JP2017016905A - Charging/discharging method for lithium secondary battery - Google Patents

Charging/discharging method for lithium secondary battery Download PDF

Info

Publication number
JP2017016905A
JP2017016905A JP2015132931A JP2015132931A JP2017016905A JP 2017016905 A JP2017016905 A JP 2017016905A JP 2015132931 A JP2015132931 A JP 2015132931A JP 2015132931 A JP2015132931 A JP 2015132931A JP 2017016905 A JP2017016905 A JP 2017016905A
Authority
JP
Japan
Prior art keywords
lithium
discharge
positive electrode
secondary battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015132931A
Other languages
Japanese (ja)
Other versions
JP6646370B2 (en
Inventor
美優 根本
Miyu Nemoto
美優 根本
昌明 久保田
Masaaki Kubota
昌明 久保田
阿部 英俊
Hidetoshi Abe
英俊 阿部
聖志 金村
Kiyoshi Kanemura
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Tokyo Metropolitan Public University Corp
Original Assignee
Furukawa Battery Co Ltd
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd, Tokyo Metropolitan Public University Corp filed Critical Furukawa Battery Co Ltd
Priority to JP2015132931A priority Critical patent/JP6646370B2/en
Publication of JP2017016905A publication Critical patent/JP2017016905A/en
Application granted granted Critical
Publication of JP6646370B2 publication Critical patent/JP6646370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To stabilize the cathode layer of a cathode while restricting growth of dendrite of lithium.SOLUTION: A method is provided for charging/discharging a lithium secondary battery having a cathode, an anode, a separator and a non-aqueous electrolyte. The charging/discharging method for the lithium secondary battery is characterized as follows. The cathode contains, as active materials, a lithium-containing compound and a lithium non-containing compound, each of which is able to absorb and release lithium. Additionally, 1 to 40 mass% of the lithium non-containing compound is contained in the total of the lithium-containing compound and the lithium non-containing compound. The anode contains metal lithium as an active material. Charging/discharging after the assembly of the secondary battery is initiated from discharging. Discharge cutoff voltage during the initial discharge is provided as a reaction potential for the lithium non-containing compound. Discharge cutoff voltage during discharge after the initial discharge is provided as potential that does not react with the lithium non-containing compound.SELECTED DRAWING: Figure 2

Description

本発明は、リチウム二次電池の充放電方法に関する。   The present invention relates to a method for charging and discharging a lithium secondary battery.

近年、リチウム二次電池は、高エネルギー密度を有する等の理由から広く普及し、携帯電話やデジタルカメラ、ノートパソコン等の携帯用小型機器の電源として搭載されている。また、リチウム二次電池は、エネルギー資源枯渇問題や地球温暖化等の観点から、ハイブリッド自動車や電気自動車、または太陽光や風力等の自然エネルギー発電による電力貯蔵用等の大型産業用途への開発が進められている。リチウム二次電池は、これらの電源の利用拡大のために更なる高密度化、長寿命化が求められている。   In recent years, lithium secondary batteries have become widespread for reasons such as high energy density, and are mounted as power sources for portable small devices such as mobile phones, digital cameras, and notebook computers. In addition, lithium secondary batteries have been developed for use in large-scale industrial applications such as hybrid vehicles, electric vehicles, and power storage by natural energy power generation such as solar and wind power from the viewpoint of energy resource depletion and global warming. It is being advanced. Lithium secondary batteries are required to have higher density and longer life in order to expand the use of these power sources.

このようなリチウム二次電池は、正極と負極との間でリチウムイオンを移動させて充放電を行う。リチウム二次電池の正極活物質は、現在、リチウム金属酸化物であるコバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)、ニッケル酸リチウム(LiNiO2)、リン酸鉄リチウム(LiFePO4)等のリチウムを含む金属酸化物または金属リン酸化物が実用化され、または商品化を目指して開発が進められている。 Such lithium secondary batteries charge and discharge by moving lithium ions between the positive electrode and the negative electrode. The positive electrode active materials of lithium secondary batteries are currently lithium metal oxides such as lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and lithium iron phosphate (LiFePO 4 ). 4 ) Lithium-containing metal oxides or metal phosphorous oxides have been put into practical use or are being developed for commercialization.

負極活物質は、グラファイトなどの炭素材料や、リチウムチタン酸化物(Li4Ti512)が用いられ、これら活物質を含む正極と負極の間には、内部短絡を防止するためのセパレータが介在されている。セパレータは、一般的にポリオレフィンからなる微孔性薄膜が使用されている。 As the negative electrode active material, a carbon material such as graphite or lithium titanium oxide (Li 4 Ti 5 O 12 ) is used, and a separator for preventing an internal short circuit is provided between the positive electrode and the negative electrode containing these active materials. Intervened. As the separator, a microporous thin film made of polyolefin is generally used.

非水電解質は、非水溶媒にリチウム塩等の電解質を溶解した非水電解液が一般的に使用されている。その他の非水電解質には、ゲル状電解液または固体電解質も注目されている。   As the non-aqueous electrolyte, a non-aqueous electrolyte solution in which an electrolyte such as a lithium salt is dissolved in a non-aqueous solvent is generally used. As other non-aqueous electrolytes, a gel electrolyte or a solid electrolyte is also attracting attention.

正極および負極は、それぞれ正極活物質、負極活物質を担持する集電体を備える。正極集電体は、アルミニウム箔が、負極集電体は銅箔が一般的に用いられている。   Each of the positive electrode and the negative electrode includes a positive electrode active material and a current collector carrying the negative electrode active material. An aluminum foil is generally used for the positive electrode current collector, and a copper foil is generally used for the negative electrode current collector.

ところで、負極活物質である金属リチウムは単位重量当たりの電気量が3.86Ah/gと大きい特徴を持つ。このため、最も理論エネルギー密度を持つ、高容量のリチウム二次電池の実現のために、金属リチウムを負極活物質として用いる研究が再び進められている。   By the way, metallic lithium, which is a negative electrode active material, has a characteristic that the amount of electricity per unit weight is as large as 3.86 Ah / g. For this reason, in order to realize a high-capacity lithium secondary battery having the highest theoretical energy density, research using metallic lithium as a negative electrode active material has been advanced again.

しかしながら、負極活物質に金属リチウムを用いるリチウム二次電池は充放電の繰り返しにおいて、金属リチウムの負極表面からリチウムがデンドライト状に成長し、デンドライト状のリチウムが正極と負極の間に介在したセパレータを貫通して正極に達し、内部短絡を起こす課題があった。   However, a lithium secondary battery using metallic lithium as the negative electrode active material has a separator in which lithium grows in a dendrite shape from the surface of the negative electrode of metal lithium during repeated charging and discharging, and the dendritic lithium is interposed between the positive electrode and the negative electrode. There was a problem of penetrating to the positive electrode and causing an internal short circuit.

このようなことから、例えば特許文献1には正極の主活物質としてLiCoO2を、副活物質として初期から放電可能な材料(例えば二酸化マンガン)を用いる非水電解質二次電池が記載されている。 For this reason, for example, Patent Document 1 describes a non-aqueous electrolyte secondary battery that uses LiCoO 2 as a main active material of a positive electrode and a material (for example, manganese dioxide) that can be discharged from the beginning as a secondary active material. .

特許文献1の非水電解質二次電池の第2頁左上欄には、リチウムのデンドライト状の成長のメカニズムが記載されている。デンドライト状の成長の主な要因は、1)電池組立直後の負極の金属リチウムの表面に炭酸リチウムまたは水酸化リチウムのような不活性被膜が形成されていること、2)正極活物質としてリチウムコバルト複合酸化物(LiCoO2)を用いた場合、充放電サイクルが充電から始まり、初回の充電時において、正極から放出されたリチウムイオン(Li+)が負極の金属リチウム表面にリチウムとして還元析出し、負極の金属リチウム表面に形成された不活性被膜が除去されないこと、である。負極の金属リチウム表面の不活性被膜が除去されないと、リチウムが負極の金属リチウム表面に不均一に析出し、その後の充放電サイクルの充電時に、負極表面に析出するリチウムがデンドライト状に成長し、セパレータを貫通して正極に達し、内部短絡を起こす。 The upper left column of the second page of the nonaqueous electrolyte secondary battery of Patent Document 1 describes the mechanism of lithium dendritic growth. The main causes of dendritic growth are 1) that an inactive film such as lithium carbonate or lithium hydroxide is formed on the surface of metallic lithium of the negative electrode immediately after battery assembly, and 2) lithium cobalt as the positive electrode active material. When the composite oxide (LiCoO 2 ) is used, the charge / discharge cycle starts from charging, and during the first charge, lithium ions (Li + ) released from the positive electrode are reduced and deposited as lithium on the metal lithium surface of the negative electrode, The inactive film formed on the metal lithium surface of the negative electrode is not removed. When the inert coating on the surface of the negative electrode metal lithium is not removed, lithium is deposited non-uniformly on the surface of the negative electrode metal lithium, and the lithium deposited on the negative electrode surface grows in a dendrite shape during the charge / discharge cycle thereafter, It penetrates the separator and reaches the positive electrode, causing an internal short circuit.

