン系複合酸化物は、x=0の場合、すなわちFeが前記元素Mで置換されない形態の場合、LiFePO4で表される。また、リチウム鉄リン系複合酸化物は、残留するリチウム塩が少ない水熱合成法で作製されたものが好ましい。リチウム鉄リン系複合酸化物は、正極活物質内の導電性を良好にするためにその一次粒子がカーボンで被覆されており、その一次粒子が集合して二次粒子を形成しているものが好ましい。 The positive electrode active material is particularly preferably a lithium iron phosphorus based composite oxide represented by the general formula LiFe 1-x M x PO 4 . M in the general formula is at least one element selected from the group consisting of Al, Mg, Ti, Nb, Co, Ni, and Mn, and x is 0 ≦ x <0.3. The lithium iron phosphorus-based composite oxide is represented by LiFePO 4 when x = 0, that is, when Fe is not substituted by the element M. The lithium iron phosphorus composite oxide is preferably prepared by a hydrothermal synthesis method with a small amount of residual lithium salt. Lithium iron phosphorus composite oxides have primary particles coated with carbon in order to improve the conductivity in the positive electrode active material, and the primary particles aggregate to form secondary particles. preferable.

リチウム鉄リン系複合酸化物の一次粒子の平均粒子径は、0.01μm以上20μm以下が好ましく、より好ましくは0.02μm以上10μm以下である。当該一次粒子の平均粒子径を0.01μm未満にすると、一次粒子の表面をカーボンで十分に被覆できず、正極層の内部の導電性が低下する傾向があるため好ましくない。一方、当該一次粒子の平均粒子径が20μmを超えると、一次粒子の内部の抵抗が増加して、正極層の内部の導電性が低下する傾向があるため好ましくない。正極層の内部の導電性が低下する場合、得られる電池を高レートで充放電した際の実効的な充放電容量が低下する傾向がある。   The average particle size of the primary particles of the lithium iron phosphorus composite oxide is preferably 0.01 μm or more and 20 μm or less, more preferably 0.02 μm or more and 10 μm or less. If the average particle diameter of the primary particles is less than 0.01 μm, the surface of the primary particles cannot be sufficiently covered with carbon, and the electrical conductivity inside the positive electrode layer tends to decrease, such being undesirable. On the other hand, when the average particle diameter of the primary particles exceeds 20 μm, the internal resistance of the primary particles increases and the conductivity inside the positive electrode layer tends to decrease, which is not preferable. When the conductivity inside the positive electrode layer decreases, the effective charge / discharge capacity when the obtained battery is charged / discharged at a high rate tends to decrease.

リチウム鉄リン系複合酸化物の二次粒子の平均粒子径は、0.1μm以上100μm以下が好ましく、より好ましくは0.5μm以上50μm以下である。当該二次粒子の平均粒子径を0.1μm未満にすると、正極層を作製する際にバインダの割合を増加させる必要があり、正極層の内部の導電性が低下する傾向があるため好ましくない。一方、正極活物質の平均粒子径が100μmを超えると、正極活物質の充填率が低下して、得られるリチウムイオン二次電池の充放電容量が低下する傾向があるため好ましくない。   The average particle size of the secondary particles of the lithium iron phosphorus composite oxide is preferably 0.1 μm or more and 100 μm or less, more preferably 0.5 μm or more and 50 μm or less. When the average particle diameter of the secondary particles is less than 0.1 μm, it is necessary to increase the binder ratio when producing the positive electrode layer, and the electrical conductivity inside the positive electrode layer tends to decrease, such being undesirable. On the other hand, if the average particle diameter of the positive electrode active material exceeds 100 μm, the filling rate of the positive electrode active material decreases, and the charge / discharge capacity of the resulting lithium ion secondary battery tends to decrease, such being undesirable.

当該二次粒子の形状としては、特に限定されないが、球形状であることが好ましい。この場合、正極層の内部における正極活物質の充填率が増加するため、正極層の塗膜密度を向上させやすく、得られる電池の充放電容量を向上させることができる。さらに、当該二次粒子の表面積を小さくできるため、正極層を作製する際のバインダの割合を低減できる。そのため、正極層中の正極活物質の割合を相対的に増加でき、得られる電池の充放電容量を向上させることができる。   The shape of the secondary particles is not particularly limited, but is preferably spherical. In this case, since the filling rate of the positive electrode active material in the positive electrode layer increases, the coating film density of the positive electrode layer can be easily improved, and the charge / discharge capacity of the resulting battery can be improved. Furthermore, since the surface area of the secondary particles can be reduced, the ratio of the binder when producing the positive electrode layer can be reduced. Therefore, the ratio of the positive electrode active material in the positive electrode layer can be relatively increased, and the charge / discharge capacity of the resulting battery can be improved.

導電材は、特に限定されるものではなく、公知又は市販のものを使用することができる。例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ、炭素繊維、活性炭、黒鉛等の導電性カーボン、導電性ポリマー、金属粉末等が挙げられる。導電材は、特に導電性カーボンが好ましく、また、導電性カーボンに更に1種以上の導電材を混合しても良い。   The conductive material is not particularly limited, and a known or commercially available material can be used. Examples thereof include conductive carbon such as acetylene black, ketjen black, furnace black, carbon nanotube, carbon fiber, activated carbon and graphite, conductive polymer, and metal powder. The conductive material is particularly preferably conductive carbon, and one or more conductive materials may be further mixed with the conductive carbon.

導電材は、正極活物質100質量部に対して、20質量部以下の割合で含有することが好ましい。導電材は、より好ましくは正極活物質100質量部に対して、1質量部以上10質量部以下の割合で含有する。正極活物質100質量部に対する導電材の割合を1質量部未満にすると、正極層の内部の導電性が低下して、得られる電池の出力及び電池寿命が低下する虞がある。一方、正極活物質100質量部に対する導電材の割合が10質量部を超えると、正極層中の正極活物質の割合が相対的に低下するため、得られる電池の充放電容量が低下する虞がある。   The conductive material is preferably contained at a ratio of 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. More preferably, the conductive material is contained in a proportion of 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. If the ratio of the conductive material to 100 parts by mass of the positive electrode active material is less than 1 part by mass, the conductivity inside the positive electrode layer may be reduced, and the output and battery life of the resulting battery may be reduced. On the other hand, when the ratio of the conductive material with respect to 100 parts by mass of the positive electrode active material exceeds 10 parts by mass, the ratio of the positive electrode active material in the positive electrode layer is relatively decreased, and thus the charge / discharge capacity of the obtained battery may be decreased. is there.

水溶性増粘剤は、特に限定されるものではなく、公知又は市販のものを使用することができる。例えば、カルボキシメチルセルロース(CMC)、メチルセルロース、ヒドロキシエチルセルロース、ポリエチレンオキサイド等が挙げられる。   A water-soluble thickener is not specifically limited, A well-known or commercially available thing can be used. For example, carboxymethyl cellulose (CMC), methyl cellulose, hydroxyethyl cellulose, polyethylene oxide and the like can be mentioned.

水溶性増粘剤は、正極活物質100質量部に対して、0.1質量部以上4.0質量部以下での割合で含有することが好ましい。水溶性増粘剤は、より好ましくは正極活物質に100質量部に対して、0.5質量部以上3.0質量部以下の割合で含有する。正極活物質100質量部に対する水溶性増粘剤の割合を0.1質量部未満にすると、正極層中に導電材を均一に分散するのが困難になり、得られる電池の充放電レート特性が低下する虞がある。一方、正極活物質100質量部に対する水溶性増粘剤の割合が4.0質量部を超えると、正極層中の正極活物質の割合が相対的に低下し、得られる電池容量が低下する虞がある。また、水溶性増粘剤は、取扱いの容易さの観点から、0.5質量部以上3.0質量部以下の水溶液として使用することが好ましい。   The water-soluble thickener is preferably contained at a ratio of 0.1 parts by mass or more and 4.0 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. More preferably, the water-soluble thickener is contained in the positive electrode active material at a ratio of 0.5 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass. When the ratio of the water-soluble thickener to 100 parts by mass of the positive electrode active material is less than 0.1 parts by mass, it becomes difficult to uniformly disperse the conductive material in the positive electrode layer, and the charge / discharge rate characteristics of the battery obtained are May decrease. On the other hand, when the ratio of the water-soluble thickener to 100 parts by mass of the positive electrode active material exceeds 4.0 parts by mass, the ratio of the positive electrode active material in the positive electrode layer may be relatively decreased, and the resulting battery capacity may be decreased. There is. Moreover, it is preferable to use a water-soluble thickener as 0.5 to 3.0 mass parts aqueous solution from a viewpoint of the ease of handling.

