JP2018063367A - 電子写真感光体、プロセスカートリッジ、及び画像形成装置 - Google Patents

電子写真感光体、プロセスカートリッジ、及び画像形成装置 Download PDF

Info

Publication number
JP2018063367A
JP2018063367A JP2016201899A JP2016201899A JP2018063367A JP 2018063367 A JP2018063367 A JP 2018063367A JP 2016201899 A JP2016201899 A JP 2016201899A JP 2016201899 A JP2016201899 A JP 2016201899A JP 2018063367 A JP2018063367 A JP 2018063367A
Authority
JP
Japan
Prior art keywords
group
layer
charge transport
carbon atoms
photosensitive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016201899A
Other languages
English (en)
Other versions
JP6891443B2 (ja
Inventor
河合 剛志
Tsuyoshi Kawai
剛志 河合
宮本 昌彦
Masahiko Miyamoto
昌彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2016201899A priority Critical patent/JP6891443B2/ja
Publication of JP2018063367A publication Critical patent/JP2018063367A/ja
Application granted granted Critical
Publication of JP6891443B2 publication Critical patent/JP6891443B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

【課題】前画像の履歴が残ることで生じる残像現象が抑制された電子写真感光体の提供。【解決手段】導電性基体と、前記導電性基体上に設けられ、10℃/15%RHでの体積抵抗率が2.0×108Ω・cm以上2.0×1012Ω・cm以下である下引層と、前記下引層上に設けられた電荷発生層と、前記電荷発生層上に最表面層として設けられ、膜厚が35μm以上60μm以下である電荷輸送層と、を有する電子写真感光体。【選択図】なし