特許文献1では、正極活物質として主活物質であるLiCoO2の他に、副活物質である初期から放電可能な材料(例えば二酸化マンガン)を用いているため、充放電時において、初回から放電を行うことができる。すなわち、負極から金属リチウムをリチウムイオンとして放出できる。このため、電池組立直後の負極の金属リチウム表面に形成された炭酸リチウムまたは水酸化リチウムのような不活性被膜が除去される。その結果、初回放電後の充電時にはリチウムイオンが良好な表面状態を有する負極の金属リチウム表面に還元析出するため、負極の金属リチウム表面からリチウムがデンドライト状に成長するのを抑制することが可能になる。 In Patent Document 1, since a material (for example, manganese dioxide) that can be discharged from the initial stage as a secondary active material is used as the positive electrode active material in addition to LiCoO 2 that is the main active material, the discharge is performed from the first time during charging and discharging. It can be performed. That is, metallic lithium can be released from the negative electrode as lithium ions. For this reason, the inert film such as lithium carbonate or lithium hydroxide formed on the metal lithium surface of the negative electrode immediately after battery assembly is removed. As a result, lithium ions are reduced and deposited on the metal lithium surface of the negative electrode having a good surface state during charging after the first discharge, so that lithium can be prevented from growing in a dendrite shape from the metal lithium surface of the negative electrode. Become.

特開平4−206267号公報JP-A-4-206267

しかしながら、前記特許文献1に開示された副活物質である初期から放電可能な材料(例えば二酸化マンガン)は、主活物質(例えばLiCoO2)に比べて充放電に伴うリチウムの吸蔵・放出による膨張・収縮が大きい性質を有する。そのため、前記副活物質を含むリチウム二次電池を繰り返し充放電すると、当該副活物質の結晶構造に負荷が加わる。このため、当該副活物質を含む正極層にクラックが発生したり、正極集電体から正極層が剥離したりする。その結果、リチウム二次電池の容量または充放電サイクル特性が低下する課題があった。 However, the material that can be discharged from the beginning (for example, manganese dioxide), which is a secondary active material disclosed in Patent Document 1, has an expansion due to insertion / desorption of lithium associated with charge / discharge compared to the main active material (for example, LiCoO 2 ).・ It has the property of large shrinkage. For this reason, when a lithium secondary battery containing the secondary active material is repeatedly charged and discharged, a load is applied to the crystal structure of the secondary active material. For this reason, a crack generate | occur | produces in the positive electrode layer containing the said secondary active material, or a positive electrode layer peels from a positive electrode electrical power collector. As a result, there was a problem that the capacity or charge / discharge cycle characteristics of the lithium secondary battery deteriorated.

従って、本発明は前記課題を解決し、リチウムのデンドライト状の成長を抑制しつつ正極の正極層を安定化ができ、高容量と充放電サイクル特性の向上とを同時に実現することが可能なリチウム二次電池の充放電方法を提供するものである。   Therefore, the present invention solves the above-described problems, can stabilize the positive electrode layer of the positive electrode while suppressing the dendrite-like growth of lithium, and can simultaneously realize high capacity and improved charge / discharge cycle characteristics. A method for charging and discharging a secondary battery is provided.

上記の課題を解決するために、本発明によると、正極、負極、セパレータおよび非水電解質を備えたリチウム二次電池の充放電方法であって、前記正極はそれぞれリチウムを吸蔵および放出することが可能なリチウム含有化合物およびリチウム未含有化合物を活物質として含み、前記リチウム未含有化合物が前記リチウム含有化合物および前記リチウム未含有化合物の合量に対して1〜40質量%の割合で含有し、前記負極は金属リチウムを活物質として含み、前記二次電池の組立後の充放電を放電から初め、初回放電時の放電カットオフ電圧を前記リチウム未含有化合物の反応電位とし、初回放電以降の放電時の放電カットオフ電圧を前記リチウム未含有化合物と反応しない電位とする特徴とするリチウム二次電池の充放電方法が提供される。   In order to solve the above problems, according to the present invention, there is provided a method for charging and discharging a lithium secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode can occlude and release lithium, respectively. Including a possible lithium-containing compound and a lithium-free compound as an active material, wherein the lithium-free compound is contained in a proportion of 1 to 40% by mass with respect to the total amount of the lithium-containing compound and the lithium-free compound, The negative electrode contains metallic lithium as an active material, charge / discharge after assembly of the secondary battery is started from discharge, discharge cutoff voltage at the first discharge is the reaction potential of the lithium-free compound, at the time of discharge after the first discharge There is provided a method for charging and discharging a lithium secondary battery, characterized in that the discharge cutoff voltage is a potential that does not react with the lithium-free compound. .

本発明によれば、リチウムのデンドライト状の成長を抑制しつつ、正極の正極層を安定化ができ、高容量と充放電サイクル特性の向上とを同時に実現することが可能なリチウム二次電池の充放電方法を提供できる。   According to the present invention, a lithium secondary battery capable of stabilizing the positive electrode layer of the positive electrode while suppressing lithium dendrite-like growth and simultaneously realizing high capacity and improved charge / discharge cycle characteristics. A charge / discharge method can be provided.

図1は、実施形態に係る積層型のリチウム二次電池の一例を示す斜視図である。FIG. 1 is a perspective view illustrating an example of a stacked lithium secondary battery according to an embodiment. 図2は、図1の積層型のリチウム二次電池のII-II線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line II-II of the stacked lithium secondary battery of FIG.

以下、実施形態に係るリチウム二次電池の充放電方法を詳細に説明する。   Hereinafter, the charge / discharge method of the lithium secondary battery according to the embodiment will be described in detail.

このような実施形態に係るリチウム二次電池の充放電方法によれば、充放電時のリチウムのデンドライト状の成長を抑制ないし防止しつつ、正極を構成する正極活物質を含む正極層を安定化でき、高容量化と充放電サイクル特性を向上できる。   According to the charging / discharging method of the lithium secondary battery according to such an embodiment, the positive electrode layer including the positive electrode active material constituting the positive electrode is stabilized while suppressing or preventing the dendritic growth of lithium during charging / discharging. The capacity can be increased and the charge / discharge cycle characteristics can be improved.

すなわち、正極活物質はリチウムを吸蔵および放出することが可能なリチウム未含有化合物をリチウム含有化合物と共に含む。このため、リチウム二次電池の組立後の充放電を放電から始めることが可能になる。当該初回放電では、負極の金属リチウム表面からリチウム(Li)がイオンとして非水電解質に放出し、セパレータを通して正極側に移動し、正極のリチウム未含有化合物に吸蔵される。   That is, the positive electrode active material includes a lithium-free compound capable of inserting and extracting lithium together with the lithium-containing compound. For this reason, it becomes possible to start charge / discharge after the assembly of the lithium secondary battery from discharge. In the first discharge, lithium (Li) is released as ions from the metal lithium surface of the negative electrode to the nonaqueous electrolyte, moves to the positive electrode side through the separator, and is occluded by the lithium-free compound of the positive electrode.

また、前記初回放電においてリチウム未含有化合物がリチウム含有化合物およびリチウム未含有化合物の合量に対して1〜40質量%の割合で含有するため、当該割合のリチウム未含有化合物に相当する十分な量のリチウムイオンを負極の金属リチウム表面から放出できる。   In addition, since the lithium-free compound is contained in a ratio of 1 to 40% by mass with respect to the total amount of the lithium-containing compound and the lithium-free compound in the first discharge, a sufficient amount corresponding to the lithium-free compound of the ratio Of lithium ions can be released from the metal lithium surface of the negative electrode.

さらに、初回放電時の放電カットオフ電圧をリチウム未含有化合物の反応電位とすることにより、リチウム未含有化合物にリチウムをほぼ完全に吸蔵可能にし得る状態になるまで放電を続行できる。つまり、負極の金属リチウム表面からのリチウムイオンの放出量を増大できる。   Furthermore, by setting the discharge cut-off voltage at the first discharge to the reaction potential of the lithium-free compound, the discharge can be continued until the lithium-free compound can be almost completely occluded with lithium. That is, the amount of lithium ions released from the metal lithium surface of the negative electrode can be increased.