バインダは、特に限定されるものではなく、公知又は市販のものを使用することができる。例えば、ポリフッ化ビニリデン(PVdF)又はポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、アクリルゴム、変性アクリルゴム、アクリル系共重合体等が挙げられる。バインダは、上述する物質の二種以上の混合物又は共重合体であってもよい。バインダは、耐酸化性が高く、少量で十分な密着性が得られ、極板に柔軟性を付与できることからアクリル系共重合体が特に好ましい。   The binder is not particularly limited, and a known or commercially available binder can be used. For example, fluororesin such as polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer Examples thereof include styrene butadiene rubber (SBR), acrylic rubber, modified acrylic rubber, and acrylic copolymer. The binder may be a mixture or copolymer of two or more of the above substances. The acrylic copolymer is particularly preferable because the binder has high oxidation resistance, sufficient adhesion can be obtained with a small amount, and flexibility can be imparted to the electrode plate.

バインダは、正極活物質100質量部に対して、0.5質量部以上10質量部以下の割合で含有することが好ましい。バインダは、より好ましくは正極活物質100質量部に対して、1質量部以上5質量部以下の割合で含有する。正極活物質100質量部に対するバインダの割合を0.5質量部未満にすると、正極集電体と正極層との間の密着性が低下し、正極層が正極集電体から剥離し易くなる虞がある。一方、正極活物質100質量部に対するバインダの割合が10質量部を超えると、正極層中の正極活物質の割合が相対的に低下し、絶縁性のバインダの割合が増加するため、正極層の内部における導電性が低下する虞がある。   The binder is preferably contained at a ratio of 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. The binder is more preferably contained in a proportion of 1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. When the ratio of the binder to 100 parts by mass of the positive electrode active material is less than 0.5 parts by mass, the adhesion between the positive electrode current collector and the positive electrode layer is lowered, and the positive electrode layer may be easily peeled off from the positive electrode current collector. There is. On the other hand, when the ratio of the binder with respect to 100 parts by mass of the positive electrode active material exceeds 10 parts by mass, the ratio of the positive electrode active material in the positive electrode layer is relatively decreased and the ratio of the insulating binder is increased. There is a risk that the internal conductivity may be reduced.

正極集電体は、特に限定されるものではなく、公知又は市販のものを使用することができる。正極集電体は、例えば、アルミニウム、アルミニウム合金、ニッケル又はステンレスからなる圧延箔、電解箔等を用いることができる。正極集電体としては、電気導電性が高く、電解液中での耐食性に優れ、軽量な金属であるアルミニウム又はアルミニウム合金が好ましい。   The positive electrode current collector is not particularly limited, and a known or commercially available one can be used. As the positive electrode current collector, for example, a rolled foil or an electrolytic foil made of aluminum, an aluminum alloy, nickel, or stainless steel can be used. As the positive electrode current collector, aluminum or an aluminum alloy, which is a light metal having high electrical conductivity and excellent corrosion resistance in an electrolytic solution, is preferable.

実施形態に係るリチウムイオン二次電池用の正極の一例を図1を参照して説明する。図1に示すように、リチウムイオン二次電池用の正極1は、アルミニウム箔からなる正極集電体12と、正極集電体12の両面に設けられた正極層11,11と、正極集電体12が正極層の右側面から延出した正極リード13とを備える。正極層11,11は、例えば、二次粒子の平均粒子径が10μmのリチウム鉄リン系複合酸化物からなる正極活物質、カーボンブラックからなる導電材、CMCからなる水溶性増粘剤及びアクリル系共重合体からなるバインダを含む。前記正極集電体の両面12aには、後述するように正極層内の正極活物質が食い込んでいる。このような、正極集電体12は、正極層11,11が設けられた面12aのみに凸凹部を有し、その凸凹部は算術平均粗さRa(JISB0601−2001)が0.5μm〜2.0μmであり、未塗工部は平滑面である。また、当該凹凸部のより好ましい算術平均粗さRaは、0.9μm〜2.0μmである。なお、上述する算術平均粗さRaは、正極集電体の圧延方向と直交する方向に測定した値とする。また、本発明の平滑面とは、集電体が荒らされた面を形成していない部分を言う。但し、集電体を圧延によって形成する際にできた凸凹面は0.1μm程度であり、前記凸凹は本発明では平滑面とした。   An example of the positive electrode for the lithium ion secondary battery according to the embodiment will be described with reference to FIG. As shown in FIG. 1, a positive electrode 1 for a lithium ion secondary battery includes a positive electrode current collector 12 made of an aluminum foil, positive electrode layers 11 and 11 provided on both surfaces of the positive electrode current collector 12, and a positive electrode current collector. The body 12 includes a positive electrode lead 13 extending from the right side surface of the positive electrode layer. The positive electrode layers 11 and 11 include, for example, a positive electrode active material made of a lithium iron-phosphorus composite oxide having an average secondary particle diameter of 10 μm, a conductive material made of carbon black, a water-soluble thickener made of CMC, and an acrylic type. It includes a binder made of a copolymer. As described later, the positive electrode active material in the positive electrode layer bites into both surfaces 12a of the positive electrode current collector. Such a positive electrode current collector 12 has convex and concave portions only on the surface 12a on which the positive electrode layers 11 and 11 are provided, and the convex and concave portions have an arithmetic average roughness Ra (JIS B0601-2001) of 0.5 μm to 2 μm. 0.0 μm, and the uncoated part is a smooth surface. Moreover, the more preferable arithmetic mean roughness Ra of the said uneven | corrugated | grooved part is 0.9 micrometer-2.0 micrometers. The arithmetic average roughness Ra described above is a value measured in a direction orthogonal to the rolling direction of the positive electrode current collector. Further, the smooth surface of the present invention refers to a portion where the current collector is not formed with a roughened surface. However, the uneven surface formed when the current collector was formed by rolling was about 0.1 μm, and the uneven surface was a smooth surface in the present invention.

正極集電体の面12aに対して、正極層11,11が食い込むことで正極集電体に粗面が形成されているため、正極集電体12と正極層11,11との接触面積を増加でき、密着性を向上することができる。その結果、正極集電体12と正極層11,11内の正極活物質との間の電気伝導性を向上でき、高レートにおける充放電特性の良好なリチウムイオン二次電池用正極1が得られる。   Since the positive electrode layers 11 and 11 bite into the surface 12a of the positive electrode current collector to form a rough surface, the contact area between the positive electrode current collector 12 and the positive electrode layers 11 and 11 is increased. It can be increased and adhesion can be improved. As a result, the electrical conductivity between the positive electrode current collector 12 and the positive electrode active material in the positive electrode layers 11 and 11 can be improved, and the positive electrode 1 for a lithium ion secondary battery having good charge / discharge characteristics at a high rate can be obtained. .

なお、前述するように、正極リード13の表面13aは、正極集電体の表面12aと比較して平滑であることが好ましい。この場合、正極リード13の表面13aに対して、正極1を負荷に接続するための正極端子が溶接されやすく、正極集電体の破断が生じにくい。   As described above, the surface 13a of the positive electrode lead 13 is preferably smoother than the surface 12a of the positive electrode current collector. In this case, the positive electrode terminal for connecting the positive electrode 1 to the load is easily welded to the surface 13a of the positive electrode lead 13, and the positive electrode current collector is not easily broken.