Description

本発明は、電子写真感光体、プロセスカートリッジ、及び画像形成装置に関する。
従来、電子写真方式の画像形成装置としては、電子写真感光体を用いて帯電、静電潜像形成、現像、転写、クリーニング等の工程を順次行う装置が広く知られている。
例えば、特許文献1には、導電性支持体上に、導電性金属酸化物とアクセプター性化合物とを含有する下引き層、電荷発生層、及び電荷輸送層が順次積層されてなり、前記下引き層の特定の条件における体積抵抗が1010Ω・cm以上1013Ω・cm以下である像保持体を用いた画像形成装置が開示されている。
また、特許文献2には、導電性支持体上に、アミノ基を有するカップリング剤により表面処理された金属酸化物粒子およびアントラキノン構造を有する電子受容性化合物を特定の含有量で含有し、体積抵抗率が3.5×10Ωm以上1.0×10Ωm以下の範囲である下引層と、感光層と、を有する電子写真感光体を用いた画像形成装置が開示されている。
特開2006−184512号公報 特開2013−068825号公報
最表面層として電荷輸送層を有する電子写真感光体では、使用に伴って最表面層(すなわち電荷輸送層)が摩耗することで寿命を迎えることがある。この電荷輸送層の摩耗による寿命を長くする方法として、例えば、最表面層である電荷輸送層そのものを厚くする方法が挙げられる。
しかしながら、電荷輸送層を厚くすると、発生した電荷の移動に時間かかり、層内に前画像の電荷が残留した状態で次画像の形成が行われやすいため、前画像の履歴が残ることで生じる残像現象が起こりやすくなる。
本発明の課題は、最表面層が膜厚35μm以上60μm以下の電荷輸送層であり、かつ、下引層における10℃/15%RH下での体積抵抗率が2.0×10Ω・cm未満である場合に比べ、前画像の履歴が残ることで生じる残像現象が抑制された電子写真感光体を提供することである。
上記課題は、以下の手段により解決される。
即ち、請求項1に係る発明は、
導電性基体と、
前記導電性基体上に設けられ、10℃/15%RHでの体積抵抗率が2.0×10Ω・cm以上2.0×1012Ω・cm以下である下引層と、
前記下引層上に設けられた電荷発生層と、
前記電荷発生層上に最表面層として設けられ、膜厚が35μm以上60μm以下である電荷輸送層と、
を有する電子写真感光体である。
請求項2に係る発明は、
前記電荷輸送層における単位面積あたりの静電容量は、4.0×10−9F/cm以上1.0×10−7F/cm以下である請求項1に記載の電子写真感光体である。
請求項3に係る発明は、
前記電荷輸送層は、下記一般式(CT1)で示される電荷輸送材料と、下記一般式(CT2)で示される電荷輸送材料と、フッ素含有樹脂粒子と、分子量300以上のヒンダードフェノール系酸化防止剤と、下記一般式(PCA)で示される構造単位と下記一般式(PCB)で示される構造単位とを含むポリカーボネート樹脂と、を含有する請求項1又は請求項2に記載の電子写真感光体である。
(一般式(CT1)中、RC11、RC12、RC13、RC14、RC15、及びRC16は、各々独立に、水素原子、ハロゲン原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルコキシ基、又は、炭素数6以上30以下のアリール基を表し、隣接する2つの置換基同士が結合して炭化水素環構造を形成してもよい。cm及びcnは、各々独立に、0、1又は2を表す。)
(一般式(CT2)中、RC21、RC22、及びRC23は、各々独立に、水素原子、ハロゲン原子、炭素数1以上10以下のアルキル基、炭素数1以上10以下のアルコキシ基、又は、炭素数6以上10以下のアリール基を表す。)
(一般式(PCA)及び(PCB)中、RP1、RP2、RP3、及びRP4は、各々独立に、水素原子、ハロゲン原子、炭素数1以上6以下のアルキル基、炭素数5以上7以下のシクロアルキル基、又は、炭素数6以上12以下のアリール基を表す。XP1は、フェニレン基、ビフェニレン基、ナフチレン基、アルキレン基、又は、シクロアルキレン基を表す。)
請求項4に係る発明は、
請求項1〜請求項3のいずれか1項に記載の電子写真感光体を備え、
画像形成装置に着脱するプロセスカートリッジである。
請求項5に係る発明は、
請求項1〜請求項3のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
前記トナー像を記録媒体の表面に転写する転写手段と、
を備える画像形成装置である。
請求項6に係る発明は、
前記電子写真感光体の表面における残留電荷を除電する除電手段を有さない請求項5に記載の画像形成装置である。
請求項1に係る発明によれば、最表面層が膜厚35μm以上60μm以下の電荷輸送層であり、かつ、下引層における10℃/15%RHでの体積抵抗率が2.0×10Ω・cm未満である場合に比べ、前画像の履歴が残ることで生じる残像現象が抑制された電子写真感光体が提供される。
請求項2に係る発明によれば、最表面層が膜厚35μm以上60μm以下、単位面積あたりの静電容量4.0×10−9F/cm以上1×10−7F/cm以下の電荷輸送層であり、かつ、下引層における10℃/15%RHでの体積抵抗率が2.0×10Ω・cm未満である場合に比べ、前画像の履歴が残ることで生じる残像現象が抑制された電子写真感光体が提供される。
請求項3に係る発明によれば、最表面層が膜厚35μm以上60μm以下の電荷輸送層であり、かつ、下引層における10℃/15%RHでの体積抵抗率が2.0×10Ω・cm未満である場合に比べ、前画像の履歴が残ることで生じる残像現象が抑制された電子写真感光体が提供される。
請求項4又は5に係る発明によれば、最表面層が膜厚35μm以上60μm以下の電荷輸送層であり、かつ、下引層における10℃/15%RHでの体積抵抗率が2.0×10Ω・cm未満である電子写真感光体を適用した場合に比べ、前画像の履歴が残ることで生じる残像現象が抑制されたプロセスカートリッジ又は画像形成装置が提供される。
請求項6に係る発明によれば、除電手段を有さない画像形成装置に、最表面層が膜厚35μm以上60μm以下の電荷輸送層であり、かつ、下引層における10℃/15%RHでの体積抵抗率が2.0×10Ω・cm未満である電子写真感光体を適用した場合に比べ、前画像の履歴が残ることで生じる残像現象が抑制された画像形成装置が提供される。
本実施形態に係る電子写真感光体の層構成の一例を示す概略部分断面図である。 本実施形態に係る画像形成装置の一例を示す概略構成図である。 本実施形態に係る画像形成装置の他の例を示す概略構成図である。
以下、本発明の一例である実施形態について詳細に説明する。
[電子写真感光体]
本実施形態に係る電子写真感光体(以下「感光体」とも称する)は、導電性基体と、導電性基体上に設けられた下引層と、下引層上に設けられた電荷発生層と、電荷発生層上に設けられた最表面層である電荷輸送層と、を有し、電荷輸送層の膜厚が35μm以上60μm以下であり、かつ、下引層における10℃/15%RHでの体積抵抗率(以下「体積抵抗率ρ」ともいう)が2.0×10Ω・cm以上2.0×1012Ω・cm以下である。
最表面層として電荷輸送層を有する感光体では、使用に伴って電荷輸送層が摩耗していくことで、寿命を迎えることがある。
この電荷輸送層の摩耗による寿命を長くする方法としては、例えば、電荷輸送層そのものを厚くする方法が挙げられる。具体的には、電荷輸送層の膜厚を35μm以上60μm以下とすることで、膜厚が35μm未満である場合に比べ、電荷輸送層の摩耗による寿命は長くなる。
しかしながら、電荷輸送層を厚くすると、発生した電荷の移動に時間かかり、層内に前画像の電荷が残留した状態で次画像の形成が行われやすくなる。特に、高速(例えば感光体の回転速度が250mm/s以上)かつ除電手段を有さない画像形成装置では、電荷の移動が感光体の回転速度に追いつかず、層内に前画像の電荷が残留した状態で次画像の形成が行われることになりやすい。そのため、前画像の履歴が残ることで生じる残像現象(以下「ゴースト」ともいう)が発生しやすくなる。
これに対して、本実施形態では、下引層の体積抵抗率ρが2.0×10Ω・cm以上2.0×1012Ω・cm以下である。そのため、電荷輸送層の膜厚が35μm以上60μm以下であっても、ゴーストが抑制される。
また、本実施形態では、下引層の体積抵抗率ρが上記範囲であるため、上位範囲よりも高い場合に比べて、感光体の電位上昇による短寿命化も抑制される。具体的には、下引層の体積抵抗率ρが上記範囲よりも高い場合は、下引層内や下引層と上層との界面等に電荷が蓄積しやすく、使用に伴って残留電位が高くなり、濃度異常などが発生することにより、感光体が短寿命化することがある。一方、本実施形態では、下引層の体積抵抗率ρが上記範囲であるため、感光体の電位上昇に伴う短寿命化も抑制される。
以上のように、本実施形態の感光体では、感光体の長寿命化とゴーストの抑制との両立もなされる。
以下、図面を参照しつつ、本実施形態に係る電子写真感光体を詳細に説明する。
図1は、電子写真感光体7の層構成の一例として示した電子写真感光体7Aの模式断面図である。図1に示す電子写真感光体7Aは、導電性基体1上に、下引層3、電荷発生層4、及び電荷輸送層5がこの順序で積層された構造を有する。そして、電荷発生層4及び電荷輸送層5が機能分離型感光層6を構成し、電荷輸送層5が最表面層である。
なお、電子写真感光体7Aは、必要に応じてその他の層を設けてもよい。必要に応じて設けられる層としては、例えば、下引層3と電荷発生層4との間に設けられる中間層等が挙げられる。
以下、本実施形態に係る電子写真感光体の各層について詳細に説明する。なお、符号は省略して説明する。
(導電性基体)
導電性基体としては、例えば、金属(アルミニウム、銅、亜鉛、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等)又は合金(ステンレス鋼等)を含む金属板、金属ドラム、及び金属ベルト等が挙げられる。また、導電性基体としては、例えば、導電性化合物(例えば導電性ポリマー、酸化インジウム等)、金属(例えばアルミニウム、パラジウム、金等)又は合金を塗布、蒸着又はラミネートした紙、樹脂フィルム、ベルト等も挙げられる。ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
導電性基体の表面は、電子写真感光体がレーザプリンタに使用される場合、レーザ光を照射する際に生じる干渉縞を抑制する目的で、中心線平均粗さRaで0.04μm以上0.5μm以下に粗面化されていることが好ましい。なお、非干渉光を光源に用いる場合、干渉縞防止の粗面化は、特に必要ないが、導電性基体の表面の凹凸による欠陥の発生を抑制するため、より長寿命化に適する。
粗面化の方法としては、例えば、研磨剤を水に懸濁させて支持体に吹き付けることによって行う湿式ホーニング、回転する砥石に導電性基体を圧接し、連続的に研削加工を行うセンタレス研削、陽極酸化処理等が挙げられる。
粗面化の方法としては、導電性基体の表面を粗面化することなく、導電性又は半導電性粉体を樹脂中に分散させて、導電性基体の表面上に層を形成し、その層中に分散させる粒子により粗面化する方法も挙げられる。
陽極酸化による粗面化処理は、金属製(例えばアルミニウム製)の導電性基体を陽極とし電解質溶液中で陽極酸化することにより導電性基体の表面に酸化膜を形成するものである。電解質溶液としては、例えば、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、陽極酸化により形成された多孔質陽極酸化膜は、そのままの状態では化学的に活性であり、汚染され易く、環境による抵抗変動も大きい。そこで、多孔質陽極酸化膜に対して、酸化膜の微細孔を加圧水蒸気又は沸騰水中(ニッケル等の金属塩を加えてもよい)で水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行うことが好ましい。
陽極酸化膜の膜厚は、例えば、0.3μm以上15μm以下が好ましい。この膜厚が上記範囲内にあると、注入に対するバリア性が発揮される傾向があり、また繰り返し使用による残留電位の上昇が抑えられる傾向にある。
導電性基体には、酸性処理液による処理又はベーマイト処理を施してもよい。
酸性処理液による処理は、例えば、以下のようにして実施される。先ず、リン酸、クロム酸及びフッ酸を含む酸性処理液を調製する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、例えば、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲がよい。処理温度は例えば42℃以上48℃以下が好ましい。被膜の膜厚は、0.3μm以上15μm以下が好ましい。
ベーマイト処理は、例えば90℃以上100℃以下の純水中に5分から60分間浸漬すること、又は90℃以上120℃以下の加熱水蒸気に5分から60分間接触させて行う。被膜の膜厚は、0.1μm以上5μm以下が好ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の被膜溶解性の低い電解質溶液を用いて陽極酸化処理してもよい。
(下引層)
下引層は、導電性基体上に設けられ、体積抵抗率(体積抵抗率ρ)が2.0×10Ω・cm以上2.0×1012Ω・cm以下である層である。
前述のように、下引層における体積抵抗率ρが上記範囲であることにより、上記範囲よりも小さい場合に比べてゴーストが抑制される。また、下引層における体積抵抗率ρが上記範囲であることにより、上記範囲よりも大きい場合に比べて残留電位の上昇による短寿命化が抑制される。
なお、下引層における体積抵抗率ρは、ゴーストの抑制と残留電位の上昇による短寿命化の抑制とを両立する観点から、2.0×10Ω・cm以上2.0×1012Ω・cm以下が好ましく、5.0×109Ω・cm以上2.0×1012Ω・cm以下がより好ましい。
ここで、下引層における体積抵抗率(体積抵抗率ρ)を求める方法について説明する。
例えば、電子写真感光体の各層を構成する導電性有機膜の等価回路としては、一般的に、抵抗(抵抗値:R)とコンデンサー(静電容量:C)との並列回路が適用される。抵抗値R、及び静電容量Cが不明な並列回路において、抵抗値Rと静電容量Cとを解析・算出する方法として、コール・コールプロット(Cole・Cole Plot)解析が挙げられる。
コール・コールプロット解析とは、抵抗値R及び静電容量Cが不明の並列回路(例えば、導電性有機膜)の両端に電極を取り付け、両電極間に、周波数を変化させながら交流電圧を印加し、印加させた電圧と得られた電流の位相関係を解析する方法である。この方法により、上記並列回路の抵抗値R及び静電容量Cを求め、抵抗値Rの値と取り付けた電極の面積の値とサンプルの厚さとから、体積抵抗率(体積抵抗率ρ)を求める。
具体的には、例えば、まず導電性基体上に設けられた下引層の外周面に、対向電極としてφ6mmの金電極を真空蒸着法にて形成する。そして、低温低湿(10℃/15%RH)において、ソーラトロン社製インピーダンスアナライザー126096W型を用い、導電性基体を陰極、金電極を陽極として、電圧を印加し、測定を行う。
測定条件としては、例えば、DCバイアス(直流印加電圧):0V、AC(交流印加電圧):±1V、周波数:1Hz以上100Hz以下の範囲が挙げられる。
得られた測定結果から、コール・コールプロット解析により上記抵抗値Rが求められ、「サンプルの厚さ(cm)/対向電極の電極面積S(cm)」で除することにより、下引層における体積抵抗率(体積抵抗率ρ)が算出される。
なお、測定対象となる感光体から、上記体積抵抗率ρを測定する方法としては、例えば以下の方法が挙げられる。
まず、測定対象となる感光体を準備する。次に、例えば、下引層を被覆している電荷発生層、及び電荷輸送層等の感光層をアセトン、テトラヒドロフラン、メタノール、エタノール等の溶剤を用いて除去し、下引層を露出させる。そして、露出された下引層上に真空蒸着法やスパッタ法等の手段により金電極を装着して、測定用試料とする。そして、この測定用試料について測定を行い、体積抵抗率ρを求める。
下引層における体積抵抗率ρを制御する方法としては、特に制限されるものではないが、例えば、下引層が無機粒子と結着樹脂とを含有する場合は、無機粒子含有量の調整や、下引層内における無機粒子の分散度を調整することで、下引層における体積抵抗率ρを制御してもよい。
下引層の好ましい膜厚は、下引層に含まれる材料や組成等によっても異なるが、例えば、15μm以上35μm以下の範囲が挙げられ、20μm以上30μm以下が好ましく、25μm以上30μm以下がより好ましい。
下引層が無機粒子と結着樹脂とを含有する場合において下引層内における無機粒子の分散度を調整することにより体積抵抗率ρを制御する場合、無機粒子の分散度が高いほど体積抵抗率ρは高くなり、無機粒子の分散度が低いほど体積抵抗率ρは低くなる。
無機粒子の分散度を高める方法は特に限定されないが、例えば、表面処理した無機粒子を用いる方法、下引層形成用塗布液調製時の無機粒子分散時間を長くする方法、下引層形成用塗布液の塗膜の乾燥温度を高くする方法等が挙げられる。
なお、表面処理した無機粒子、無機粒子分散時間、及び乾燥温度の詳細は後述する。
以下、下引層の一例として、無機粒子と結着樹脂とを含む層について、材料、製造方法、及び特性等を説明する。
無機粒子としては、例えば、粉体抵抗(体積抵抗率)10Ω・cm以上1011Ω・cm以下の無機粒子が挙げられる。
これらの中でも、上記体積抵抗率を有する無機粒子としては、例えば、酸化錫粒子、酸化チタン粒子、酸化亜鉛粒子、酸化ジルコニウム粒子等の金属酸化物粒子がよく、特に、酸化亜鉛粒子が好ましい。
無機粒子のBET法による比表面積は、例えば、10m/g以上がよい。
無機粒子の体積平均粒径は、例えば、50nm以上2000nm以下(好ましくは60nm以上1000nm以下)がよい。
無機粒子の含有量は、例えば、結着樹脂に対して、10質量%以上80質量%以下であることが好ましく、より好ましくは40質量%以上80質量%以下である。
無機粒子は、表面処理が施されていてもよい。無機粒子は、表面処理の異なるもの、又は、粒子径の異なるものを2種以上混合して用いてもよい。
表面処理剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、界面活性剤等が挙げられる。特に、シランカップリング剤が好ましく、アミノ基を有するシランカップリング剤がより好ましい。
アミノ基を有するシランカップリング剤としては、例えば、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン等が挙げられるが、これらに限定されるものではない。
