JP2017183281A - Carbon nanotube wire rod and carbon nanotube wire rod connection structure - Google Patents

Carbon nanotube wire rod and carbon nanotube wire rod connection structure Download PDF

Info

Publication number
JP2017183281A
JP2017183281A JP2017054012A JP2017054012A JP2017183281A JP 2017183281 A JP2017183281 A JP 2017183281A JP 2017054012 A JP2017054012 A JP 2017054012A JP 2017054012 A JP2017054012 A JP 2017054012A JP 2017183281 A JP2017183281 A JP 2017183281A
Authority
JP
Japan
Prior art keywords
carbon nanotube
wire
nanotube wire
cnt
predetermined metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017054012A
Other languages
Japanese (ja)
Other versions
JP6767292B2 (en
Inventor
智 山下
Satoshi Yamashita
智 山下
悟志 山崎
Satoshi Yamazaki
悟志 山崎
一富 三好
Kazutomi Miyoshi
一富 三好
典雄 大久保
Norio Okubo
典雄 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of JP2017183281A publication Critical patent/JP2017183281A/en
Application granted granted Critical
Publication of JP6767292B2 publication Critical patent/JP6767292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a carbon nanotube wire rod capable of suppressing deterioration in the conductivity in interface connection between the carbon nanotube wire rod and a terminal, thereby achieving fine conductivity and strength in the junction part between the rod and the terminal.SOLUTION: A CNT wire rod 11 includes: an uneven part 11-1 provided in a longitudinal-direction end part 11a of the CNT wire rod; and a prescribed metal containing member 11-2 which is provided in a junction part 30 between a terminal 20 that is connected to the longitudinal-direction end part 11a of the CNT wire rod 11 and disposed to fill the uneven part 11-1.SELECTED DRAWING: Figure 1

Description

本発明は、複数のカーボンナノチューブを束ねてなるカーボンナノチューブ束の複数を撚り合わせてなるカーボンナノチューブ線材、及びカーボンナノチューブ線材と該線材の長手方向端部に接続される端子とを備えるカーボンナノチューブ線材接続構造体に関する。   The present invention relates to a carbon nanotube wire connection comprising a carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles formed by bundling a plurality of carbon nanotubes, and a carbon nanotube wire and a terminal connected to a longitudinal end portion of the wire. Concerning the structure.

従来、自動車や産業機器などの様々な分野における電力線や信号線として、一又は複数の線材からなる芯線と、該芯線を被覆する絶縁被覆とからなる電線が用いられている。芯線を構成する線材の材料としては、通常、電気特性の観点から銅又は銅合金が使用されるが、近年、軽量化の観点からアルミニウム又はアルミニウム合金が提案されている。例えば、アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、アルミニウム線材に、銅線材と同じ電流を流すためには、アルミニウム線材の断面積を、銅の線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウム線材を用いたとしても、アルミニウム線材の質量は、純銅の線材の質量の半分程度であることから、アルミニウム線材を使用することは、軽量化の観点から有利である。   Conventionally, as power lines and signal lines in various fields such as automobiles and industrial equipment, electric wires composed of a core wire made of one or a plurality of wires and an insulating coating covering the core wire have been used. As the material of the wire constituting the core wire, copper or a copper alloy is usually used from the viewpoint of electrical characteristics, but in recent years, aluminum or an aluminum alloy has been proposed from the viewpoint of weight reduction. For example, the specific gravity of aluminum is about 1/3 of the specific gravity of copper, and the electrical conductivity of aluminum is about 2/3 of the electrical conductivity of copper (pure aluminum is about 66% IACS when pure copper is used as the standard of 100% IACS). Yes, to allow the same current to flow through the aluminum wire as the copper wire, the cross-sectional area of the aluminum wire must be about 1.5 times the cross-sectional area of the copper wire. Even if a large aluminum wire is used, the mass of the aluminum wire is about half of the mass of the pure copper wire, so the use of the aluminum wire is advantageous from the viewpoint of weight reduction.

上記のような背景のもと、昨今では、自動車、産業機器等の高性能化・高機能化が進められており、これに伴い、各種電気機器、制御機器などの配設数が増加するとともに、これら機器に使用される電気配線体の配線数も増加する傾向にある。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、線材の軽量化が強く望まれている。   Based on the above background, in recent years, higher performance and higher functionality of automobiles, industrial equipment, etc. are being promoted, and with this increase in the number of various electrical equipment, control equipment, etc. There is also a tendency for the number of wirings of electrical wiring bodies used in these devices to increase. On the other hand, in order to improve the fuel efficiency of moving bodies such as automobiles for environmental reasons, it is strongly desired to reduce the weight of wires.