実施形態に係るリチウムイオン二次電池用正極の製造方法を以下に示す。最初に、上述する正極活物質、導電材、水溶性増粘剤及びバインダを水に分散させて水系の正極スラリーを調製する。続いて、正極集電体の一方の面に正極スラリーを塗工した後、90℃〜130℃で所定時間乾燥して、正極集電体の一方の面に正極層を形成する。次いで、正極集電体の他方の面に正極スラリーを塗工した後、同様に所定時間乾燥して正極集電体の他方の面に正極層を形成する。正極集電体の両面に設けられた正極層は、水溶性増粘剤の増粘作用によって固く結着して砕け難くなっている。次いで、正極集電体及び正極集電体の両面に形成された正極層を、両面からプレス加工して所定の塗膜密度を有する正極層を形成する。このとき、正極集電体の両面に、固く結着する正極層内の正極活物質の粒子が食い込む。その結果、正極層が接する正極集電体の面には、算術平均粗さRaが0.5μm〜2.0μmの粗面が形成される。この際、正極集電体として、軟らかい金属であるアルミニウム又はアルミニウム合金を使用すると粗面が形成され易くなる。   The manufacturing method of the positive electrode for lithium ion secondary batteries which concerns on embodiment is shown below. First, the positive electrode active material, conductive material, water-soluble thickener and binder described above are dispersed in water to prepare an aqueous positive electrode slurry. Subsequently, a positive electrode slurry is applied to one surface of the positive electrode current collector, and then dried at 90 ° C. to 130 ° C. for a predetermined time to form a positive electrode layer on one surface of the positive electrode current collector. Next, after coating the positive electrode slurry on the other surface of the positive electrode current collector, the positive electrode slurry is similarly dried for a predetermined time to form a positive electrode layer on the other surface of the positive electrode current collector. The positive electrode layers provided on both surfaces of the positive electrode current collector are firmly bound by the thickening action of the water-soluble thickener and are not easily crushed. Next, the positive electrode current collector and the positive electrode layer formed on both surfaces of the positive electrode current collector are pressed from both surfaces to form a positive electrode layer having a predetermined coating film density. At this time, the particles of the positive electrode active material in the positive electrode layer that tightly binds to both surfaces of the positive electrode current collector. As a result, a rough surface having an arithmetic average roughness Ra of 0.5 μm to 2.0 μm is formed on the surface of the positive electrode current collector in contact with the positive electrode layer. At this time, if aluminum or aluminum alloy which is a soft metal is used as the positive electrode current collector, a rough surface is easily formed.

対して、正極活物質、導電材及びバインダを有機系の分散媒体に分散させた水溶性増粘剤を含まない有機系の正極スラリーを用いて、正極集電体上に正極層を形成した場合、乾燥後の正極層が軟らかいため、プレス加工されても正極層からの圧力が正極集電体に伝わらず、結果的に正極層中の正極活物質が十分な深さで正極集電体に食い込み難くなる。そのため、有機系の正極スラリーを用いて正極層を形成すると、正極層が接する正極集電体の面に十分な粗面を形成することが困難になる。   On the other hand, when a positive electrode layer is formed on a positive electrode current collector using an organic positive electrode slurry that does not contain a water-soluble thickener in which a positive electrode active material, a conductive material, and a binder are dispersed in an organic dispersion medium Since the positive electrode layer after drying is soft, the pressure from the positive electrode layer is not transmitted to the positive electrode current collector even if it is pressed. As a result, the positive electrode active material in the positive electrode layer becomes a sufficient depth in the positive electrode current collector. It becomes difficult to bite in. Therefore, when a positive electrode layer is formed using an organic positive electrode slurry, it is difficult to form a sufficiently rough surface on the surface of the positive electrode current collector that is in contact with the positive electrode layer.

また、正極集電体の一方の面にのみ正極層を形成した場合、正極層を正極集電体に対してプレス加工しても正極集電体の正極層の接する面に十分な粗面を形成することが困難である。これは、正極集電体の一方の面のみに正極層を形成すると、正極集電体の両面に正極層を形成するときと比較して、プレス加工時において正極集電体の両面に対する正極活物質の加圧力が不十分になって、当該正極活物質の食い込みが不足して十分な粗面が形成されないためである。   In addition, when the positive electrode layer is formed only on one surface of the positive electrode current collector, a sufficient rough surface is formed on the surface of the positive electrode current collector in contact with the positive electrode layer even if the positive electrode layer is pressed against the positive electrode current collector. It is difficult to form. This is because when the positive electrode layer is formed only on one surface of the positive electrode current collector, the positive electrode active on the both surfaces of the positive electrode current collector during pressing is compared to when the positive electrode layer is formed on both surfaces of the positive electrode current collector. This is because the applied pressure of the material becomes insufficient and the positive electrode active material is not sufficiently bitten and a sufficient rough surface is not formed.

実施形態に係るリチウム二次電池の製造方法において、正極スラリーの分散媒体として水を用いているため、有機系の分散媒体を用いた有機系の正極スラリーである場合と比較して環境中に排出される有機系の分散媒体の回収装置及び防爆の設備を使用する必要がなく、製造コストを削減することができる。   In the method for producing a lithium secondary battery according to the embodiment, water is used as the dispersion medium for the positive electrode slurry, and therefore, the discharge to the environment is performed compared to the case of the organic positive electrode slurry using the organic dispersion medium. It is not necessary to use an organic dispersion medium recovery device and explosion-proof equipment, and the manufacturing cost can be reduced.

なお、実施形態に係るリチウム二次電池の製造方法において、正極スラリーの分散媒体は水を用いるが、正極層の乾燥度を調節、正極スラリーと正極集電体との間の濡れ性を改善の目的で、アルコール系溶剤、アミン系溶剤、カルボン酸系溶剤、ケトン系溶剤などの有機系の分散媒体を含んでいても良い。また、正極集電体に対する正極スラリーの塗工性や平滑性を改良するため、界面活性剤、水溶性オリゴマー等のレベリング剤を含んでもよい。   In the method for manufacturing a lithium secondary battery according to the embodiment, water is used as a dispersion medium of the positive electrode slurry, but the wettability between the positive electrode slurry and the positive electrode current collector is improved by adjusting the dryness of the positive electrode layer. For the purpose, an organic dispersion medium such as an alcohol solvent, an amine solvent, a carboxylic acid solvent, or a ketone solvent may be included. Moreover, in order to improve the coating property and smoothness of the positive electrode slurry with respect to the positive electrode current collector, a leveling agent such as a surfactant and a water-soluble oligomer may be included.

また、正極活物質は、公知の分散機によって分散させて使用することが好ましい。分散機としては、例えば、プラネタリーミキサー、プラネタリーディスパーミキサ、ホモジナイザー、ヘンシェルミキサー等を挙げることができる。分散機は、正極活物質の二次粒子を粉砕しにくいメディアレス分散機が好ましい。   The positive electrode active material is preferably used after being dispersed by a known disperser. Examples of the disperser include a planetary mixer, a planetary disper mixer, a homogenizer, and a Henschel mixer. The disperser is preferably a medialess disperser that hardly crushes the secondary particles of the positive electrode active material.

なお、正極スラリーの正極集電体への塗工工程には、公知の塗工方法及び塗工装置を使用することができる。例えば、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマートコート、コンマリバースコート、スロットダイコート、スライドダイコート、ディップコート等が挙げられる。   In addition, a well-known coating method and a coating apparatus can be used for the coating process of the positive electrode slurry to the positive electrode current collector. Examples include gravure coat, gravure reverse coat, roll coat, Mayer bar coat, blade coat, knife coat, air knife coat, commat coat, comma reverse coat, slot die coat, slide die coat, dip coat and the like.

以下、実施形態に係るリチウムイオン二次電池を詳細に説明する。リチウムイオン二次電池は、上述するリチウムイオン二次電池用正極と、負極と、電解液と、セパレータとを備える。   Hereinafter, the lithium ion secondary battery according to the embodiment will be described in detail. The lithium ion secondary battery includes the above-described positive electrode for a lithium ion secondary battery, a negative electrode, an electrolytic solution, and a separator.

まず、リチウムイオン二次電池の負極、電解液、セパレータに関して説明する。   First, the negative electrode, electrolyte solution, and separator of a lithium ion secondary battery will be described.