シランカップリング剤は、2種以上混合して使用してもよい。例えば、アミノ基を有するシランカップリング剤と他のシランカップリング剤とを併用してもよい。この他のシランカップリング剤としては、例えば、ビニルトリメトキシシラン、3−メタクリルオキシプロピル−トリス(2−メトキシエトキシ)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられるが、これらに限定されるものではない。
表面処理剤による表面処理方法は、公知の方法であればいかなる方法でもよく、乾式法又は湿式法のいずれでもよい。
表面処理剤の処理量は、例えば、無機粒子に対して0.5質量%以上10質量%以下が好ましい。
ここで、下引層は、無機粒子と共に電子受容性化合物(アクセプター化合物)を含有することが、電気特性の長期安定性、キャリアブロック性が高まる観点からよい。
電子受容性化合物としては、例えば、クロラニル、ブロモアニル等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物;2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ビス(4−ナフチル)−1,3,4−オキサジアゾール、2,5−ビス(4−ジエチルアミノフェニル)−1,3,4オキサジアゾール等のオキサジアゾール系化合物;キサントン系化合物;チオフェン化合物;3,3’,5,5’テトラ−t−ブチルジフェノキノン等のジフェノキノン化合物;等の電子輸送性物質等が挙げられる。
特に、電子受容性化合物としては、アントラキノン構造を有する化合物が好ましい。アントラキノン構造を有する化合物としては、例えば、ヒドロキシアントラキノン化合物、アミノアントラキノン化合物、アミノヒドロキシアントラキノン化合物等が好ましく、具体的には、例えば、アントラキノン、アリザリン、キニザリン、アントラルフィン、プルプリン等が好ましい。
電子受容性化合物は、下引層中に無機粒子と共に分散して含まれていてもよいし、無機粒子の表面に付着した状態で含まれていてもよい。
電子受容性化合物を無機粒子の表面に付着させる方法としては、例えば、乾式法、又は、湿式法が挙げられる。
乾式法は、例えば、無機粒子をせん断力の大きなミキサ等で攪拌しながら、直接又は有機溶媒に溶解させた電子受容性化合物を滴下、乾燥空気や窒素ガスとともに噴霧させて、電子受容性化合物を無機粒子の表面に付着する方法である。電子受容性化合物の滴下又は噴霧するときは、溶剤の沸点以下の温度で行うことがよい。電子受容性化合物を滴下又は噴霧した後、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に制限されない。
湿式法は、例えば、攪拌、超音波、サンドミル、アトライター、ボールミル等により、無機粒子を溶剤中に分散しつつ、電子受容性化合物を添加し、攪拌又は分散した後、溶剤除去して、電子受容性化合物を無機粒子の表面に付着する方法である。溶剤除去方法は、例えば、ろ過又は蒸留により留去される。溶剤除去後には、更に100℃以上で焼き付けを行ってもよい。焼き付けは電子写真特性が得られる温度、時間であれば特に限定されない。湿式法においては、電子受容性化合物を添加する前に無機粒子の含有水分を除去してもよく、その例として溶剤中で攪拌加熱しながら除去する方法、溶剤と共沸させて除去する方法が挙げられる。
なお、電子受容性化合物の付着は、表面処理剤による表面処理を無機粒子に施す前又は後に行ってよく、電子受容性化合物の付着と表面処理剤による表面処理と同時に行ってもよい。
電子受容性化合物の含有量は、例えば、無機粒子に対して0.01質量%以上20質量%以下がよく、好ましくは0.01質量%以上10質量%以下である。
下引層に用いる結着樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、尿素樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂、エポキシ樹脂等の公知の高分子化合物;ジルコニウムキレート化合物;チタニウムキレート化合物;アルミニウムキレート化合物;チタニウムアルコキシド化合物;有機チタニウム化合物;シランカップリング剤等の公知の材料が挙げられる。
下引層に用いる結着樹脂としては、例えば、電荷輸送性基を有する電荷輸送性樹脂、導電性樹脂(例えばポリアニリン等)等も挙げられる。
これらの中でも、下引層に用いる結着樹脂としては、上層の塗布溶剤に不溶な樹脂が好適であり、特に、尿素樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂等の熱硬化性樹脂;ポリアミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、メタクリル樹脂、アクリル樹脂、ポリビニルアルコール樹脂及びポリビニルアセタール樹脂からなる群から選択される少なくとも1種の樹脂と硬化剤との反応により得られる樹脂が好適である。
これら結着樹脂を2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて設定される。
下引層には、電気特性向上、環境安定性向上、画質向上のために種々の添加剤を含んでいてもよい。
添加剤としては、多環縮合系、アゾ系等の電子輸送性顔料、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料が挙げられる。シランカップリング剤は前述のように無機粒子の表面処理に用いられるが、添加剤として更に下引層に添加してもよい。
添加剤としてのシランカップリング剤としては、例えば、ビニルトリメトキシシラン、3−メタクリルオキシプロピル−トリス(2−メトキシエトキシ)シラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられる。
ジルコニウムキレート化合物としては、例えば、ジルコニウムブトキシド、ジルコニウムアセト酢酸エチル、ジルコニウムトリエタノールアミン、アセチルアセトネートジルコニウムブトキシド、アセト酢酸エチルジルコニウムブトキシド、ジルコニウムアセテート、ジルコニウムオキサレート、ジルコニウムラクテート、ジルコニウムホスホネート、オクタン酸ジルコニウム、ナフテン酸ジルコニウム、ラウリン酸ジルコニウム、ステアリン酸ジルコニウム、イソステアリン酸ジルコニウム、メタクリレートジルコニウムブトキシド、ステアレートジルコニウムブトキシド、イソステアレートジルコニウムブトキシド等が挙げられる。
チタニウムキレート化合物としては、例えば、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2−エチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。
アルミニウムキレート化合物としては、例えば、アルミニウムイソプロピレート、モノブトキシアルミニウムジイソプロピレート、アルミニウムブチレート、ジエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。
これらの添加剤は、単独で、又は複数の化合物の混合物若しくは重縮合物として用いてもよい。
下引層は、ビッカース硬度が35以上であることがよい。
下引層の表面粗さ(十点平均粗さ)は、モアレ像抑制のために、使用される露光用レーザ波長λの1/(4n)(nは上層の屈折率)から1/2までに調整されていることがよい。
表面粗さ調整のために下引層中に樹脂粒子等を添加してもよい。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメタクリル酸メチル樹脂粒子等が挙げられる。また、表面粗さ調整のために下引層の表面を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、湿式ホーニング、研削処理等が挙げられる。
下引層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた下引層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱することで行う。
下引層形成用塗布液を調製するための溶剤としては、公知の有機溶剤、例えば、アルコール系溶剤、芳香族炭化水素溶剤、ハロゲン化炭化水素溶剤、ケトン系溶剤、ケトンアルコール系溶剤、エーテル系溶剤、エステル系溶剤等が挙げられる。
これらの溶剤として具体的には、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等の通常の有機溶剤が挙げられる。
下引層形成用塗布液を調製するときの無機粒子の分散方法としては、例えば、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカー等の公知の方法が挙げられる。
なお、前記の通り、下引層形成用塗布液を調製するときにおける無機粒子の分散時間が長いほど、無機粒子の分散度が高くなり、下引層の体積抵抗率ρが高くなる。無機粒子の分散時間の好ましい範囲は、下引層形成用塗布液の組成等によっても異なるが、例えば、1.0時間以上2.0時間以下の範囲が挙げられる。
下引層形成用塗布液を導電性基体上に塗布する方法としては、例えば、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。
なお、前記の通り、下引層形成用塗布液を導電性基体上に塗布して塗膜を形成した後に、塗膜に含まれる溶媒を除去するために乾燥するが、乾燥温度を高くするほど無機粒子の分散度が高くなり、下引層の体積抵抗率ρが高くなる。乾燥温度の好ましい範囲は、下引層形成用塗布液の組成(特に溶媒の種類)等によっても異なるが、例えば、150℃以上200℃以下の範囲が挙げられる。また、乾燥時間としては、例えば10分以上50分以下が挙げられる。
(中間層)
図示は省略するが、下引層と感光層との間に中間層をさらに設けてもよい。
中間層は、例えば、樹脂を含む層である。中間層に用いる樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂等の高分子化合物が挙げられる。
中間層は、有機金属化合物を含む層であってもよい。中間層に用いる有機金属化合物としては、ジルコニウム、チタニウム、アルミニウム、マンガン、ケイ素等の金属原子を含有する有機金属化合物等が挙げられる。
これらの中間層に用いる化合物は、単独で又は複数の化合物の混合物若しくは重縮合物として用いてもよい。
これらの中でも、中間層は、ジルコニウム原子又はケイ素原子を含有する有機金属化合物を含む層であることが好ましい。
中間層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた中間層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
中間層を形成する塗布方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
中間層の膜厚は、例えば、好ましくは0.1μm以上3μm以下の範囲に設定される。なお、中間層を下引層として使用してもよい。
(電荷発生層)
電荷発生層は、例えば、電荷発生材料と結着樹脂とを含む層である。また、電荷発生層は、電荷発生材料の蒸着層であってもよい。電荷発生材料の蒸着層は、LED(Light Emitting Diode)、有機EL(Electro−Luminescence)イメージアレー等の非干渉性光源を用いる場合に好適である。
電荷発生材料としては、ビスアゾ、トリスアゾ等のアゾ顔料;ジブロモアントアントロン等の縮環芳香族顔料;ペリレン顔料;ピロロピロール顔料;フタロシアニン顔料;酸化亜鉛;三方晶系セレン等が挙げられる。
これらの中でも、近赤外域のレーザ露光に対応させるためには、電荷発生材料としては、金属フタロシアニン顔料、又は無金属フタロシアニン顔料を用いることが好ましい。具体的には、例えば、特開平5−263007号公報、特開平5−279591号公報等に開示されたヒドロキシガリウムフタロシアニン;特開平5−98181号公報等に開示されたクロロガリウムフタロシアニン;特開平5−140472号公報、特開平5−140473号公報等に開示されたジクロロスズフタロシアニン;特開平4−189873号公報等に開示されたチタニルフタロシアニンがより好ましい。
一方、近紫外域のレーザ露光に対応させるためには、電荷発生材料としては、ジブロモアントアントロン等の縮環芳香族顔料;チオインジゴ系顔料;ポルフィラジン化合物;酸化亜鉛;三方晶系セレン;特開2004−78147号公報、特開2005−181992号公報に開示されたビスアゾ顔料等が好ましい。
450nm以上780nm以下に発光の中心波長があるLED,有機ELイメージアレー等の非干渉性光源を用いる場合にも、上記電荷発生材料を用いてもよいが、解像度の観点より、感光層を20μm以下の薄膜で用いるときには、感光層中の電界強度が高くなり、基体からの電荷注入による帯電低下、いわゆる黒点と呼ばれる画像欠陥を生じやすくなる。これは、三方晶系セレン、フタロシアニン顔料等のp−型半導体で暗電流を生じやすい電荷発生材料を用いたときに顕著となる。
これに対し、電荷発生材料として、縮環芳香族顔料、ペリレン顔料、アゾ顔料等のn−型半導体を用いた場合、暗電流を生じ難く、薄膜にしても黒点と呼ばれる画像欠陥を抑制し得る。n−型の電荷発生材料としては、例えば、特開2012−155282号公報の段落[0288]〜[0291]に記載された化合物(CG−1)〜(CG−27)が挙げられるがこれに限られるものではない。
なお、n−型の判定は、通常使用されるタイムオブフライト法を用い、流れる光電流の極性によって判定され、正孔よりも電子をキャリアとして流しやすいものをn−型とする。
電荷発生層に用いる結着樹脂としては、広範な絶縁性樹脂から選択され、また、結着樹脂としては、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択してもよい。
結着樹脂としては、例えば、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。ここで、「絶縁性」とは、体積抵抗率が1013Ωcm以上であることをいう。
これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。
なお、電荷発生材料と結着樹脂の配合比は、質量比で10:1から1:10までの範囲内であることが好ましい。
電荷発生層には、その他、周知の添加剤が含まれていてもよい。
電荷発生層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた電荷発生層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱することで行う。なお、電荷発生層の形成は、電荷発生材料の蒸着により行ってもよい。電荷発生層の蒸着による形成は、特に、電荷発生材料として縮環芳香族顔料、ペリレン顔料を利用する場合に好適である。
電荷発生層形成用塗布液を調製するための溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等が挙げられる。これら溶剤は、1種を単独で又は2種以上を混合して用いる。
電荷発生層形成用塗布液中に粒子(例えば電荷発生材料)を分散させる方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式等が挙げられる。
なお、この分散の際、電荷発生層形成用塗布液中の電荷発生材料の平均粒径を0.5μm以下、好ましくは0.3μm以下、更に好ましくは0.15μm以下にすることが有効である。
電荷発生層形成用塗布液を下引層上(又は中間層上)に塗布する方法としては、例えばブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。
電荷発生層の膜厚は、例えば、好ましくは0.1μm以上5.0μm以下、より好ましくは0.2μm以上2.0μm以下の範囲内に設定される。
(電荷輸送層)
電荷輸送層は、最表面層であり、膜厚が35μm以上60μm以下の層である。
電荷輸送層の膜厚は、感光体寿命及びゴースト抑制の観点から、40μm以上60μm以下が好ましい。
また、電荷輸送層における単位面積あたりの静電容量は、例えば、4.0×10−9F/cm以上1×10−7F/cm以下が挙げられ、4×10−9F/cm以上5×10−8F/cm以下が好ましい。
なお、電荷輸送層における単位面積あたりの静電容量は、例えば、下引層と同様に、コール・コールプロット解析を用いて求める。
具体的には、例えば、まず電荷輸送層の外周面に電極を形成し、導電性基体上に設けられたすべての層(すなわち下引層、電荷発生層、及び電荷輸送層)全体における単位面積あたりの静電容量をコール・コールプロット解析により求める。そして、前述の方法により電荷輸送層のみを除去し、残った層の外周面(電荷発生層の外周面)に電極を形成し、電荷輸送層以外の層(すなわち下引層及び電荷発生層)全体における単位面積あたりの静電容量をコール・コールプロット解析により求める。それらの値を用いて、電荷輸送層における単位面積当たりの静電容量を算出する。なお、電極の形成方法及び測定条件については、前述の下引層における体積抵抗率ρを求める場合における電極の形成方法及び測定条件と同様である。
以下、電荷輸送層に含まれる各成分について説明する。
電荷輸送層は、例えば、電荷輸送材料と結着樹脂とを含む層である。電荷輸送層は、高分子電荷輸送材料を含む層であってもよい。
電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン等のフルオレノン化合物;キサントン系化合物;ベンゾフェノン系化合物;シアノビニル系化合物;エチレン系化合物等の電子輸送性化合物が挙げられる。電荷輸送材料としては、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物等の正孔輸送性化合物も挙げられる。これらの電荷輸送材料は1種を単独で又は2種以上で用いられるが、これらに限定されるものではない。
これらの化合物のうち、電荷移動度の観点から好ましい電荷輸送材料としては、トリアリールアミン系化合物及びベンジジン系化合物が挙げられ、トリアリールアミン系化合物及びベンジジン系化合物を併用することがより好ましい。
トリアリールアミン系化合物としては、電荷移動度の観点から、ブタジエン構造を有するブタジエン系電荷輸送材料が好ましく挙げられ、下記一般式(CT1)で表されるブタジエン系電荷輸送材料(CT1)がより好ましい。

