JP2017517120A - スライス・アンド・ビュー試料画像化のための方法および装置 - Google Patents

スライス・アンド・ビュー試料画像化のための方法および装置 Download PDF

Info

Publication number
JP2017517120A
JP2017517120A JP2016569868A JP2016569868A JP2017517120A JP 2017517120 A JP2017517120 A JP 2017517120A JP 2016569868 A JP2016569868 A JP 2016569868A JP 2016569868 A JP2016569868 A JP 2016569868A JP 2017517120 A JP2017517120 A JP 2017517120A
Authority
JP
Japan
Prior art keywords
image
vertical wall
sample
point
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016569868A
Other languages
English (en)
Other versions
JP6506780B2 (ja
Inventor
ヴァレリー・ブローデン
Original Assignee
エフ・イ−・アイ・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エフ・イ−・アイ・カンパニー filed Critical エフ・イ−・アイ・カンパニー
Publication of JP2017517120A publication Critical patent/JP2017517120A/ja
Application granted granted Critical
Publication of JP6506780B2 publication Critical patent/JP6506780B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • G01N23/2208Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement all measurements being of a secondary emission, e.g. combination of SE measurement and characteristic X-ray measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2255Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident ion beams, e.g. proton beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2611Stereoscopic measurements and/or imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

デュアル・ビーム・システムを用いて試料をスライス・アンド・ビュー処理する方法、装置およびシステム。このスライス・アンド・ビュー処理は、試料表面に形成されたトレンチの垂直壁を露出させること、照会ビームを用いてこの壁に照会することによって、このビームに対してこの壁が第1の向きにある間にこの壁の第1の画像を捕捉することを含み、このビームに対してこの壁が第2の向きにある間にこのビームを用いてこの壁に照会することによって、この壁の第2の画像を捕捉することであって、第1の画像上におけるこの壁上の基準点と表面点との間の第1の距離が、第2の画像上における基準点と表面点との間の第2の距離とは異なり、第1の距離および第2の距離を使用して、表面点の高さを決定すること、および、これらの高さを使用して、この壁の形状に曲線を当てはめることを含む。