<負極>
負極は、例えば、負極集電体と、当該負極集電体の一方又は両方の面に形成された負極活物質、バインダ、導電材を含む負極層を備える。負極活物物質は、リチウムを吸蔵及び放出することが可能な物質であれば特に限定されない。例えば、熱分解炭素類、ピッチコークス、ニードルコークス、石油コークス等のコークス類、グラファイト、ガラス状炭素、有機高分子化合異物焼結体(フェノール樹脂、フラン樹脂などを焼結して炭素化したもの)、炭素繊維、カーボンブラック、活性炭素等の炭素類、又は金属リチウム、リチウム合金或いはスズ合金などの金属合金、チタン酸リチウム、ポリアセチレン又はポリビニール等のポリマーが挙げられる。バインダ及び導電材は、例えば上述する正極に使用するものと同様のものを使用することができる。
<Negative electrode>
The negative electrode includes, for example, a negative electrode current collector, and a negative electrode layer including a negative electrode active material, a binder, and a conductive material formed on one or both surfaces of the negative electrode current collector. The negative electrode active material is not particularly limited as long as it is a material that can occlude and release lithium. For example, pyrolytic carbons, pitch coke, needle coke, petroleum coke and other cokes, graphite, glassy carbon, organic polymer compound foreign body sintered body (phenolic resin, furan resin, etc. sintered and carbonized) ), Carbons such as carbon fiber, carbon black, activated carbon, or metal alloys such as metallic lithium, lithium alloy or tin alloy, and polymers such as lithium titanate, polyacetylene or polyvinyl. As the binder and the conductive material, for example, the same materials as those used for the positive electrode described above can be used.

負極集電体は、特に限定されるものではなく、公知又は市販のものを使用することができる。負極集電体は、例えば、銅、銅合金、ニッケル又はステンレスからなる圧延箔、電解箔、多孔体等を用いることができる。負極集電体は、好ましくは銅又は銅合金からなる。なお、負極活物質としてチタン酸リチウムを用いる場合、負極集電体としてアルミニウム箔も用いることができる。   The negative electrode current collector is not particularly limited, and a known or commercially available one can be used. As the negative electrode current collector, for example, a rolled foil, an electrolytic foil, a porous body, or the like made of copper, copper alloy, nickel, or stainless steel can be used. The negative electrode current collector is preferably made of copper or a copper alloy. When lithium titanate is used as the negative electrode active material, an aluminum foil can also be used as the negative electrode current collector.

<電解液>
電解液は、特に限定されるものではなく、公知又は市販のものを使用することができる。電解液は、特に非水電解液が好ましい。非水電解液は、例えば液体状の場合、非水溶媒及び電解質を含む。
<Electrolyte>
The electrolytic solution is not particularly limited, and a known or commercially available one can be used. The electrolyte is particularly preferably a non-aqueous electrolyte. The non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolyte when in a liquid form.

非水溶媒は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、及びブチレンカーボネート(BC)、γ−ブチロラクトン、ビニレンカーボネート、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン等の環状エーテル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等の鎖状エーテル類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、プロピオン酸アルキルエステル、マーロン酸ジアルキルエステル、酢酸アルキルエステル等の鎖状エステル類が挙げられる。非水溶媒は、これらの単体又は複数の混合物として用いることができる。   Non-aqueous solvents are, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone, vinylene carbonate, 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, γ-valero. Cyclic esters such as lactone, cyclic ethers such as tetrahydrofuran, alkyltetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane, 1,2 -Dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dial Chain ethers such as ether, tetraethylene glycol dialkyl ether, chains such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), propionic acid alkyl ester, marlon acid dialkyl ester, acetic acid alkyl ester Examples include esters. The non-aqueous solvent can be used as a single substance or a mixture of a plurality of these.

非水溶媒は、好ましくは主成分として環状カーボネート及び鎖状カーボネートを含有する。環状カーボネートは、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、及びブチレンカーボネート(BC)から選ばれる少なくとも一つを含むことが好ましい。鎖状カーボネートは、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、及びエチルメチルカーボネート(EMC)等から選ばれる少なくとも一つを含むことが好ましい。   The non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate as main components. The cyclic carbonate preferably contains at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). The chain carbonate preferably contains at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like.

電解質は、特に限定されるものではなく、リチウムイオン二次電池で一般に用いられるリチウム塩の電解質を用いることができる。例えば、LiPF6、LiAsF6、LiBF4、LiClO4、LiCl、LiBr、LiPO22等の無機リチウム塩、LiBoB、LiB(C654、LiCF3SO3、LiOSO2CF3、LiN(C2m+1SO2)(Cn2n+1SO2)(m、nは1以上の整数)、LiC(C2p+1SO2)(C2q+1SO2)(C2r+1SO2)(p、q、rは1以上の整数)、ジフルオロ(オキサラト)ホウ酸リチウム等の有機リチウム塩を用いることができる。これらの電解質は、一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。また、この電解質は非水溶媒に対して0.1〜2.0モル/L、好ましくは0.5〜1.5モル/Lの濃度で溶解することが好ましい。 The electrolyte is not particularly limited, and lithium salt electrolytes generally used in lithium ion secondary batteries can be used. For example, LiPF 6 , LiAsF 6 , LiBF 4 , LiClO 4 , LiCl, LiBr, LiPO 2 F 2 and other inorganic lithium salts, LiBoB, LiB (C 6 H 5 ) 4 , LiCF 3 SO 3 , LiOSO 2 CF 3 , LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) (m, n is an integer of 1 or more), LiC (C p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2 ) (p, q, r are integers of 1 or more), and organic lithium salts such as lithium difluoro (oxalato) borate can be used. These electrolytes may be used alone or in combination of two or more. The electrolyte is preferably dissolved at a concentration of 0.1 to 2.0 mol / L, preferably 0.5 to 1.5 mol / L, with respect to the nonaqueous solvent.

<セパレータ>
セパレータは、特に限定されるものではなく、公知又は市販のものを使用することができる。例えば、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂や、ポリイミド樹脂からなる微多孔膜又は不織布を用いることができる。微多孔膜又は不織布は単層であっても、多層構造であってもよい。セパレータは、微多孔膜をそのまま用いてもよいが、微多孔膜の片面又は両面に耐熱層を形成してもよい。
<Separator>
The separator is not particularly limited, and a known or commercially available separator can be used. For example, a polyolefin resin such as a polyethylene resin or a polypropylene resin, or a microporous film or a nonwoven fabric made of a polyimide resin can be used. The microporous membrane or the nonwoven fabric may be a single layer or a multilayer structure. As the separator, a microporous membrane may be used as it is, but a heat-resistant layer may be formed on one side or both sides of the microporous membrane.

以下、積層型のリチウムイオン二次電池を例にして、実施形態に係るリチウムイオン二次電池の構造を図面を参照して説明する。図2は、積層型のリチウムイオン二次電池の一例を示す斜視図、図3は図1のIII−III線に沿う断面図である。   Hereinafter, the structure of the lithium ion secondary battery according to the embodiment will be described with reference to the drawings, taking a laminated lithium ion secondary battery as an example. FIG. 2 is a perspective view showing an example of a stacked lithium ion secondary battery, and FIG. 3 is a cross-sectional view taken along line III-III in FIG.

積層型のリチウムイオン二次電池10は、ラミネートフィルムからなる袋状の外装体2を備えている。   The laminated lithium ion secondary battery 10 includes a bag-shaped exterior body 2 made of a laminate film.

前記ラミネートフィルムからなる外装体2としては、金属箔にヒートシール用の熱可塑性樹脂を設けた複合フィルムが好適に用いられる。金属箔は外部からの水分の侵入を防ぎつつ、シート全体の強度を向上させるものであれば特に限定されない。金属箔としては、例えばアルミニウム箔、ステンレス箔等をもちいることができる。なお、金属箔と熱可塑性樹脂との密着性を向上させるため、両者の間に接着層を設けてもよい。   As the exterior body 2 made of the laminate film, a composite film in which a thermoplastic resin for heat sealing is provided on a metal foil is suitably used. The metal foil is not particularly limited as long as it improves the strength of the entire sheet while preventing moisture from entering from the outside. As the metal foil, for example, aluminum foil, stainless steel foil or the like can be used. In order to improve the adhesion between the metal foil and the thermoplastic resin, an adhesive layer may be provided between them.