一般式(CT1)中、RC11、RC12、RC13、RC14、RC15、及びRC16は、各々独立に、水素原子、ハロゲン原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルコキシ基、又は、炭素数6以上30以下のアリール基を表し、隣接する2つの置換基同士が結合して炭化水素環構造を形成してもよい。
cm及びcnは、各々独立に、0、1又は2を表す。
一般式(CT1)において、RC11、RC12、RC13、RC14、RC15、及びRC16が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。これらの中でも、ハロゲン原子としては、フッ素原子、塩素原子が好ましく、塩素原子がより好ましい。
一般式(CT1)において、RC11、RC12、RC13、RC14、RC15、及びRC16が表すアルキル基としては、炭素数1以上20以下(好ましくは1以上6以下、より好ましくは1以上4以下)の直鎖状又は分岐状のアルキル基が挙げられる。
直鎖状のアルキル基として具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−イコシル基等が挙げられる。
分岐状のアルキル基として具体的には、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、イソヘプチル基、sec−ヘプチル基、tert−ヘプチル基、イソオクチル基、sec−オクチル基、tert−オクチル基、イソノニル基、sec−ノニル基、tert−ノニル基、イソデシル基、sec−デシル基、tert−デシル基、イソウンデシル基、sec−ウンデシル基、tert−ウンデシル基、ネオウンデシル基、イソドデシル基、sec−ドデシル基、tert−ドデシル基、ネオドデシル基、イソトリデシル基、sec−トリデシル基、tert−トリデシル基、ネオトリデシル基、イソテトラデシル基、sec−テトラデシル基、tert−テトラデシル基、ネオテトラデシル基、1−イソブチル−4−エチルオクチル基、イソペンタデシル基、sec−ペンタデシル基、tert−ペンタデシル基、ネオペンタデシル基、イソヘキサデシル基、sec−ヘキサデシル基、tert−ヘキサデシル基、ネオヘキサデシル基、1−メチルペンタデシル基、イソヘプタデシル基、sec−ヘプタデシル基、tert−ヘプタデシル基、ネオヘプタデシル基、イソオクタデシル基、sec−オクタデシル基、tert−オクタデシル基、ネオオクタデシル基、イソノナデシル基、sec−ノナデシル基、tert−ノナデシル基、ネオノナデシル基、1−メチルオクチル基、イソイコシル基、sec−イコシル基、tert−イコシル基、ネオイコシル基等が挙げられる。
これらの中でも、アルキル基としては、メチル基、エチル基、イソプロピル基等の低級アルキル基が好ましい。
一般式(CT1)において、RC11、RC12、RC13、RC14、RC15、及びRC16が表すアルコキシ基としては、炭素数1以上20以下(好ましくは1以上6以下、より好ましくは1以上4以下)の直鎖状又は分岐状のアルコキシ基が挙げられる。
直鎖状のアルコキシ基として具体的には、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−イコシルオキシ基等が挙げられる。
分岐状のアルコキシ基として具体的には、イソプロポキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert−ペンチルオキシ基、イソヘキシルオキシ基、sec−ヘキシルオキシ基、tert−ヘキシルオキシ基、イソヘプチルオキシ基、sec−ヘプチルオキシ基、tert−ヘプチルオキシ基、イソオクチルオキシ基、sec−オクチルオキシ基、tert−オクチルオキシ基、イソノニルオキシ基、sec−ノニルオキシ基、tert−ノニルオキシ基、イソデシルオキシ基、sec−デシルオキシ基、tert−デシルオキシ基、イソウンデシルオキシ基、sec−ウンデシルオキシ基、tert−ウンデシルオキシ基、ネオウンデシルオキシ基、イソドデシルオキシ基、sec−ドデシルオキシ基、tert−ドデシルオキシ基、ネオドデシルオキシ基、イソトリデシルオキシ基、sec−トリデシルオキシ基、tert−トリデシルオキシ基、ネオトリデシルオキシ基、イソテトラデシルオキシ基、sec−テトラデシルオキシ基、tert−テトラデシルオキシ基、ネオテトラデシルオキシ基、1−イソブチル−4−エチルオクチルオキシ基、イソペンタデシルオキシ基、sec−ペンタデシルオキシ基、tert−ペンタデシルオキシ基、ネオペンタデシルオキシ基、イソヘキサデシルオキシ基、sec−ヘキサデシルオキシ基、tert−ヘキサデシルオキシ基、ネオヘキサデシルオキシ基、1−メチルペンタデシルオキシ基、イソヘプタデシルオキシ基、sec−ヘプタデシルオキシ基、tert−ヘプタデシルオキシ基、ネオヘプタデシルオキシ基、イソオクタデシルオキシ基、sec−オクタデシルオキシ基、tert−オクタデシルオキシ基、ネオオクタデシルオキシ基、イソノナデシルオキシ基、sec−ノナデシルオキシ基、tert−ノナデシルオキシ基、ネオノナデシルオキシ基、1−メチルオクチルオキシ基、イソイコシルオキシ基、sec−イコシルオキシ基、tert−イコシルオキシ基、ネオイコシルオキシ基等が挙げられる。
これらの中でも、アルコキシ基としては、メトキシ基が好ましい。
一般式(CT1)において、RC11、RC12、RC13、RC14、RC15、及びRC16が表すアリール基としては、炭素数6以上30以下(好ましくは6以上20以下、より好ましくは6以上16以下)のアリール基が挙げられる。
アリール基として具体的には、フェニル基、ナフチル基、フェナントリル基、ビフェニリル基などが挙げられる。
これらの中でも、アリール基としては、フェニル基、ナフチル基が好ましい。
なお、一般式(CT1)において、RC11、RC12、RC13、RC14、RC15、及びRC16が表す上記各置換基は、さらに置換基を有する基も含む。この置換基としては、上記例示した原子および基(例えばハロゲン原子、アルキル基、アルコキシ基、アリール基など)が挙げられる。
一般式(CT1)において、RC11、RC12、RC13、RC14、RC15、及びRC16の隣接する二つの置換基同士(例えばRC11及びRC12同士、RC13及びRC14同士、RC15及びRC16同士)が連結した炭化水素環構造における、当該置換基同士を連結する基としては、単結合、2,2’−メチレン基、2,2’−エチレン基、2,2’−ビニレン基などが挙げられ、これらの中でも単結合、2,2’−メチレン基が好ましい。
ここで、炭化水素環構造として具体的には、例えば、シクロアルカン環構造、シクロアルケン環構造、シクロアルカンポリエン環構造等が挙げられる。
一般式(CT1)において、cm及びcnは、1であることが好ましい。
一般式(CT1)において、電荷輸送能の高い感光層(電荷輸送層)形成の点から、RC11、RC12、RC13、RC14、RC15、及びRC16が水素原子、炭素数1以上20以下のアルキル基、又は炭素数1以上20以下のアルコキシ基を表し、cm及びcnが1又は2を表することが好ましく、RC11、RC12、RC13、RC14、RC15、及びRC16が水素原子を表し、cm及びcnが1を表すことがより好ましい。
つまり、ブタジエン系電荷輸送材料(CT1)は、下記構造式(CT1A)で示される電荷輸送材料(例示化合物(CT1−3))であることがより好ましい。
以下に、ブタジエン系電荷輸送材料(CT1)の具体例を示すが、これに限定されるわけではない。
なお、上記例示化合物中の略記号は、以下の意味を示す。また、置換基の前に付す番号は、ベンゼン環に対する置換位置を示している。
・−CH:メチル基
・−OCH:メトキシ基
ブタジエン系電荷輸送材料(CT1)は、1種を単独で用いてもよいし、2種以上を併用してもよい。
ベンジジン系化合物としては、電荷移動度の観点から、下記一般式(CT2)で表されるベンジジン系電荷輸送材料(CT2)が好ましく挙げられる。
特に、電荷移動度の観点から、電荷輸送材料として、ブタジエン系電荷輸送材料(CT1)とベンジジン系電荷輸送材料(CT2)とを併用することが好ましい。なお、ブタジエン系電荷輸送材料(CT1)とベンジジン系電荷輸送材料(CT2)とを併用する場合における質量比(ブタジエン系電荷輸送材料(CT1)の含有量/ベンジジン系電荷輸送材料(CT2)の含有量)は、電荷輸送能の点から、1/9以上5/5以下が好ましく、1/9以上4/6以下がより好ましく、1/9以上3/7以下が更に好ましい。
一般式(CT2)中、RC21、RC22、及びRC23は、各々独立に、水素原子、ハロゲン原子、炭素数1以上10以下のアルキル基、炭素数1以上10以下のアルコキシ基、又は、炭素数6以上10以下のアリール基を表す。
一般式(CT2)において、RC21、RC22、及びRC23が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。これらの中でも、ハロゲン原子としては、フッ素原子、塩素原子が好ましく、塩素原子がより好ましい。
一般式(CT2)において、RC21、RC22、及びRC23が表すアルキル基としては、炭素数1以上10以下(好ましくは1以上6以下、より好ましくは1以上4以下)の直鎖状又は分岐状のアルキル基が挙げられる。
直鎖状のアルキル基として具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等が挙げられる。
分岐状のアルキル基として具体的には、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、イソヘプチル基、sec−ヘプチル基、tert−ヘプチル基、イソオクチル基、sec−オクチル基、tert−オクチル基、イソノニル基、sec−ノニル基、tert−ノニル基、イソデシル基、sec−デシル基、tert−デシル基等が挙げられる。
これらの中でも、アルキル基としては、メチル基、エチル基、イソプロピル基等の低級アルキル基が好ましい。
一般式(CT2)において、RC21、RC22、及びRC23が表すアルコキシ基としては、炭素数1以上10以下(好ましくは1以上6以下、より好ましくは1以上4以下)の直鎖状又は分岐状のアルコキシ基が挙げられる。
直鎖状のアルコキシ基として具体的には、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基等が挙げられる。
分岐状のアルコキシ基として具体的には、イソプロポキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert−ペンチルオキシ基、イソヘキシルオキシ基、sec−ヘキシルオキシ基、tert−ヘキシルオキシ基、イソヘプチルオキシ基、sec−ヘプチルオキシ基、tert−ヘプチルオキシ基、イソオクチルオキシ基、sec−オクチルオキシ基、tert−オクチルオキシ基、イソノニルオキシ基、sec−ノニルオキシ基、tert−ノニルオキシ基、イソデシルオキシ基、sec−デシルオキシ基、tert−デシルオキシ基等が挙げられる。
これらの中でも、アルコキシ基としては、メトキシ基が好ましい。
一般式(CT2)において、RC21、RC22、及びRC23が表すアリール基としては、炭素数6以上10以下(好ましくは6以上9以下、より好ましくは6以上8以下)のアリール基が挙げられる。
アリール基として具体的には、フェニル基、ナフチル基などが挙げられる。
これらの中でも、アリール基としては、フェニル基が好ましい。
なお、一般式(CT2)において、RC21、RC22、及びRC23が表す上記各置換基は、さらに置換基を有する基も含む。この置換基としては、上記例示した原子及び基(例えばハロゲン原子、アルキル基、アルコキシ基、アリール基など)が挙げられる。
一般式(CT2)において、特に、電荷輸送能の高い感光層(電荷輸送層)形成(感光体の高感度化)の点から、RC21、RC22、及びRC23が、各々独立に、水素原子、又は、炭素数1以上10以下のアルキル基を表すことが好ましく、RC21、及びRC23が水素原子を表し、RC22が炭素数1以上10以下のアルキル基(特に、メチル基)を表すことがより好ましい。
具体的には、ベンジジン系電荷輸送材料(CT2)は、下記構造式(CT2A)で示される電荷輸送材料(例示化合物(CT2−2))であることが特に好ましい。
以下に、ベンジジン系電荷輸送材料(CT2)の具体例を示すが、これに限定されるわけではない。
なお、上記例示化合物中の略記号は、以下の意味を示す。また、置換基の前に付す番号は、ベンゼン環に対する置換位置を示している。
・−CH:メチル基
・−C:エチル基
・−OCH:メトキシ基
・−OC:エトキシ基
ベンジジン系電荷輸送材料(CT2)は、1種を単独で用いてもよいし、2種以上を併用してもよい。
高分子電荷輸送材料としては、ポリ−N−ビニルカルバゾール、ポリシラン等の電荷輸送性を有する公知のものが用いられる。特に、特開平8−176293号公報、特開平8−208820号公報等に開示されているポリエステル系の高分子電荷輸送材は特に好ましい。なお、高分子電荷輸送材料は、単独で使用してよいが、結着樹脂と併用してもよい。
電荷輸送層に用いる結着樹脂は、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーンアルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾール、ポリシラン等が挙げられる。これらの中でも、結着樹脂としては、ポリカーボネート樹脂又はポリアリレート樹脂が好適である。これらの結着樹脂は1種を単独で又は2種以上で用いる。
なお、電荷輸送材料と結着樹脂との配合比は、質量比で10:1から1:5までが好ましい。
電荷輸送層に用いる結着樹脂としては、電荷輸送層の耐摩耗性の観点から、ポリカーボネート樹脂が好ましく、ビフェニル骨格を有する構造単位を含むビフェニル共重合体型ポリカーボネート樹脂(以下「BPポリカーボネート樹脂」ともいう)がより好ましい。
BPポリカーボネート樹脂としては、例えば、ビフェニル骨格を有する構造単位として、下記一般式(PCA)で示される構造単位と、他の構造単位とを有するビフェニル共重合型ポリカーボネート樹脂が挙げられる。
他の構造単位としては、ビスフェノール骨格(例えば、ビスフェノールA、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールF、ビスフェノールZ等)を有する構造単位等が挙げられる。
BPポリカーボネート樹脂として具体的には、例えば、ジヒドロキシビフェニル化合物と、ジヒドロキシビスフェノール化合物との共重合体が挙げられる。なお、この共重合体は、例えば、ジヒドロキシビフェニル化合物およびジヒドロキシビスフェノール化合物を原料として用い、ホスゲン等の炭酸エステル形成性化合物との重縮合又はビスアリールカーボネートとのエステル交換反応等の方法によって得られる。
ジヒドロキシビフェニル化合物は、ビフェニル骨格を有し、ビフェニル骨格の2つのベンゼン環に、各々、一つのヒドロキシル基を有するビフェニル化合物である。ジヒドロキシビフェニル化合物としては、例えば、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’−ジメチルビフェニル、4,4’−ジヒドロキシ−2,2’−ジメチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジシクロヘキシルビフェニル、3,3’−ジフルオロ−4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’−ジフェニルビフェニル等が挙げられる。
これらジヒドロキシビフェニル化合物は、1種単独で用いてもよいし、複数併用してもよい。
ジヒドロキシビスフェノール化合物は、ビスフェノール骨格を有し、ビスフェノール骨格の2つのベンゼン環に、各々、一つのヒドロキシル基を有するビスフェノール化合物である。ジヒドロキシビスフェノール化合物としては、例えば、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,2−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(3−メチル−4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、4,4−ビス(4−ヒドロキシフェニル)ヘプタン、1,1−ビス(4−ヒドロキシフェニル)−1,1−ジフェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルメタン、ビス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、2−(3−メチル−4−ヒドロキシフェニル)−2−(4−ヒドロキシフェニル)−1−フェニルエタン、ビス(3−メチル−4−ヒドロキシフェニル)スルフィド、ビス(3−メチル−4−ヒドロキシフェニル)スルホン、ビス(3−メチル−4−ヒドロキシフェニル)メタン、1,1−ビス(3−メチル−4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(2−メチル−4−ヒドロキシフェニル)プロパン、1,1−ビス(2−ブチル−4−ヒドロキシ−5−メチルフェニル)ブタン、1,1−ビス(2−tert−ブチル−4−ヒドロキシ−3−メチルフェニル)エタン、1,1−ビス(2−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロパン、1,1−ビス(2−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)ブタン、1,1−ビス(2−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)イソブタン、1,1−ビス(2−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)ヘプタン、1,1−ビス(2−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)−1−フェニルメタン、1,1−ビス(2−tert−アミル−4−ヒドロキシ−5−メチルフェニル)ブタン、ビス(3−クロロ−4−ヒドロキシフェニル)メタン、ビス(3,5−ジブロモ−4−ヒドロキシフェニル)メタン、2,2−ビス(3−クロロ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−フルオロ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジクロロ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−ブロモ−4−ヒドロキシ−5−クロロフェニル)プロパン、2,2−ビス(3,5−ジクロロ−4−ヒドロキシフェニル)ブタン、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)ブタン、1−フェニル−1,1−ビス(3−フルオロ−4−ヒドロキシフェニル)エタン、ビス(3−フルオロ−4−ヒドロキシフェニル)エーテル、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン等が挙げられる。