従って、前述したリチウム二次電池の組立後の充放電を放電から初めることが可能であること、正極活物質中のリチウム未含有化合物の含有割合を規定すること、および初回放電時の放電カットオフ電圧をリチウム未含有化合物の反応電位とすることによって、初回放電において、負極の金属リチウム表面からのリチウムイオンの放出量を著しく増大できる。このため、電池組立直後の負極の金属リチウム表面に形成された炭酸リチウムまたは水酸化リチウムのような不活性被膜を破壊して除去できる。初回放電後の充電において、正極活物質から放出されたリチウムイオンが負極の金属リチウム表面でリチウムを還元析出する際、金属リチウム表面は不活性被膜が除去されているため、リチウムは金属リチウム表面に偏って析出せず、金属リチウム表面に均一に析出する。その結果、充放電サイクルの繰り返しに伴って、負極に金属リチウム表面からリチウムがデンドライト状に成長するのを抑制して、リチウムのデンドライト状の成長に伴う負極と正極間の内部短絡を防止できる。それ故、単位重量当たりの電気量が3.86Ah/gと大きい特徴を持つ金属リチウムを負極活物質として安全に使用できるため、高容量のリチウム二次電池を得ることができる。   Therefore, it is possible to start charging / discharging after assembling the above-described lithium secondary battery from discharge, to specify the content ratio of the lithium-free compound in the positive electrode active material, and to discharge cutoff at the first discharge By setting the voltage to the reaction potential of the lithium-free compound, it is possible to significantly increase the amount of lithium ions released from the metal lithium surface of the negative electrode in the first discharge. For this reason, an inert film such as lithium carbonate or lithium hydroxide formed on the metal lithium surface of the negative electrode immediately after battery assembly can be destroyed and removed. In the charge after the first discharge, when the lithium ions released from the positive electrode active material reduce and deposit lithium on the surface of the metal lithium of the negative electrode, the metal lithium surface has the inactive coating removed, so that the lithium is deposited on the metal lithium surface. It deposits uniformly on the surface of metallic lithium without precipitating. As a result, it is possible to prevent lithium from growing on the negative electrode from the surface of the metal lithium in a dendrite-like manner with repeated charge / discharge cycles, thereby preventing an internal short circuit between the negative electrode and the positive electrode accompanying the lithium dendrite-like growth. Therefore, since lithium metal having a large amount of electricity per unit weight of 3.86 Ah / g can be safely used as the negative electrode active material, a high capacity lithium secondary battery can be obtained.

また、初回放電以降の放電時の放電カットオフ電圧を前記リチウム未含有化合物と反応しない電位とする、つまり初回放電時の放電カットオフ電圧と異なる電位に変更することによって、負極の金属リチウムから放出したリチウムイオンは専らリチウム含有化合物に吸蔵され、リチウム未含有化合物に吸蔵されない。その故、その後の充放電サイクルにおいてリチウム未含有化合物ではリチウムの吸蔵・放出が起きず、充放電には関与しない。その結果、リチウム未含有化合物が充放電に伴うリチウムイオンの吸蔵・放出においてリチウム含有化合物に比べて膨張・収縮度合が大きくても、初回放電以降の充放電サイクルの繰り返し時に、リチウム未含有化合物がリチウムの吸蔵・放出が行なわれないため、当該リチウム未含有化合物の結晶構造の崩壊を防止できる。リチウム未含有化合物の結晶構造の崩壊は、当該リチウム未含有化合物をリチウム含有化合物と共に含まれる、正極集電体上の正極層のクラック発生または正極集電体からの剥離を伴う。リチウム未含有化合物の崩壊を防止することによって、これらの問題を解消して正極層を安定化できる。従って、充放電サイクル特性を向上したリチウム二次電池を得ることができる。   In addition, the discharge cutoff voltage at the time of discharge after the first discharge is set to a potential that does not react with the lithium-free compound, that is, by changing to a potential different from the discharge cutoff voltage at the time of the first discharge, it is released from the metallic lithium of the negative electrode. The lithium ions thus absorbed are exclusively stored in the lithium-containing compound and are not stored in the lithium-free compound. Therefore, in the subsequent charge / discharge cycle, lithium is not occluded / released in the lithium-free compound, and is not involved in charge / discharge. As a result, even if the lithium-free compound has a larger degree of expansion / contraction compared to the lithium-containing compound in the insertion / extraction of lithium ions associated with charging / discharging, the lithium-free compound is present at the time of repeated charge / discharge cycles after the first discharge. Since lithium is not occluded / released, collapse of the crystal structure of the lithium-free compound can be prevented. The collapse of the crystal structure of the lithium-free compound is accompanied by the generation of cracks in the positive electrode layer on the positive electrode current collector containing the lithium-free compound together with the lithium-containing compound or peeling from the positive electrode current collector. By preventing the collapse of the lithium-free compound, these problems can be solved and the positive electrode layer can be stabilized. Therefore, a lithium secondary battery having improved charge / discharge cycle characteristics can be obtained.

次に、実施形態に係る充放電方法に用いるリチウム二次電池の構成および充放電条件について説明する。   Next, the structure and charge / discharge conditions of the lithium secondary battery used in the charge / discharge method according to the embodiment will be described.

<正極>
正極は、例えば正極集電体と、当該正極集電体の一方または両方の面に形成された正極層とを備える。正極層は、例えば正極活物質、導電材および結着剤を含む。
<Positive electrode>
The positive electrode includes, for example, a positive electrode current collector and a positive electrode layer formed on one or both surfaces of the positive electrode current collector. The positive electrode layer includes, for example, a positive electrode active material, a conductive material, and a binder.

正極活物質は、それぞれリチウムを吸蔵および放出することが可能なリチウム含有化合物およびリチウム未含有化合物を含む。   The positive electrode active material includes a lithium-containing compound and a lithium-free compound that can occlude and release lithium, respectively.

リチウム含有化合物は、リチウム含有金属酸化物またはリチウム含有金属リン化合物等のリチウム二次電池の正極活物質として一般的に用いられる化合物であれば特に限定されない。例えば、リチウムコバルト複合酸化物(例えばLiCoO2)、リチウムマンガン複合酸化物(例えばLiMnO2、LiMn24)、リチウムニッケル複合酸化物(例えばLiNiO2)、リチウムコバルト鉄複合酸化物(例えばLiCo0.5Fe0.52)、リチウムニッケルコバルトマンガン複合酸化物(例えばLi(NixCoyMn1−x−y)O2(0<x<1、0<y<1))、リチウム鉄リン複合酸化物(例えばLiFePO4)等が挙げられる。 A lithium containing compound will not be specifically limited if it is a compound generally used as a positive electrode active material of lithium secondary batteries, such as a lithium containing metal oxide or a lithium containing metal phosphorus compound. For example, lithium cobalt composite oxide (for example, LiCoO 2 ), lithium manganese composite oxide (for example, LiMnO 2 , LiMn 2 O 4 ), lithium nickel composite oxide (for example, LiNiO 2 ), lithium cobalt iron composite oxide (for example, LiCo 0.5). Fe 0.5 O 2), lithium-nickel-cobalt-manganese composite oxide (e.g., Li (Ni x Co y Mn 1 -x-y) O 2 (0 <x <1,0 <y <1)), a lithium iron phosphate complex oxide Such as LiFePO 4 .

リチウム未含有化合物は、電気化学的にリチウムを吸蔵および放出することのできる化合物であれば特に限定されない。例えば、FeO、FeO2、Fe23、Fe34、SnO、SnO2、MoO2、MnO2、V25、Bi2Sn39、WO2、WO3、Nb25、Ag2O、PbO、NiO、Ni23、CoO、Co23、Co34、TiO2、Bi23、Sb23、Cr23、SeO2、TeO2等が挙げられる。 The lithium-free compound is not particularly limited as long as it is a compound that can electrochemically occlude and release lithium. For example, FeO, FeO 2, Fe 2 O 3, Fe 3 O 4, SnO, SnO 2, MoO 2, MnO 2, V 2 O 5, Bi 2 Sn 3 O 9, WO 2, WO 3, Nb 2 O 5 , Ag 2 O, PbO, NiO, Ni 2 O 3 , CoO, Co 2 O 3 , Co 3 O 4 , TiO 2 , Bi 2 O 3 , Sb 2 O 3 , Cr 2 O 3 , SeO 2 , TeO 2, etc. Is mentioned.

正極活物質は、リチウム未含有化合物をリチウム含有化合物とリチウム未含有化合物の合量に対して1〜40質量%の割合で含む。より好ましいリチウム未含有化合物の割合は、リチウム含有化合物とリチウム未含有化合物の合量に対して10〜40質量%、さらに好ましいリチウム未含有化合物の割合はリチウム含有化合物とリチウム未含有化合物の合量に対して10〜30質量%である。   The positive electrode active material contains a lithium-free compound in a proportion of 1 to 40% by mass with respect to the total amount of the lithium-containing compound and the lithium-free compound. The more preferable ratio of the lithium-free compound is 10 to 40% by mass with respect to the total amount of the lithium-containing compound and the lithium-free compound, and the more preferable ratio of the lithium-free compound is the total amount of the lithium-containing compound and the lithium-free compound. It is 10-30 mass% with respect to.

リチウム未含有化合物の割合が1質量%未満の場合、初回放電時に負極の金属リチウム表面から放出されるリチウムイオン量が低下してリチウムイオンの放出に伴う金属リチウム表面の不活性被膜の破壊、除去が不十分になる。その結果、リチウムのデンドライト状の成長を効果的に防止することが困難になる。   When the proportion of the lithium-free compound is less than 1% by mass, the amount of lithium ions released from the metal lithium surface of the negative electrode during the first discharge is reduced, and the inactive coating on the metal lithium surface is destroyed and removed as lithium ions are released. Becomes insufficient. As a result, it becomes difficult to effectively prevent lithium dendritic growth.