前記熱可塑性樹脂は特に限定されないが、ヒートシール可能な温度範囲ならびに電解液の遮断性から、ポリエチレンやポリプロピレンが好適に用いられる。また、金属箔の保護のため、熱可塑性樹脂の層とは反対側の面に、保護層を設けてもよい。なお、保護層も特に限定されないが、ナイロン、PET等が好適に用いられる。   The thermoplastic resin is not particularly limited, but polyethylene and polypropylene are preferably used because of the temperature range in which heat sealing is possible and the blocking property of the electrolytic solution. Moreover, you may provide a protective layer in the surface on the opposite side to the layer of a thermoplastic resin for protection of metal foil. In addition, although a protective layer is not specifically limited, nylon, PET, etc. are used suitably.

前記外装体2内には、電極群3が収納されている。外装体2は、2枚のラミネートフィルムを熱融着性樹脂フィルムが互いに対向するように重ね、外周部を熱シールすることにより袋状に形成される。電極群3は、外装体2の開口部を通して挿入され、外装体2の開口部を熱融着して封止することにより、外装体2内に気密に収納される。   An electrode group 3 is accommodated in the exterior body 2. The outer package 2 is formed in a bag shape by stacking two laminated films so that the heat-fusible resin films face each other and heat-sealing the outer peripheral portion. The electrode group 3 is inserted through the opening of the exterior body 2 and sealed in the exterior body 2 by heat-sealing and sealing the opening of the exterior body 2.

電極群3は、図3に示すように正極1と負極4とそれら正極1、負極4の間に介在されたセパレータ5とを負極4が最外層に位置するように複数積層した構造を有する。正極1は、正極集電体12と当該集電体12の両面に形成された正極層11,11とから構成されている。実施形態において、正極層11は、正極活物質、導電材、水溶性増粘剤及びバインダを含む。また、正極層11の設けられた正極集電体12の両表面は、算術平均粗さRaが0.5μm〜2.0μmの粗面である。   As shown in FIG. 3, the electrode group 3 has a structure in which a plurality of positive electrodes 1 and negative electrodes 4 and separators 5 interposed between the positive electrodes 1 and 4 are stacked so that the negative electrode 4 is located in the outermost layer. The positive electrode 1 includes a positive electrode current collector 12 and positive electrode layers 11 and 11 formed on both surfaces of the current collector 12. In the embodiment, the positive electrode layer 11 includes a positive electrode active material, a conductive material, a water-soluble thickener, and a binder. Further, both surfaces of the positive electrode current collector 12 provided with the positive electrode layer 11 are rough surfaces having an arithmetic average roughness Ra of 0.5 μm to 2.0 μm.

最外層に位置する負極4は、負極集電体42と、当該集電体42のセパレータ5と対向する面に形成された負極層41とから構成されている。最外層に位置する負極4を除く、正極1間に位置する負極4は、負極集電体42と、当該集電体42の両面に形成された負極層41,41とから構成されている。   The negative electrode 4 located in the outermost layer includes a negative electrode current collector 42 and a negative electrode layer 41 formed on a surface of the current collector 42 facing the separator 5. The negative electrode 4 positioned between the positive electrodes 1 excluding the negative electrode 4 positioned in the outermost layer is composed of a negative electrode current collector 42 and negative electrode layers 41 and 41 formed on both surfaces of the current collector 42.

正極1は、図3に示すように、正極集電体12が正極層11の例えば右側面から延出した正極リード13を有する。各正極リード13は、外装体2内において先端側で束ねられ、互いに超音波溶接や抵抗溶接などによって接合されている。正極端子6は、一端が正極リード13の接合部に接合され、かつ他端が外装体2の封止部を通して外部に延出している。負極4は、例えば図3に示すように負極集電体42が負極層41の例えば左側面から延出した負極リード43を有する。各負極リード43は、外装体2内において先端側で束ねられ、互いに接合されている。負極端子7は、一端が負極リード43の接合部に接合され、かつ他端が外装体2の封止部を通して外部に延出している。   As shown in FIG. 3, the positive electrode 1 has a positive electrode lead 13 in which a positive electrode current collector 12 extends from, for example, the right side surface of the positive electrode layer 11. Each positive electrode lead 13 is bundled on the front end side in the exterior body 2 and joined to each other by ultrasonic welding, resistance welding, or the like. One end of the positive electrode terminal 6 is joined to the joint portion of the positive electrode lead 13, and the other end extends to the outside through the sealing portion of the exterior body 2. The negative electrode 4 includes a negative electrode lead 43 in which a negative electrode current collector 42 extends from, for example, the left side surface of the negative electrode layer 41 as shown in FIG. Each negative electrode lead 43 is bundled at the front end side in the exterior body 2 and joined to each other. One end of the negative electrode terminal 7 is joined to the joint portion of the negative electrode lead 43, and the other end extends to the outside through the sealing portion of the exterior body 2.

実施形態に係るリチウムイオン二次電池は、前述したリチウムイオン二次電池用正極を備えるため、正極集電体と正極層内の正極活物質との間の電気伝導性が良好であり、高レートにおける充放電特性が良好である。   Since the lithium ion secondary battery according to the embodiment includes the positive electrode for a lithium ion secondary battery described above, the electrical conductivity between the positive electrode current collector and the positive electrode active material in the positive electrode layer is good, and the high rate The charge / discharge characteristics in are good.

なお、実施形態に係るリチウムイオン二次電池の形状は、積層型を例に説明したが、これに限定されない。例えばコイン型、ボタン型、シート型、積層型、円筒型、扁平型、角形等のリチウムイオン二次電池であってもよい。   In addition, although the shape of the lithium ion secondary battery which concerns on embodiment was demonstrated to the laminated type as an example, it is not limited to this. For example, it may be a lithium ion secondary battery such as a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a rectangular type.

以下、実施例及び比較例を挙げて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

[正極1の作製]
水溶性増粘剤であるカルボキシメチルセルロース(CMC)をイオン交換水に溶解させ、2質量%のCMC溶液を正極活物質に対して100質量部調整した。正極活物質である二次粒子の平均粒子径が10μmのリン酸鉄リチウム100質量部と、導電材であるアセチレンブラック6質量部と、正極活物質100質量部に対して2質量%のCMC溶液100質量部と、粘度調整用のイオン交換水をそれぞれ添加して、プラネタリーディスパーミキサにて十分に混練した。次いで、当該混合物に水分散バインダを固形分量で3質量部となるように添加し混練した。続いて、当該混合物を減圧環境下で脱泡処理して、水系の正極スラリーを調製した。次に、厚さ20μmのアルミニウム箔の一方の面上に正極スラリーを塗工し、コンマコーターで90℃〜130℃の範囲で乾燥した。正極スラリーは、片面の塗工量が乾燥後に12mg/cm2となるように塗工した。続いて、当該アルミニウム箔の他方の面に、正極スラリーを同様に塗工し、コンマコーターで90℃〜130℃の範囲で乾燥させた。正極スラリーは、両面の塗工量が乾燥後に24mg/cm2となるように塗工した。その後、正極層の塗膜密度が1.2g/ccになるまでロールプレスにてプレス加工して正極1を作製した。
[Preparation of Positive Electrode 1]
Carboxymethylcellulose (CMC), which is a water-soluble thickener, was dissolved in ion-exchanged water, and a 2% by mass CMC solution was adjusted to 100 parts by mass with respect to the positive electrode active material. 100 parts by mass of lithium iron phosphate with an average secondary particle size of 10 μm as the positive electrode active material, 6 parts by mass of acetylene black as the conductive material, and 2% by mass of CMC solution with respect to 100 parts by mass of the positive electrode active material 100 parts by mass and ion exchange water for viscosity adjustment were added, respectively, and kneaded sufficiently with a planetary disperser. Subsequently, the water-dispersed binder was added to the said mixture so that it might become 3 mass parts by solid content, and it knead | mixed. Subsequently, the mixture was degassed under a reduced pressure environment to prepare an aqueous positive electrode slurry. Next, the positive electrode slurry was applied on one surface of an aluminum foil having a thickness of 20 μm, and dried in a range of 90 ° C. to 130 ° C. with a comma coater. The positive electrode slurry was applied so that the coating amount on one side was 12 mg / cm 2 after drying. Subsequently, the positive electrode slurry was similarly applied to the other surface of the aluminum foil, and dried at 90 ° C. to 130 ° C. in a comma coater. The positive electrode slurry was coated such that the coating amount on both sides was 24 mg / cm 2 after drying. Then, the positive electrode 1 was produced by pressing with a roll press until the coating film density of the positive electrode layer became 1.2 g / cc.