これらビスフェノール化合物は、1種単独で用いてもよいし、複数併用してもよい。
これらの中でも、BPポリカーボネート樹脂は、電荷輸送層の耐摩耗性の点から、下記一般式(PCA)で示される構造単位と、下記一般式(PCB)で示される構造単位と、を含むポリカーボネート樹脂であることが好ましい。
一般式(PCA)及び(PCB)中、RP1、RP2、RP3、及びRP4は、各々独立に、水素原子、ハロゲン原子、炭素数1以上6以下のアルキル基、炭素数5以上7以下のシクロアルキル基、又は、炭素数6以上12以下のアリール基を表す。XP1は、フェニレン基、ビフェニレン基、ナフチレン基、アルキレン基、又は、シクロアルキレン基を表す。
一般式(PCA)及び(PCB)中、RP1、RP2、RP3、及びRP4が表すアルキル基としては、炭素数1以上6以下(好ましくは炭素数1以上3以下)の直鎖状又は分岐状のアルキル基が挙げられる。
直鎖状のアルキル基として具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基等が挙げられる。
分岐状のアルキル基として具体的には、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基等が挙げられる。
これらの中でも、アルキル基としては、メチル基、エチル基等の低級アルキル基が好ましい。
一般式(PCA)及び(PCB)中、RP1、RP2、RP3、及びRP4が表すシクロアルキル基としては、例えば、シクロペンチル、シクロヘキシル、シクロヘプチルが挙げられる。
一般式(PCA)及び(PCB)中、RP1、RP2、RP3、及びRP4が表すアリール基としては、例えば、フェニル基、ナフチル基、ビフェニリル基等が挙げられる。
一般式(PCA)及び(PCB)中、XP1が表すアルキレン基としては、炭素数1以上12以下(好ましくは炭素数1以上6以下、より好ましくは炭素数1以上3以下)の直鎖状又は分岐状のアルキレン基が挙げられる。
直鎖状のアルキレン基として具体的には、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレン基、n−ヘプチレン基、n−オクチレン基、n−ノニレン基、n−デシレン基、n−ウンデシレン基、n−ドデシレン基等が挙げられる。
分岐状のアルキレン基として具体的には、イソプロピレン基、イソブチレン基、sec−ブチレン基、tert−ブチレン基、イソペンチレン基、ネオペンチレン基、tert−ペンチレン基、イソヘキシレン基、sec−ヘキシレン基、tert−ヘキシレン基、イソヘプチレン基、sec−ヘプチレン基、tert−ヘプチレン基、イソオクチレン基、sec−オクチレン基、tert−オクチレン基、イソノニレン基、sec−ノニレン基、tert−ノニレン基、イソデシレン基、sec−デシレン基、tert−デシレン基、イソウンデシレン基、sec−ウンデシレン基、tert−ウンデシレン基、ネオウンデシレン基、イソドデシレン基、sec−ドデシレン基、tert−ドデシレン基、ネオドデシレン基等が挙げられる。
これらの中でも、アルキレン基としては、メチレン基、エチレン基、ブチレン基等の低級アルキル基が好ましい。
一般式(PCA)及び(PCB)中、XP1が表すシクロアルキレン基としては、炭素数3以上12以下(好ましくは炭素数3以上10以下、より好ましくは炭素数5以上8以下)のシクロアルキレン基が挙げられる。
シクロアルキレン基として具体的には、シクロプロピレン基、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロドデカニレン基等が挙げられる。
これらの中でも、シクロアルキレン基としては、シクロヘキシレン基が好ましい。
なお、一般式(PCA)及び(PCB)中、RP1、RP2、RP3、RP4、及びXP1が表す上記各置換基は、さらに置換基を有する基も含む。この置換基としては、例えば、ハロゲン原子(例えばフッ素原子、塩素原子)、アルキル基(例えば炭素数1以上6以下のアルキル基)、シクロアルキル基(例えば炭素数5以上7以下のシクロアルキル基)、アルコキシ基(例えば炭素数1以上4以下のアルコキシ基)、アリール基(例えば、フェニル基、ナフチル基、ビフェニリル基等)等が挙げられる。
一般式(PCA)において、RP1、及びRP2は、各々独立に、水素原子、又は炭素数1以上6以下のアルキル基を表すことが好ましく、RP1、及びRP2は、水素原子を表すことがより好ましい。
一般式(PCB)において、RP3、及びRP4は、各々独立に、水素原子、又は炭素数1以上6以下のアルキル基を表し、XP1がアルキレン基、又はシクロアルキレン基を表すことが好ましい。
BPポリカーボネート樹脂の具体例としては、例えば、以下のものが挙げられるが、これらに限定されるものではない。なお、例示化合物中、pm、pnは共重合比を示す。
ここで、BPポリカーボネート樹脂において、一般式(PCA)で示される構造単位の含有率(共重合比)は、BPポリカーボネート樹脂を構成する全構造単位に対して5モル%以上95モル%以下の範囲がよく、感光層(電荷輸送層)の耐磨耗性を高める観点から、好ましくは5モル%以上50モル%以下の範囲、さらに好ましくは15モル%以上30モル%以下の範囲である。
具体的には、BPポリカーボネート樹脂の上記例示化合物中、pm、pnは共重合比(モル比)を示すが、pm:pn=95:5から5:95の範囲、50:50から5:95の範囲、更に好ましくは、15:85から30:70の範囲が挙げられる。
BPポリカーボネート樹脂の粘度平均分子量としては、例えば20,000以上80,000以下が好ましい。
なお、BPポリカーボネート樹脂の粘度平均分子量の測定方法としては、次の方法により測定される値である。樹脂1gをメチレンクロライド100cmに均一溶解し、25℃の測定環境下でウベローデ粘度計により、その比粘度ηspを測定し、ηsp/c=〔η〕+0.45〔η〕cの関係式(ただしcは濃度(g/cm))より極限粘度〔η〕(cm/g)をもとめ、H.Schnellによって与えられている式、〔η〕=1.23×10−4Mv0.83の関係式より粘度平均分子量Mvを求める。
BPポリカーボネート樹脂は、他の結着樹脂と併用してもよい。ただし、他の結着樹脂は、全結着樹脂に対して10質量%(好ましくは5質量%以下)で併用することがよい。
ここで、BPポリカーボネート樹脂の含有量は、例えば、感光層(電荷輸送層)の全固形分に対して、10質量%以上90質量%以下が好ましく、30質量%以上90質量%以下がより好ましく、50質量%以上90質量%以下が更に好ましい。
電荷輸送層は、電荷輸送材料及び結着樹脂のほかに、添加剤を含んでもよい。
電荷輸送層に用いる添加剤は特に限定されないが、例えば、ヒンダードフェノール系酸化防止剤、フッ素含有樹脂粒子、フッ素含有分散剤等が挙げられる。
ヒンダードフェノール系酸化防止剤について説明する。
ヒンダードフェノール系酸化防止剤は、ヒンダードフェノール環を有し、且つ分子量が300以上の化合物である。
ヒンダードフェノール系酸化防止剤は、ヒンダードフェノール環は、例えば、炭素数4以上8以下のアルキル基(例えば炭素数4以上8以下の分岐状のアルキル基)が少なくとも一つ置換されたフェノール環である。より具体的には、ヒンダードフェノール環は、例えば、フェノール性水酸基に対してオルトの位置が三級アルキル基(例えばtert−ブチル基)で置換されたフェノール環である。
ヒンダードフェノール系酸化防止剤としては、
1)ヒンダードフェノール環を1つ有する酸化防止剤、
2)ヒンダードフェノール環を2つ以上4つ以下有し、且つ直鎖又は分岐状の2価以上4価以下の脂肪族炭化水素基からなる連結基、又は2価以上4価以下の脂肪族炭化水素基の炭素−炭素の結合間に、エステル結合(−C(=O)O−)及びエーテル結合(−O−)の少なくとも一方が介在した連結基で、2つ以上4つ以下のヒンダードフェノール環が連結された酸化防止剤
3)2つ以上4つ以下のヒンダードフェノール環と、一つのベンゼン環(未置換、又はアルキル基等で置換された置換ベンゼン環)又はイソシアヌレート環とを有し、2つ以上4つ以下のヒンダードフェノール環が、各々、ベンゼン環又はイソシアヌレート環とアルキレン基を介して連結された酸化防止剤
等が挙げられる。
具体的には、ヒンダードフェノール系酸化防止剤としては、焼付きゴースト及び光疲労の抑制の点から、下記一般式(HP)で示される酸化防止剤が好ましい。
一般式(HP)中、RH1、及びRH2は、各々独立に、炭素数4以上8以下の分岐状のアルキル基を表す。
H3、及びRH4は、各々独立に、水素原子、又は、炭素数1以上10以下のアルキル基を表す。
H5は、炭素数1以上10以下のアルキレン基を表す。
一般式(HP)中、RH1、及びRH2が表すアルキル基としては、炭素数4以上8以下(好ましくは炭素数4以上6以下)の分岐状のアルキル基が挙げられる。
分岐状のアルキル基として具体的には、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、イソヘプチル基、sec−ヘプチル基、tert−ヘプチル基、イソオクチル基、sec−オクチル基、tert−オクチル基が挙げられる。
これらの中でも、アルキル基としては、tert−ブチル基、tert−ペンチル基が好ましく、tert−ブチル基がより好ましい。
一般式(HP)中、RH3、及びRH4としては、炭素数1以上10以下(好ましくは炭素数1以上4以下)の直鎖状又は分岐状のアルキル基が挙げられる。
直鎖状のアルキル基として具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等が挙げられる。
分岐状のアルキル基として具体的には、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、イソヘプチル基、sec−ヘプチル基、tert−ヘプチル基、イソオクチル基、sec−オクチル基、tert−オクチル基、イソノニル基、sec−ノニル基、tert−ノニル基、イソデシル基、sec−デシル基、tert−デシル基等が挙げられる。
これらの中でも、アルキル基としては、メチル基、エチル基等の低級アルキル基が好ましい。
一般式(HP)中、RH5は、炭素数1以上10以下(好ましくは1以上4以下)の直鎖状又は分岐状アルキレン基を表す。
直鎖状のアルキレン基として具体的には、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレン基、n−ヘプチレン基、n−オクチレン基、n−ノニレン基、n−デシレン基等が挙げられる。
分岐状のアルキレン基として具体的には、イソプロピレン基、イソブチレン基、sec−ブチレン基、tert−ブチレン基、イソペンチレン基、ネオペンチレン基、tert−ペンチレン基、イソヘキシレン基、sec−ヘキシレン基、tert−ヘキシレン基、イソヘプチレン基、sec−ヘプチレン基、tert−ヘプチレン基、イソオクチレン基、sec−オクチレン基、tert−オクチレン基、イソノニレン基、sec−ノニレン基、tert−ノニレン基、イソデシレン基、sec−デシレン基、tert−デシレン基等が挙げられる。
これらの中でも、アルキレン基としては、メチレン基、エチレン基、ブチレン基等の低級アルキレン基が好ましい。
なお、一般式(HP)中、RH1、RH2、RH3、RH4、及びRH5が表す上記各置換基は、さらに置換基を有する基も含む。この置換基としては、例えば、ハロゲン原子(例えばフッ素原子、塩素原子)、アルコキシ基(例えば炭素数1以上4以下のアルコキシ基)、アリール基(例えばフェニル基、ナフチル基等)等が挙げられる。
一般式(HP)において、特に、焼付きゴースト及び光疲労の抑制の点から、RH1、及びRH2がtert−ブチル基を表すことが好ましく、RH1、及びRH2がtert−ブチル基を表し、RH3、及びRH4が炭素数1以上3以下のアルキル基(特にメチル基)を示し、RH5が炭素数1以上4以下のアルキレン基(特にメチレン基)を表すことが好ましい。
具体的には、ヒンダードフェノール系酸化防止剤は、例示化合物(HP−3)で示されるヒンダードフェノール系酸化防止剤が特に好ましい。
ヒンダードフェノール系酸化防止剤の分子量は、焼付きゴースト及び光疲労の抑制の点から、300以上1000以下が好ましく、300以上900以下がより好ましく、300以上800以下が更に好ましい。
以下に、ヒンダードフェノール系酸化防止剤の具体例を示すが、これに限定されるわけではない。
ヒンダードフェノール系酸化防止剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
ヒンダードフェノール系酸化防止剤の含有量は、焼付きゴースト及び光疲労の抑制の点から、全電荷輸送材料量100質量%に対して、0.5質量%以上30.0質量%以下が好ましく、0.5質量%以上15質量%以下がより好ましく、0.5質量%以上9.0質量%以下が更に好ましい。なお、このヒンダーフェノール系酸化防止剤の含有量は、全電荷輸送材料の含有量を100質量部としたときの部数(質量部)を示している。
次に、フッ素含有樹脂粒子について説明する。
フッ素含有樹脂粒子としては、例えば、4フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、6フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、2フッ化2塩化エチレン樹脂及びそれらの共重合体の粒子の中から1種又は2種以上を選択するのが望ましい。これらの中でも、フッ素含有樹脂粒子としては、特に、4フッ化エチレン樹脂粒子、フッ化ビニリデン樹脂粒子が望ましい。
フッ素含有樹脂粒子の一次粒径は、0.05μm以上1μm以下であることがよく、望ましくは0.1μm以上0.5μm以下である。
なお、この一次粒子は、感光層(電荷輸送層)から試料片を得て、これをSEM(走査型電子顕微鏡)により例えば倍率5000倍以上で観察し、一次粒子状態のフッ素樹脂粒子の最大径を測定し、これを50個の粒子について行った平均値とする。なお、SEMとして日本電子製JSM−6700Fを使用し、加速電圧5kVの二次電子画像を観察する。
フッ素樹脂粒子の市販品としては、例えば、ルブロン(登録商標)シリーズ(ダイキン工業株式会社製)、テフロン(登録商標)シリーズ(デュポン製)、ダイニオン(登録商標)シリーズ(住友3M製)等が挙げられる。
フッ素含有樹脂粒子の含有量は、感光層(電荷輸送層)の全固形分に対して、1質量%以上30質量%以下が好ましく、3質量%以上20質量%以下がより好ましく、5質量%以上15質量%以下が更に好ましい。
電荷輸送層がフッ素含有樹脂粒子を含む場合、フッ素含有樹脂粒子を分散させる分散剤として、さらにフッ素含有分散剤を含んでもよい。
フッ素含有分散剤としては、フッ化アルキル基を有する重合性化合物を単独重合又は共重合した重合体(以下「フッ化アルキル基含有重合体」とも称する)が挙げられる。
フッ素含有分散剤として具体的には、フッ化アルキル基を有する(メタ)アクリレートの単独重合体、フッ化アルキル基を有する(メタ)アクリレートとフッ素原子を有さないモノマーとのランダム又はブロック共重合体等が挙げられる。なお、(メタ)アクリレートとは、アクリレートおよびメタクリレートの双方を意味する。
フッ化アルキル基を有する(メタ)アクリレートとしては、例えば、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3,3−ペンタフルオロプロピル(メタ)アククリレートが挙げられる。
フッ素原子を有さないモノマーとしては、例えば、(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2−ヒドロキシ(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アククリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ヒドロキシエチルo−フェニルフェノール(メタ)アクリレート、o−フェニルフェノールグリシジルエーテル(メタ)アクリレートが挙げられる。
その他、フッ素含有分散剤として具体的には、米国特許5637142号明細書、特許第4251662号公報などに開示されたブロック又はブランチポリマーも挙げられる。更に、フッ素含有分散剤として具体的には、フッ素系界面活性剤も挙げられる。
これらの中でも、フッ素含有分散剤としては、下記一般式(FA)で示される構造単位を有するフッ化アルキル基含有重合体が好ましく、下記一般式(FA)で示される構造単位と下記一般式(FB)で示される構造単位とを有するフッ化アルキル基含有重合体がより好ましい。
以下、下記一般式(FA)で示される構造単位と下記一般式(FB)で示される構造単位とを有するフッ化アルキル基含有重合体について説明する。
一般式(FA)及び(FB)中、RF1、RF2、RF3及びRF4は、各々独立に、水素原子、又はアルキル基を表す。
F1は、アルキレン鎖、ハロゲン置換アルキレン鎖、−S−、−O−、−NH−、又は単結合を表す。
F1は、アルキレン鎖、ハロゲン置換アルキレン鎖、−(Cfx2fx−1(OH))−又は単結合を表す。
F1は、−O−、又は−NH−を表す。
fl、fm及びfnは、各々独立に、1以上の整数を表す。
fp、fq、fr及びfsは、各々独立に、0または1以上の整数を表す。
ftは、1以上7以下の整数を表す。
fxは1以上の整数を表す。
一般式(FA)及び(FB)中、RF1、RF2、RF3及びRF4を表す基としては、水素原子、メチル基、エチル基、プロピル基等が好ましく、水素原子、メチル基がより好ましく、メチル基が更に好ましい。
一般式(FA)及び(FB)中、XF1及びYF1を表すアルキレン鎖(未置換アルキレン鎖、ハロゲン置換アルキレン鎖)としては、炭素数1以上10以下の直鎖状又は分岐状のアルキレン鎖が好ましい。
F1を表す−(Cfx2fx−1(OH))−中のfxは、1以上10以下の整数を表すことが好ましい。
fp、fq、fr及びfsは、それぞれ独立に0または1以上10以下の整数を表すことが好ましい。
fnは、例えば、1以上60以下が好ましい。
ここで、フッ素含有分散剤において、一般式(FA)で示される構造単位と一般式(FB)で示される構造単位との比、つまり、fl:fmは、1:9から9:1までの範囲が好ましく、3:7から7:3までの範囲がより好ましい。
また、フッ素含有分散剤、一般式(FA)で示される構造単位と一般式(FB)で示される構造単位とに加え、一般式(FC)で示される構造単位を更に有していてもよい。一般式(FC)で示される構造単位の含有比は、一般式(FA)及び(FB)で示される構造単位の合計、即ちfl+fmとの比(fl+fm:fz)で、10:0から7:3までの範囲が好ましく、9:1から7:3までの範囲がより好ましい。
一般式(FC)中、RF5、及びRF6は、各々独立に、水素原子、又はアルキル基を表す。fzは、1以上の整数を表す。
一般式(FC)中、RF5、及びRF6を表す基としては、水素原子、メチル基、エチル基、プロピル基等が好ましく、水素原子、メチル基がより好ましく、メチル基が更に好ましい。