こうした更なる軽量化を達成するための新たな手段の一つとして、カーボンナノチューブを線材として活用する技術が新たに提案されている。カーボンナノチューブは、六角形格子の網目構造を有する筒状体の単層、あるいは略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、電流容量、弾性、機械的強度等の特性に優れるため、電力線や信号線に使用されている金属に代替する材料として注目されている。   As one of new means for achieving such further weight reduction, a technique for utilizing carbon nanotubes as a wire has been newly proposed. The carbon nanotube is a single layer of a cylindrical body having a hexagonal lattice network structure, or a three-dimensional network structure composed of multiple layers arranged substantially coaxially, and is lightweight and has conductivity, current capacity, Because of its excellent properties such as elasticity and mechanical strength, it has attracted attention as a material that can replace metals used in power lines and signal lines.

カーボンナノチューブの比重は、銅の比重の約1/5(アルミニウムの約1/2)であり、また、カーボンナノチューブ単体は、銅(抵抗率1.68×10−6Ω・cm)よりも高導電性を示す。したがって理論的には、複数のカーボンナノチューブを撚り合わせてカーボンナノチューブ集合体を形成すれば、更なる軽量化、高導電率の実現が可能となる。しかしながら、nm単位のカーボンナノチューブを撚り合わせて、μm〜mm単位のカーボンナノチューブ線材を作製した場合、構成単位となる1本当たりの外径が非常に小さいため、カーボンナノチューブ間の接触抵抗や内部欠陥形成が要因となり、線材全体の抵抗値が増大してしまうという問題があることから、カーボンナノチューブをそのまま線材として使用することが困難であった。また、カーボンナノチューブ線材に端子を接続してカーボンナノチューブ線材接続構造体を作製する場合、車両などの移動体用の接続構造体に求められる電気的特性、機械的強度を実現するために、カーボンナノチューブ線材と端子との接合部における導電性、強度等を確保する必要があった。 The specific gravity of the carbon nanotube is about 1/5 of the specific gravity of copper (about 1/2 of aluminum), and the single carbon nanotube is higher than copper (resistivity 1.68 × 10 −6 Ω · cm). Shows conductivity. Therefore, theoretically, if a carbon nanotube aggregate is formed by twisting a plurality of carbon nanotubes, further weight reduction and high electrical conductivity can be realized. However, when carbon nanotube wires in the unit of μm to mm are produced by twisting carbon nanotubes in nm units, the outer diameter per one constituting unit is very small. Due to the problem that the resistance value of the entire wire is increased due to the formation, it is difficult to use the carbon nanotube as a wire as it is. In addition, when a carbon nanotube wire connecting structure is produced by connecting a terminal to a carbon nanotube wire, the carbon nanotube is used to realize the electrical characteristics and mechanical strength required for a connecting structure for a moving body such as a vehicle. It was necessary to ensure conductivity, strength, and the like at the joint between the wire and the terminal.

そこで、カーボンナノチューブ撚線(線材)の端部でCVD(chemical vapor Deposition)等によってCNTを成長させ、当該端部から伸びた成長CNTを他のカーボンナノチューブ撚線或いはその成長CNTと接続することにより、カーボンナノチューブ撚線同士の接続強度や電気的特性を実現することが可能な製造方法が提案されている(特許文献1)。   Therefore, by growing CNT at the end of the carbon nanotube stranded wire (wire) by CVD (chemical vapor deposition) or the like, and connecting the grown CNT extending from the end with another carbon nanotube stranded wire or the grown CNT A manufacturing method capable of realizing connection strength and electrical characteristics between carbon nanotube stranded wires has been proposed (Patent Document 1).

特開2013−47402号公報JP 2013-47402 A

しかしながら、上記特許文献では、複数のカーボンナノチューブを撚り合わせてなるカーボンナノチューブ線材の端部同士を、成長CNTを介して接続することが開示されているにすぎず、カーボンナノチューブ線材と端子との接合部における導電性、強度については開示されていない。特に、カーボンナノチューブ線材(炭素)と金属製端子(銅等)は異種材料であり、接合部に異種材料の界面が形成されることから、カーボンナノチューブ線材に金属製端子を接合し難いという問題がある。   However, in the above-mentioned patent document, it is only disclosed that ends of the carbon nanotube wire formed by twisting a plurality of carbon nanotubes are connected to each other through the grown CNT, and the bonding between the carbon nanotube wire and the terminal is disclosed. The electrical conductivity and strength of the part are not disclosed. In particular, the carbon nanotube wire (carbon) and the metal terminal (copper, etc.) are different materials, and the interface of the different materials is formed at the joint, which makes it difficult to join the metal terminal to the carbon nanotube wire. is there.