[正極2〜6の作製]
正極の塗膜密度が、それぞれ1.4g/cc、1.6g/cc、1.8g/cc、2.0g/cc、1.0g/ccになるまでロールプレスにてプレス加工したこと以外、前記正極1の作製方法と同様な方法により正極2〜6をそれぞれ作製した。
[Preparation of positive electrodes 2 to 6]
Except that the coating density of the positive electrode was 1.4 g / cc, 1.6 g / cc, 1.8 g / cc, 2.0 g / cc, and 1.0 g / cc, respectively, with a roll press. Positive electrodes 2 to 6 were respectively produced by the same method as that for producing the positive electrode 1.

[正極7の作製]
バインダであるポリフッ化ビニリデン(PVdF)を溶剤であるN−メチル−2−ピロリドン(NMP)に溶解させ5質量%のPVdF溶液を正極活物質に対して100質量部調節した。正極活物質であるリン酸鉄リチウム100質量部と、導電材であるアセチレンブラック6質量部と、5質量%のPVdF溶液100質量部と、粘度調整用のNMPをそれぞれ添加して、プラネタリーディスパーミキサにて十分に混練した。続いて、当該混合物を減圧環境下で脱泡処理して、有機系の正極スラリーを調製した。次に、正極1の作製方法と同様に、正極スラリーを用いて正極集電体の両面に正極層を形成し、両面の塗工量が乾燥後に24mg/cm2となるようにした。その後、正極層の塗膜密度が1.2g/ccになるまでロールプレスにてプレス加工して正極7を作製した。
[Preparation of Positive Electrode 7]
Polyvinylidene fluoride (PVdF) as a binder was dissolved in N-methyl-2-pyrrolidone (NMP) as a solvent to adjust 100 parts by mass of a 5% by mass PVdF solution with respect to the positive electrode active material. 100 parts by mass of lithium iron phosphate as a positive electrode active material, 6 parts by mass of acetylene black as a conductive material, 100 parts by mass of a 5% by mass PVdF solution, and NMP for viscosity adjustment were added, respectively. The mixture was thoroughly kneaded with a mixer. Subsequently, the mixture was degassed under a reduced pressure environment to prepare an organic positive electrode slurry. Next, in the same manner as the method for manufacturing the positive electrode 1, a positive electrode layer was formed on both surfaces of the positive electrode current collector using a positive electrode slurry, and the coating amount on both surfaces was 24 mg / cm 2 after drying. Then, the positive electrode 7 was produced by pressing with a roll press until the coating film density of the positive electrode layer became 1.2 g / cc.

[正極8〜11の作製]
正極の塗膜密度が、それぞれ1.4g/cc、1.6g/cc、1.8g/cc、2.0g/ccになるまでロールプレスにてプレス加工したこと以外、前記正極7の作製方法と同様な方法により正極8〜11をそれぞれ作製した。
[Preparation of Positive Electrodes 8 to 11]
The manufacturing method of the said positive electrode 7 except having pressed by the roll press until the coating-film density of the positive electrode became 1.4 g / cc, 1.6 g / cc, 1.8 g / cc, and 2.0 g / cc, respectively. Positive electrodes 8 to 11 were respectively produced by the same method as described above.

得られた正極1〜11について、正極層の塗膜密度、正極層が接する正極集電体の算術平均表面粗さRaを求めた。なお、上述する算術平均粗さRaは、三鷹光器株式会社の非接触三次元測定装置(型式、NH−3SP)によって測定した。また、算術平均粗さRaは、JISB0601−2001に基づき、正極集電体となるアルミニウム箔の圧延方向に対して直交する方向に測定した。その結果を、下記表1に示す。   For the obtained positive electrodes 1 to 11, the coating film density of the positive electrode layer and the arithmetic average surface roughness Ra of the positive electrode current collector in contact with the positive electrode layer were determined. In addition, arithmetic mean roughness Ra mentioned above was measured with the non-contact three-dimensional measuring apparatus (model | form, NH-3SP) of Mitaka Kogyo Co., Ltd. Moreover, arithmetic mean roughness Ra was measured in the direction orthogonal to the rolling direction of the aluminum foil used as a positive electrode collector based on JISB0601-2001. The results are shown in Table 1 below.

なお、正極集電体の算術平均表面粗さRaを測定する際、正極集電体から正極層の剥離は次のように行った。水系の正極スラリーからなる正極層は、イオン交換水を用い、有機系の正極スラリーからなる正極層はNMPを用い、夫々浸漬し、所定時間超音波洗浄を行った後、クリーンウエスで拭き上げて、アルミニウム箔の表面を露出させた。

Figure 2018120820
When measuring the arithmetic average surface roughness Ra of the positive electrode current collector, the positive electrode layer was peeled from the positive electrode current collector as follows. The positive electrode layer made of an aqueous positive electrode slurry uses ion-exchanged water, and the positive electrode layer made of an organic positive electrode slurry uses NMP. Each is immersed, ultrasonically cleaned for a predetermined time, and then wiped with a clean cloth. The surface of the aluminum foil was exposed.
Figure 2018120820

表1に示す結果より、水溶性増粘材を含む水系の正極スラリーからなる正極層の塗膜密度が1.2g/cc〜2.0g/ccである正極1〜5では、正極層と接する正極集電体の表面粗さRaが0.52μm〜1.81μmの粗面になっている。これらのリチウムイオン二次電池用正極は、正極集電体と正極層内の正極活物質との間の接触面積が向上し、密着性が良好であるため、正極集電体と正極活物質を含む正極層との間の導電性が良好であった。   From the results shown in Table 1, in the positive electrodes 1 to 5 in which the coating film density of the positive electrode layer made of an aqueous positive electrode slurry containing a water-soluble thickener is 1.2 g / cc to 2.0 g / cc, the positive electrode layer is in contact with the positive electrode layer. The surface roughness Ra of the positive electrode current collector is a rough surface of 0.52 μm to 1.81 μm. Since these positive electrodes for lithium ion secondary batteries have improved contact area between the positive electrode current collector and the positive electrode active material in the positive electrode layer and good adhesion, the positive electrode current collector and the positive electrode active material The conductivity between the positive electrode layer and the positive electrode layer was good.

また、水系の正極スラリーからなる正極層の塗膜密度が1.0g/ccである正極6では、正極層をプレス加工する圧力が低いため、正極活物質が正極層に対して食い込み難く、適切な正極集電体の表面粗さが得られなかった。   Further, in the positive electrode 6 in which the coating density of the positive electrode layer made of an aqueous positive electrode slurry is 1.0 g / cc, since the pressure for pressing the positive electrode layer is low, the positive electrode active material hardly penetrates into the positive electrode layer. The surface roughness of the positive electrode current collector was not obtained.

対して、有機系の正極スラリーからなる正極7〜11では、水系の正極スラリーからなる正極1〜5と同一の正極層の塗膜密度となるように圧力を加えても、正極層と接する正極集電体が適切な表面粗さの粗面とならなかった。   On the other hand, in the positive electrodes 7 to 11 made of an organic positive electrode slurry, the positive electrode in contact with the positive electrode layer even when pressure is applied so that the coating film density of the positive electrode layer is the same as that of the positive electrodes 1 to 5 made of an aqueous positive electrode slurry. The current collector was not a rough surface with an appropriate surface roughness.