リチウム未含有化合物の割合が40質量%を超える場合、リチウム二次電池の放電容量が低下する。正極活物質のリチウム未含有化合物の割合が多くなると、リチウム含有化合物の割合が相対的に少なくなる。実施形態に係る充放電方法では、初回放電以降の放電を含む充放電ではリチウム含有化合物のみを関与させるため、リチウム含有化合物の割合の減少はリチウム二次電池の放電容量低下をもたらす。   When the proportion of the lithium-free compound exceeds 40% by mass, the discharge capacity of the lithium secondary battery decreases. When the proportion of the lithium-free compound in the positive electrode active material is increased, the proportion of the lithium-containing compound is relatively decreased. In the charge / discharge method according to the embodiment, only the lithium-containing compound is involved in the charge / discharge including the discharge after the first discharge, so that the reduction in the ratio of the lithium-containing compound results in a reduction in the discharge capacity of the lithium secondary battery.

正極集電体は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、アルミニウムなどの金属箔、ラス加工またはエッチング処理された金属箔等が挙げられる。   The positive electrode current collector is not particularly limited, and a known or commercially available one can be used. For example, a metal foil such as aluminum, a metal foil subjected to lath processing or etching treatment, and the like can be given.

導電材は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、カーボンナノチューブ、炭素繊維、活性炭、黒鉛等が挙げられる。   The conductive material is not particularly limited, and a known or commercially available material can be used. Examples thereof include carbon black such as acetylene black and ketjen black, carbon nanotube, carbon fiber, activated carbon, graphite and the like.

結着剤は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、アクリル樹脂等が挙げられる。   A binder is not specifically limited, A well-known or commercially available thing can be used. For example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, styrene butadiene rubber (SBR), acrylic resin, and the like.

なお、正極は例えば次に示す方法で作製することができる。最初に、前述した正極活物質、導電材および結着剤を溶剤に分散させて正極スラリーを調製する。つづいて、正極集電体の一方または両方の面に正極スラリーを塗布した後、乾燥して正極層を形成することで正極を作製することができる。   The positive electrode can be produced, for example, by the following method. First, the positive electrode active material, the conductive material, and the binder described above are dispersed in a solvent to prepare a positive electrode slurry. Subsequently, after applying a positive electrode slurry to one or both surfaces of the positive electrode current collector, the positive electrode layer can be formed by drying to form a positive electrode layer.

溶剤は、特に特に限定されるものではなく、リチウム二次電池で一般に用いられる溶剤を用いることができる。例えば、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)等が挙げられる。なお、結着剤としてポリフッ化ビニリデン(PVdF)を用いる場合には、N−メチル−2−ピロリドン(NMP)を溶剤に用いるのが好ましい。   The solvent is not particularly limited, and a solvent generally used in lithium secondary batteries can be used. Examples thereof include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and the like. Note that when polyvinylidene fluoride (PVdF) is used as the binder, N-methyl-2-pyrrolidone (NMP) is preferably used as the solvent.

<負極>
負極は、例えば、負極集電体と、当該負極集電体の一方または両方の面に形成された負極活物質の金属リチウムからなる。
<Negative electrode>
The negative electrode is made of, for example, a negative electrode current collector and metallic lithium as a negative electrode active material formed on one or both surfaces of the negative electrode current collector.

負極集電体は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、銅または銅合金からなる圧延箔、電解箔等を用いることができる。   The negative electrode current collector is not particularly limited, and a known or commercially available one can be used. For example, a rolled foil or electrolytic foil made of copper or a copper alloy can be used.

<非水電解質>
非水電解質は、液体状の場合、非水溶媒および電解質を含む。
<Nonaqueous electrolyte>
The nonaqueous electrolyte includes a nonaqueous solvent and an electrolyte when in a liquid state.

非水溶媒は、主成分として環状カーボネートおよび鎖状カーボネートを含有する。環状カーボネートは、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびブチレンカーボネート(BC)から選ばれる少なくとも一つであることが好ましい。鎖状カーボネートは、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等から選ばれる少なくとも一つであることが好ましい。   The non-aqueous solvent contains a cyclic carbonate and a chain carbonate as main components. The cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). The chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like.

電解質は、特に限定されるものではなく、リチウム二次電池で一般に用いられるリチウム塩の電解質を用いることができる。例えば、LiPF6、LiAsF6、LiBF4、LiCF3SO3、LiN(Cm2m+1SO2)(Cn2n+1SO2)(m、nは1以上の整数)、LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(p、q、rは1以上の整数)、ジフルオロ(オキサラト)ホウ酸リチウム等を用いることができる。これらの電解質は、一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。また、この電解質は非水溶媒に対して0.1〜1.5モル/L、好ましくは0.5〜1.5モル/Lの濃度で溶解することが望ましい。 The electrolyte is not particularly limited, and lithium salt electrolytes generally used in lithium secondary batteries can be used. For example, LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ) (m, n is an integer of 1 or more), LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) (p, q, and r are integers of 1 or more), lithium difluoro (oxalato) borate, and the like can be used. These electrolytes may be used alone or in combination of two or more. Further, it is desirable that this electrolyte is dissolved in a concentration of 0.1 to 1.5 mol / L, preferably 0.5 to 1.5 mol / L, with respect to the nonaqueous solvent.

<セパレータ>
セパレータは、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂の微多孔膜または不織布を用いることができる。微多孔膜または不織布は単層であっても、多層構造であってもよい。特に、微多孔質ポリエチレン膜が好ましい。
<Separator>
As the separator, a microporous film or a nonwoven fabric of a polyolefin resin such as a polyethylene resin or a polypropylene resin can be used. The microporous membrane or the nonwoven fabric may be a single layer or a multilayer structure. In particular, a microporous polyethylene film is preferable.

<充放電条件>
リチウム二次電池の組立後の充放電を放電から初め、初回放電時の放電カットオフ電圧はリチウム未含有化合物の反応電位とする。例えば、リチウム未含有化合物が二酸化マンガンである場合、反応電位は2.0Vである。リチウム未含有化合物が五酸化バナジウムである場合、反応電位は2.0Vである。
<Charging / discharging conditions>
Charging / discharging after the assembly of the lithium secondary battery is started from the discharge, and the discharge cutoff voltage at the first discharge is a reaction potential of the lithium-free compound. For example, when the lithium-free compound is manganese dioxide, the reaction potential is 2.0V. When the lithium-free compound is vanadium pentoxide, the reaction potential is 2.0V.

初回放電以降の放電時の放電カットオフ電圧は、リチウム未含有化合物と反応しない電位とする。例えば、リチウム未含有化合物が二酸化マンガンである場合、反応しない電位は当該二酸化マンガンの反応電位より高い3.0〜4.0Vにすることが好ましい。   The discharge cutoff voltage at the time of discharge after the first discharge is set to a potential that does not react with the lithium-free compound. For example, when the lithium-free compound is manganese dioxide, the non-reactive potential is preferably set to 3.0 to 4.0 V, which is higher than the reaction potential of the manganese dioxide.

初回放電以降の放電時の放電カットオフ電圧は、リチウム未含有化合物と反応しない電位とし、同時にリチウム含有化合物の反応電位とする。リチウム未含有化合物が二酸化マンガンである場合、反応しない電位を当該二酸化マンガンの反応電位より高い3.0〜4.0Vにすることにより、前述したリチウム含有化合物であるリチウム含有金属酸化物またはリチウム含有金属リン化合物の反応電位になる。   The discharge cutoff voltage at the time of discharge after the first discharge is set to a potential that does not react with the lithium-free compound, and at the same time, the reaction potential of the lithium-containing compound. When the lithium-free compound is manganese dioxide, the lithium-containing metal oxide or lithium-containing compound which is the lithium-containing compound described above is obtained by setting the non-reactive potential to 3.0 to 4.0 V, which is higher than the reaction potential of the manganese dioxide. It becomes the reaction potential of the metal phosphorus compound.

実施形態に係るリチウム二次電池の形状は特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、角形、扁平型等が挙げられる。   The shape of the lithium secondary battery according to the embodiment is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a stacked type, a cylindrical type, a rectangular shape, and a flat type.

以下、積層型のリチウム二次電池を例にして、実施形態に係るリチウム二次電池の構造を図面を参照して説明する。図1は、積層型のリチウム二次電池の一例を示す斜視図、図2は図1のII−II線に沿う断面図である。   Hereinafter, the structure of the lithium secondary battery according to the embodiment will be described with reference to the drawings, taking a laminated lithium secondary battery as an example. FIG. 1 is a perspective view showing an example of a stacked lithium secondary battery, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG.