本発明の目的は、カーボンナノチューブ線材と端子との界面接続における導電性の低下を抑制して、端子との接合部における良好な導電性及び強度を実現することができるカーボンナノチューブ線材、及びカーボンナノチューブ接続構造体を提供することにある。   An object of the present invention is to suppress a decrease in conductivity at the interface connection between a carbon nanotube wire and a terminal, and to realize good conductivity and strength at a joint portion with the terminal, and a carbon nanotube It is to provide a connection structure.

上記目的を達成するために、本発明に係るカーボンナノチューブ線材は、複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材であって、前記カーボンナノチューブ線材の長手方向端部に設けられた凹凸部と、前記カーボンナノチューブ線材の前記長手方向端部に接続される端子との接合部に設けられ、前記凹凸部に配置された所定金属含有部材とを備えることを特徴とする。   In order to achieve the above object, a carbon nanotube wire according to the present invention is a carbon nanotube wire obtained by twisting a plurality of carbon nanotube bundles, and an uneven portion provided at a longitudinal end portion of the carbon nanotube wire. And a predetermined metal-containing member provided at a joint portion of the carbon nanotube wire with a terminal connected to the end portion in the longitudinal direction, and disposed on the concavo-convex portion.

前記カーボンナノチューブ線材は、前記カーボンナノチューブ線材の長手方向全体に亘って含有された金属部材を有し、前記カーボンナノチューブ線材におけるカーボンナノチューブに対する前記所定金属の金属含有量が、前記カーボンナノチューブに対する前記金属部材の金属含有量よりも大きい。   The carbon nanotube wire has a metal member contained throughout the longitudinal direction of the carbon nanotube wire, and the metal content of the predetermined metal with respect to the carbon nanotube in the carbon nanotube wire is such that the metal member with respect to the carbon nanotube. Greater than the metal content.

前記凹凸部は、前記カーボンナノチューブ線材の一部が延出してなる複数の延出部によって形成されており、前記所定金属含有部材が、前記接合部の全体に亘って前記複数の延出部間に配置されている。   The concavo-convex portion is formed by a plurality of extending portions formed by extending a part of the carbon nanotube wire, and the predetermined metal-containing member is disposed between the plurality of extending portions over the entire joining portion. Are arranged.

前記所定金属含有部材に含有される所定金属は、タンタル、チタン、ニッケル、パラジウム、銅、銀、金、鉄及びコバルトからなる群から選択される少なくとも1つの材料である。   The predetermined metal contained in the predetermined metal-containing member is at least one material selected from the group consisting of tantalum, titanium, nickel, palladium, copper, silver, gold, iron, and cobalt.

前記所定金属は、遷移金属であるのが好ましい。   The predetermined metal is preferably a transition metal.

前記所定金属含有部材は、前記所定金属が含有されためっきであってもよい。   The predetermined metal-containing member may be a plating containing the predetermined metal.

また、前記カーボンナノチューブ線材は、異種元素がドープされているのが好ましい。   The carbon nanotube wire is preferably doped with a different element.

また、前記カーボンナノチューブ線材を構成するカーボンナノチューブが、2層又は3層の層構造を有するのが好ましい。   The carbon nanotubes constituting the carbon nanotube wire preferably have a two-layer or three-layer structure.

前記長手方向端部に設けられた前記凹凸部のカーボンナノチューブの質量と前記凹凸部に配置された前記所定金属含有部材の質量との合計質量に対する、前記凹凸部に配置された前記所定金属含有部材の質量の比率が、1〜85質量%であるのが好ましい。   The said predetermined metal containing member arrange | positioned at the said uneven | corrugated part with respect to the total mass of the mass of the carbon nanotube of the said uneven | corrugated part provided in the said longitudinal direction edge part, and the mass of the said predetermined metal containing member arrange | positioned at the said uneven | corrugated part. It is preferable that the mass ratio is 1 to 85% by mass.

更に、前記長手方向端部に設けられた前記凹凸部のカーボンナノチューブの質量と前記凹凸部に配置された前記所定金属含有部材の質量との合計質量に対する、前記凹凸部に配置された前記所定金属含有部材の質量の比率が、10〜50質量%であるのがより好ましい。   Furthermore, the predetermined metal disposed in the uneven portion with respect to a total mass of the mass of the carbon nanotubes of the uneven portion provided at the longitudinal end portion and the mass of the predetermined metal-containing member disposed in the uneven portion. It is more preferable that the mass ratio of the containing member is 10 to 50% by mass.