Description

本発明は、荷電粒子ビームなどのビームを使用して試料を2次元および3次元で画像化する方法、装置およびシステムに関する。
電子顕微鏡法は、広範囲にわたる生物標本および無機標本の超微細構造を3Dでかつ高い分解能で調査する機会を提供する。例えば生物科学の分野では、電子顕微鏡法が、病気の分子機構、フレキシブルなタンパク質構造の配列、ならびに個々のウイルスおよびタンパク質の振舞いを自然の生物学的状況において観察することを可能にする。別の例として、電子顕微鏡法は、半導体および電子デバイスの製造において、電気システム、光学システムおよびマイクロメカニカル・システムの性能に影響を及ぼす可能性があるそれらのシステムのナノメートル規模の欠陥の検出および特徴づけを可能にすることにより、重要な品質管理機能を提供する役割を果たす。欠陥は、製作中に製品に埋め込まれた汚染物粒子、または互いに電気的に分離されていることが意図されている狭い間隔で配置された2つの導体間に短絡を生じさせるブリッジなどの製造欠陥を含みうる。このような調査を実施するために電子顕微鏡法とともに使用される1つの技法は、Slice−and−View(商標)(以後、「スライス・アンド・ビュー」)と呼ばれている。この技法は通常、本出願の譲受人であるFEI Companyから市販されているDualBeam(登録商標)機器などのデュアル・ビーム・システム、すなわち集束イオン・ビーム(FIB)装置と走査電子顕微鏡(SEM)とを組み合わせたシステムを用いて実行される。
図1によって示されているように、スライス・アンド・ビュー技法では、集束イオン・ビームが試料を高精度で切削、スライスして、その試料の3D内部構造または特徴部分を明らかにする。集束イオン・ビームは通常、見ようとする特徴部分が隠されている試料材料の表面の頂部に対して直角な断面または面を切削し、露出させる。SEMビーム軸は通常、集束イオン・ビーム切削軸に対して鋭角をなすため、試料のこの面の前方の部分を除去して、SEMビームがこの面に到達して画像化することができるようにすることが好ましい。SEMによってその面の画像を得た後、集束イオン・ビーム切削を使用して、その面から別の基板層を除去し、それによってより深い新たな面、したがって特徴部分のより深い断面を出現させることができる。SEMには、その特徴部分のその面の表面にある部分だけが見えるため、切削および画像化を逐次的に繰り返すことによって、すなわちスライス・アンド・ビュー処理を逐次的に繰り返すことによって、スライスされた試料を再構成してその特徴部分の3D表現を得るのに必要なデータが提供される。次いで、その3D構造を使用してその特徴部分を分析する。
スライスしている間に、集束イオン・ビームが試料を横断するにつれて、露出させた表面の形状が変動することがある。状況によっては、露出させた面が、くだけた言い方では「カーテニング」効果として知られている現象に起因する表面形態を有する。図2Aおよび2Bにはカーテニング効果が概略的に示されている。不均質な構造および/または不均質な組成を試料210が含むときには、矢印240の方向に面230を横切る線状のミリング225を集束イオン・ビーム215が実施するにつれて、FIBカラム220からの集束イオン・ビーム215が材料を除去する速度が局所的に変化することがある。その結果、集束イオン・ビームが露出させた試料の表面は、小さく波打った面またはカーテニングを有する。材料除去速度の局所的な増大は、露出させている面に入り込む、カーテニング・アーチファクト245A、245B、245Cなどの凹形のカーテニングを形成することがある。材料除去速度の局所的な低下は、露出させている面から突き出る、カーテニング・アーチファクト250など凸形のカーテニングを形成することがある。
米国特許第7,858,936号明細書 米国特許第5,851,413号明細書 米国特許第5,435,850号明細書
スライス・アンド・ビュー画像化による3D再構成のためのソフトウェア・アルゴリズムは一般に、SEMによって画像化されたそれぞれのスライスの表面は平らであると仮定する。カーテニングおよび他のアーチファクトの存在は形状の変動を生み出し、この形状の変動は、表面が平らでないことを意味し、表面が平らでないことは、露出させた表面の画像から形成された3D表現の中にノイズ(例えば分解能の低下)として現われることを本出願の出願人は見出した。したがって、試料のスライス・アンド・ビュー画像化中にSEMによって調べた表面から生成される3D表現の分解能を向上させるためには、それらの表面の形状の変動、例えばカーテニングの影響に起因する形状的な変動を考慮する方法、装置およびシステムが必要であることに本出願の出願人は気づいた。
本開示のいくつかの実施形態では、デュアル・ビーム・システムを用いたスライス・アンド・ビュー処理によって試料を処理する方法が提供される。この方法は、エッチング・ビームを使用して試料から材料の第1のスライスを除去することによって、試料の表面に形成されたトレンチの垂直壁を露出させること、照会ビームに対して垂直壁が第1の向きにある間に、照会ビームを用いて垂直壁に照会することによって垂直壁の第1の画像を捕捉すること、照会ビームに対する垂直壁の向きを変更すること、照会ビームに対して垂直壁が第2の向きにある間に照会ビームを用いて垂直壁に照会することによって、垂直壁の第2の画像を捕捉することを含み、第1の画像上における垂直壁上の基準点と表面の点との間の第1の距離が、第2の画像上における基準点と表面点との間の第2の距離とは異なり、この方法はさらに、第1の距離および第2の距離を使用して、表面点の高さを決定すること、およびこの高さを使用して、垂直壁の形状に曲線を当てはめることを含む。
本開示のいくつかの実施形態では、デュアル荷電粒子ビームを使用して特徴部分を観察する装置が提供される。この装置は、集束イオン・ビームを生成し、集束させ、導くように構成された集束イオン・ビーム・カラムと、電子ビームを生成し、集束させ、導くように構成された電子ビーム・カラムと、1つまたは複数のプロセッサと、1つまたは複数のプロセッサのうちの少なくとも1つのプロセッサに結合されたコンピュータ可読の記憶媒体とを含む。このコンピュータ可読記憶媒体は、第1の実行可能命令および第2の実行可能命令を含む。第1の実行可能命令が実行されたときに、第1の実行可能命令によって、1つまたは複数のプロセッサは、基板の表面にトレンチをミリングするように集束イオン・ビームを導き、このトレンチは、観察する特徴部分の周囲の領域を有する垂直壁を露出させる。第2の実行可能命令が実行されたときに、第2の実行可能命令によって、1つまたは複数のプロセッサは、電子ビーム・カラムの縦軸に対して電子ビーム・カラムが第1の入射角に維持されている間に垂直壁の第1の電子ビーム画像を捕捉するように電子ビームを導き、縦軸と垂直壁の間の入射角を、第1の入射角から第2の入射角に変化させ、電子ビーム・カラムが第2の入射角に維持されている間に壁の第2の電子ビーム画像を捕捉するように電子ビームを導き、第1の電子ビーム画像と第2の電子ビーム画像の間の差に基づいて垂直壁の形状を近似する。
この装置の一実施形態では、垂直壁の形状を近似することが、垂直壁上の複数の点の3次元座標を、第1の電子ビーム画像と第2の電子ビーム画像の基準点に対する第1の電子ビーム画像と第2の電子ビーム画像の複数の点の位置を使用して計算することを含む。この装置の一実施形態では、垂直壁の形状を近似することが、それらの3次元座標に、垂直壁の形状を近似する曲線を当てはめることを含む。この装置の一実施形態では、第1の電子ビーム画像と第2の電子ビーム画像の間の差に基づいて垂直壁の形状を近似することが、第1の電子ビーム画像上で、垂直壁上の複数の点と垂直壁上の1つまたは複数の基準点との間の第1の距離を測定すること、および第2の電子ビーム画像上で、複数の点と1つまたは複数の基準点との間の第2の距離を測定することを含む。
この装置の一実施形態では、第2の実行可能命令は、実行されたときに、1つまたは複数のプロセッサが、ステージの回転を指示することによって、縦軸と垂直壁との間の入射角を変化させる。この装置の一実施形態では、第2の実行可能命令は、実行されたときに、1つまたは複数のプロセッサが、電子ビーム・カラムの位置変更を指示することによって、縦軸と垂直壁との間の入射角を変化させる。
この装置の一実施形態では、この装置が第3の実行可能命令をさらに含み、第3の実行可能命令は、実行されたときに、1つまたは複数のプロセッサに、垂直壁の後ろに位置している観察する特徴部分を含む材料の一塊から、複数のスライスを逐次的に除去するように集束イオン・ビームを導かせ、複数のスライスの逐次的な除去は複数のさらなる垂直壁を逐次的に露出させ、第3の実行可能命令は、実行されたときに、1つまたは複数のプロセッサに、複数のさらなる垂直壁のそれぞれの垂直壁に対して第2の実行可能命令を実施させる。一実施形態では、この装置が、第3の実行可能命令および第4の実行可能命令を含み、第4の実行可能命令は、実行されたときに、1つまたは複数のプロセッサに、垂直壁および複数のさらなる垂直壁の形状の近似を使用して、観察する特徴部分の3次元画像を構築させる。
本開示のいくつかの実施形態では、観察する特徴部分を有する試料の一塊をスライス・アンド・ビュー処理する粒子ビーム・システムが提供される。この粒子ビーム・システムは、エッチング・ビームを放出するように構成されたエッチング・ビーム・カラムと、照会ビームを放出するように構成された照会ビーム・カラムと、1つまたは複数のプロセッサと、1つまたは複数のプロセッサのうちの少なくとも1つのプロセッサに結合されたコンピュータ可読記憶媒体とを含む。このコンピュータ可読記憶媒体は、実行可能命令を含み、実行可能命令が実行されたときに、実行可能命令によって、1つまたは複数のプロセッサは、前述の一塊の厚さにわたって試料のスライスを逐次的に除去するようにエッチング・ビームを導き、それぞれのスライスの除去が、試料の表面を露出させ、実行可能命令が実行されたときに、実行可能命令によって、1つまたは複数のプロセッサはさらに、表面を露出させるごとに、照会ビーム・カラムの縦軸と露出させた表面との間の第1の入射角を維持している間に露出させた表面の第1の画像を捕捉するように照会ビームを導き、さらに、縦軸と露出させた表面との間の第2の入射角を維持している間に露出させた表面の第2の画像を捕捉するように照会ビームを導き、第1の画像上における点の対の第1の位置および第2の画像上における点の対の第2の位置を記録し、点の対がそれぞれ、露出させた表面の点と基準点とを含む。
以上では、以下の本発明の詳細な説明をより十分に理解できるように、本発明の特徴および技術上の利点をかなりおおまかに概説した。以下では、本発明の追加の特徴および追加の利点を説明する。開示される着想および特定の実施形態を、本発明の同じ目的を達成するために他の構造体を変更しまたは設計するためのベースとして容易に利用することができることを当業者は理解すべきである。さらに、このような等価の構造体は、添付の特許請求の範囲に記載された本発明の趣旨および範囲を逸脱しないことを当業者は理解すべきである。
次に、本発明および本発明の利点のより完全な理解のため、添付図面に関して書かれた以下の説明を参照する。
試料のスライス・アンド・ビュー処理を示す図である。 スライス・アンド・ビュー処理を受けている試料であって、カーテンを示している試料の側面図である。 図2Aの試料の正面の立面図である。 スライス・アンド・ビュー処理によって試料を処理する本開示の一実施形態に基づく方法の流れ図である。 本開示の一実施形態に基づく基準マークを備える試料の簡略化された図である。 試料の表面に傾斜したトレンチが形成された、図2Aの試料の拡大された部分を示す図である。 本開示の一実施形態に基づく、試料の表面を露出させるための集束イオン・ビームによる線状のミリングの実行を示す簡略化された図である。 試料を第1の向きに維持している間に電子ビームによって捕捉された、さまざまな点において試料の面内にエッチングすることができる、機械が認識可能な形状を有する試料のSEM顕微鏡写真を示す図である。 本開示の一実施形態に従って第1の向きとは異なる第2の向きに試料を維持している間に捕捉された、図6Aの試料のSEM顕微鏡写真を示す図である。 SEMデバイスによって2つの異なる向きから試料表面を画像化する本開示の一実施形態に基づく画像化を示す図である。 SEMデバイスによって2つの異なる向きから試料表面を画像化する本開示の一実施形態に基づく画像化を示す図である。 SEMデバイスによって2つの異なる向きから試料表面を画像化する本開示の一実施形態に基づく画像化を示す図である。 本開示の一実施形態に従ってSEMによって捕捉された試料表面のSEM画像の略図である。 本開示の一実施形態に従ってSEMによって捕捉された試料表面のSEM画像の略図である。 本開示の他の実施形態に基づく、SEMによって画像化している試料表面の第1の向きから第2の向きへの向き変更を示す図である。 SEMに対して試料表面が第1の向きに維持されている間にSEMによって捕捉された、図9Aの試料表面の第1の画像を示す図である。 SEMに対して試料表面が第2の向きに維持されている間にSEMによって捕捉された、図9Aの試料表面の第2の画像を示す図である。 デュアル荷電粒子ビームを使用して特徴部分を観察する一実施形態に基づく装置の略図である。 一実施形態に基づくスライス・アンド・ビュー・デュアル荷電粒子ビーム・システム1102の一実施形態のブロック図である。
以下の議論および特許請求の範囲では、用語「含む」および「備える」が、オープン・エンド型の用語として使用されており、したがって、これらの用語は、「...を含むが、それらだけに限定されない」ことを意味すると解釈すべきである。ある用語が本明細書で特に定義されていない場合、その用語は、その通常の一般的な意味で使用されることが意図されている。さらに、本明細書での用語「および/または」の使用は、「包括的な」「または」として解釈すべきであり、「排他的な」「または」と解釈すべきではない。例えば、本明細書で使用される句「Aおよび/またはB」は、「AもしくはB、またはAおよびB」を意味する。他の例として、明細書で使用される句「A、Bおよび/またはC」は、「AもしくはBもしくはC、またはこれらの任意の組合せ」を意味する。さらに、本明細書において、用語「自動」、「自動化された」または類似の用語が使用されるとき、これらの用語は、自動プロセスもしくは自動ステップまたは自動化されたプロセスもしくは自動化されたステップの手動による開始を含むものと理解される。
本明細書で使用されるとき、用語「ミリングする」および「エッチングする」は、試料の材料を除去することを指し、用語「スライスする」、「スライス・ミリングする」および「スライスをエッチングする」は、スライスの形の材料を試料から除去することを指す。本明細書で使用されたとき、用語「スライス」は、名詞として使用されると、表面を露出させるためにFIBによって除去された材料の塊を指す。スライスは、例えば幅寸法、高さ寸法および厚さ寸法によって特徴づけることができ、これらの寸法はそれぞれ、図1に示されたx、yおよびz軸と整列した図1の例示的な試料の縁に対応する。
本明細書で使用されるとき、「画像」は、例えば、コンピュータ記憶装置内の画像の表現だけでなく、表示ユニット上に表示された画像または紙などの使い捨て可能な媒体上に表示された画像を意味する。本明細書で使用されるとき、用語「画像平面」は、照会ビーム・システム(例えばSEM)によって生成された画像がそこから形成された平面を指し、「画像化平面」は、除去ビーム・システム(例えばFIB)装置を使用して試料からスライスを除去することによって露出させた試料の断面を指す。
添付図面は、本発明のさまざまな実施形態を理解する助けとなることが意図されている。特に明示されていない限り、添付図面は一定の尺度では描かれていない。
他の座標系を使用して、本発明の実施形態を説明しおよび/または実現することもできるが、簡単にするため、本明細書では、本開示の例示的なさまざまな実施形態に関して説明する試料および試料環境に対する座標系として、図1に示された3D座標系を使用する。したがって、そうではないと明示されていない限り、または異なる状況にあると明示されていない限り、本明細書では、用語「z軸」、「z座標」、「z高さ」、「高さ」、「厚さ方向」などが、図1のz軸に関して使用され、本明細書では、用語「x軸」、「x座標」、「水平」、「水平方向」、「水平アライメント」、「幅方向」、「試料幅」、「スライス幅」などが、図1のx軸に関して使用され、本明細書では、用語「y軸」、「y座標」、「垂直」、「垂直方向」、「垂直アライメント」、「深さ」、「高さ」、「高さ方向」、「試料高さ」、「スライス高さ」などが、図1のy軸に関して使用される。したがって、本明細書では、「高さ」と「垂直高さ」が同義語として使用され、これらの用語は、ある点から、その点の真下の試料の表面まで、図1のy軸に対して平行な線に沿って、図1のy軸の方向に測定された距離を指す。本明細書では、「z高さ」と「高さ」が同義語として使用され、これらの用語は、ある点から、試料の画像化平面までの距離であって、図1のz軸に対して平行な軸であり、その点と画像化平面の両方を通る軸に沿った距離を指す。さらに、本明細書で使用されるとき、試料の上面(例えば図1の「スライス方向」矢印の真下の表面)に形成されたトレンチ内に位置する点の深さは、試料の上面と重なる平面から、その点まで、図1のy軸に対して平行な線であり、図1のy軸の試料方向の表面の両方を通る線に沿って測定される。