積層型のリチウム二次電池1は、ラミネートフィルムからなる袋状の外装体2を備えている。外装体2内には、扁平状の電極群3が収納されている。ラミネートフィルムは、例えば複数枚(例えば2枚)のプラスチックフィルムをそれらのフィルム間にアルミニウム箔のような金属箔を挟んで積層した構造を有する。2枚のプラスチックフィルムのうち、一方のプラスチックフィルムは熱融着性樹脂フィルムが用いられる。外装体2は、2枚のラミネートフィルムを熱融着性樹脂フィルムが互いに対向するように重ね、これらのラミネートフィルム間に電極群3を介在し、電極群3周辺の2枚のラミネートフィルム部分を互いに熱融着して封止することにより、前記電極群3を気密に収納している。   The laminated lithium secondary battery 1 includes a bag-shaped exterior body 2 made of a laminate film. A flat electrode group 3 is accommodated in the exterior body 2. The laminate film has a structure in which, for example, a plurality of (for example, two) plastic films are laminated with a metal foil such as an aluminum foil sandwiched between the films. Of the two plastic films, one of the plastic films is a heat-fusible resin film. The outer package 2 is formed by stacking two laminated films so that the heat-fusible resin films face each other, interposing the electrode group 3 between the laminated films, and sandwiching the two laminated film portions around the electrode group 3 The electrode group 3 is housed in an airtight manner by heat-sealing each other and sealing.

電極群3は、図2に示すように正極4と負極5とそれら正極4、負極5の間に介在されたセパレータ6を負極5が最外層に位置するように複数積層した構造を有する。正極4は、正極集電体42と当該集電体42の両面に形成された正極層41,41とから構成されている。最外層に位置する負極5は、負極集電体52と、当該集電体52のセパレータ6と対向する面に形成された金属リチウムからなる負極層51とから構成されている。最外層に位置する負極5を除く、正極4間に位置する負極5は、負極集電体52と、当該集電体52の両面に形成された金属リチウムからなる負極層51,51とから構成されている。   As shown in FIG. 2, the electrode group 3 has a structure in which a plurality of positive electrodes 4, negative electrodes 5, and separators 6 interposed between the positive electrodes 4 and 5 are stacked so that the negative electrode 5 is located in the outermost layer. The positive electrode 4 includes a positive electrode current collector 42 and positive electrode layers 41 and 41 formed on both surfaces of the current collector 42. The negative electrode 5 located in the outermost layer is composed of a negative electrode current collector 52 and a negative electrode layer 51 made of metallic lithium formed on the surface of the current collector 52 facing the separator 6. The negative electrode 5 positioned between the positive electrodes 4 excluding the negative electrode 5 positioned in the outermost layer is composed of a negative electrode current collector 52 and negative electrode layers 51 and 51 made of metallic lithium formed on both surfaces of the current collector 52. Has been.

正極4は、正極集電体42が正極層41の例えば右側面から延出した正極リード43を有する。各正極リード43は、外装体2内において先端側で束ねられ、互いに接合されている。正極端子7は、一端が正極リード43の接合部に接合され、かつ他端が外装体2の封止部を通して外部に延出している。負極5は、負極集電体52が負極層51の例えば左側面から延出した負極リード53を有する。各負極リード53は、外装体2内において先端側で束ねられ、互いに接合されている。負極端子8は、一端が負極リード53の接合部に接合され、かつ他端が外装体2の封止部を通して外部に延出している。   The positive electrode 4 includes a positive electrode lead 43 in which a positive electrode current collector 42 extends from, for example, the right side surface of the positive electrode layer 41. Each positive electrode lead 43 is bundled on the tip side in the exterior body 2 and joined to each other. One end of the positive electrode terminal 7 is joined to the joint portion of the positive electrode lead 43, and the other end extends to the outside through the sealing portion of the exterior body 2. The negative electrode 5 has a negative electrode lead 53 in which a negative electrode current collector 52 extends from, for example, the left side surface of the negative electrode layer 51. Each negative electrode lead 53 is bundled on the tip side in the exterior body 2 and joined to each other. One end of the negative electrode terminal 8 is joined to the joint portion of the negative electrode lead 53, and the other end extends to the outside through the sealing portion of the exterior body 2.

以下、本発明は実施例を詳細に説明する。   Hereinafter, examples of the present invention will be described in detail.

(実施例1〜9および比較例1〜4)
[正極1の作製]
正極活物質には、リチウム含有化合物であるコバルト酸リチウム(LiCoO2)99質量%とリチウム未含有化合物である熱処理した二酸化マンガン(MnO2)1質量%とを混合して正極活物質を調製した。つづいて、正極活物質に導電材としてアセチレンブラック6.7質量%、結着剤としてポリフッ化ビニリデン(PVdF)4.4質量%をそれぞれ添加して混合し、当該混合物に溶剤としてN−メチル−2−ピロリドン(NMP)質量%を添加して正極スラリーを調製した。次に、アルミニウム箔上に正極スラリーを塗工量が120g/mとなるよう塗布し、100℃で乾燥した。その後、電極密度が3.3g/ccになるまでプレス加工して正極1を作製した。
(Examples 1-9 and Comparative Examples 1-4)
[Preparation of Positive Electrode 1]
The positive electrode active material was prepared by mixing 99% by mass of lithium cobaltate (LiCoO 2 ), which is a lithium-containing compound, and 1% by mass of heat-treated manganese dioxide (MnO 2 ), which is a lithium-free compound. . Subsequently, 6.7% by mass of acetylene black as a conductive material and 4.4% by mass of polyvinylidene fluoride (PVdF) as a binder were added to and mixed with the positive electrode active material, and N-methyl- A positive electrode slurry was prepared by adding 2-pyrrolidone (NMP) mass%. Next, the positive electrode slurry was applied onto the aluminum foil so that the coating amount was 120 g / m 2 and dried at 100 ° C. Thereafter, press working was performed until the electrode density became 3.3 g / cc to produce the positive electrode 1.

[正極2〜8の作製]
また、MnO2がLiCoO2とMnO2の合量に対して、5質量%、10質量%、20質量%、30質量%、40質量%、45質量%および0質量%の割合で含有する正極活物質を用いた以外、前記正極1の作製方法と同様な方法により正極2〜8をそれぞれ作製した。
[Preparation of positive electrodes 2 to 8]
Further, positive electrode MnO 2 is relative to the total amount of LiCoO 2 and MnO 2, 5 wt%, 10 wt%, 20 wt%, in a proportion of 30 wt%, 40 wt%, 45 wt% and 0 wt% Except for using the active material, positive electrodes 2 to 8 were respectively produced by the same method as the production method of the positive electrode 1.

[正極9〜11の作製]
リチウム含有化合物としてマンガン酸リチウム(LiMnO2)、リン酸鉄リチウム(LiFePO4)、ニッケルコバルトマンガン酸リチウムを用い、各リチウム含有化合物とリチウム未含有化合物である熱処理した二酸化マンガン(MnO2)とをリチウム未含有化合物がリチウム含有化合物とリチウム未含有化合物の合量に対して20質量%になるように混合した正極活物質を用いた以外、前記正極1の作製方法と同様な方法により正極9〜11を作製した。
[Production of Positive Electrodes 9 to 11]
Using lithium manganate (LiMnO 2 ), lithium iron phosphate (LiFePO 4 ), and nickel cobalt lithium manganate as lithium-containing compounds, each lithium-containing compound and heat-treated manganese dioxide (MnO 2 ) that is a lithium-free compound The positive electrode 9 to the positive electrode 9 were prepared by the same method as the positive electrode 1 except that the positive electrode active material mixed so that the lithium-free compound was 20% by mass with respect to the total amount of the lithium-containing compound and the lithium-free compound was used. 11 was produced.

[評価セルの組立]
前記各正極を作用極として用いて3極式評価セルを組立てた。評価セルは、両端封止円筒形状を有する例えばポリプロピレンからなる外装体を備えている。外装体内には、各正極から切出した円形の作用極と当該作用極より寸法の大きい円形の対極とがそれら作用極と対極の間にセパレータを挟んで配置している。すなわち、作用極、セパレータおよび対極の積層方向は外装体の円筒部と平行している。参照極は、矩形板状をなし、外装体内に作用極、セパレータおよび対極の上方に近接して当該矩形板状表面が前記積層方向と平行するように配置されている。作用極および対極の各端子は、外装体の対向する封止部からそれぞれ外部に延出されている。参照極の端子は、外装体の円筒部から外部に延出されている。非水電解液は、前記外装体内にその内部全体を満たすように収容されている。前述する作用極、対極、参照極のそれぞれの端子には、電源(試験装置)と接続するためのリード線が取付けられている。後述する充放電サイクル試験では、作用極および対極のから導出されるリード線を介し所定電流を流し、また、作用極および参照極から導出されるリード線を介し電圧測定を行っている。
[Assembly of evaluation cell]
A tripolar evaluation cell was assembled using each positive electrode as a working electrode. The evaluation cell includes an exterior body made of, for example, polypropylene having a cylindrical shape sealed at both ends. In the exterior body, a circular working electrode cut out from each positive electrode and a circular counter electrode having a larger dimension than the working electrode are arranged with a separator interposed between the working electrode and the counter electrode. That is, the stacking direction of the working electrode, the separator, and the counter electrode is parallel to the cylindrical portion of the exterior body. The reference electrode has a rectangular plate shape, and is disposed in the exterior body so as to be close to the working electrode, the separator, and the counter electrode so that the rectangular plate surface is parallel to the stacking direction. Each terminal of a working electrode and a counter electrode is each extended outside from the sealing part which the exterior body opposes. The terminal of the reference electrode extends to the outside from the cylindrical portion of the exterior body. The non-aqueous electrolyte is accommodated in the exterior body so as to fill the entire interior. Lead wires for connecting to a power source (test apparatus) are attached to the terminals of the working electrode, the counter electrode, and the reference electrode. In a charge / discharge cycle test described later, a predetermined current is passed through a lead wire derived from the working electrode and the counter electrode, and a voltage measurement is performed via a lead wire derived from the working electrode and the reference electrode.