上記目的を達成するために、本発明に係るカーボンナノチューブ線材接続構造体は、複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続される端子とを備えるカーボンナノチューブ線材接続構造体であって、前記カーボンナノチューブ線材が、前記カーボンナノチューブ線材の長手方向端部に設けられた凹凸部と、前記カーボンナノチューブ線材の前記長手方向端部に接続される前記端子との接合部に設けられ、前記凹凸部に配置された所定金属含有部材とを備えることを特徴とする。   In order to achieve the above object, a carbon nanotube wire connecting structure according to the present invention includes a carbon nanotube wire obtained by twisting a plurality of carbon nanotube bundles, and a terminal connected to the carbon nanotube wire. A connection structure, wherein the carbon nanotube wire is a joint between an uneven portion provided at a longitudinal end portion of the carbon nanotube wire and the terminal connected to the longitudinal end portion of the carbon nanotube wire. And a predetermined metal-containing member disposed on the concavo-convex portion.

前記接合部において、前記カーボンナノチューブ線材の前記長手方向端部が、前記所定金属含有部材を介して前記端子に圧着されている。   In the joint portion, the end portion in the longitudinal direction of the carbon nanotube wire is crimped to the terminal via the predetermined metal-containing member.

本発明によれば、カーボンナノチューブ線材の長手方向端部に凹凸部が設けられ、また、所定金属含有部材が、カーボンナノチューブ線材の長手方向端部に接続される端子との接合部に設けられ、且つ上記凹凸部に配置されるので、カーボンナノチューブ線材の長手方向端部と端子との間に所定金属含有部材を介在させることができ、カーボンナノチューブ線材が、当該所定金属含有部材を介して端子と良好に接合される。したがって、カーボンナノチューブ線材と端子との界面接続における導電性の低下を抑制して、端子との接合部における良好な導電性及び強度を実現することができる。   According to the present invention, an uneven portion is provided at the longitudinal end portion of the carbon nanotube wire, and the predetermined metal-containing member is provided at a joint portion with a terminal connected to the longitudinal end portion of the carbon nanotube wire, And since it is arrange | positioned at the said uneven | corrugated | grooved part, a predetermined metal containing member can be interposed between the longitudinal direction edge part of a carbon nanotube wire, and a terminal, and a carbon nanotube wire is connected with a terminal via the said predetermined metal containing member. Bonded well. Therefore, it is possible to suppress the decrease in conductivity at the interface connection between the carbon nanotube wire and the terminal, and to realize good conductivity and strength at the joint portion with the terminal.

また、凹凸部が、カーボンナノチューブ線材の一部が延出してなる複数の延出部によって形成されており、所定金属含有部材が、接合部の全体に亘って上記複数の延出部間に配置されているので、カーボンナノチューブ線材の長手方向端部の断面において、所定金属含有部材が海部に相当し、上記複数の延出部が島部に相当する海島構造を形成することができる。よって、当該所定金属含有部材と端子との界面接続における導電性が良好となり、端子との接合部においてより良好な導電性及び強度を実現することができる。   Further, the uneven portion is formed by a plurality of extending portions formed by extending a part of the carbon nanotube wire, and the predetermined metal-containing member is disposed between the plurality of extending portions over the entire joining portion. Therefore, in the cross section of the end portion in the longitudinal direction of the carbon nanotube wire, it is possible to form a sea-island structure in which the predetermined metal-containing member corresponds to the sea portion and the plurality of extending portions correspond to the island portions. Therefore, the conductivity at the interface connection between the predetermined metal-containing member and the terminal becomes good, and better conductivity and strength can be realized at the joint portion with the terminal.