フッ素含有分散剤の市販品としては、例えば、GF300、GF400(東亞合成社製)、サーフロン(登録商標)シリーズ(AGCセイミケミカル社製)、フタージェントシリーズ(ネオス社製)、PFシリーズ(北村化学社製)、メガファック(登録商標)シリーズ(DIC製)、FCシリーズ(3M製)等が挙げられる。
フッ素含有分散剤の重量平均分子量は、例えば、2000以上250000以下が好ましく、3000以上150000以下がより好ましく、50000以上100000以下が更に好ましい。
フッ素含有分散剤の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定される値である。GPCによる分子量測定は、例えば、測定装置として東ソー製GPC・HLC−8120を用い、東ソー製カラム・TSKgel GMHHR−M+TSKgel GMHHR−M(7.8mmI.D.30cm)を使用し、クロロホルム溶媒で行い、この測定結果から単分散ポリスチレン標準試料により作製した分子量校正曲線を使用して算出する。
フッ化アルキル基含有共重合体の含有量は、例えば、フッ素含有樹脂粒子の質量に対して0.5質量%以上10質量%以下が好ましく、1質量%以上7質量%以下がより好ましい。
なお、フッ化アルキル基含有共重合体は、1種を単独でまたは2種以上を併用してもよい。
電荷輸送層には、その他、周知の添加剤が含まれていてもよい。
なお、電荷輸送層は、感光体の長寿命化及びゴーストの抑制を両立させる観点から、ブタジエン系電荷輸送材料(CT1)と、ベンジジン系電荷輸送材料(CT2)と、一般式(PCA)で示される構造単位と一般式(PCB)で示される構造単位とを含むポリカーボネート樹脂と、分子量300以上のヒンダードフェノール系酸化防止剤と、フッ素含有樹脂粒子と、を含むことが好ましい。
電荷輸送層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた電荷輸送層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
電荷輸送層形成用塗布液を調製するための溶剤としては、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素類;アセトン、2−ブタノン等のケトン類;塩化メチレン、クロロホルム、塩化エチレン等のハロゲン化脂肪族炭化水素類;テトラヒドロフラン、エチルエーテル等の環状又は直鎖状のエーテル類等の通常の有機溶剤が挙げられる。これら溶剤は、単独で又は2種以上混合して用いる。
電荷輸送層形成用塗布液を電荷発生層の上に塗布する際の塗布方法としては、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。
[画像形成装置(及びプロセスカートリッジ)]
本実施形態に係る画像形成装置は、電子写真感光体と、電子写真感光体の表面を帯電する帯電手段と、帯電した電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、トナーを含む現像剤により電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、トナー像を記録媒体の表面に転写する転写手段と、を備える。そして、電子写真感光体として、上記本実施形態に係る電子写真感光体が適用される。
本実施形態に係る画像形成装置は、記録媒体の表面に転写されたトナー像を定着する定着手段を備える装置;電子写真感光体の表面に形成されたトナー像を直接記録媒体に転写する直接転写方式の装置;電子写真感光体の表面に形成されたトナー像を中間転写体の表面に一次転写し、中間転写体の表面に転写されたトナー像を記録媒体の表面に二次転写する中間転写方式の装置;トナー像の転写後、帯電前の電子写真感光体の表面をクリーニングするクリーニング手段を備えた装置;トナー像の転写後、帯電前に電子写真感光体の表面に除電光を照射して除電する除電手段を備える装置;電子写真感光体の温度を上昇させ、相対温度を低減させるための電子写真感光体加熱部材を備える装置等の周知の画像形成装置が適用される。
ただし、本実施形態では、電子写真感光体の表面における残留電荷を除電する除電手段(例えば、帯電前に電子写真感光体の表面に除電光を照射して除電する除電手段等)を有さない画像形成装置であっても、電子写真感光体における下引層の体積抵抗率ρが前記範囲であるため、ゴーストが抑制される。
なお、中間転写方式の装置の場合、転写手段は、例えば、表面にトナー像が転写される中間転写体と、電子写真感光体の表面に形成されたトナー像を中間転写体の表面に一次転写する一次転写手段と、中間転写体の表面に転写されたトナー像を記録媒体の表面に二次転写する二次転写手段と、を有する構成が適用される。
本実施形態に係る画像形成装置は、乾式現像方式の画像形成装置、湿式現像方式(液体現像剤を利用した現像方式)の画像形成装置のいずれであってもよい。
なお、本実施形態に係る画像形成装置において、例えば、電子写真感光体を備える部分が、画像形成装置に対して着脱されるカートリッジ構造(プロセスカートリッジ)であってもよい。プロセスカートリッジとしては、例えば、本実施形態に係る電子写真感光体を備えるプロセスカートリッジが好適に用いられる。なお、プロセスカートリッジには、電子写真感光体以外に、例えば、帯電手段、静電潜像形成手段、現像手段、転写手段からなる群から選択される少なくとも一つを備えてもよい。
以下、本実施形態に係る画像形成装置の一例を示すが、これに限定されるわけではない。なお、図に示す主要部を説明し、その他はその説明を省略する。
図2は、本実施形態に係る画像形成装置の一例を示す概略構成図である。
本実施形態に係る画像形成装置100は、図2に示すように、電子写真感光体7を備えるプロセスカートリッジ300と、露光装置9(静電潜像形成手段の一例)と、転写装置40(一次転写装置)と、中間転写体50とを備える。なお、画像形成装置100において、露光装置9はプロセスカートリッジ300の開口部から電子写真感光体7に露光し得る位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体7に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体7に接触して配置されている。図示しないが、中間転写体50に転写されたトナー像を記録媒体(例えば用紙)に転写する二次転写装置も有している。なお、中間転写体50、転写装置40(一次転写装置)、及び二次転写装置(不図示)が転写手段の一例に相当する。
図2におけるプロセスカートリッジ300は、ハウジング内に、電子写真感光体7、帯電装置8(帯電手段の一例)、現像装置11(現像手段の一例)、及びクリーニング装置13(クリーニング手段の一例)を一体に支持している。クリーニング装置13は、クリーニングブレード(クリーニング部材の一例)131を有しており、クリーニングブレード131は、電子写真感光体7の表面に接触するように配置されている。なお、クリーニング部材は、クリーニングブレード131の態様ではなく、導電性又は絶縁性の繊維状部材であってもよく、これを単独で、又はクリーニングブレード131と併用してもよい。
なお、図2には、画像形成装置として、潤滑材14を電子写真感光体7の表面に供給する繊維状部材132(ロール状)、及び、クリーニングを補助する繊維状部材133(平ブラシ状)を備えた例を示してあるが、これらは必要に応じて配置される。
以下、本実施形態に係る画像形成装置の各構成について説明する。
−帯電装置−
帯電装置8としては、例えば、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が使用される。また、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用される。
−露光装置−
露光装置9としては、例えば、電子写真感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、定められた像様に露光する光学系機器等が挙げられる。光源の波長は電子写真感光体の分光感度領域内とする。半導体レーザの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザや青色レーザとして400nm以上450nm以下に発振波長を有するレーザも利用してもよい。また、カラー画像形成のためにはマルチビームを出力し得るタイプの面発光型のレーザ光源も有効である。
−現像装置−
現像装置11としては、例えば、現像剤を接触又は非接触させて現像する一般的な現像装置が挙げられる。現像装置11としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて電子写真感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが好ましい。
現像装置11に使用される現像剤は、トナー単独の一成分系現像剤であってもよいし、トナーとキャリアとを含む二成分系現像剤であってもよい。また、現像剤は、磁性であってもよいし、非磁性であってもよい。これら現像剤は、周知のものが適用される。
−クリーニング装置−
クリーニング装置13は、クリーニングブレード131を備えるクリーニングブレード方式の装置が用いられる。
なお、クリーニングブレード方式以外にも、ファーブラシクリーニング方式、現像同時クリーニング方式を採用してもよい。
−転写装置−
転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
−中間転写体−
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等を含むベルト状のもの(中間転写ベルト)が使用される。また、中間転写体の形態としては、ベルト状以外にドラム状のものを用いてもよい。
図3は、本実施形態に係る画像形成装置の他の一例を示す概略構成図である。
図3に示す画像形成装置120は、プロセスカートリッジ300を4つ搭載したタンデム方式の多色画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
以下、実施例により本実施形態を詳細に説明するが、本実施形態は、これら実施例に何ら限定されるものではない。なお、以下の説明において、特に断りのない限り、「部」及び「%」はすべて質量基準である。
<感光体の作製>
[感光体1]
(下引層の形成)
酸化亜鉛粒子(商品名:MZ 300、テイカ株式会社製、体積平均一次粒径35nm)100質量部、シランカップリング剤としてN−2−(アミノエチル)−3−アミノプロピルトリエトキシシランの10質量%のトルエン溶液を10質量部、及びトルエン200質量部を混合して攪拌を行い、2時間還流を行った。その後、10mmHgにてトルエンを減圧留去し、135℃で2時間焼き付けて、シランカップリング剤による酸化亜鉛の表面処理を行った。
表面処理した酸化亜鉛粒子:33質量部、ブロック化イソシアネート(商品名:スミジュール3175、住友バイエルンウレタン社製):6質量部、下記構造式(AK−1)で示される化合物:1質量部、及びメチルエチルケトン:25質量部を30分間混合し、その後ブチラール樹脂(商品名:エスレックBM−1、積水化学工業社製):5質量部、シリコーンボール(商品名:トスパール120、モメンティブ・パフォーマンス・マテリアルズ社製):3質量部、レベリング剤としてシリコーンオイル(商品名:SH29PA、東レダウコーニングシリコーン社製):0.01質量部を添加し、サンドミルにて1.8時間の分散を行い(すなわち、分散時間を1.8時間とし)、下引層形成用塗布液を得た。
さらに、浸漬塗布法にて、得られた下引層形成用塗布液を、直径47mm、長さ357mm、肉厚1mmのアルミニウム製の基体(導電性基体)上に塗布し、180℃、30分の乾燥硬化を行い、膜厚25μmの下引層を得た。
(電荷発生層の形成)
次に、電荷発生材料としてのヒドロキシガリウムフタロシアニン顔料「Cukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3゜、16.0゜、24.9゜、28.0゜の位置に回折ピークを有するV型のヒドロキシガリウムフタロシアニン顔料(600nm以上900nm以下の波長域での分光吸収スペクトルにおける最大ピーク波長=820nm、平均粒径=0.12μm、最大粒径=0.2μm、比表面積値=60m/g)」、結着樹脂としての塩化ビニル−酢酸ビニル共重合体樹脂(商品名:VMCH、株式会社NUC製)、およびn−酢酸ブチルからなる混合物を、容量100mLガラス瓶中に、充填率50%で1.0mmφガラスビーズと共に入れて、ペイントシェーカーを用いて2.5時間分散処理し、電荷発生層用塗布液を得た。ヒドロキシガリウムフタロシアニン顔料と塩化ビニル−酢酸ビニル共重合体樹脂の混合物に対して、ヒドロキシガリウムフタロシアニン顔料の含有率を55.0体積%とし、分散液の固形分は6.0質量%とした。含有率は、ヒドロキシガリウムフタロシアニン顔料の比重を1.606g/cm、塩化ビニル−酢酸ビニル共重合体樹脂の比重1.35g/cmをとして計算した。
得られた電荷発生層形成用塗布液を、下引層上に浸漬塗布し、100℃で5分間乾燥して、膜厚0.20μmの電荷発生層を形成した。
(電荷輸送層の形成)
次に、電荷輸送材料として、ブタジエン系電荷輸送材料(CT1)「例示化合物(CT1−1)8.0質量部及びベンジジン系電荷輸送材料(CT2)「例示化合物(CT2−1)」32.0質量部と、結着樹脂として、BPポリカーボネート樹脂「例示化合物(PC−1)、pm:pn=25:75、粘度平均分子量=5万」60.0質量部と、フッ素含有樹脂粒子として、4フッ化エチレン樹脂粒子(体積平均粒子径200nm):8質量部と、フッ素含有分散剤として、GF400(東亜合成社製:フッ化アルキル基を持つメタクリレートを少なくとも重合成分とした界面活性剤):0.3質量部と、酸化防止剤として、ヒンダードフェノール系酸化防止剤「例示化合物(HP−1)、分子量775」3.2質量部(全電荷輸送材料合計量100質量%に対して8.0質量%)と、をテトラヒドロフラン340.0質量部に加えて溶解し、電荷輸送層形成用塗布液を得た。
得られた電荷輸送層形成用塗布液を、電荷発生層上に浸漬塗布し、150℃、40分の乾燥を行うことにより、膜厚60μmの電荷輸送層を形成した。
以上の工程を経て、感光体1を得た。
得られた感光体の下引層の体積抵抗率ρ(表1中の「ρ」)及び電荷輸送層における単位面積当たりの静電容量(表1中の「静電容量」)を前述の方法で求めた。結果を表1に示す。
〔感光体2〕
感光体1の下引層の形成において、分散時間を1.8時間から1.0時間に変えた以外は、感光体1と同様にして、感光体2を作製した。
得られた感光体の下引層の体積抵抗率ρ及び電荷輸送層における単位面積当たりの静電容量を前述の方法で求めた。結果を表1に示す。
〔感光体3〕
感光体1の下引層の形成において、分散時間を1.8時間から1.7時間に変えた以外は、感光体1と同様にして、感光体3を作製した。
得られた感光体の下引層の体積抵抗率ρ及び電荷輸送層における単位面積当たりの静電容量を前述の方法で求めた。結果を表1に示す。
〔感光体4〕
感光体1の電荷輸送層の形成において、電荷輸送層の膜厚を60μmから45μmに変えた以外は、感光体1と同様にして、感光体4を作製した。
得られた感光体の下引層の体積抵抗率ρ及び電荷輸送層における単位面積当たりの静電容量を前述の方法で求めた。結果を表1に示す。
〔感光体5〕
感光体1の下引層の形成において、電荷輸送層の膜厚を60μmから40μmに変えた以外は、感光体1と同様にして、感光体5を作製した。
得られた感光体の下引層の体積抵抗率ρ及び電荷輸送層における単位面積当たりの静電容量を前述の方法で求めた。結果を表1に示す。
〔感光体6〕
感光体1の下引層の形成において、電荷輸送層の膜厚を60μmから35μmに変えた以外は、感光体1と同様にして、感光体6を作製した。
得られた感光体の下引層の体積抵抗率ρ及び電荷輸送層における単位面積当たりの静電容量を前述の方法で求めた。結果を表1に示す。
〔感光体7〕
感光体1の下引層の形成において、分散時間を1.8時間から0.7時間に変えた以外は、感光体1と同様にして、感光体7を作製した。
得られた感光体の下引層の体積抵抗率ρ及び電荷輸送層における単位面積当たりの静電容量を前述の方法で求めた。結果を表1に示す。
〔感光体8〕
感光体1の下引層の形成において、分散時間を1.8時間から1.9時間に変えた以外は、感光体1と同様にして、感光体8を作製した。
得られた感光体の下引層の体積抵抗率ρ及び電荷輸送層における単位面積当たりの静電容量を前述の方法で求めた。結果を表1に示す。
〔感光体9〕
感光体1の下引層の形成において、電荷輸送層の膜厚を60μmから65μmに変えた以外は、感光体1と同様にして、感光体9を作製した。
得られた感光体の下引層の体積抵抗率ρ及び電荷輸送層における単位面積当たりの静電容量を前述の方法で求めた。結果を表1に示す。
<評価>
〔ゴーストの評価〕
表1に示す感光体を画像形成装置(富士ゼロックス社製ApeosPort−V C5585の改造機)に搭載し、一次転写電流値が8μAになるように一次転写電圧を設定し、感光体回転速度:255mm/s、温度30℃、湿度75%の環境下で、A3用紙上に下記画像(ゴーストチャート)を5枚形成し、5枚目の画像を目視で確認し、下記評価基準によりゴーストの評価を行った。結果を表1(表1中の「ゴースト」)に示す。
なお、「ゴーストチャート」とは、具体的には、×の字を記載した感光体一周分経過した箇所にハーフトーン画像チャートが記載されているチャートである。
−ゴーストの評価基準−
G1(○):ゴーストが発生しない
G2(△):ゴーストがわずかに発生するが、許容範囲内
G3(×):ゴーストが発生し、許容範囲を超える
〔電位上昇による短寿命化の評価〕
表1に示す感光体を画像形成装置(富士ゼロックス社製ApeosPort−5 C5585の改造機)に搭載し、一次転写電流値が8μAになるように一次転写電圧を設定し、感光体回転速度:255mm/s、温度30℃、湿度75%の環境下で、100%ベタ画像のチャートを1枚形成し、次いで画像濃度5%のチャートを200,000枚形成し、さらに100%ベタ画像を1枚形成した。最初の100%ベタ画像形成における画像露光後の感光体電位VL1と、最後に形成した100%ベタ画像形成における画像露光後の感光体電位VL2と、の電位差(VL2−VL1)を測定し、下記評価基準により走行による電位上昇レベルの評価を行った。
−電位上昇による短寿命化の評価基準−
G1(○):電位差が100V以下
G2(△):電位差が100Vを超え150V以下
G3(×):電位差が150Vを超える
上記結果から、本実施例では、比較例に比べ、ゴーストの抑制と電位上昇による感光体の短寿命化の抑制とが両立されていることが分かる。
1 導電性基体、3 下引層、4 電荷発生層、5 電荷輸送層、6 機能分離型感光層、7 電子写真感光体、7A 電子写真感光体、8 帯電装置、9 露光装置、11 現像装置、13 クリーニング装置、14 潤滑材、40 転写装置(一次転写手段の一例)、50 中間転写体、100 画像形成装置、120 画像形成装置、131 クリーニングブレード、132 繊維状部材(ロール状)、133 繊維状部材(平ブラシ状)、300 プロセスカートリッジ