前記対極および参照極は、金属リチウムから作られている。セパレータは、微多孔質ポリエチレン膜からなる。非水電解液は、LiPF6をエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)の混合非水溶媒(体積比、EC:EMC:DMC=2:5:3)に1.3モル/L溶解させて調製した。 The counter electrode and the reference electrode are made of metallic lithium. The separator is made of a microporous polyethylene film. The non-aqueous electrolyte is LiPF 6 in a mixed non-aqueous solvent (volume ratio, EC: EMC: DMC = 2: 5: 3) of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). Prepared by dissolving 3 mol / L.

[充放電サイクル試験の充放電条件]
前記各評価セルに対し、以下の充放電条件1〜5で充放電サイクル試験を行った。下記表1に正極1〜11と充放電条件1〜5の組合せ結果から得られる実施例1〜9および比較例1〜4を示す。実施例1〜9および比較例1〜4に対して、100サイクル目の放電容量、放電容量維持率((1)式に示す)を測定した結果を下記表1に示す。
[Charging / discharging conditions of charge / discharge cycle test]
A charge / discharge cycle test was performed on the evaluation cells under the following charge / discharge conditions 1 to 5. Table 1 below shows Examples 1 to 9 and Comparative Examples 1 to 4 obtained from the combination results of the positive electrodes 1 to 11 and the charge / discharge conditions 1 to 5. The results of measuring the discharge capacity at 100th cycle and the discharge capacity retention rate (shown in equation (1)) for Examples 1 to 9 and Comparative Examples 1 to 4 are shown in Table 1 below.

放電容量維持率の計算式を(1)式に示す。   The formula for calculating the discharge capacity retention rate is shown in formula (1).

放電容量維持率(%)=
(100サイクル目の放電容量/1サイクル目の放電容量)×100…(1)
(充放電条件1)
初回 :2.0Vまで0.1C放電 (1回)
活性化 :4.3Vまで0.1C充電、3.2Vまで0.1C放電 (4回)
サイクル:4.3Vまで0.5C充電、3.2Vまで0.5C放電 (100回)
(充放電条件2)
初回 :2.0Vまで0.1C放電 (1回)
活性化 :4.3Vまで0.1C充電、2.0Vまで0.1C放電 (4回)
サイクル:4.3Vまで0.5C充電、2.0Vまで0.5C放電 (100回)
(充放電条件3)
初回 :3.2Vまで0.1C放電 (1回)
活性化 :4.3Vまで0.1C充電、3.2Vまで0.1C放電 (4回)
サイクル:4.3Vまで0.5C充電、3.2Vまで0.5C放電 (100回)
(充放電条件4)
初回 :4.3Vまで0.1C充電、2.75Vまで0.1C放電 (1回)
活性化 :4.3Vまで0.1C充電、2.75Vまで0.1C放電 (4回)
サイクル:4.3Vまで0.5C充電、2.75Vまで0.5C放電 (100回)

Figure 2017016905
Discharge capacity maintenance rate (%) =
(Discharge capacity at the 100th cycle / discharge capacity at the first cycle) × 100 (1)
(Charge / discharge condition 1)
First time: 0.1C discharge to 2.0V (once)
Activation: 0.1C charge to 4.3V, 0.1C discharge to 3.2V (4 times)
Cycle: 0.5C charge to 4.3V, 0.5C discharge to 3.2V (100 times)
(Charge / discharge condition 2)
First time: 0.1C discharge to 2.0V (once)
Activation: 0.1C charge to 4.3V, 0.1C discharge to 2.0V (4 times)
Cycle: 0.5C charge to 4.3V, 0.5C discharge to 2.0V (100 times)
(Charge / discharge condition 3)
First time: 0.1C discharge to 3.2V (once)
Activation: 0.1C charge to 4.3V, 0.1C discharge to 3.2V (4 times)
Cycle: 0.5C charge to 4.3V, 0.5C discharge to 3.2V (100 times)
(Charge / discharge condition 4)
First time: 0.1C charge to 4.3V, 0.1C discharge to 2.75V (once)
Activation: 0.1C charge to 4.3V, 0.1C discharge to 2.75V (4 times)
Cycle: 0.5C charge to 4.3V, 0.5C discharge to 2.75V (100 times)
Figure 2017016905

前記表1から明らかなように、リチウム含有化合物であるリチウムコバルト複合酸化物とリチウム未含有化合物である二酸化マンガンとからなり、二酸化マンガンがリチウムコバルト複合酸化物と二酸化マンガンの合量に対して1〜40質量%含有する正極活物質を含む正極1〜6をそれぞれ作用極として備えるセルを用い、各セルを充放電条件1(初回放電のカットオフ電圧を二酸化マンガンの反応電位(2.0V)とし、初回放電以降のカットオフ電圧を二酸化マンガンと反応しない電位(3.2V)とする)で充放電を行う実施例1〜6では、充放電の繰り返しによるリチウムのデンドライト状の成長が抑制ないし防止されるため、100サイクル目において高い放電容量と高い放電容量維持率の両方を示すことがわかる。   As apparent from Table 1, the lithium-cobalt composite oxide, which is a lithium-containing compound, and manganese dioxide, which is a lithium-free compound, consist of manganese dioxide that is 1 per the total amount of lithium-cobalt composite oxide and manganese dioxide. Using cells each having positive electrode 1 to 6 containing positive electrode active material containing -40% by mass as a working electrode, each cell was charged / discharged condition 1 (the cut-off voltage of initial discharge was the reaction potential of manganese dioxide (2.0 V)) In Examples 1 to 6 in which charging and discharging are performed at a potential (3.2 V) that does not react with manganese dioxide after the first discharge, lithium dendrite-like growth due to repeated charging and discharging is not suppressed. Therefore, it can be seen that both the high discharge capacity and the high discharge capacity retention ratio are exhibited at the 100th cycle.

特に、二酸化マンガンがコバルト酸リチウムと二酸化マンガンの合量に対して5〜40質量%含有する正極活物質を含む正極2から6をそれぞれ作用極として備えるセルを用いた実施例2〜6では、充放電の繰り返しによるリチウムのデンドライト状の成長の抑制効果が高くなるため、100サイクル目においてより高い放電容量とより高い放電容量維持率を示すことがわかる。   In particular, in Examples 2 to 6 using cells each having positive electrode 2 to 6 including a positive electrode active material containing 5 to 40% by mass of manganese dioxide as a working electrode with respect to the total amount of lithium cobaltate and manganese dioxide, It can be seen that since the effect of suppressing the dendritic growth of lithium due to repeated charge and discharge is increased, a higher discharge capacity and a higher discharge capacity retention rate are exhibited at the 100th cycle.

また、リチウムコバルト複合酸化物(リチウム含有化合物)の代わりにリチウム含有化合物であるマンガン酸リチウム、リン酸鉄リチウム、ニッケルコバルトマンガン酸リチウムをとリチウム未含有化合物である二酸化マンガンとからなり、二酸化マンガンが各リチウム含有化合物と二酸化マンガンの合量に対して20質量%含有する正極活物質を含む正極9〜11をそれぞれ作用極として備えるセルを用い、各セルを充放電条件1(初回放電のカットオフ電圧を二酸化マンガンの反応電位(2.0V)とし、初回放電以降の二酸化マンガンと反応しない電位とする)で充放電を行う実施例7〜9も、リチウム含有化合物がリチウムコバルト複合酸化物である正極活物質を含む正極4(二酸化マンガンの割合が20質量%)を作用極として備えるセルを用いる実施例4と同様、100サイクル目においてより高い放電容量とより高い放電容量維持率を示すことがわかる。   Further, instead of lithium cobalt composite oxide (lithium-containing compound), lithium manganese oxide, lithium iron phosphate, nickel cobalt lithium manganate and manganese non-lithium compound manganese dioxide, manganese dioxide Are each provided with positive electrodes 9 to 11 containing a positive electrode active material containing 20% by mass with respect to the total amount of each lithium-containing compound and manganese dioxide, and each cell is charged and discharged under charge / discharge condition 1 (cut of initial discharge). In Examples 7 to 9 in which charge and discharge are performed at an off voltage of manganese dioxide reaction potential (2.0 V) and a potential not to react with manganese dioxide after the first discharge), the lithium-containing compound is a lithium cobalt composite oxide. A positive electrode 4 containing 20% by mass of manganese dioxide containing a certain positive electrode active material is provided as a working electrode. As in Example 4 using that cell, it can be seen that a higher discharge capacity retention ratio and a higher discharge capacity at the 100th cycle.