場合によっては、試料のスライス・アンド・ビュー処理によって特徴部分の3D表現を形成する方法であって、3D表現のもととなる画像化された表面の輪郭の形状変動(すなわち平らな輪郭からの偏差)を特徴づけ、補正することによって、3D表現の品質(例えば分解能)を向上させる方法を提供することが望ましいことがある。さまざまな実施形態で、照会ビームが、エッチング・ビームによって材料のスライスを試料から除去した後の露出した試料のそれぞれの表面の少なくとも2つの画像を捕捉する。表面を露出させるごとに、照会ビームは、露出させた表面の第1の画像を捕捉し、次いで、照会ビームに対する露出させた表面の向きを変更した後に、露出させた表面の第2の画像を捕捉する。いくつかの実施形態では、エッチング・ビームがFIB装置の集束イオン・ビームであり、照会ビームがSEMの電子ビームである。いくつかの実施形態では、試料がステージ上に装着され、照会ビームに対する露出させた表面の向きの変更が、試料を角度θだけ回転させることを含む。いくつかの実施形態では、照会ビームに対する露出させた表面の向きの変更が、照会ビームの源の位置を変更することによって、照会ビームと露出させた表面との間の入射角を変化させることを含む。スライス・アンド・ビュー処理中に露出させた試料のそれぞれの表面を2つの異なる視点から画像化することによって(すなわち、露出させた表面の照会ビームに対する向きを、第1の画像を捕捉する間、維持されていた向きとは異なる向きに維持しながら、第2の画像を捕捉すること)、露出させたそれぞれの表面に関する形状情報を得ることができ、その形状情報を使用して、露出させた表面が平らであると仮定した場合に達成されたであろう分解能よりも大きな分解能を有する、試料中の特徴部分の3D表現を生成することができる。
次に図3を参照すると、デュアル・ビーム・システムを用いたスライス・アンド・ビュー処理によって試料を処理する本開示の一実施形態に基づく方法300の流れ図が示されている。試料から材料を除去するため、方法300のデュアル・ビーム・システムは、FIB装置からの集束イオン・ビーム、レーザからのレーザ・ビームなどのエッチング・ビームを利用する。エッチング・ビームによって露出させた試料の表面を画像化するため、方法300のデュアル・ビーム・システムは、SEMからの電子ビームなどの照会ビームを利用する。いくつかの実施形態では、試料がステージ上に装着される。そのようないくつかの実施形態では、ステージが、エッチング・ビームおよび照会ビームに対して回転可能であり、および/または平行移動可能であり、ステージの回転は、露出させた表面の画像を異なる視点から取得することができるような態様の、露出させた表面の向きの変更を可能にする。方法300は、FIB装置からの集束イオン・ビーム、SEMからの電子ビーム、回転可能なステージ、および他の特定の要素を使用して説明されるが、そのような選択は単なる例であり、等しく機能する能力を有する構成要素を使用することもできることに留意すべきである。本開示のさまざまな実施形態が、集束イオン・ビームおよび/またはレーザを利用してスライスを除去するが、ウルトラミクロトームなどのその他のツールを使用してスライスを除去することもできることにも留意すべきである。そのようなツールも、平らな輪郭から逸脱した表面を露出させることがあり、そのような表面も、本明細書に開示された技法のうちの1つまたは複数の技法を使用して補正することができる。
方法300はブロック305から始めることができ、ブロック305では、デュアル・ビーム・システムのステージ上に試料を装填する。FIBが試料表面に対して垂直に衝突し、電子ビームが試料表面に52度の角度で衝突するように、デュアル・ビーム・システムのステージは通常、水平から52度傾けられている。いくつかの実施形態では、集束イオン・ビーム断面のガウス形状を考慮するため、垂直からわずかに傾いた角度で集束イオン・ビームを試料の表面に衝突させることによって、試料表面に対してほぼ直角な断面壁が達成される。53度または54度のステージ傾斜角は、52度のステージ傾斜角よりも垂直な断面壁を提供することができる。
方法300はブロック310に進むことができ、ブロック310では、スライス・アンド・ビュー処理中の集束イオン・ビームおよび電子ビームの正確な位置決めを容易にするため、試料400の表面405の観察しようとする特徴部分412の近くに、集束イオン・ビームを使用して、基準マーク410を形成する。図4Aに示されているように、基準マーク410は、基準マーク410を腐食する傾向がある集束イオンによる走査を繰り返した後でも基準マーク410の中心線を容易に認識することができるように、堅牢な形状を有することが好ましい。集束イオン・ビームおよび電子ビームの位置を、基準マーク410から、除去されている領域へ移すのに、ステージを移動させる必要がないように、いくつかの実施形態では、基準マーク410が、試料400をスライスする場所に十分に近い位置に形成される。すなわち、ステージを移動させる必要なしに、電子ビームを、ビーム偏向電極を使用して、基準マーク410を画像化するのに十分に移動させることができ、または試料400から断面を除去するのに十分に移動させることができる。基準マーク410は、ブロック315、320、325、330および340において、集束イオン・ビームおよび電子ビームの正確な位置決めを保証する目的に使用される。ビームのドリフトおよびステージのドリフトに合わせてシステムを調整するための新たな座標オフセットを得るため、基準マーク410を再画像化することによってビーム位置を取得する。基準マーク410の座標は既知であり、そのため、基準マーク410の既知の座標と基準マーク410の測定された座標との間の相違は、測定された座標に適用することができるオフセットを与える。縁を認識する能力を持たない機械では、ただ単に基準マーク410を基準として使用することによって、局所的なビーム配置を実行する。図4Aの破線によって示されているように、特徴部分412は、表面よりも下にあることがある。
方法300はブロック315に進むことができ、ブロック315では、集束イオン・ビームを使用して、試料400の表面405に傾斜トレンチ420(図4B)を形成する。傾斜トレンチ420は例えば、特徴部分412から約1μmのところにミリングすることができ、約4μmの幅および約1.0μmから約3.0μmの範囲の深さを有することができる。傾斜トレンチ420の深さは、表面よりも下にある特徴部分412の位置に応じて決定することができる。傾斜トレンチ420の角度は、傾斜トレンチ420の端にある断面415を集束イオン・ビームと電子ビームの両方が走査することができる十分な角度とする。断面415は通常、基板表面に対して垂直であり、線状のミリングの方向に対して平行に広がる。傾斜トレンチ420を形成するために集束イオン・ビームが大部分の材料を除去していたときに集束イオン・ビームによって提供された表面よりも滑らかな表面を提供するため、断面415において薄い仕上げ切削を実施することができる。いくつかの実施形態では、電子ビームが、試料の他の表面によって遮られることなしに、(画像化しようとする垂直壁に対するSEMの)2つ以上の異なる向きから、FIBによって露出させた垂直壁に十分に照会することができるように、傾斜トレンチ420の寸法が決められる。
さまざまな実施形態で、ミリングする領域のサイズおよび形状は、マシン・ビジョンによって集められた情報によって決定される。マシン・ビジョンは、正確な試料処理および試料処理の自動化を可能にする。マシン・ビジョンでは、コンピュータを使用して、画像情報、普通はSEM画像から得た画像情報を処理し、それによって、特徴部分の縁、サイズ、質量中心などの特徴部分の物理的特性を決定する。マシン・ビジョンのために使用されるソフトウェアには例えば、米マサチューセッツ州NantickのCognex CorporationのCognex VisionProソフトウェアが含まれる。典型的なマシン・ビジョン・ソフトウェアは、ある試料領域中の特徴部分を、平均グレー・レベル、コントラスト、テクスチャなどの画像特性に基づいて識別するように動作する。例えば、画像上のそれぞれの画素に、周囲の画素に対するその画素のテクスチャ品質を表す指定された値、例えば単一の数値を与えることができる。関心の特徴部分は通常、その中でその特徴部分を画像化する周囲の試料とは異なる画像特性、例えば周囲の試料とは異なるテクスチャを有する。したがって、周囲の画像とは異なる値のあるパラメータ内の平均テクスチャを有する画素のグループとして、関心の特徴部分を識別することができる。マシン・ビジョン・ソフトウェアは、試料の画像化されたスライスごとに、関心の特徴部分の位置を自動的に突き止め、関心の特徴部分を自動的に測定することが好ましい。
方法300はブロック320に進むことができ、ブロック320では、図5に示されているように、断面415にわたって傾斜トレンチ420から材料のスライスを除去することによって、カーテニング・アーチファクト545および550を有する垂直壁505を露出させる。この材料のスライスは、FIBカラム520からの集束イオン・ビーム515を使用して傾斜トレンチ420から除去することができる。いくつかの実施形態では、図5に示されているように、材料のスライスが、「線状のミリング」を実行することによって除去される。線状のミリングは、断面415(および垂直壁505)の平面に対して実質的に平行に走る本質的に1次元の線をミリングすることを含む。線状のミリングの実行は図2Aおよび2Bにも示されており、これらの図では、試料210の面230を矢印240の方向に左から右に直線を描いて横断することによって、FIBカラム220の集束イオン・ビーム220が線状のミリング225を実施している。集束イオン・ビーム215は面230に対して実質的に平行である。他の実施形態では、集束イオン・ビーム515を用いて長方形ミリングを実行することによって、材料のスライスが除去される。そのような1つの実施形態では、FIBカラム520が、スライスの厚さを指定する入力をユーザから受け取り、その指定された厚さの材料のスライスを、FIBカラム520からの集束イオン・ビームを用いた線状のミリングを実行することによって除去するように構成されたシステムの部分である。
さまざまな実施形態で、エッチング・ビーム(図5の場合には集束イオン・ビーム515)によって除去されるスライスの厚さは、約20nmから約100nmの範囲、例えば約30nmから約60nm、あるいは約35nmから約45nm、あるいは約35nmから約40nmの範囲にある。いくつかの実施形態では、ミリングされ除去されるスライスの厚さが約300nm未満である。除去されるスライスの幅寸法および高さ寸法は例えば、約10μmから約100μmの範囲とすることができる。
いくつかの実施形態では、方法300が、最初にブロック320を省略する。そのような実施形態では、ブロック315で断面415のところに露出した試料の表面に対して、最初にブロック325〜355が実施される。そのような実施形態では、ブロック320の最初の繰返しが、試料400のスライス・アンド・ビュー処理で画像化する2番目の表面に対して実施される。
任意選択で、方法300は、垂直壁505の表面を装飾するブロック325を含むことができる。本明細書で使用されるとき、用語「装飾する」は、例えば本発明の出願によって所有されているCastagnaおよびBrayの「Slice and View with Decoration」という名称の米国特許第7,858,936号明細書に記載されているように、層と層の境界面の輪郭を描くために、垂直壁505などの試料の表面の部分を優先的に軽くエッチングすることを指す。
ステップ328では、垂直壁505上の表面点555の場所に印を付けまたはフラグを立てるため、任意選択で、垂直壁に機械識別可能な形状をエッチングする。いくつかの実施形態では、機械識別可能な形状を形成することが、二フッ化キセノンなどのエッチング強化ガスの存在下で垂直壁505に向かって電子ビームを導くことによって実施される。この電子ビームおよびガスは、異なる視角から(例えば異なる入射角の照会ビームで)捕捉された垂直壁505の複数の画像上で同じ表面点555を識別することができるように、垂直壁505上に存在する材料の一部を優先的にエッチングする。例えば、二フッ化キセノンは、二フッ化キセノンが窒化シリコンをエッチングするよりも速く酸化シリコンをエッチングし、そのため、酸化物−窒化物境界に階段の段状の小さな縁を残す。除去する材料の厚さは例えば約30nm未満、あるいは約20nm未満とすることができる。いくつかの実施形態では、それぞれのスライスと一緒に機械識別可能な形状もミリングによって除去されるように、機械識別可能な形状の深さがスライスの厚さよりも小さいことが好ましい。1つのスライスから別のスライスに移っても表面点が見えるように、他の実施形態では、機械識別可能な形状をスライスの厚さよりも深くミリングして、異なるスライス上に同じ表面点を作る。スライスごとに機械識別可能な形状をミリングし直すことができ、任意選択で、一連のスライスを通して表面点を伝えるため、それらの機械識別可能な形状の深さをスライスの厚さよりも大きくすることができる。
画像から、異なる高さを有するように見える垂直壁上の位置に、機械識別可能な形状を形成することができ、それらの位置は、オペレータによって手動で決定され、または画像認識ソフトウェアを使用して自動的に決定される。あるいは、例えば表面にわたる長方形の格子などの規則正しいパターンで、機械識別可能な形状をミリングすることもできる。いくつかの実施形態では、ミリングされた機械識別可能な形状を使用するのではなしに、既存の試料の特徴部分を使用すること、または既存の特徴部分とミリングされた形状の組合せを使用することができる。垂直面の高さマップを形成する点のパターンは、機械が識別可能な1つまたは複数の特徴部分または基準マークからのオフセットを使用することにより、それぞれの測定点に個別に印が付けることなく決定することができる。例えば、試料の1つの角に、位置および向き決めるための基準マークをミリングし、次いで、その基準マークから既知の距離のところにX線アレイとして間隔を置いて配置された格子パターンの点において、または他のパターンの点において、高さを決定することができる。
垂直壁505上に機械識別可能な形状が存在すると、SEMによって異なる入射角で捕捉された試料の複数の画像上において垂直壁505上の特定の表面点555の位置を識別するマシン・ビジョン・ソフトウェアの能力が向上する。図6Aおよび6Bを参照すると、露出させた垂直壁の向きを電子ビームに対して異なる向きに維持している間に電子ビームによって捕捉された、集束イオン・ビームによって露出させた試料の面のSEM顕微鏡写真が示されている。異なる向きで捕捉された異なる画像上において面上の特定の表面点555の場所を、機械識別可能な形状を使用してどのように識別するのかを例示するため、それぞれの顕微鏡写真の試料面上の特定の場所に対応する位置の上に、6つの異なる機械識別可能な形状の図形を重ね合わせた。その顕微鏡写真の実際の試料を用いて回転させ、画像化した場合に機械識別可能な形状がどのように見えるのかを示すために、図6Bの機械識別可能状はさらに編集されている。向きによって図6Bの画像は歪んでいるが、機械識別可能な形状によって印が付けられた特定の位置は、人間の眼によって即座に識別可能である。比較すると、いくつかの機械識別可能な形状(例えば機械識別可能な形状
Figure 2017517120
および
Figure 2017517120
)の周囲の点は、試料の比較的に特徴のない平面にあり、それらの点を、異なる向きで捕捉された画像間で追跡すること、およびやはり比較的に特徴のないその平面上に位置する近くの点から区別することはかなり難しい。
本開示のさまざまな実施形態に適した機械識別可能な形状は通常、マシン・ビジョン・ソフトウェアのパターン認識アルゴリズムによって識別可能な実質的に2Dの形状を含む。適当な機械識別可能な形状の例は、限定はされないが、円、正方形、三角形、長方形などの基本的な幾何学的形状、ならびに図6A〜6B、8A〜8Bおよび9B〜9Cに示された記号などの単純な記号などである。表面点555に対して使用する機械識別可能な形状を変化させると、垂直壁505の第1の画像に示された装飾された点を、垂直壁505に対するビームの向きを変更した後に捕捉された第2の画像上で、その装飾された点と全く同じ形状または類似の形状を有する機械識別可能な形状によって印が付けられた異なる点と取り違える可能性が低下し、またはそのような可能性が排除される。表面点555に印を付ける目的に使用する形状の多様性が大きいほど、誤識別の可能性は低くなる。一実施形態では、垂直壁505上の表面点555を識別する目的に使用する機械識別可能な形状が、少なくとも2つの形状を含む。
ブロック325から、方法300はブロック330に進むことができ、ブロック330では、電子ビームおよび/またはSEMに対して垂直壁が第1の向きに維持されている間に、SEMの電子ビームを用いて垂直壁505の第1の画像を捕捉し、その画像を記憶する。図7Aに示されているように、SEM530からの電子ビーム705に対して試料400の垂直壁505が第1の向き「O」に保持されているときに、電子ビーム705を用いて垂直壁505に照会することによって、垂直壁505の第1の画像を生成することができる。電子ビーム705は通常、5kVで動作させ、スルー・ザ・レンズ検出器を使用する。電子ビーム705によって補足された画像の記憶は、コンピュータ・ハード・ドライブなどのコンピュータ可読記憶媒体上で実施することができる。
ブロック330から、方法300はブロック535に進むことができ、ブロック535では、電子ビーム705および/またはSEM530に対する垂直壁505の向きを、第1の向きOから第2の向き「O’」に変更する。電子ビーム705に対する垂直壁505の向きの変更は、試料400を回転させることによって、または試料400を傾けることによって実施することができる。それに加えてまたはその代わりに、SEM530を平行移動させて、SEM530を、第1の画像の捕捉の間、維持されていたSEM530の縦軸710から遠ざけることで、電子ビーム705と垂直壁505間の入射角を変更することによって、電子ビーム705に対する垂直壁505の向きを変更することもできる。向きOとO’ではともに、縦軸710が垂直壁505と交わるようにSEM530を整列させる。