(実施例1及び2、比較例1及び2)
[実施例1の試作電池の組立]
前記正極2を正極として試作電池を組立てた。試作電池は、図2及び図3に示すリチウムイオン二次電池と同様の構造を有する。
(Examples 1 and 2, Comparative Examples 1 and 2)
[Assembly of prototype battery of Example 1]
A prototype battery was assembled using the positive electrode 2 as a positive electrode. The prototype battery has the same structure as the lithium ion secondary battery shown in FIGS.

負極は、以下の手順で作製した。水溶性増粘剤であるカルボキシメチルセルロース(CMC)をイオン交換水に溶解させ、1質量%のCMC溶液を負極活物質に対して100質量部調整した。1質量%のCMC溶液を100質量部に対して、負極活物質である黒鉛材料(日立化成株式会社製、MAGD−20)100質量部と、粘度調整用のイオン交換水をそれぞれ添加して、プラネタリーディスパーミキサにて十分に混練した。次いで、当該混合物に水分散バインダとしてスチレンブタジエン共重合体の40%分散液を固形分量で1質量部となるように添加し更に混練した。続いて、当該混合物を減圧環境下で脱泡処理して、負極スラリーを調整した。次に、厚さ10μmの銅箔の一方の面上に負極スラリーを塗工し、コンマコーターで90℃〜130℃の範囲で乾燥した。負極スラリーは、片面の塗工量が乾燥後に6mg/cm2となるように塗工した。続いて、当該銅箔の他方の面に、負極スラリーを同様に塗工して、乾燥させた。負極スラリーは、両面の塗工量が乾燥後に12mg/cm2とした。その後、負極層の塗膜密度が1.5g/ccになるまでロールプレスにてプレス加工して負極を作製した。 The negative electrode was produced by the following procedure. Carboxymethylcellulose (CMC), which is a water-soluble thickener, was dissolved in ion-exchanged water, and 100 parts by mass of a 1% by mass CMC solution was adjusted with respect to the negative electrode active material. To 100 parts by mass of a 1% by mass CMC solution, 100 parts by mass of graphite material (manufactured by Hitachi Chemical Co., Ltd., MAGD-20) as a negative electrode active material and ion-exchanged water for viscosity adjustment were added, The mixture was thoroughly kneaded with a planetary disper mixer. Next, a 40% dispersion of a styrene butadiene copolymer was added to the mixture as a water dispersion binder so as to have a solid content of 1 part by mass, and further kneaded. Subsequently, the mixture was defoamed under a reduced pressure environment to prepare a negative electrode slurry. Next, the negative electrode slurry was applied onto one surface of a 10 μm thick copper foil and dried in a range of 90 ° C. to 130 ° C. with a comma coater. The negative electrode slurry was applied such that the coating amount on one side was 6 mg / cm 2 after drying. Subsequently, the negative electrode slurry was similarly applied to the other surface of the copper foil and dried. The negative electrode slurry had a coating amount on both sides of 12 mg / cm 2 after drying. Then, the negative electrode was produced by pressing with a roll press until the coating film density of the negative electrode layer became 1.5 g / cc.

次いで、正極2及び負極は、所定の面積になるように裁断した。続いて、図3に示すように、厚さ25μmのポリエチレン製セパレータを挟んで、正極及び負極を積層した。非水電解液は、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)の混合非水溶媒(体積比、EC:EMC:DMC=1:1:1)にLiPF6を1.0モル/L溶解させて調製した。正極端子として厚さ0.2mmのアルミニウムのタブ、負極端子として厚さ0.2mmのNiメッキした銅のタブを用い、それぞれ超音波溶接によって接合した。正極端子及び負極端子を溶接した正極及び負極は、非水電解液とともに袋状のアルミニウム箔のラミネートフィルムからなる外装体に封入した。正極端子及び負極端子を電源に接続し、リチウムイオン二次電池の活性化を行い、容量3Ahの試作電池を作製した。 Next, the positive electrode 2 and the negative electrode were cut so as to have a predetermined area. Then, as shown in FIG. 3, the positive electrode and the negative electrode were laminated | stacked on both sides of the 25-micrometer-thick polyethylene separator. The non-aqueous electrolyte, ethylene carbonate (EC), ethylmethyl carbonate (EMC), a mixed nonaqueous solvent (volume ratio, EC: EMC: DMC = 1 : 1: 1) of dimethyl carbonate (DMC) and LiPF 6 in 1 Prepared by dissolving 0.0 mol / L. An aluminum tab having a thickness of 0.2 mm was used as the positive electrode terminal, and a Ni-plated copper tab having a thickness of 0.2 mm was used as the negative electrode terminal, and each was joined by ultrasonic welding. The positive electrode and the negative electrode welded to the positive electrode terminal and the negative electrode terminal were sealed in an outer package made of a bag-like aluminum foil laminate film together with a non-aqueous electrolyte. The positive electrode terminal and the negative electrode terminal were connected to a power source, the lithium ion secondary battery was activated, and a prototype battery with a capacity of 3 Ah was produced.

[実施例2、比較例1及び2の試作電池の組立]
正極2の代わりに正極4、正極8及び正極10を用いたこと以外は、実施例1の試作電池の組立と同様に実施例2、比較例1及び2に係る試作電池を組み立てた。
[Assembly of prototype batteries of Example 2 and Comparative Examples 1 and 2]
A prototype battery according to Example 2 and Comparative Examples 1 and 2 was assembled in the same manner as the assembly of the prototype battery of Example 1 except that the positive electrode 4, the positive electrode 8, and the positive electrode 10 were used instead of the positive electrode 2.

[試作電池の放電容量比]
得られた実施例1及び2、比較例1及び2の各試作電池について、以下の充放電条件によって、1C放電及び10C放電したときの放電容量の測定を行った。また10C放電と1C放電の放電容量比を次式(1)から算出した。測定は、25℃の環境下にて行った。
[Discharge capacity ratio of prototype battery]
For each of the prototype batteries of Examples 1 and 2 and Comparative Examples 1 and 2 obtained, the discharge capacity was measured when 1C discharge and 10C discharge were performed under the following charge / discharge conditions. Moreover, the discharge capacity ratio of 10C discharge and 1C discharge was computed from following Formula (1). The measurement was performed in a 25 ° C. environment.

放電容量比(%)=
(10C放電したときの放電容量/1C放電したときの放電容量)×100…(1)
(充放電条件)
3.6Vまで1.0C充電(充電電流が0.05Cに低下するまで実施)
2.0Vまで1.0C放電
3.6Vまで1.0C充電(充電電流が0.05Cに低下するまで実施)
2.0Vまで10.0C放電

Figure 2018120820
Discharge capacity ratio (%) =
(Discharge capacity at 10 C discharge / 1 discharge capacity at 1 C discharge) × 100 (1)
(Charging / discharging conditions)
1.0C charge to 3.6V (Implemented until the charge current drops to 0.05C)
1.0C discharge to 2.0V 1.0C charge to 3.6V (Implemented until the charge current drops to 0.05C)
10.0C discharge to 2.0V
Figure 2018120820

表2より、正極集電体が0.5μm〜2.0μmの粗面を有する正極2及び4を用いた実施例1及び2では、良好な放電容量比が得られた。正極2及び4では正極層が接する正極集電体層の表面が適切な粗面であるため、正極層及び正極集電体間の接触面積が向上しており、密着性が良好である。そのため、正極集電体と正極活物質を含む正極層との間の導電性が良好であり、高レートにおいても高い放電容量を維持できる。   From Table 2, a favorable discharge capacity ratio was obtained in Examples 1 and 2 in which the positive electrode current collectors used the positive electrodes 2 and 4 having a rough surface of 0.5 μm to 2.0 μm. In the positive electrodes 2 and 4, the surface of the positive electrode current collector layer with which the positive electrode layer is in contact is an appropriate rough surface, so that the contact area between the positive electrode layer and the positive electrode current collector is improved, and the adhesion is good. Therefore, the electrical conductivity between the positive electrode current collector and the positive electrode layer containing the positive electrode active material is good, and a high discharge capacity can be maintained even at a high rate.