Claims (6)

  1. 導電性基体と、
    前記導電性基体上に設けられ、10℃/15%RHでの体積抵抗率が2.0×10Ω・cm以上2.0×1012Ω・cm以下である下引層と、
    前記下引層上に設けられた電荷発生層と、
    前記電荷発生層上に最表面層として設けられ、膜厚が35μm以上60μm以下である電荷輸送層と、
    を有する電子写真感光体。
  2. 前記電荷輸送層における単位面積あたりの静電容量は、4.0×10−9F/cm以上1.0×10−7F/cm以下である請求項1に記載の電子写真感光体。
  3. 前記電荷輸送層は、下記一般式(CT1)で示される電荷輸送材料と、下記一般式(CT2)で示される電荷輸送材料と、フッ素含有樹脂粒子と、分子量300以上のヒンダードフェノール系酸化防止剤と、下記一般式(PCA)で示される構造単位と下記一般式(PCB)で示される構造単位とを含むポリカーボネート樹脂と、を含有する請求項1又は請求項2に記載の電子写真感光体。

    (一般式(CT1)中、RC11、RC12、RC13、RC14、RC15、及びRC16は、各々独立に、水素原子、ハロゲン原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルコキシ基、又は、炭素数6以上30以下のアリール基を表し、隣接する2つの置換基同士が結合して炭化水素環構造を形成してもよい。cm及びcnは、各々独立に、0、1又は2を表す。)