次に図7Bを参照すると、本開示の一実施形態に基づくSEM530に対する垂直壁505の向きの変更が示されている。垂直壁505の向きの変更は、図面に対して垂直な軸(点Pとして示されている)を軸にして、試料400を矢印RPの方向に角度θ1だけ傾けることによって実施される。この向きの変更は、試料400の向きを向きOから向きO’に変化させる。垂直壁505の向きを変更した後、方法300はブロック340に進むことができ、ブロック340では、向きO’を有する垂直壁505の第2の画像を捕捉し、その画像を記憶する。図7Cに示されているように、SEM530からの電子ビーム705に対して試料400の垂直壁505が第1の向きO’に保持されているときに、電子ビーム705を用いて垂直壁505に照会することによって、垂直壁505の第2の画像を生成することができる。
さまざまな実施形態で、垂直壁505の画像化は、FIBカラム520の集束イオン・ビーム515を使用して実施される。いくつかの実施形態では、方法300の画像化ステップが、FIBカラム520を使用して実施され、垂直壁505の画像を捕捉する目的にSEMが使用されない。そのような1つの実施形態では、デュアル荷電粒子ビーム・システムの代わりに単一の荷電粒子ビームが使用される。他の実施形態では、垂直壁505の画像を捕捉する目的にFIBカラム520とSEM530の両方が使用される。いくつかの実施形態では、1つまたは複数の垂直壁が、FIBカラム520とSEM530の両方によって画像化される。いくつかの実施形態では、1つまたは複数の垂直壁が、FIBカラム520とSEM530の両方によって画像化され、別の1つまたは複数の直壁が、FIBカラム520とSEM530のうちの一方だけによって画像化される。いくつかの実施形態では、1つもしくは複数の垂直壁が、FIBカラム520とSEM530の両方によって画像化され、残りの垂直壁が、FIBカラム520によっては画像化されるが、SEM520によっては画像化されず、または、残りの垂直壁が、SEM530によっては画像化されるが、FIBカラム520によっては画像化されない。
ブロック340から、方法300はブロック345に進むことができ、ブロック345では、表面点555に対応する3D座標を生成する。一実施形態では、表面点555のうちの所与の表面点pの3D座標が、任意の原点から測定した、垂直壁505の画像化平面(例えば図1参照)における点pのx座標およびy座標、ならびに点pの高さを含む。
それぞれ向きOおよびO’においてSEM530によって捕捉された第1の画像および第2の画像を使用して、垂直壁505上の表面点555の高さの差を決定することができる。他の高さをそこから測定する基準面に置かれている1つの点を指定することができる。第1の画像上および第2の画像上で表面点pと固定された基準点との間の距離をそれぞれ測定し、測定された距離を下式(1)に入力することによって、表面点555のうちの所与の表面点pの高さZを決定することができる。
Figure 2017517120
上式で、
は、第1の画像上における基準点の位置、A’は、第2の画像上における基準点の位置、Bは、第1の画像上における点iの位置、B’は、第2の画像上における点iの位置、Zは、位置Bにある表面点iの、基準点Aの高さに対する高さ、
Figure 2017517120
は、A’とB’の間の距離、
Figure 2017517120
は、AとBの間の距離、θは、第1の入射角と第2の入射角の差である。
ブロック330の垂直壁505の第1の画像の捕捉、ブロック335の垂直壁505の向きの変更、ブロック340の垂直壁505の第2の画像の捕捉および式(1)の変数の間の関係は、図8A〜9Cに示された本開示の実施形態からより良く理解することができる。最初に、図9Cを図9Bと比較し、図8Aを図8Bと比較することによって、垂直壁405の第1の画像上で測定された垂直壁405上の点の1つまたは複数の対間の距離が、垂直壁405の第2の画像上で測定されたときの同じ点の対の測定された距離とは異なることを理解し、そのことを観察すべきである。
図8Aおよび8Bには、集束イオン・ビーム515によって装飾した後に捕捉された垂直壁505のSEM画像が示されている。図8AのSEM画像800Aは、SEM530によって図7Aに示された向きOから画像化された垂直壁505を示す。機械識別可能な形状B、B、B、B、BおよびBはそれぞれ、点P、P、P、P、PおよびPの位置に印を付けている。距離D、D、D、D、DおよびDはそれぞれ、点P、P、P、P、PおよびPに対する式(1)の表現
Figure 2017517120
の値に対応する。上で説明したとおり、本開示のさまざまな実施形態は、方法300で捕捉した画像の特徴部分の位置を突き止めるためにマシン・ビジョンを利用し、マシン・ビジョンを、機械識別可能な形状B、B、B、B、BおよびBなどの機械識別可能な形状と組み合わせて使用すると、表面点を追跡する正確さを向上させることができる。画像800Aに対して、マシン・ビジョンを、機械識別可能な形状B、B、B、B、BおよびBと組み合わせて使用して、点P、P、P、P、PおよびPの位置を正確に決定することができ、それによって、点P、P、P、P、PおよびPのx−y座標、ならびにP、P、P、P、PおよびPと基準点Aとの間の距離D、D、D、D、DおよびDを正確に決定することができる。さらに、上で論じたとおり、マシン・ビジョンは、1つの表面点を別の表面点と誤って識別する確率を低下させることによって、画像800Aと画像800Bの間など、異なる向きで捕捉された垂直壁505の画像間での点の追跡を改善する。
図8Bを参照すると、SEM画像800Bは、図7Aに示された向きO’からSEM530によって画像化された垂直壁505を示す。機械識別可能な形状B’、B’、B’、B’、B’およびB’はそれぞれ、点P’、P’、P’、P’、P’およびP’の位置に印を付けている。距離D’、D’、D’、D’、D’およびD’はそれぞれ、点P、P、P、P、PおよびPに対する式(1)の表現
Figure 2017517120
に対する値に対応する。図800Aと同様に、マシン・ビジョンを使用して、D’、D’、D’、D’、D’およびD’の値をより正確に突き止めることができる。不注意で、間違った点からの距離を使用して高さZ、Z、Z、Z、ZおよびZが計算されないように、固有の形状を有する5つの機械識別可能な形状B、B、B、B、BおよびBと組み合わせて使用されるマシン・ビジョンを使用して、点P’、P’、P’、P’、P’およびP’を識別することもできる。点P〜Pと点P’〜P’は、集束イオン・ビーム515によって露出させ、SEM530によって画像化した垂直壁505上の同じ場所に対応すること、ならびに点P〜Pおよび点P’〜P’は、SEM画像800Aおよび800B上で見たときのそれらの場所の表現であることに留意すべきである。同様に、基準点Aと基準点A’も、試料400上の同じ場所に対応する。図7A〜7Cを再び参照すると、高さZ、Z、Z、Z、ZおよびZを計算するために使用する式(1)の角度θは、図7Bに示された角度θである。
いくつかの実施形態では、より大きな値の角度θで電子ビーム705が垂直壁505に障害なしに到達することを容易にするため、ブロック315で、またはブロック330、335および340のうちの任意の1つのブロックの部分として、側面トレンチ825Aおよび825Bを、集束イオン・ビーム515によってミリングすることができる。例えば、向き変更によって垂直壁505が向きO’に置かれ、向きO’では、垂直壁505への到達が、試料の障害部分によって遮られる場合には、集束イオン・ビームを利用してその障害を除去し、それによって垂直面505の全体を画像化することを可能にすることができる。
電子ビーム705および/またはSEM530に対する垂直壁505の向きは、図7Aおよび7Bに示された回転だけに限定されず、方法300は、SEM530に対する垂直壁505の平行移動の使用を企図し、この平行移動の使用によって、ブロック330および340に従って得た垂直壁505の画像から形状情報を引き出すことができる。そのような1つの実施形態が図9A〜9Cに示されている。図9Aは、向きo’に配置された装飾された垂直壁505を示す。図9Aでは、垂直壁505を、軸900を軸にして、向きo’から、矢印Rによって示された回転方向に角度θだけ回転させて向きo’’にする。軸900は、FIBカラム520の縦ビーム軸と重なり、またはFIBカラム520の縦ビーム軸に対して平行に走る。向きo’およびo’’においてSEM530によって捕捉されたSEM画像の例がそれぞれ、図9Bおよび9Cに示されている。
図9BのSEM画像900Aは、SEM530に対して垂直壁505が向きo’に維持されている間にSEM530によって画像化された垂直壁505を示す。機械識別可能な形状b、b、b、b、bおよびbはそれぞれ、垂直壁505上の点p、p、p、p、pおよびpの位置に印を付けている。距離d、d、d、d、dおよびdはそれぞれ、点P、p、p、p、pおよびpに対する式(1)の表現
Figure 2017517120
の値に対応する。図9CにおいてSEM画像900Cは、図9Aに示された向きo’’からSEM530によって画像化された垂直壁505を示す。機械識別可能な形状b’、b’、b’、b’、b’およびb’はそれぞれ、垂直壁505上の点p’、p’、p’、p’、p’およびp’の位置に印を付けている。距離d’、d’、d’、d’、d’およびd’はそれぞれ、点p、p、p、p、pおよびpに対する式(1)の表現
Figure 2017517120
に対する値に対応する。マシン・ビジョンを使用して、d’、d’、d’、d’、d’およびd’の値をより正確に突き止めることができる。図9Aを再び参照すると、高さz、z、z、z、zおよびzを計算するために使用する式(1)の角度θは、角度θである。
図8A〜9Cの表面点は全て、単一の基準点に関して測定されるが、本開示の実施形態はそれだけに限定されない。全ての表面点555に対して単一の基準を使用して距離を測定すること、または、表面点555ごとに異なる基準点を使用して距離を測定すること、または、一部の表面点555については1つもしくは複数の共通の基準点から距離を計算し、他の表面点についてはそれぞれ固有の基準点から距離を計算することができる。基準点の位置は、画像化している表面点555の第1の画像上と第2の画像上の両方で見ることができる試料上の任意の位置または試料の上方の任意の位置とすることができる。さまざまな実施形態で、基準点および表面点555は垂直面505上に位置する。そのような1つの実施形態では、垂直壁555の角に位置する単一の基準点を使用して、表面点555に対する全ての高さを計算する。
ブロック345では、基準点もしくは表面点555、または基準点と表面点555の両方が、システム1102によってランダムに生成され、人間の操作者によって選択され、より正確に曲線を当てはめることが容易になるように選択され、試料処理のスピードと曲線を当てはめる精度との間の所望のバランスを満たすように選択し、またはこれらの任意の組合せが可能である。特定の用途の制約条件によって禁じられない限り、基準点および表面点555の選択および/または機械識別可能な形状は、ブロック315でトレンチを形成した後から、方法300の次の繰返しで材料の次のスライスを除去することによって垂直壁505を破壊する前までの任意の時点で実施することができる。選択と機械識別可能な形状は、どの表面点555の基準点でも、同時に実施することができ、または異なる時点で実施することができる。
ブロック345から、方法はブロック350に進むことができ、ブロック350では、垂直壁505の形状を近似するため、3D座標に曲線を当てはめる。一実施形態では、表面点555の3次元座標に3次元フーリエ適合を適用することによって、垂直壁505の形状が近似される。他の実施形態では、3次元座標に最小2乗回帰を適用することによって、垂直壁505の形状が近似される。
ブロック350から、方法はブロック355に進むことができ、ブロック355では、試料400のスライス・アンド・ビュー処理のさらなる繰返しを実施する(例えばブロック315からブロック350を繰り返す)のか、またはブロック360に進むのかを判定する。ブロック360では、試料400のスライス・アンド・ビュー処理を終了し、特徴部分412の3D画像を生成する。特徴部分412の3D画像を生成するためには、特徴部分412のサイズまたは3D画像の所望の詳細に応じた多数の画像を得ることが望ましい。ブロック355では、試料400の処理の進行に伴って、スライス・アンド・ビュー技法の繰返しを計数する。一実施形態では、スライス・アンド・ビュー処理が所定の回数繰り返されるまで、スライス・アンド・ビュー処理が実施される。他の実施形態では、特定のトリガ事象の発生に応答して、スライス・アンド・ビュー処理の繰返しが開始される。他の実施形態では、スライス・アンド・ビュー処理の終了が、スライス・アンド・ビュー処理がある回数繰り返された後にスライス・アンド・ビュー処理システムが追加の入力を受け取ったかどうかに依存する。いずれにしても、試料400のスライス・アンド・ビュー処理を続けるべきであると判定された場合、方法300は、ブロック355から、「いいえ」の経路に沿ってブロック360に進む。この繰返しスライシング・プロセスが終了したと判定された場合、方法300は、ブロック355から、「はい」の経路に沿ってブロック360に進む。
ブロック360では、試料400のスライス・アンド・ビュー処理中に生成されたデータから、特徴部分412の3D表現を生成する。さまざまな実施形態で、特徴部分412の3D画像は、垂直壁505の修正されたスライス画像の積み重ねから構築される。そのような1つの実施形態では、垂直壁505ごとに単一のスライス画像を選択して修正する。それらの単一のスライス画像は、垂直壁505ごとに、SEM530によって捕捉された第1の画像と第2の画像のうちの一方の画像から選択することができ、または、垂直壁505の他のSEM画像を使用することもできる。それらの単一のスライス画像はそれぞれ、そのスライス画像が表す垂直面405に当てはめられた3D曲線に従うようにそのスライス画像を曲げることによって修正される。すなわち、それらの単一のスライス画像はそれぞれ、その単一のスライス画像が表す垂直壁505の形状に対応する3次元湾曲を有する。次いで、修正されたそれぞれのスライス画像を、試料400内のスライス画像によって表される、残りのスライスに対する垂直面405の位置に従って、上述した積み重ね内に配置する。あるいは、スライス画像を上述した積み重ね内に配置してから、修正してもよい。スライス画像の修正および配置の後には、修正および配置されたスライス画像から、特徴部分412の3D画像が形成されている。それぞれの画像が平らな2D平面を表すと仮定するのではなしに、スライス画像の形状を表す3D屈曲を有する修正されたスライス画像を使用して試料400をモデル化することによって、3D表現の分解能および/または画像品質に対するカーテニングの影響を低減または排除することができる。これは、スライス・アンド・ビュー処理された特徴部分(例えば特徴部分412)の3D画像をモデル化するのに、画像化された表面のより正確な表現が使用されているためである。
特徴部分412のこのモデル化は、市販のソフトウェアと共に補足的なコンピュータ実行可能命令によって実施することができる。この補足的なコンピュータ実行可能命令は、実行されたときに、この市販のソフトウェアが使用したスライス画像を曲げて、3D表現を、スライス画像に対応する当てはめられた曲線の形状にする。あるいは、この補足的なコンピュータ実行可能命令が、スライス画像に対応する当てはめられた曲線の形状に既に曲げられているスライス画像を入力として受け入れるように、その市販のソフトウェアを修正してもよい。3D構築用のソフトウェアには例えば、好ましくは、米カリフォルニア州San DiegoのVisage Imaging,Inc.のAmira3次元画像化ソフトウェア、または米マサチューセッツ州BurlingtonのVSG、Visualization Sciences Group,Inc.のAvizo3次元可視化ソフトウェアを含めることができる。
上で説明した方法を実行するための装置が図3に示されている。図3は、垂直に装着されたSEMカラムと垂直から約52度の角度に装着された集束イオン・ビーム(FIB)カラムとを備える典型的なデュアル・ビーム・システム1010を示す。このようなデュアル・ビーム・システムは例えば、本出願の譲受人である米オレゴン州HillsboroのFEI Companyから市販されている。適当なハードウェアの一例を以下に示すが、本発明は、特定のタイプのハードウェアで実現されることに限定されない。
デュアル・ビーム・システム1010は、走査電子顕微鏡1041および電源および制御ユニット1045を備えている。陰極1052と陽極1054の間に電圧を印加することによって陰極1052から電子ビーム1043が放出される。電子ビーム1043は、集束レンズ1056および対物レンズ1058によって微細なスポットに集束する。電子ビーム1043は、偏向コイル1060によって試料を2次元的に走査する。集束レンズ1056、対物レンズ1058および偏向コイル1060の動作は電源および制御ユニット1045によって制御される。
下室1026内の可動式X−Yステージ1025上にある基板1022の表面に電子ビーム1043を焦束させることができる。電子ビーム中の電子が基板1022に衝突すると、2次電子が放出される。それらの2次電子は、後に論じる2次電子検出器1040によって検出される。TEM試料ホルダ1024およびステージ1025の下に位置するSTEM検出器1062は、上で論じたTEM試料ホルダ上に装着された試料を透過した電子を集めることができる。