これに対し、リチウム未含有化合物である二酸化マンガンを含まない正極活物質を含有する正極8を作用極として備えるセルを用い、当該セルを充放電条件4(初回が充電)で充放電を行う比較例1は100サイクル目での放電容量および放電容量維持率がいずれも低いことがわかる。これは、充放電での初回が充電であるため、充放電の繰り返しによりリチウムのデンドライト状の成長により100サイクル目の放電容量が低くなったものと推定される。   On the other hand, using a cell provided with a positive electrode 8 containing a positive electrode active material not containing manganese dioxide, which is a lithium-free compound, as a working electrode, the cell is charged / discharged under charge / discharge condition 4 (initial charge). In Example 1, it can be seen that both the discharge capacity and the discharge capacity retention ratio at the 100th cycle are low. This is presumed that the discharge capacity at the 100th cycle was lowered due to the dendrite-like growth of lithium due to the repeated charge / discharge because the first charge / discharge was charge.

一方、リチウム未含有化合物である二酸化マンガンが本発明の範囲の上限(40質量%)を超える正極活物質を含有する正極7を作用極として備えるセルを用い、当該セルを実施例1〜9と同様な充放電条件1で充放電を行う比較例4は100サイクル目での放電容量維持率が高いものの、放電容量が低いことがわかる。これは、充放電の繰り返しによるリチウムのデンドライト状の成長を抑制できるものの、初回の放電以降の放電、その後の充放電で充放電に関与しない二酸化マンガンが正極活物質に占める割合が多く、充放電に関与するコバルト酸リチウムが相対的に減少するため、100サイクル目の放電容量が低くなったものと推定される。   On the other hand, a cell provided with a positive electrode 7 containing a positive electrode active material in which manganese dioxide, which is a lithium-free compound, exceeds the upper limit (40% by mass) of the range of the present invention is used as the working electrode. Although the comparative example 4 which charges / discharges on the same charging / discharging conditions 1 has a high discharge capacity maintenance factor in 100th cycle, it turns out that discharge capacity is low. Although it can suppress dendrite-like growth of lithium due to repeated charge and discharge, the discharge after the first discharge, manganese dioxide not involved in charge and discharge in the subsequent charge and discharge is a large proportion of the positive electrode active material, charge and discharge It is estimated that the discharge capacity at the 100th cycle was lowered because the lithium cobaltate involved in the decrease relatively.

また、実施例4と同様、リチウム未含有化合物である二酸化マンガンが正極活物質に占める割合が20質量%である正極4を作用極として備えるセルを用い、当該セルを充放電条件2(初回放電のカットオフ電圧を二酸化マンガンの反応電位(2.0V)とし、初回放電以降のカットオフ電圧も二酸化マンガンの反応電位(2.0V)とする)で充放電を行う比較例2と、実施例4と同様、リチウム未含有化合物である二酸化マンガンが正極活物質に占める割合が20質量%である正極4を作用極として備えるセルを用い、当該セルを充放電条件3(初回放電のカットオフ電圧を二酸化マンガンと反応しない電位(3.2V)とし、初回放電以降のカットオフ電圧も二酸化マンガンと反応しない電位(3.2V)とする)で充放電を行う比較例3と、実施例4と、の結果を比較する。   In addition, as in Example 4, a cell including a positive electrode 4 in which the proportion of manganese dioxide, which is a lithium-free compound, in the positive electrode active material is 20% by mass is used as a working electrode. Comparative Example 2 in which charging / discharging is performed with a manganese dioxide reaction potential (2.0 V), and a cutoff voltage after the first discharge is also a manganese dioxide reaction potential (2.0 V)) 4, a cell having a positive electrode 4 in which the proportion of manganese dioxide, which is a lithium-free compound, in the positive electrode active material is 20% by mass is used as a working electrode. Comparison of charging and discharging at a potential that does not react with manganese dioxide (3.2 V), and the cutoff voltage after the initial discharge is also a potential that does not react with manganese dioxide (3.2 V) 3, as in Example 4, comparing the results.

実施例4は、初回放電でのカットオフ電圧を二酸化マンガンの反応電位(2.0V)にすることによって、前述したように初回放電時での負極の金属リチウム表面からのリチウムイオンの放出量を多くでき、金属リチウム表面を良好に改質して充放電の繰り返しによるリチウムのデンドライト状の成長を効果的に抑制できる。初回放電以降の放電でのカットオフ電圧を二酸化マンガンと反応しない電位(3.2V)にすることによって、この後の充放電サイクルの繰り返しで、二酸化マンガンが充放電反応に関与しないため、二酸化マンガンがリチウムの吸蔵・放出においてコバルト酸リチウムに比べて膨張・収縮度合が大きくても、当該二酸化マンガンの結晶構造の崩壊を防止できる。その結果、コバルト酸リチウムと共に二酸化マンガンが正極活物質として含む、正極集電体上の正極層のクラック発生等を防止して正極層を安定化できる。このような実施例4の作用から、100サイクル目での放電容量を123mAh/g,容量維持率を96%と高容量化と充放電サイクル特性の向上が図られる。   In Example 4, the amount of lithium ions released from the metal lithium surface of the negative electrode during the initial discharge was reduced as described above by setting the cutoff voltage at the initial discharge to the reaction potential (2.0 V) of manganese dioxide. The surface of the metallic lithium can be well modified, and dendritic growth of lithium due to repeated charge and discharge can be effectively suppressed. By setting the cut-off voltage in the discharge after the first discharge to a potential (3.2 V) that does not react with manganese dioxide, manganese dioxide is not involved in the charge / discharge reaction in the subsequent charge / discharge cycle, so manganese dioxide However, even if the degree of expansion / contraction is larger in lithium occlusion / release than lithium cobaltate, the crystal structure of manganese dioxide can be prevented from collapsing. As a result, it is possible to stabilize the positive electrode layer by preventing cracks and the like of the positive electrode layer on the positive electrode current collector containing manganese dioxide as the positive electrode active material together with lithium cobalt oxide. As a result of the operation of the fourth embodiment, the discharge capacity at the 100th cycle is 123 mAh / g, the capacity retention rate is 96%, the capacity is increased, and the charge / discharge cycle characteristics are improved.

これに対し、比較例2は初回放電でのカットオフ電圧と初回放電以降の放電でのカットオフ電圧が同じで、それらのカットオフ電圧を二酸化マンガンの反応電位(2.0V)にしている。このため、前述したように初回放電時での負極の金属リチウム表面からのリチウムイオンの放出量を多くでき、金属リチウム表面を良好に改質して充放電の繰り返しによるリチウムのデンドライト状の成長を効果的に抑制できる。しかしながら、初回放電以降の充放電ではリチウム含有化合物であるコバルト酸リチウムのみならず、リチウム未含有化合物である二酸化マンガンも充放電反応に関与するため、リチウムの吸蔵・放出においてコバルト酸リチウムに比べて膨張・収縮度合が大きい二酸化マンガンの結晶構造を崩壊する。その結果、コバルト酸リチウムと共に二酸化マンガンが正極活物質として含む、正極集電体上の正極層にクラックが発生し易くなる。このような比較例2の充放電時の問題から、100サイクル目での放電容量が55.2mAh/gと低く,容量維持率も45%と低くなる。   On the other hand, in Comparative Example 2, the cut-off voltage in the first discharge and the cut-off voltage in the discharge after the first discharge are the same, and the cut-off voltage is set to the reaction potential (2.0 V) of manganese dioxide. For this reason, as described above, the amount of lithium ions released from the metal lithium surface of the negative electrode during the first discharge can be increased, and the surface of the lithium metal can be well modified to allow lithium dendritic growth by repeated charge and discharge. It can be effectively suppressed. However, in charge / discharge after the first discharge, not only lithium cobaltate, which is a lithium-containing compound, but also manganese dioxide, which is a lithium-free compound, is involved in the charge / discharge reaction. Collapses the crystal structure of manganese dioxide, which has a large degree of expansion and contraction. As a result, cracks are likely to occur in the positive electrode layer on the positive electrode current collector containing manganese dioxide as the positive electrode active material together with lithium cobalt oxide. Due to such problems during charging and discharging in Comparative Example 2, the discharge capacity at the 100th cycle is as low as 55.2 mAh / g, and the capacity retention rate is as low as 45%.