    (一般式(CT2)中、RC21、RC22、及びRC23は、各々独立に、水素原子、ハロゲン原子、炭素数1以上10以下のアルキル基、炭素数1以上10以下のアルコキシ基、又は、炭素数6以上10以下のアリール基を表す。)

    (一般式(PCA)及び(PCB)中、RP1、RP2、RP3、及びRP4は、各々独立に、水素原子、ハロゲン原子、炭素数1以上6以下のアルキル基、炭素数5以上7以下のシクロアルキル基、又は、炭素数6以上12以下のアリール基を表す。XP1は、フェニレン基、ビフェニレン基、ナフチレン基、アルキレン基、又は、シクロアルキレン基を表す。)
  4. 請求項1〜請求項3のいずれか1項に記載の電子写真感光体を備え、
    画像形成装置に着脱するプロセスカートリッジ。
  5. 請求項1〜請求項3のいずれか1項に記載の電子写真感光体と、
    前記電子写真感光体の表面を帯電する帯電手段と、
    帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
    トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
    前記トナー像を記録媒体の表面に転写する転写手段と、
    を備える画像形成装置。
  6. 前記電子写真感光体の表面における残留電荷を除電する除電手段を有さない請求項5に記載の画像形成装置。
JP2016201899A 2016-10-13 2016-10-13 電子写真感光体、プロセスカートリッジ、及び画像形成装置 Active JP6891443B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016201899A JP6891443B2 (ja) 2016-10-13 2016-10-13 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016201899A JP6891443B2 (ja) 2016-10-13 2016-10-13 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2018063367A true JP2018063367A (ja) 2018-04-19
JP6891443B2 JP6891443B2 (ja) 2021-06-18

Family

ID=61966700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016201899A Active JP6891443B2 (ja) 2016-10-13 2016-10-13 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Country Status (1)

Country Link
JP (1) JP6891443B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027195A (ja) * 2018-08-13 2020-02-20 富士ゼロックス株式会社 画像形成装置、及びプロセスカートリッジ
CN111533929A (zh) * 2019-02-07 2020-08-14 富士施乐株式会社 含氟树脂粒子、组合物、层状物、电子照相感光体、处理盒及图像形成装置
JP2020128521A (ja) * 2019-02-07 2020-08-27 富士ゼロックス株式会社 フッ素含有樹脂粒子、組成物、層状物、電子写真感光体、プロセスカートリッジ、および画像形成装置
US10921723B2 (en) 2018-10-25 2021-02-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
EP4052096A4 (en) * 2019-10-28 2023-12-06 Hewlett-Packard Development Company, L.P. ELECTROPHOTOGRAPHIC PHOTORECEPTOR CAPABLE OF SUPPRESSING MICROJITTER IMAGE DEFECTS

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950142A (ja) * 1995-08-09 1997-02-18 Minolta Co Ltd 感光体
JP2000258942A (ja) * 1999-03-10 2000-09-22 Ricoh Co Ltd 画像形成方法
US20020048711A1 (en) * 1995-08-09 2002-04-25 Minolta Co., Ltd. Photosensitive member
JP2009276470A (ja) * 2008-05-13 2009-11-26 Fuji Xerox Co Ltd 画像形成装置
JP2012203033A (ja) * 2011-03-23 2012-10-22 Fuji Xerox Co Ltd 画像形成装置、及びプロセスカートリッジ
US20130157181A1 (en) * 2011-12-20 2013-06-20 Eiji Kurimoto Electrophotographic photoconductor, electrophotographic apparatus and process cartridge
JP2015090453A (ja) * 2013-11-06 2015-05-11 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジおよび画像形成装置
JP2016070997A (ja) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 電子写真感光体ユニット、画像形成装置、及びプロセスカートリッジ
JP2016143024A (ja) * 2015-02-05 2016-08-08 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジおよび画像形成装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950142A (ja) * 1995-08-09 1997-02-18 Minolta Co Ltd 感光体
US20020048711A1 (en) * 1995-08-09 2002-04-25 Minolta Co., Ltd. Photosensitive member
JP2000258942A (ja) * 1999-03-10 2000-09-22 Ricoh Co Ltd 画像形成方法
JP2009276470A (ja) * 2008-05-13 2009-11-26 Fuji Xerox Co Ltd 画像形成装置
JP2012203033A (ja) * 2011-03-23 2012-10-22 Fuji Xerox Co Ltd 画像形成装置、及びプロセスカートリッジ
US20130157181A1 (en) * 2011-12-20 2013-06-20 Eiji Kurimoto Electrophotographic photoconductor, electrophotographic apparatus and process cartridge
CN103176375A (zh) * 2011-12-20 2013-06-26 株式会社理光 电子照相光电导体、电子照相装置和处理盒
JP2013130596A (ja) * 2011-12-20 2013-07-04 Ricoh Co Ltd 電子写真感光体及び電子写真装置
JP2015090453A (ja) * 2013-11-06 2015-05-11 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジおよび画像形成装置
JP2016070997A (ja) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 電子写真感光体ユニット、画像形成装置、及びプロセスカートリッジ
JP2016143024A (ja) * 2015-02-05 2016-08-08 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジおよび画像形成装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027195A (ja) * 2018-08-13 2020-02-20 富士ゼロックス株式会社 画像形成装置、及びプロセスカートリッジ
US10921723B2 (en) 2018-10-25 2021-02-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
CN111533929A (zh) * 2019-02-07 2020-08-14 富士施乐株式会社 含氟树脂粒子、组合物、层状物、电子照相感光体、处理盒及图像形成装置
JP2020128521A (ja) * 2019-02-07 2020-08-27 富士ゼロックス株式会社 フッ素含有樹脂粒子、組成物、層状物、電子写真感光体、プロセスカートリッジ、および画像形成装置
EP4052096A4 (en) * 2019-10-28 2023-12-06 Hewlett-Packard Development Company, L.P. ELECTROPHOTOGRAPHIC PHOTORECEPTOR CAPABLE OF SUPPRESSING MICROJITTER IMAGE DEFECTS

Also Published As

Publication number Publication date
JP6891443B2 (ja) 2021-06-18

Similar Documents

Publication Publication Date Title
JP6891443B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
CN105867079B (zh) 电子照相感光体、处理盒和成像装置
JP6447200B2 (ja) 電子写真感光体、プロセスカートリッジおよび画像形成装置
JP6825382B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2017181601A (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2016184038A (ja) 画像形成装置およびプロセスカートリッジ
JP6794665B2 (ja) 画像形成装置
JP2018049148A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6658125B2 (ja) 画像形成装置
JP2018049240A (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
US10564556B2 (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6558105B2 (ja) 電子写真感光体、プロセスカートリッジおよび画像形成装置
JP7279440B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP6561625B2 (ja) 画像形成装置、及びプロセスカートリッジ
JP7468052B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2017067825A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2019060909A (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
US11209740B2 (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6481454B2 (ja) 電子写真感光体、プロセスカートリッジおよび画像形成装置
JP2019184700A (ja) 電子写真感光体、プロセスカートリッジ、画像形成装置
JP7275788B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2022151293A (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2019191366A (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2018054844A (ja) 画像形成装置
JP2020027195A (ja) 画像形成装置、及びプロセスカートリッジ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6891443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150