デュアル・ビーム・システム1010は集束イオン・ビーム(FIB)システム1011をさらに含み、FIBシステム1011は、上部ネック部1012を有する排気された室を含み、上部ネック部1012内にはイオン源1014および集束カラム1016が位置し、集束カラム1016は、引出し電極および静電光学系を含む。集束カラム1016の軸は、電子カラムの軸から52度傾いている。イオン・カラム1012は、イオン源1014、引出し電極1015、集束要素1017、偏向要素1020および集束イオン・ビーム1018を含む。イオン源1014を出た集束イオン・ビーム1018は、集束カラム1016を通過し、1020に概略的に示された静電偏向手段間を通り抜けて、基板1022に向かって進む。基板1022は例えば、下室1026内の可動X−Yステージ1025上に置かれた半導体デバイスを含む。
ステージ1025は、水平面(XおよびY軸)内で移動することができ、かつ垂直に(Z軸)移動することができることが好ましい。ステージ1025はさらに約60度傾くことができ、Z軸を軸に回転することができる。いくつかの実施形態では、別個のTEM試料ステージ(図示せず)を使用することができる。このようなTEM試料ステージもX、YおよびZ軸に沿って可動であることが好ましい。X−Yステージ1025上に基板1022を挿入するため、および内部ガス供給リザーバが使用される場合には内部ガス供給リザーバの整備作業のために、扉1061が開かれる。システムが真空状態にある場合に開かないように、この扉はインタロックされる。
ネック部分1012を排気するためにイオン・ポンプ1028が使用される。室1026は、真空コントローラ1032の制御の下、ターボ分子および機械ポンピング・システム1030によって排気される。この真空システムは、室1026内に、約1×10−7トルから5×10−4トルの間の真空を提供する。エッチング支援ガス、エッチング遅延ガスまたは付着前駆体ガスが使用される場合には、室の背景圧力が通常、約1×10−5トルまで上昇することがある。
イオン・ビーム1018にエネルギーを与え集束させるため、高電圧電源は、集束カラム1016内の電極に適当な加速電圧を印加する。イオン・ビーム1018が基板1022に当たると、材料がスパッタリングされる。すなわち試料から材料が物理的に追い出される。あるいは、イオン・ビーム1018が前駆体ガスを分解して、材料を付着させることもできる。
液体金属イオン源1014と、約1keVから60keVのイオン・ビーム1018を形成しそれを試料に向かって導くイオン・ビーム集束カラム1016内の適当な電極とに高電圧電源1034が接続されている。パターン発生器1038によって提供される所定のパターンに従って動作する偏向コントローラおよび増幅器1036が偏向板1020に結合されており、それによって、対応するパターンを基板1022の上面に描くようにイオン・ビーム1018を手動または自動で制御することができる。いくつかのシステムでは、当技術分野ではよく知られているように、偏向板が、最後のレンズの前に置かれる。イオン・ビーム集束カラム1016内のビーム・ブランキング電極(図示せず)は、ブランキング・コントローラ(図示せず)がブランキング電極にブランキング電圧を印加したときに、イオン・ビーム1018を、基板1022ではなくブランキング絞り(図示せず)に衝突させる。
液体金属イオン源1014は通常、ガリウムの金属イオン・ビームを提供する。イオン・ミリング、強化されたエッチングもしくは材料付着によって基板1022を改変するため、または基板1022を画像化するために、源を通常、基板1022の位置における幅が1/10マイクロメートル未満のビームに集束させることができる。
2次イオンまたは2次電子の放出を検出する目的に使用されるエバーハート・ソーンリー検出器、マルチチャンネル・プレートなどの荷電粒子検出器1040が、ビデオ回路1042に接続されており、ビデオ回路1042は、ビデオ・モニタ1044に駆動信号を供給し、ビデオ・モニタ1044はシステム・コントローラ1019から偏向信号を受け取る。下室1026内における荷電粒子検出器1040の場所は実施形態によって変更することができる。例えば、荷電粒子検出器1040はイオン・ビームと同軸とすることができ、イオン・ビームが通り抜けることを可能にする穴を含むことができる。他の実施形態では、最終レンズを通過させ、次いで集めるために軸から逸らした2次粒子を集めることができる。
米テキサス州DallasのOmniprobe,Inc.のAutoProbe 1000(商標)、ドイツReutlingenのKleindiek NanotechnikのModel MM3Aなどのマイクロマニピュレータ1047は、真空室内の物体を正確に移動させることができる。真空室内に置かれた部分1049のX、Y、Zおよびθ制御を提供するため、マイクロマニピュレータ1047は、真空室の外側に配置された精密電動機1048を備えることができる。小さな物体を操作するため、マイクロマニピュレータ1047に、別のエンド・エフェクタを取り付けることができる。本明細書に記載された実施形態では、このエンド・エフェクタが細いプローブ1050である。
ガス送達システム1046は、下室1026内へ延びてガス蒸気を導入し、そのガス蒸気を基板1022に向かって導く。本発明の譲受人に譲渡されたCasella他の「Gas Delivery Systems for Particle Beam Processing」という名称の米国特許第5,851,413号明細書は適当なガス送達システム1046を記載している。別のガス送達システムが、やはり本発明の譲受人に譲渡されたRasmussenの「Gas Injection System」という名称の米国特許第5,435,850号明細書に記載されている。例えば、エッチングを強化するためにヨウ素を送達することができ、または金属を付着させるために金属有機化合物を送達することができる。
システム・コントローラ1019は、デュアル・ビーム・システム1010のさまざまな部分の動作を制御する。従来のユーザ・インタフェース(図示せず)にコマンドを入力することにより、ユーザは、システム・コントローラ1019を介して、イオン・ビーム1018または電子ビーム1043で所望の通りに走査することができる。あるいは、記憶装置1021に記憶されたプログラムされた命令に従って、システム・コントローラ1019が、デュアル・ビーム・システム1010を制御することもできる。いくつかの実施形態では、デュアル・ビーム・システム110が、関心の領域を自動的に識別する、米マサチューセッツ州NatickのCognex Corporationから市販されているソフトウェアなどの画像認識ソフトウェアを含み、このシステムは、本発明に従って試料を手動でまたは自動的に抜き取ることができる。例えば、このシステムは、多数のデバイスを含む半導体ウェーハ上の同様の特徴部分の位置を自動的に突き止め、異なる(または同じ)デバイス上のそれらの特徴部分の試料を取ることができる。
さまざまな実施形態で、ビーム・システムを用いて方法300を実施することが望ましいことがある。そのようないくつかの実施形態では、このビーム・システムが、試料から材料を除去するエッチング・ビームを放出することによって試料の表面を露出させるように構成されたエッチング・ビーム・カラムと、照会ビームを放出することによって露出させた表面を画像化するように構成された照会ビーム・カラムとを備えるデュアル荷電粒子ビーム・システムである。
次に図11を参照すると、スライス・アンド・ビュー・デュアル荷電粒子ビーム・システム1102の一実施形態のブロック図が示されている。システム1102は、制御サブシステム1104、エッチング・ビーム・サブシステム1130、照会ビーム・サブシステム1140、およびステージ1150を備え、これらのサブシステムおよびステージは、協働して、例えば試料1160などの試料のスライス・アンド・ビュー処理を実施するように構成されている。試料1160は試料塊1161を含み、試料塊1161は、観察する特徴部分1170の全体または一部を含み、特徴部分1170は、試料塊1161のスライス1168を除去し、スライス1168を除去することにより露出させた表面1162を画像化することによって観察される。これらのスライスは、それぞれのスライス1168が、試料1160の表面に形成されたトレンチ1180の垂直壁1164(すなわち、ステージ1150と接触した試料1160の基底平面に対して垂直な壁)であるような態様で切削することができる。試料1160のスライス・アンド・ビュー処理をシステム1102を使用して実施することによって、特徴部分1170の3D表現(例えば3D画像)を形成することができる。
エッチング・ビーム・サブシステム1130はエッチング・ビーム・カラム1131を備え、エッチング・ビーム・カラム1131は、放出エッチング・ビーム1139を放出し、エッチング・ビーム1139を放出することによりスライス1168を除去するように構成されている。一実施形態では、エッチング・ビーム・カラム1131が、集束イオン・ビーム1134を放出するように構成されたFIBカラム1132である。他の実施形態では、エッチング・ビーム・カラム1131が、レーザ・ビーム1138を含むレーザ1136である。別の実施形態は、多くのエッチング・ビーム・カラム、および/または多くのタイプのエッチング・ビーム・カラムを備える。エッチング・ビーム・サブシステムは、コンピュータ可読記憶媒体1106上に記憶された材料除去命令1109に従って材料の除去を実施するように構成されている。
照会ビーム・サブシステム1140は照会ビーム・カラム1141を備え、照会ビーム・カラム1141は、照会ビーム1143を放出して、エッチング・ビーム・サブシステム1130が露出させた試料1160の表面1162の画像を捕捉するように構成されている。一実施形態では、照会ビーム・カラム1141がSEM1142であり、照会ビーム1143が電子ビーム1144である。他の実施形態では、照会ビーム・カラム1141がFIB装置であり、照会ビーム1143が集束イオン・ビームである。システム1102の実施形態は、単一の照会ビーム・カラムだけ、単一のタイプの照会ビーム・カラムだけ、または単一のタイプの照会ビームだけに限定されない。さまざまな実施形態で、照会ビーム1141は、上で説明したように異なる視点から表面の画像を捕捉することができるような態様で、異なる入射角から表面1162に照会するように構成される。
さまざまな実施形態で、エッチング・ビーム・サブシステム1130と照会ビーム・サブシステム1140の両方で単一のビーム・カラムが使用される。すなわち、本開示のいくつかの実施形態は、試料1160からスライス1168を除去し、表面1162を装飾し、および/またはトレンチ1180を形成するエッチング・ビーム1131と、エッチング・ビーム1131が露出させた表面1162を画像化する照会ビーム1141とを放出するように構成されたビーム・カラムを備える。いくつかの実施形態では、スライス・アンド・ビュー・ビーム・システムが、試料から材料を除去すること、および試料から材料を除去することにより露出させた表面を画像化することができる単一の荷電粒子ビーム・カラムを備える。そのような1つの実施形態では、この単一の荷電粒子ビーム・カラムが、エッチング・ビームと照会ビームの両方を放出するように構成されたFIB装置である。他の実施形態では、このスライス・アンド・ビュー・ビーム・システムが、エッチング・ビーム・カラム1131と別個の照会ビーム・カラム1140とを備えるデュアル荷電粒子ビーム・システム1102を構成し、エッチング・ビーム・カラム1131が、エッチング・ビーム1139と照会ビーム1143の両方を放出することができる。このような実施形態では、デュアル荷電粒子ビーム・システム1102が、以下の3つモードのうちの少なくとも2つのモードで動作するように構成される。第1のモードでは、エッチング・ビーム・カラム1131が、エッチング作業(例えばスライスの除去、表面の装飾、トレンチの形成)および照会作業(例えば第1の画像および第2の画像の捕捉)を実施し、照会ビーム・カラム1141が、エッチング作業も、または照会作業も実施しない。第2のモードでは、エッチング・ビーム・カラム1131が、エッチング作業および照会作業を実施し、照会ビーム・カラム1141が、照会作業は実施するが、エッチング作業は実施しない。第3のモードでは、エッチング・ビーム・カラム1131が、エッチング作業は実施するが、照会作業は実施せず、照会ビーム・カラム1141が、照会作業は実施するが、エッチング作業は実施しない。そのような1つのデュアル荷電粒子ビーム・システム1102では、エッチング・ビーム・カラム1131がFIB装置であり、照会ビーム・カラム1141がSEMである。このFIB装置を使用して画像を形成することもでき、そのため、このFIB装置は、エッチング・ビームと照会ビームの両方として機能することができる。電子ビームは、画像を形成するだけでなく、エッチング前駆体ガスの存在下でエッチングを実行することもできる。
ステージ1150は、スライス・アンド・ビュー処理の間、試料1150を支持する。さまざまな実施形態で、ステージ1150は回転可能であり、照会ビーム1143によって試料1162の表面1163を異なる入射角から画像化することを可能にする方向と角度に回転するように構成される。上で説明したステージ1025は、システム1102内で使用するのに適したステージの一例である。
制御サブシステム1104は、コンピュータ可読記憶媒体1106、表示装置1118、ヒューマン・インタフェース1120、および1つまたは複数のプロセッサ1123を備える。コンピュータ可読記憶媒体1104は、プロセッサがアクセスできる情報を記憶しており、この情報は、実行可能命令1108と、照会ビーム・システム1140が捕捉した2D画像、例えばSEMカラム530が捕捉したSEM画像1116と、試料1160のスライス・アンド・ビュー処理によって得られた情報(例えば露出させた試料表面のSEM画像、露出させた表面の点の3D座標)によって生成された特徴部分412の3D表現1117とを含む。コンピュータ可読記憶媒体1104は、1つまたは複数のプロセッサ1123が、実行可能命令1108を読み出して実行し、サブシステム1130および1140、ヒューマン・インタフェース1120ならびにステージ1150のうちの少なくとも1つから取得したデータを実行可能命令1108に従って処理し、サブシステム1130および1140、ヒューマン・インタフェース1120ならびにステージ1150のうちの少なくとも1つから取得したデータのコンピュータ可読記憶媒体1106への書込みを指示することができるような態様で、1つまたは複数のプロセッサ1123に結合されている。コンピュータ可読記憶媒体は、情報を、ある時間の間、コンピュータが読み出すことができるフォーマットで記憶することができる、ハード・ドライブなどのデバイスとすることができる。適当なコンピュータ可読記憶媒体の例は、限定はされないが、PATA、SATA、SCSIおよびSSDハード・ドライブなどである。
表示装置1118は、サブシステム1104、1130、1150およびステージ1150のうちの1つまたは複数からの情報を表示するように構成することができる。表示装置1118は、電子的に生成された画像を映し出し、それらの画像は例えば、試料1160のスライス・アンド・ビュー処理によって生成された3D表現1117、表面1162に対して捕捉されたSEM画像1116、表面1162の形状に当てはめられた曲線の3D表現、またはこれらの任意の組合せを含むことができる。適当な表示装置の例は、限定はされないが、LCDディスプレイ、プラズマ・ディスプレイ、陰極線管ディスプレイおよびウォール・プロジェクタなどである。
ヒューマン・インタフェース1120は、サブシステム1104、1130、1140および1150に対しての人との対話を可能にするように構成されたデバイス1121を備える。サブシステム1104、1130、1140および1150に対しての人との対話は例えば、試料のスライス・アンド・ビュー処理を制御するため、および/または試料のスライス・アンド・ビュー処理によって生み出された実験データを操作するための命令および/またはデータ1122を人間の操作者が入力することを含むことができる。ヒューマン・インタフェース1120に適したデバイスの例は、限定はされないが、キーボード、コンピュータ・マウス、タブレット・コンピュータなどのタッチ・インタフェース、またはこれらの任意の組合せなどである。ヒューマン・インタフェース1120はさらに、人間の操作者とシステム1102との対話を管理する実行可能命令を含む。
1つまたは複数のプロセッサ1123は、コンピュータ可読記憶媒体1106上に記憶された実行可能命令1108を実施し、それによってサブシステム1131および1140を制御する。1つまたは複数のプロセッサ1123はさらに、人間の操作者および/または観察者に見せるために、情報を読み出し、その情報を表示装置1118に送る。例えば、さまざまな実施形態で、1つまたは複数のプロセッサ1123は、コンピュータ可読記憶媒体1106上に記憶された3D表現1117および/またはSEM画像1116にアクセスする。そのような実施形態では、1つまたは複数のプロセッサ1123がさらに、3D表現1117および/またはSEM画像11116を表示するよう表示装置1118に指示する。1つまたは複数のプロセッサ1123はさらに、実行可能命令1108に従って命令および/またはデータ1122を処理し、また、サブシステム1130および1140、ヒューマン・インタフェース1120ならびにステージ1150から取得したデータのコンピュータ可読記憶媒体1106上への記憶を指示する。