対して、正極集電体の表面に適切な粗面を有しない正極8及び10を用いた比較例1及び2では、十分な放電容量比が得られなかった。すなわち、正極集電体が適切な表面粗さを有しない比較例1及び2では、正極集電体と正極活物質を含む正極層との間の界面抵抗が高いため、高レートにおいて放電容量が低下した。   On the other hand, in Comparative Examples 1 and 2 using the positive electrodes 8 and 10 having no appropriate rough surface on the surface of the positive electrode current collector, a sufficient discharge capacity ratio was not obtained. That is, in Comparative Examples 1 and 2 in which the positive electrode current collector does not have an appropriate surface roughness, since the interface resistance between the positive electrode current collector and the positive electrode layer containing the positive electrode active material is high, the discharge capacity is high at a high rate. Declined.

このように、実施形態に係るリチウムイオン二次電池においては、正極層と接する正極集電体が0.5μm〜2.0μmの粗面を有するため、高レートにおける充放電特性を向上させることができる。   Thus, in the lithium ion secondary battery according to the embodiment, since the positive electrode current collector in contact with the positive electrode layer has a rough surface of 0.5 μm to 2.0 μm, the charge / discharge characteristics at a high rate can be improved. it can.

以上、本発明の実施形態について、具体的に説明したが、本発明はこれらの実施の形態及び実施例に限定されるものではなく、本発明の技術的思想に基づく種々の変更が可能である。   As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to these embodiment and Example, Various change based on the technical idea of this invention is possible. .

1…正極、2…外装体、3…電極群、4…負極、10…リチウムイオン二次電池、11…正極層、12…正極集電体、13…正極リード、41…負極層、42…負極集電体、43…負極リード、5…セパレータ、6…正極端子、7…負極端子   DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Exterior body, 3 ... Electrode group, 4 ... Negative electrode, 10 ... Lithium ion secondary battery, 11 ... Positive electrode layer, 12 ... Positive electrode collector, 13 ... Positive electrode lead, 41 ... Negative electrode layer, 42 ... Negative electrode current collector, 43 ... Negative electrode lead, 5 ... Separator, 6 ... Positive electrode terminal, 7 ... Negative electrode terminal

Claims (6)

正極集電体と、当該正極集電体の両面に設けられた正極層とを備えるリチウムイオン二次電池用正極であって、
前記正極層は、正極活物質、導電材、水溶性増粘剤及びバインダを含み、
前記正極集電体は、前記正極層が設けられた面のみに凸凹部を有し、その凸凹部は算術平均粗さRaが0.5μm〜2.0μmの粗面であることを特徴とするリチウムイオン二次電池用正極。
A positive electrode for a lithium ion secondary battery comprising a positive electrode current collector and a positive electrode layer provided on both surfaces of the positive electrode current collector,
The positive electrode layer includes a positive electrode active material, a conductive material, a water-soluble thickener and a binder,
The positive electrode current collector has a convex / concave portion only on the surface on which the positive electrode layer is provided, and the convex / concave portion is a rough surface having an arithmetic average roughness Ra of 0.5 μm to 2.0 μm. Positive electrode for lithium ion secondary battery.
前記正極活物質は、リチウム鉄リン系複合酸化物であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極。   The positive electrode for a lithium ion secondary battery according to claim 1, wherein the positive electrode active material is a lithium iron phosphorus-based composite oxide. 前記正極活物質は、平均粒子径が0.1μm〜100μmであることを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極。   The positive electrode for a lithium ion secondary battery according to claim 1, wherein the positive electrode active material has an average particle size of 0.1 μm to 100 μm. 前記正極集電体は、アルミニウム又はアルミニウム合金からなることを特徴とする請求項1〜3いずれか1項に記載のリチウムイオン二次電池用正極。   The positive electrode for a lithium ion secondary battery according to claim 1, wherein the positive electrode current collector is made of aluminum or an aluminum alloy. 前記水溶性増粘剤は、前記正極活物質100質量部に対して0.1質量部〜4.0質量部含むことを特徴とする請求項1〜4いずれか1項に記載のリチウムイオン二次電池用正極。   The said water-soluble thickener contains 0.1 mass part-4.0 mass parts with respect to 100 mass parts of said positive electrode active materials, The lithium ion 2 of any one of Claims 1-4 characterized by the above-mentioned. Positive electrode for secondary battery. 請求項1〜5いずれか1項に記載のリチウムイオン二次電池用正極を備えることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to any one of claims 1 to 5.
JP2017013136A 2017-01-27 2017-01-27 Positive electrode for lithium ion secondary battery and lithium ion secondary battery Pending JP2018120820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013136A JP2018120820A (en) 2017-01-27 2017-01-27 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013136A JP2018120820A (en) 2017-01-27 2017-01-27 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2018120820A true JP2018120820A (en) 2018-08-02

Family

ID=63045318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013136A Pending JP2018120820A (en) 2017-01-27 2017-01-27 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2018120820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126808A (en) * 2019-02-06 2020-08-20 トヨタ自動車株式会社 All solid state battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048815A (en) * 2007-08-16 2009-03-05 Sony Corp Nonaqueous electrolyte solution secondary battery
JP2009048921A (en) * 2007-08-22 2009-03-05 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
JP2011044320A (en) * 2009-08-20 2011-03-03 Furukawa Battery Co Ltd:The Method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery
JP2012134114A (en) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd Nonaqueous electrolyte secondary battery and battery module
JP2013030447A (en) * 2011-06-20 2013-02-07 Jsr Corp Slurry for positive electrode
JP2015018820A (en) * 2014-09-16 2015-01-29 株式会社東芝 Separator for nonaqueous electrolyte battery
JP2016072234A (en) * 2014-09-30 2016-05-09 Jsr株式会社 Positive electrode slurry, power storage device positive electrode, method for manufacturing power storage device positive electrode, power storage device, and method for manufacturing power storage device
JP2016115598A (en) * 2014-12-17 2016-06-23 日立化成株式会社 Lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048815A (en) * 2007-08-16 2009-03-05 Sony Corp Nonaqueous electrolyte solution secondary battery
JP2009048921A (en) * 2007-08-22 2009-03-05 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
JP2011044320A (en) * 2009-08-20 2011-03-03 Furukawa Battery Co Ltd:The Method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery
JP2012134114A (en) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd Nonaqueous electrolyte secondary battery and battery module
JP2013030447A (en) * 2011-06-20 2013-02-07 Jsr Corp Slurry for positive electrode
JP2015018820A (en) * 2014-09-16 2015-01-29 株式会社東芝 Separator for nonaqueous electrolyte battery
JP2016072234A (en) * 2014-09-30 2016-05-09 Jsr株式会社 Positive electrode slurry, power storage device positive electrode, method for manufacturing power storage device positive electrode, power storage device, and method for manufacturing power storage device
JP2016115598A (en) * 2014-12-17 2016-06-23 日立化成株式会社 Lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126808A (en) * 2019-02-06 2020-08-20 トヨタ自動車株式会社 All solid state battery
JP7172679B2 (en) 2019-02-06 2022-11-16 トヨタ自動車株式会社 All-solid battery

Similar Documents

Publication Publication Date Title
US11245107B2 (en) Positive electrode mixture for secondary battery, method for manufacturing positive electrode for secondary battery, and method for manufacturing secondary battery
JP6560879B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5231166B2 (en) Method for producing positive plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6995738B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP6184810B2 (en) Non-aqueous secondary battery
JP2011159506A (en) Nonaqueous secondary battery
JP7102831B2 (en) Positive electrode and lithium ion secondary battery
JP2013131427A (en) Laminated battery
JP2019175657A (en) Lithium ion secondary battery
JP2019164967A (en) Negative electrode active material, negative electrode abd lithium ion secondary battery
JP6981027B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP2019091571A (en) Lithium secondary battery
JP2018170142A (en) Lithium ion secondary battery
JP2018170113A (en) Positive electrode and lithium ion secondary battery
JP7064709B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
WO2015046394A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JPWO2019098056A1 (en) Lithium ion secondary battery
JP2018120820A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2002216768A (en) Nonaqueous secondary battery
JP7243381B2 (en) Electrodes and non-aqueous electrolyte secondary batteries
JP2018063756A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery arranged by use thereof
JP6128228B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302