比較例3は、初回放電でのカットオフ電圧と初回放電以降の放電でのカットオフ電圧が同じで、それらのカットオフ電圧を二酸化マンガンと反応しない電位(3.2V)にしている。このため、初回放電以降の放電でのカットオフ電圧を二酸化マンガンと反応しない電位(3.2V)にするため、この後の充放電サイクルの繰り返しで、二酸化マンガンが充放電反応に関与せず、二酸化マンガンがリチウムの吸蔵・放出においてコバルト酸リチウムに比べて膨張・収縮度合が大きくても、当該二酸化マンガンの結晶構造の崩壊を防止できる。その結果、コバルト酸リチウムと共に二酸化マンガンが正極活物質として含む、正極集電体上の正極層のクラック発生等を防止して正極層を安定化できる。しかしながら、初回放電時での負極の金属リチウム表面からのリチウムイオンの放出量が不足し、金属リチウム表面の改質が不十分になるため、初回放電以降の放電、その後の充放電の繰り返しによってリチウムのデンドライト状の成長が起こる。このような比較例3の充放電時の問題から、100サイクル目での容量維持率が50%と低く、かつ放電容量が65.5mAh/gと比較例2よりさらに低くなる。   In Comparative Example 3, the cut-off voltage in the first discharge is the same as the cut-off voltage in the discharge after the first discharge, and the cut-off voltage is set to a potential (3.2 V) that does not react with manganese dioxide. For this reason, in order to set the cutoff voltage in the discharge after the first discharge to a potential (3.2 V) that does not react with manganese dioxide, manganese dioxide does not participate in the charge / discharge reaction by repeating the subsequent charge / discharge cycle, Even if manganese dioxide has a larger degree of expansion / contraction than lithium cobaltate in occlusion / release of lithium, the crystal structure of manganese dioxide can be prevented from collapsing. As a result, it is possible to stabilize the positive electrode layer by preventing cracks and the like of the positive electrode layer on the positive electrode current collector containing manganese dioxide as the positive electrode active material together with lithium cobalt oxide. However, the amount of lithium ions released from the metal lithium surface of the negative electrode during the first discharge is insufficient, and the modification of the metal lithium surface becomes insufficient, so that the lithium after repeated discharge after the first discharge and subsequent charge / discharge Dendritic growth occurs. Due to such problems during charging and discharging in Comparative Example 3, the capacity retention rate at the 100th cycle is as low as 50%, and the discharge capacity is 65.5 mAh / g, which is even lower than in Comparative Example 2.

1…リチウム二次電池、2…外装体、3…電極群、4…正極、5…負極、41…正極層、42…正極集電体、43…正極リード、51…負極層、52…負極集電体、53…負極リード、6…セパレータ、7…正極端子、8…負極端子   DESCRIPTION OF SYMBOLS 1 ... Lithium secondary battery, 2 ... Exterior body, 3 ... Electrode group, 4 ... Positive electrode, 5 ... Negative electrode, 41 ... Positive electrode layer, 42 ... Positive electrode collector, 43 ... Positive electrode lead, 51 ... Negative electrode layer, 52 ... Negative electrode Current collector 53 ... Negative electrode lead 6 ... Separator 7 ... Positive electrode terminal 8 ... Negative electrode terminal

Claims (4)

正極、負極、セパレータおよび非水電解質を備えたリチウム二次電池の充放電方法であって、
前記正極はそれぞれリチウムを吸蔵および放出することが可能なリチウム含有化合物およびリチウム未含有化合物を活物質として含み、前記リチウム未含有化合物が前記リチウム含有化合物および前記リチウム未含有化合物の合量に対して1〜40質量%の割合で含有し、
前記負極は金属リチウムを活物質として含み、
前記二次電池の組立後の充放電を放電から初め、初回放電時の放電カットオフ電圧を前記リチウム未含有化合物の反応電位とし、初回放電以降の放電時の放電カットオフ電圧を前記リチウム未含有化合物と反応しない電位とすることを特徴とするリチウム二次電池の充放電方法。
A method for charging and discharging a lithium secondary battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
Each of the positive electrodes includes a lithium-containing compound and a lithium-free compound capable of inserting and extracting lithium as active materials, and the lithium-free compound is based on a total amount of the lithium-containing compound and the lithium-free compound. 1 to 40% by mass,
The negative electrode contains metallic lithium as an active material,
Charging / discharging after assembling of the secondary battery is started from discharge, discharge cutoff voltage at the first discharge is the reaction potential of the lithium-free compound, discharge cutoff voltage at the discharge after the first discharge is not lithium A method for charging and discharging a lithium secondary battery, wherein the potential does not react with a compound.
前記初回放電以降の放電時の放電カットオフ電圧は、前記リチウム未含有化合物と反応しない電位で、かつ前記リチウム含有化合物の反応電位であることを特徴とする請求項1記載のリチウム二次電池の充放電方法。   2. The lithium secondary battery according to claim 1, wherein a discharge cutoff voltage at the time of discharge after the first discharge is a potential that does not react with the lithium-free compound and a reaction potential of the lithium-containing compound. Charge / discharge method. 前記リチウム含有化合物は、リチウム含有金属酸化物またはリチウム含有金属リン化合物であり、前記リチウム未含有化合物は、二酸化マンガンまたは五酸化バナジウムであることを特徴とする請求項1または2記載のリチウム二次電池の充放電方法。   3. The lithium secondary according to claim 1, wherein the lithium-containing compound is a lithium-containing metal oxide or a lithium-containing metal phosphorus compound, and the lithium-free compound is manganese dioxide or vanadium pentoxide. Battery charge / discharge method. 前記初回放電以降の放電時の放電カットオフ電圧を前記リチウム未含有化合物の反応電位よりも1乃至2V高い電位で行うことを特徴とする請求項1〜3いずれか1項記載のリチウム二次電池の充放電方法。   The lithium secondary battery according to any one of claims 1 to 3, wherein a discharge cutoff voltage at the time of discharge after the first discharge is performed at a potential higher by 1 to 2 V than a reaction potential of the lithium-free compound. Charge and discharge method.
JP2015132931A 2015-07-01 2015-07-01 Charge / discharge method of lithium secondary battery Active JP6646370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132931A JP6646370B2 (en) 2015-07-01 2015-07-01 Charge / discharge method of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132931A JP6646370B2 (en) 2015-07-01 2015-07-01 Charge / discharge method of lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2017016905A true JP2017016905A (en) 2017-01-19
JP6646370B2 JP6646370B2 (en) 2020-02-14

Family

ID=57829352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132931A Active JP6646370B2 (en) 2015-07-01 2015-07-01 Charge / discharge method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6646370B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190679A (en) * 2017-05-11 2018-11-29 古河電池株式会社 Method for charging/discharging lithium secondary battery
JP2020017438A (en) * 2018-07-26 2020-01-30 株式会社Abri Method for charging/discharging lithium secondary battery
CN111446514A (en) * 2020-03-17 2020-07-24 上海理工大学 Method for reasonably adjusting discharge cut-off voltage of lithium battery along with service life attenuation of battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206267A (en) * 1990-11-29 1992-07-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH05151995A (en) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11149917A (en) * 1997-11-14 1999-06-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic battery, its manufacture, and charging and discharging method
JP2003115327A (en) * 2001-10-05 2003-04-18 Mitsubishi Heavy Ind Ltd Nonaqueous electrolyte secondary battery
JP2012113841A (en) * 2010-11-19 2012-06-14 Panasonic Corp Nonaqueous electrolyte secondary battery and power supply device using the same
JP2013197051A (en) * 2012-03-22 2013-09-30 Fuji Heavy Ind Ltd Lithium ion power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206267A (en) * 1990-11-29 1992-07-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH05151995A (en) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11149917A (en) * 1997-11-14 1999-06-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic battery, its manufacture, and charging and discharging method
JP2003115327A (en) * 2001-10-05 2003-04-18 Mitsubishi Heavy Ind Ltd Nonaqueous electrolyte secondary battery
JP2012113841A (en) * 2010-11-19 2012-06-14 Panasonic Corp Nonaqueous electrolyte secondary battery and power supply device using the same
JP2013197051A (en) * 2012-03-22 2013-09-30 Fuji Heavy Ind Ltd Lithium ion power storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190679A (en) * 2017-05-11 2018-11-29 古河電池株式会社 Method for charging/discharging lithium secondary battery
JP2020017438A (en) * 2018-07-26 2020-01-30 株式会社Abri Method for charging/discharging lithium secondary battery
JP7031097B2 (en) 2018-07-26 2022-03-08 株式会社Abri Charging / discharging method of lithium secondary battery
CN111446514A (en) * 2020-03-17 2020-07-24 上海理工大学 Method for reasonably adjusting discharge cut-off voltage of lithium battery along with service life attenuation of battery

Also Published As

Publication number Publication date
JP6646370B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP4072126B2 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
KR101749508B1 (en) Electrode active material for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery comprising the same
JP2011081931A (en) Lithium ion secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP2001176482A (en) Nonaqueous electrolyte secondary battery
JP6163613B2 (en) Lithium secondary battery
JP2011159506A (en) Nonaqueous secondary battery
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
WO2015104935A1 (en) Process for producing lithium ion secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP2019091571A (en) Lithium secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP4582684B2 (en) Non-aqueous secondary battery
CN110265628B (en) Positive electrode and lithium ion secondary battery
JP6818300B2 (en) Lithium secondary battery charging / discharging method
JP7017108B2 (en) Active materials, electrodes and lithium-ion secondary batteries
KR101547385B1 (en) Process for preparing secondary battery without impregnation process
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
JP2020167000A (en) Electrode and nonaqueous electrolyte secondary battery
JP7462165B2 (en) Non-aqueous electrolyte secondary battery
JP7031097B2 (en) Charging / discharging method of lithium secondary battery
JP7243380B2 (en) Electrodes and non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200110

R150 Certificate of patent or registration of utility model

Ref document number: 6646370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350