システム1102は、上で説明した方法300などの本開示のスライス・アンド・ビュー処理の実施形態を、システム1102のコンピュータ可読記憶媒体1106上に記憶された実行可能命令1108に従って実施することができる。実行可能命令1108は、材料除去命令1109、マシン・ビジョン・ソフトウェア1110、画像捕捉命令1112、向き変更命令1113、形状特性づけ命令1114、および3D画像化ソフトウェア1115を含む。
材料除去命令1109は、スライス1168を除去して表面1162を露出させるための命令を含む。材料除去命令1109は、実行されると、1つまたは複数のプロセッサ1123に、試料塊1161の厚さにわたってスライス1168を順番に除去するようエッチング・ビーム1139に指示させる。それぞれのスライス1169の除去は、表面1162のうちの1つの表面1163を露出させる。
さまざまな実施形態で、材料除去命令1109は追加の命令を含み、それらの追加の命令は、実行されると、1つまたは複数のプロセッサ1123に、別の1つまたは複数の材料除去作業を実施するようエッチング・ビーム1139に指示をさせる。この別の材料除去作業は、限定はされないが、照会ビーム1144が、試料1160の他の部分によって遮られることなしに、露出させた表面1163に照会することができるような態様で、傾斜トレンチ1190をミリングすること、エッチング・ビーム1139の正確な位置決めを容易にするために試料1160の近くに基準マークをミリングすること、照会ビーム1144が、試料1160の他の部分によって遮られることなしに、ステージ回転および/またはビーム位置変更の程度をより大きくして、表面1162の第2の画像を捕捉する(例えば上記の方法300のステップ335および340)ことができるような態様で、側面トレンチ1120をミリングすること、機械識別可能な形状を表面1162にミリングすること(例えば上記の方法300のステップ335および340)、ならびにこれらの任意の組合せを含む。
表面1163を露出させるごとに、1つまたは複数のプロセッサ1123は、1つまたは複数の画像捕捉命令1110を実施するようシステム1102の構成要素に指示する。画像捕捉命令1110は、実行されたときに、1つまたは複数のプロセッサ1123に、照会ビーム・カラム1141の縦軸と露出させた表面1163との間の第1の入射角を実質的に維持している間に露出させた表面1163に照会するように照会ビーム1143を導き、それによって、露出させた表面1163の第1の画像を捕捉させる。画像捕捉命令1110は、実行されたときに、1つまたは複数のプロセッサ1123に、照会ビーム・カラム1141の縦軸と露出させた表面1163との間の第2の入射角を実質的に維持している間に露出させた表面1163に照会するように照会ビーム1143を導き、それによって、露出させた表面1163の第2の画像を捕捉させる。照会ビーム1142によって記録された画像情報は、1つまたは複数のプロセッサ1123によって、マシン・ビジョン・ソフトウェア1112を使用して処理され、1つまたは複数のプロセッサ1123は、捕捉された画像を、機械可読記憶媒体1106に記憶するよう指示することができる。システム1102の実施形態に適したマシン・ビジョン・ソフトウェアの例を含む追加の情報を、後により詳細に説明する。
第1の入射角から第2の入射角への変更は、向き変更命令1113を実行することによって実施される。向き変更命令1113は、露出させた表面1163の第1の画像が照会ビーム1143によって捕捉された後に、露出させた表面1163に入射する照会ビーム1143の入射角を変更する命令を含む。それに加えてまたはその代わりに、向き変更命令1113は、第1の入射角で露出させた表面1163に照会している間の照会ビーム・カラムの縦軸から照会ビーム・カラム1141を遠ざける平行移動を指示することによって、露出させた表面1163に入射する照会ビーム1143の入射角を変更する命令を含む。向き変更の程度は、露出させた表面1163の第2の画像上で測定された点の対1165間の距離の値が、露出させた表面1163の第1の画像上の同じ点の対1165間で測定された距離の値とは異なるような程度であるべきである。実行可能命令1108は、実行されたときに、1つまたは複数のプロセッサ1123に、向き変更命令向き変更1113が実施された後、スライス1168を除去する前に、第2の画像を捕捉する画像捕捉命令1110を実施させる。
形状特徴づけ命令1114は、実行されたときに、1つまたは複数のプロセッサ1123に、表面1162の形状に当てはめられた曲線1111を生成させる命令を含む。形状特徴づけ命令1114は、第1の画像上における点の対1165の第1の位置、および第2の画像上における点の対1165の第2の位置を記録する命令を含み、点の対1165はそれぞれ、基準点1167と、露出させた表面1163の点1166とを含む。
それぞれの点の対1165について、基準点1167は、露出させた表面1163の点1166に対して固定された位置を指す。点の対1165の基準点1167は、同じ基準点とすることができ(例えば、図8A〜8Bおよび9B〜9Cの点B〜Bは全て、共通の基準点Aを基準とし)、または点の対1165ごとに異なる基準点を使用することができ、または点の対1165のうちの一部の対が共通の基準点を共用し、他の点の対1165が独自の基準点を有することができる。基準点1167の位置は、画像化している露出させた表面1163の第1の画像上と第2の画像上の両方で見ることができる試料上の任意の場所または試料の上方の任意の場所とすることができる。さまざまな実施形態で、基準点1167と点の対1165の両方が露出させた表面1163上に位置する。そのような1つの実施形態では、点の対1165ごとに、露出させた表面1163の角の近傍または角に重なっている、露出させた表面1163上のある位置において、基準点1167が選択される。
点の対1165の数量、およびそれぞれの点の対1165の基準点1167と点1166のうちの少なくとも一方の点の位置は、1つまたは複数のプロセッサ1123によって実行された形状特徴づけ命令1114に従って、または人間の操作者によるヒューマン・インタフェース1120を介した入力に従って、またはこれらの組合せに従って、ランダムにまたは他の別な方法で生成することができる。点の対1165の数量、およびそれぞれの点の対1165の基準点1167と点1166のうちの少なくとも一方の点の位置は、当てはめられたより正確な曲線1111の生成を容易にするように、または試料処理のスピードと生成される当てはめられた曲線1111の精度との間の所望のバランスを満たすように、またはこれらの任意の組合せによって、選択することができる。
さまざまな実施形態で、システム1102は、マシン・ビジョン・ソフトウェア1112を利用して、基準点1167および点1166の位置を突き止める。マシン・ビジョン・ソフトウェア1112は、照会ビーム1143によって画像情報が得られたときにその画像情報を直ちに処理することによって、基準点1167および点1166の位置を直ちに決定することができ、または、最後の表面1162を画像化した後など、より後の時点で処理を実施することもできる。
さまざまな実施形態で、露出させた表面1163の点の対1165の点に対応する位置に機械識別可能な形状をミリングすることにより、形状特徴づけ命令1114の実行を容易にすることができる。このような実施形態では、材料除去命令1109が、1つまたは複数の表面1162の、点の対1165の基準点1167に対応する位置、または点1166に対応する位置、または基準点1167に対応する位置と点1166に対応する位置の両方に、機械識別可能な形状をミリングする命令を含む。表面1162に機械識別可能な形状が存在すると、露出させた表面1163の基準点1167および点1166の位置を第1の画像から第2の画像へ追跡する(すなわち両方の画像上で露出させた表面の同じ位置を見つける)マシン・ビジョン・ソフトウェア1112の能力が向上する。機械識別可能な形状は、マシン・ビジョン・ソフトウェア1112のパターン認識アルゴリズムによって識別可能な実質的に2次元の1つまたは複数の形状を含むことができる。適当な機械識別可能な形状の例は、限定はされないが、円、正方形、三角形、長方形などの基本的な幾何学的形状、ならびに図6A〜6B、8A〜8Bおよび9B〜9Cに示された記号などの単純な記号などを含む。さまざまな実施形態で、材料除去命令1109は、異なる形状の機械識別可能な形状を表面1162に提供する命令を含む。露出させた表面1163の点に対して使用する機械識別可能な形状を変化させると、露出させた表面1163の第1の画像に示された点を、露出させた表面1163の第2の画像上で、同じ形状または類似の形状の機械識別可能な形状を有する異なる点と取り違える可能性が低下し、またはそのような可能性が排除される。露出させた表面1163の点を誤認する誤認の可能性は、使用する機械識別可能な形状の多様性が増大するにつれて低下する。一実施形態では、露出させた表面1163の点を識別する目的に使用する機械識別可能な形状が、少なくとも2つの形状を含む。他の実施形態では、露出させた表面1163のそれぞれの点1166に印を付けるために、異なる機械識別可能な形状が使用される。
形状特徴づけ命令1114は、それぞれの点1166の高さを下式(2)を使用して決定する命令を含む。
Figure 2017517120
上式で、Zは、点1166の高さ、Aは、第1の画像上における基準点1167の位置、A’は、第2の画像上における基準点1167の位置、Bは、第1の画像上における露出させた表面1163の点1166の位置、B’は、第2の画像上における露出させた表面1163の点1166の位置、
Figure 2017517120
は、A’とB’の間の距離、
Figure 2017517120
は、AとBの間の距離、θは、第1の入射角と第2の入射角の差である。
形状特徴づけ命令1114はさらに、それぞれの点1166の3D座標を生成する命令を含む。一実施形態では、それぞれの点1166の座標が、任意の原点から測定した、画像化平面における点1166のx座標およびy座標(図1参照)、ならびに式(1)によって決定された点1166の高さを含む。形状特徴づけ命令1114はさらに、これらの3D座標に3D曲線を当てはめる実行可能なアルゴリズムを含む。これらの3D座標に3D曲線を当てはめるのに適したアルゴリズムの例は、限定はされないが、最小2乗回帰およびフーリエ変換分析などである。
システム1102は、3D画像化ソフトウェア1115を利用して、システム1102によって処理された特徴部分1170の3D表現を生成する。システム1102の実行可能命令1108は、システム1102を使用して特徴部分1170を実行可能命令1108に従ってスライス・アンド・ビュー処理した後に特徴部分1170の3D表現を生成する命令を含むことができる。3D画像化ソフトウェア1115は、実行されたときに、当てはめられた3D曲線1111を使用して、3D表現1117の分解能および/または画像品質に対するカーテニングの影響を排除しまたは低減させる実行可能命令を含むことができる。一実施形態では、1つまたは複数のプロセッサ1123によって実行されたときに、スライス・アンド・ビュー処理に従って処理された特徴部分1170の3D表現を、表面1163の画像を使用し、表面1163が平らであると仮定して生成する3D画像化ソフトウェア1115を、システム1102が備える。システム1102はさらに、補足的な実行可能命令を含み、この補足的な実行可能命令は、1つまたは複数のプロセッサ1123によって実行されたときに、当てはめられた曲線1111に一致するように表面1163の画像を曲げ、次いで、(表面1163の平らな画像の代わりに)表面1163の曲げられた画像を使用して、特徴部分1170の3D表現を生成することにより、3D画像化ソフトウェア1115の実行を修正する。
さまざまな実施形態で、システム1102は、方法300の諸ステップを実施するように構成される。いくつかの実施形態では、システム1102が、実行可能命令1109、1110、1112、1113、1114および1115の実行を(例えば実行可能な一組の調整命令によって)調整するように構成されている。そのような1つの実施形態では、スライス1168を除去することによって露出させたそれぞれの表面1163に対して向き変更命令1113を実施する前および後に画像捕捉命令1110を実施するように、システム1102が構成されている。上述の実施形態では、システム1102がさらに、1つまたは複数の表面1162に対して生成された一組の3D座標に対して、形状特徴づけ命令1114を実行するように構成されている。機械識別可能な形状を利用する実施形態では、システム1102が、露出させたそれぞれの表面1163を露出させた後、同じ露出させた表面1163に対して画像捕捉命令1110を最初に実行する前に、表面1162を装飾する材料除去命令を実行するように構成されている。自動的に、または半自動で、または人間の操作者がヒューマン・インタフェース1120に命令を手動で入力することによって、またはこれらの任意の組合せによって、実行可能命令1108を実施するように、システム1102を構成することができる。1つまたは複数のパラメータ(例えば、所望の分解能、処理を完了するのに使用可能な時間、試料特性など)が与えられた場合に、スライス・アンド・ビュー処理する適切な表面の数を決定するように、システム1102を構成することもできる。この1つまたは複数のパラメータは、コンピュータ可読記憶媒体1106に記憶しておくことができ、またはヒューマン・インタフェース1120を介して人間の操作者が入力することができ、またはこれらの組合せによって提供することができる。与えられた一組のパラメータに対して適切であるとシステム1102が判定した回数だけ、試料1160を繰り返しスライス・アンド・ビュー処理するように、システム1102を構成することもできる。スライス・アンド・ビュー処理のそれぞれの繰返しは、実行可能命令1109、1110、1112、1113、1114および1115の実行によって実施される。図11において実行可能命令1109〜1115が別個のブロックとして示されているのは、本開示のさまざまな実施形態の理解を容易にするためであり、システム1102の機能の限定を暗示するものではないことを理解すべきである。
試料処理環境1100内でシステム1102を利用することができる。試料処理環境1100の例は、限定はされないが、生物試料の分析、機械構成部品の故障解析、材料製造における品質管理、およびシリコン・ウェーハ、他の半導体構成部品などの電子構成部品の欠陥試験を実施する実験室およびその他の実験施設などである。
本発明の実施形態を示し説明したが、当業者は、本発明の趣旨および教示から逸脱することなく本発明に変更を加えることができる。本明細書に記載された実施形態は単なる例であり、限定を意図したものではない。本明細書に開示された発明の多くの変形および変更が可能であり、本明細書に開示された実施形態の特徴の結合、統合および/または省略の結果である代替実施形態も本発明の範囲に含まれる。数値範囲または限界が明示されている場合、明示されたそのような範囲または限界は、その明示された範囲または限界内に含まれる同様の大きさの反復範囲または限界を含むものと理解すべきである(例えば、「約1から約10まで」は2、3、4などを含み、「0.10よりも大きい」は、0.11、0.12、0.13などを含む)。例えば、下限がR、上限がRである数値範囲が開示されているときには、この範囲に含まれる全ての数値が明確に開示されている。具体的には、この範囲内の次式の数値は明確に開示されている:R=R+k×(R−R)。この式で、kは、1パーセントから100パーセントまでの1パーセント刻みの変数である。すなわち、kは、1パーセント、2パーセント、3パーセント、4パーセント、5パーセント、50パーセント、51パーセント、52パーセント、95パーセント、96パーセント、97パーセント、98パーセント、99パーセントまたは100パーセントである。さらに、上で定義した2つのR数値によって定義された数値範囲も明確に開示されている。特許請求項の任意の要素に対する用語「任意選択で」の使用は、その主題要素が不可欠であること、あるいはその主題要素が不可欠ではないことを意味することが意図されている。これらの選択肢はともに、その特許請求項の範囲に含まれることが意図されている。「備える」、「含む」、「有する」などのより幅広い用語の使用は、「〜からなる」、「本質的に〜からなる」、「実質的に〜からなる」などのより幅の狭い用語の支持を提供すると理解すべきである。
本発明および本発明の利点を詳細に説明したが、添付の特許請求の範囲によって定義された本発明の趣旨および範囲から逸脱することなく、本明細書に記載された実施形態に、さまざまな変更、置換および改変を加えることができることを理解すべきである。さらに、本出願の範囲が、本明細書に記載されたプロセス、機械、製造、組成物、手段、方法およびステップの特定の実施形態に限定されることは意図されていない。当業者なら本発明の開示から容易に理解するように、本明細書に記載された対応する実施形態と実質的に同じ機能を実行し、または実質的に同じ結果を達成する既存のまたは今後開発されるプロセス、機械、製造、組成物、手段、方法またはステップを、本発明に従って利用することができる。したがって、添付の特許請求の範囲は、その範囲内に、このようなプロセス、機械、製造、組成物、手段、方法またはステップを含むことが意図されている。
したがって、保護の範囲は、以上の説明によっては限定されず、以下の特許請求の範囲によってのみ限定される。保護の範囲は、特許請求項の主題の全ての等価物を含む。いずれの特許請求項も、本発明の一実施形態として本明細書に組み込まれている。したがって、特許請求項は追加の説明であり、本発明の実施形態への追加である。「発明を実施するための形態」の項での参照文献の議論は、特にそれが本出願の優先日後の公告日を有する参照文献である場合、その文献が、本発明の先行技術であることを認めるものではない。

Claims (25)

  1. デュアル荷電粒子ビームを使用して特徴部分を観察する装置であって、
    集束イオン・ビームを生成し、集束させ、導くように構成される集束イオン・ビーム・カラムと、
    電子ビームを生成し、集束させ、導くように構成される電子ビーム・カラムと、
    1つまたは複数のプロセッサと、
    前記1つまたは複数のプロセッサのうちの少なくとも1つに結合されたコンピュータ可読記憶媒体であり、第1の実行可能命令および第2の実行可能命令を含むコンピュータ可読記憶媒体と
    を備え、
    前記第1の実行可能命令は、実行されたときに、前記1つまたは複数のプロセッサに、基板の表面にトレンチをミリングするように前記集束イオン・ビームを導かせ、前記トレンチが、観察する特徴部分の周囲の領域を有する垂直壁を露出させ、
    前記第2の実行可能命令は、実行されたときに、前記1つまたは複数のプロセッサに、
    前記電子ビーム・カラムが前記電子ビーム・カラムの縦軸に対して第1の入射角に維持されている間に前記垂直壁の第1の電子ビーム画像を捕捉するように前記電子ビームを導くこと、
    前記縦軸と前記垂直壁の間の入射角を、前記第1の入射角から第2の入射角に変化させること、
    前記電子ビーム・カラムが前記第2の入射角に維持されている間に前記壁の第2の電子ビーム画像を捕捉するように前記電子ビームを導くこと、
    前記第1の電子ビーム画像と前記第2の電子ビーム画像の間の差に基づいて前記垂直壁の形状を近似することをさせる、
    装置。
  2. 前記垂直壁の前記形状を近似することが、前記垂直壁上の複数の点の3次元座標を、前記第1の電子ビーム画像と前記第2の電子ビーム画像上の1つの基準点に対する前記第1の電子ビーム画像と前記第2の電子ビーム画像上の前記複数の点の位置を使用して計算することを含む、請求項1に記載の装置。
  3. 前記垂直壁の前記形状を近似することが、前記3次元座標に、前記垂直壁の前記形状を近似する曲線を当てはめることを含む、請求項2に記載の装置。
  4. 前記第1の電子ビーム画像と前記第2の電子ビーム画像の間の差に基づいて前記垂直壁の前記形状を近似することが、
    前記第1の電子ビーム画像上で、前記垂直壁上の複数の点と前記垂直壁上の1つまたは複数の基準点との間の第1の距離を測定すること、および
    前記第2の電子ビーム画像上で、前記複数の点と前記1つまたは複数の基準点との間の第2の距離を測定すること
    を含む、請求項1に記載の装置。
  5. 前記第2の実行可能命令は、実行されたときに、前記1つまたは複数のプロセッサに、ステージの回転を指示することによって、前記縦軸と前記垂直壁との間の入射角を変化させる、請求項1に記載の装置。
  6. 前記第2の実行可能命令は、実行されたときに、前記1つまたは複数のプロセッサに、前記電子ビーム・カラムの位置変更を指示することによって、前記縦軸と前記垂直壁との間の入射角を変化させる、請求項1に記載の装置。
  7. 第3の実行可能命令をさらに含み、
    前記第3の実行可能命令は、実行されたときに、前記1つまたは複数のプロセッサに、
    前記垂直壁の後ろに位置している観察する特徴部分を含む材料の一塊から複数のスライスを逐次的に除去するように前記集束イオン・ビームを導き、前記複数のスライスを逐次的に除去することが複数の追加の垂直壁を逐次的に露出させ、
    前記複数の追加の垂直壁のそれぞれの垂直壁に対して前記第2の実行可能命令を実施させる、
    請求項1に記載の装置。
  8. 第4の実行可能命令をさらに含み、
    前記第4の実行可能命令は、実行されたときに、前記1つまたは複数のプロセッサに、前記垂直壁および前記複数の追加の垂直壁の前記形状の前記近似を使用して、観察する前記特徴部分の3次元画像を構築させる、請求項7に記載の装置。
  9. デュアル・ビーム・システムを用いたスライス・アンド・ビュー処理によって試料を処理する方法であって、
    エッチング・ビームを使用して前記試料から材料の第1のスライスを除去することによって、前記試料の表面に形成されたトレンチの垂直壁を露出させること、
    照会ビームを用いて前記垂直壁に照会することによって、前記照会ビームに対して前記垂直壁が第1の向きにある間に前記垂直壁の第1の画像を捕捉すること、
    前記照会ビームに対する前記垂直壁の向きを変更すること、
    前記照会ビームに対して前記垂直壁が第2の向きにある間に前記照会ビームを用いて前記垂直壁に照会することによって、前記垂直壁の第2の画像を捕捉することであって、前記第1の画像上における前記垂直壁上の基準点と表面点との間の第1の距離が、前記第2の画像上における前記基準点と前記表面点との間の第2の距離とは異なること、
    前記第1の距離および前記第2の距離を使用して、前記表面点の高さを決定すること、および
    前記高さを使用して、前記垂直壁の形状に曲線を当てはめること
    を含む、方法。
  10. 前記垂直壁の前記形状に前記曲線を当てはめることが、前記表面点の3次元座標を生成することを含み、前記3次元座標が、それぞれの前記表面点の垂直位置、水平位置および高さを含む、請求項9に記載の方法。
  11. 前記垂直壁の前記形状に前記曲線を当てはめることが、前記3次元座標に3次元フーリエ適合を適用することを含む、請求項10に記載の方法。
  12. 前記垂直壁の前記形状に前記曲線を当てはめることが、前記3次元座標に最小2乗回帰を適用することを含む、請求項10に記載の方法。
  13. 前記垂直壁が第1の垂直壁であり、前記方法がさらに、
    前記第1の垂直壁の表面から材料の後続のスライスが除去されるような態様で前記第1の垂直壁に前記エッチング・ビームを当てることによって、前記第1の垂直壁の後ろの後続の垂直壁を露出させること、ならびに
    前記後続の垂直壁に、第1の画像の捕捉、向きの変更、第2の画像の捕捉、高さの決定、および曲線を当てはめること、の前記諸ステップを適用すること
    を含む、請求項9に記載の方法。
  14. 連続的に露出させた前記一連の垂直壁を表現する当てはめられた複数の曲線を生み出すために、請求項13の前記諸ステップを、連続的に露出させた一連の垂直壁に関して複数回実施すること、および
    前記当てはめられた複数の曲線を使用して、前記試料の特徴部分の3次元表現を生成すること
    を含む、請求項13に記載の方法。
  15. 前記照会ビームに対する前記垂直壁の向きを変更することが、前記第1の画像の捕捉中に、前記照会ビームの源を平行移動させて前記照会ビームの縦軸から遠ざけることによって、前記照会ビームと前記垂直壁との間の入射角を変化させることを含む、請求項9に記載の方法。
  16. 前記照会ビームに対する前記垂直壁の向きを変更することが、前記試料を回転させることを含む、請求項9に記載の方法。
  17. 前記高さが下式に従って決定され、
    Figure 2017517120
    上式で、Zが、前記表面点のうちの点iの高さ、Aが、前記第1の画像上における前記基準点の位置、A’が、前記第2の画像上における前記基準点の位置、Bが、前記第1の画像上における点iの位置、B’が、前記第2の画像上における点iの位置、
    Figure 2017517120
    が、A’とB’の間の距離、
    Figure 2017517120
    が、AとBの間の距離、θが、前記第1の入射角と前記第2の入射角の差である、
    請求項16に記載の方法。
  18. 観察する特徴部分を有する試料の一塊をスライス・アンド・ビュー処理する粒子ビーム・システムであって、
    エッチング・ビームを放出するように構成されたエッチング・ビーム・カラムと、
    照会ビームを放出するように構成された照会ビーム・カラムと、
    1つまたは複数のプロセッサと、
    前記1つまたは複数のプロセッサのうちの少なくとも1つに結合された、実行可能命令を含むコンピュータ可読記憶媒体とを備え、
    前記実行可能命令は、実行されたときに、前記1つまたは複数のプロセッサに、
    前記一塊の厚さを横切って前記試料のスライスを逐次的に除去するように前記エッチング・ビームを導かせ、それぞれのスライスの前記除去が、前記試料の表面を露出させ、表面を露出させるごとに、
    前記照会ビーム・カラムの縦軸と前記露出させた表面との間の第1の入射角を維持している間に前記露出させた表面の第1の画像を捕捉するように前記照会ビームを導かせ、さらに、前記縦軸と前記露出させた表面との間の第2の入射角を維持している間に前記露出させた表面の第2の画像を捕捉するように前記照会ビームを導かせ、
    前記第1の画像上における点の対の第1の位置および前記第2の画像上における前記点の対の第2の位置を記録させ、前記点の対がそれぞれ、前記露出させた表面の点と基準点とを含む
    粒子ビーム・システム。
  19. 前記実行可能命令は、実行されたときに、前記点の対のうちのそれぞれの対の前記露出させた表面の前記点の高さを、下式に従って決定するように、前記1つまたは複数のプロセッサに指示し、
    Figure 2017517120
    上式で、Zが、前記露出させた表面の前記点の高さ、Aが、前記第1の画像上における前記基準点の位置、A’が、前記第2の画像上における前記基準点の位置、Bが、前記第1の画像上における前記露出させた表面の点の位置、B’が、前記第2の画像上における前記露出させた表面の前記点の位置、
    Figure 2017517120
    が、A’とB’の間の距離、
    Figure 2017517120
    が、AとBの間の距離、θが、前記第1の入射角と前記第2の入射角の間の差である、
    請求項18に記載の粒子ビーム・システム。
  20. 前記点の対のうちのそれぞれの対の前記基準点が同じ基準点である、請求項18に記載の粒子ビーム・システム。
  21. 前記実行可能命令は、実行されたときに、前記1つまたは複数のプロセッサに、前記露出させた表面に機械識別可能な形状をミリングするように前記エッチング・ビームを導かせ、前記機械識別可能な形状が、前記露出させた表面の前記点に対応する、請求項18に記載の粒子ビーム・システム。
  22. 前記機械識別可能な形状が、異なる2つ以上の形状を含む、請求項21に記載の粒子ビーム・システム。
  23. 前記照会ビームが電子ビームを含み、前記エッチング・ビームが荷電粒子ビームを含む、請求項18に記載の粒子ビーム・システム。
  24. 露出させた表面がそれぞれ、前記試料の表面に形成されたトレンチの垂直壁である、請求項18に記載の粒子ビーム・システム。
  25. 前記エッチング・ビーム・カラムと前記照会ビーム・カラムが同じカラムである、請求項18に記載のデュアル荷電粒子ビーム・システム。
JP2016569868A 2014-05-30 2015-06-11 スライス・アンド・ビュー試料画像化のための方法および装置 Active JP6506780B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/292,606 US9218940B1 (en) 2014-05-30 2014-05-30 Method and apparatus for slice and view sample imaging
US14/292,606 2014-05-30
PCT/IB2015/054439 WO2015181808A1 (en) 2014-05-30 2015-06-11 Method and apparatus for slice and view sample imaging

Publications (2)

Publication Number Publication Date
JP2017517120A true JP2017517120A (ja) 2017-06-22
JP6506780B2 JP6506780B2 (ja) 2019-04-24

Family

ID=54698219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016569868A Active JP6506780B2 (ja) 2014-05-30 2015-06-11 スライス・アンド・ビュー試料画像化のための方法および装置

Country Status (5)

Country Link
US (1) US9218940B1 (ja)
EP (1) EP3149761B1 (ja)
JP (1) JP6506780B2 (ja)
CN (1) CN106663585B (ja)
WO (1) WO2015181808A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696268B2 (en) * 2014-10-27 2017-07-04 Kla-Tencor Corporation Automated decision-based energy-dispersive x-ray methodology and apparatus
JP6730008B2 (ja) * 2015-06-16 2020-07-29 アオイ電子株式会社 微小試料台、その製造方法および微小試料の取付方法
JP7113613B2 (ja) 2016-12-21 2022-08-05 エフ イー アイ カンパニ 欠陥分析
DE102017209423A1 (de) * 2017-06-02 2018-12-06 Carl Zeiss Microscopy Gmbh Elektronenstrahltomographieverfahren und Elektronenstrahltomographiesystem
CZ309855B6 (cs) * 2017-09-20 2023-12-20 Tescan Group, A.S. Zařízení s iontovým tubusem a rastrovacím elektronovým mikroskopem
JP7171010B2 (ja) * 2018-03-07 2022-11-15 株式会社日立ハイテクサイエンス 断面加工観察装置、断面加工観察方法及びプログラム
TWI743626B (zh) 2019-01-24 2021-10-21 德商卡爾蔡司多重掃描電子顯微鏡有限公司 包含多束粒子顯微鏡的系統、對3d樣本逐層成像之方法及電腦程式產品
WO2020244795A1 (en) * 2019-06-07 2020-12-10 Carl Zeiss Smt Gmbh Cross section imaging with improved 3d volume image reconstruction accuracy
CN110567994B (zh) * 2019-10-12 2022-03-04 上海华力微电子有限公司 一种提取用于透射电子显微镜的待测样品的方法
US11355313B2 (en) * 2020-06-30 2022-06-07 Fei Company Line-based endpoint detection
CN114689630A (zh) * 2020-12-30 2022-07-01 Fei 公司 用于对三维特征进行成像的方法和***
CN112798608B (zh) * 2021-04-14 2021-07-23 常州微亿智造科技有限公司 手机摄像头支架内腔侧壁的光学检测装置及光学检测方法
US11887809B2 (en) * 2022-01-24 2024-01-30 Fei Company Auto-tuning stage settling time with feedback in charged particle microscopy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211849A (ja) * 1987-10-23 1989-08-25 Kobe Steel Ltd 走査型電子顕微鏡画像からの3次元形状の再構成法および装置
JPH08267257A (ja) * 1995-03-30 1996-10-15 Ebara Corp 微細被加工物の作業装置及び作業方法
JP2004214060A (ja) * 2003-01-06 2004-07-29 Hitachi High-Technologies Corp 走査電子顕微鏡及びそれを用いた試料観察方法
JP2006114225A (ja) * 2004-10-12 2006-04-27 Hitachi High-Technologies Corp 荷電粒子線装置
JP2006138856A (ja) * 2005-11-14 2006-06-01 Hitachi Ltd 試料の測長方法
JP2007250371A (ja) * 2006-03-16 2007-09-27 Hitachi High-Technologies Corp イオンビーム加工装置
JP2008270073A (ja) * 2007-04-24 2008-11-06 Sii Nanotechnology Inc 三次元画像構築方法
JP2009139379A (ja) * 2007-12-06 2009-06-25 Fei Co デコレーションを用いたスライス・アンド・ビュー
JP2011215135A (ja) * 2010-03-31 2011-10-27 Fei Co フィーチャをビューイングするための自動スライス・ミリング

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435850A (en) 1993-09-17 1995-07-25 Fei Company Gas injection system
US5851413A (en) 1996-06-19 1998-12-22 Micrion Corporation Gas delivery systems for particle beam processing
JP4567487B2 (ja) * 2005-02-25 2010-10-20 エスアイアイ・ナノテクノロジー株式会社 試料観察方法、試料加工方法および荷電粒子ビーム装置
JP4927345B2 (ja) * 2005-04-07 2012-05-09 ルネサスエレクトロニクス株式会社 試料体の加工観察装置及び試料体の観察方法
US7348556B2 (en) 2005-07-19 2008-03-25 Fei Company Method of measuring three-dimensional surface roughness of a structure
EP1890136A1 (en) 2006-08-16 2008-02-20 FEI Company Method for obtaining images from slices of a specimen
US20100054565A1 (en) 2006-10-06 2010-03-04 Sidec Technologies Ab Parallel beam local tomography reconstruction method
JP5296413B2 (ja) * 2008-05-15 2013-09-25 株式会社日立ハイテクサイエンス 複合荷電粒子ビーム装置を用いた断面画像取得方法および複合荷電粒子ビーム装置
JP5302595B2 (ja) 2008-08-06 2013-10-02 株式会社日立ハイテクノロジーズ 傾斜観察方法および観察装置
JP5702552B2 (ja) 2009-05-28 2015-04-15 エフ イー アイ カンパニFei Company デュアルビームシステムの制御方法
US20130081882A1 (en) * 2011-09-30 2013-04-04 Diamond Innovations, Inc. Method of characterizing a material using three dimensional reconstruction of spatially referenced characteristics and use of such information
US8502172B1 (en) * 2012-06-26 2013-08-06 Fei Company Three dimensional fiducial
CN104428867B (zh) * 2012-07-16 2018-10-16 Fei 公司 用于聚焦离子束处理的终点确定
JP6355318B2 (ja) * 2012-11-15 2018-07-11 株式会社日立ハイテクサイエンス 断面加工観察方法及び装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211849A (ja) * 1987-10-23 1989-08-25 Kobe Steel Ltd 走査型電子顕微鏡画像からの3次元形状の再構成法および装置
JPH08267257A (ja) * 1995-03-30 1996-10-15 Ebara Corp 微細被加工物の作業装置及び作業方法
JP2004214060A (ja) * 2003-01-06 2004-07-29 Hitachi High-Technologies Corp 走査電子顕微鏡及びそれを用いた試料観察方法
JP2006114225A (ja) * 2004-10-12 2006-04-27 Hitachi High-Technologies Corp 荷電粒子線装置
JP2006138856A (ja) * 2005-11-14 2006-06-01 Hitachi Ltd 試料の測長方法
JP2007250371A (ja) * 2006-03-16 2007-09-27 Hitachi High-Technologies Corp イオンビーム加工装置
JP2008270073A (ja) * 2007-04-24 2008-11-06 Sii Nanotechnology Inc 三次元画像構築方法
JP2009139379A (ja) * 2007-12-06 2009-06-25 Fei Co デコレーションを用いたスライス・アンド・ビュー
JP2011215135A (ja) * 2010-03-31 2011-10-27 Fei Co フィーチャをビューイングするための自動スライス・ミリング

Also Published As

Publication number Publication date
JP6506780B2 (ja) 2019-04-24
WO2015181808A4 (en) 2016-02-04
EP3149761A1 (en) 2017-04-05
US9218940B1 (en) 2015-12-22
CN106663585A (zh) 2017-05-10
US20150348751A1 (en) 2015-12-03
EP3149761B1 (en) 2019-05-08
EP3149761A4 (en) 2017-07-12
CN106663585B (zh) 2019-05-28
WO2015181808A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP6506780B2 (ja) スライス・アンド・ビュー試料画像化のための方法および装置
US9412559B2 (en) Automated slice milling for viewing a feature
US10529538B2 (en) Endpointing for focused ion beam processing
JP6188792B2 (ja) Tem観察用の薄片の調製
JP6224612B2 (ja) 断面観察薄片の裏側薄化用の高スループットtem調製プロセスおよびハードウェア
JP6174584B2 (ja) 視射角ミル
CN101844374B (zh) 在切削工件时形成图像
JP2011215135A5 (ja)
US10453646B2 (en) Tomography-assisted TEM prep with requested intervention automation workflow
JP2016105077A (ja) 自動化されたtem試料調製
JP2015204296A (ja) 大容量temグリッド
JP6645830B2 (ja) 荷電粒子ビーム試料作製におけるカーテニングを低減させる方法およびシステム
JP6192695B2 (ja) 自動スライス・アンド・ビュー下部切削
KR20230141642A (ko) 3차원 특징부를 분석하기 위한 방법 및 시스템

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A525

Effective date: 20170128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250