本発明の実施形態に係るカーボンナノチューブ線材接続構造体の構成を概略的に示す図であり、(a)は斜視図、(b)は圧着前の状態を示す斜視図、(c)は、カーボンナノチューブ線材の長手方向端部の線II−IIに沿う断面図、(d)は、カーボンナノチューブ線材と端子との接合部の線I−Iに沿う断面図を示す。It is a figure which shows roughly the structure of the carbon nanotube wire connecting structure which concerns on embodiment of this invention, (a) is a perspective view, (b) is a perspective view which shows the state before crimping, (c) is carbon Sectional drawing which follows the line II-II of the longitudinal direction edge part of a nanotube wire, (d) shows sectional drawing which follows the line II of the junction part of a carbon nanotube wire and a terminal. (a)〜(e)は、図1のカーボンナノチューブ線材接続構造体の製造方法の一例を示す図である。(A)-(e) is a figure which shows an example of the manufacturing method of the carbon nanotube wire connecting structure of FIG. (a)及び(b)は、図2のカーボンナノチューブ線材接続構造体の製造方法における所定金属含有部材の形成処理を説明する図である。(A) And (b) is a figure explaining the formation process of the predetermined metal containing member in the manufacturing method of the carbon nanotube wire connection structure of FIG. (a)〜(d)は、図1のカーボンナノチューブ線材接続構造体の変形例及びその製造方法を示す図である。(A)-(d) is a figure which shows the modification of the carbon nanotube wire connection structure of FIG. 1, and its manufacturing method. 図1のカーボンナノチューブ線材接続構造体における端子の変形例を示す斜視図であり、(a)は圧着後、(b)は圧着前の状態を示す。It is a perspective view which shows the modification of the terminal in the carbon nanotube wire connecting structure of FIG. 1, (a) after crimping | compression-bonding, (b) shows the state before crimping. 図1のカーボンナノチューブ線材接続構造体における端子の他の変形例を示す図である。It is a figure which shows the other modification of the terminal in the carbon nanotube wire connection structure of FIG.

以下、本発明の実施形態を、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<カーボンナノチューブ線材接続構造体の構成>
図1は、本実施形態に係るカーボンナノチューブ線材接続構造体の構成を概略的に示す図であり、(a)は斜視図、(b)は圧着前の状態を示す斜視図、(c)は、カーボンナノチューブ線材の長手方向端部の線II−IIに沿う断面図、(d)は、カーボンナノチューブ線材と端子との接合部の線I−Iに沿う断面図を示す。なお、図1におけるカーボンナノチューブ線材接続構造体は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図1のものに限られないものとする。
<Configuration of carbon nanotube wire connecting structure>
FIG. 1 is a diagram schematically showing a configuration of a carbon nanotube wire connecting structure according to the present embodiment, where (a) is a perspective view, (b) is a perspective view showing a state before crimping, and (c) is a perspective view. Sectional drawing which follows the line II-II of the longitudinal direction edge part of a carbon nanotube wire, (d) shows sectional drawing which follows the line II of the junction part of a carbon nanotube wire and a terminal. Note that the carbon nanotube wire connecting structure in FIG. 1 is an example, and the shape, dimensions, and the like of each component according to the present invention are not limited to those in FIG.

図1(a)及び(b)に示すように、カーボンナノチューブ線材接続構造体1(以下、CNT線材接続構造体という)は、複数のカーボンナノチューブ束11A(図2(a)参照)(以下、CNT束という)を撚り合わせてなるカーボンナノチューブ線材11(以下、CNT線材という)と、CNT線材11に接続される端子20とを備える。本実施形態では、CNT電線10が、CNT線材11と、該CNT線材を被覆する絶縁被覆12とを有しており、CNT電線10の端部に端子20が取り付けられている。   As shown in FIGS. 1 (a) and 1 (b), a carbon nanotube wire connecting structure 1 (hereinafter referred to as a CNT wire connecting structure) includes a plurality of carbon nanotube bundles 11A (see FIG. 2 (a)) (hereinafter, A carbon nanotube wire 11 (hereinafter referred to as a CNT wire) formed by twisting a CNT bundle) and a terminal 20 connected to the CNT wire 11 are provided. In the present embodiment, the CNT electric wire 10 includes a CNT wire 11 and an insulating coating 12 that covers the CNT wire, and a terminal 20 is attached to an end of the CNT electric wire 10.

(端子の構成)
端子20は、不図示の外部端子と電気的に接続されるコネクタ部21と、該コネクタ部と連結され且つCNT電線10と圧着される電線圧着部22と、コネクタ部21と電線圧着部22とを連結するトランジション部23とを有する。この端子20は、金属基体からなり、この金属基体を金属材料(銅、アルミニウム、鉄、またはこれらを主成分とする合金等)からなる母材のみで構成するか、或いは導電性と強度を確保するために母材上に金属を主成分とするめっき層を設けて構成することができる。
(Terminal configuration)
The terminal 20 includes a connector portion 21 that is electrically connected to an external terminal (not shown), a wire crimping portion 22 that is connected to the connector portion and is crimped to the CNT electric wire 10, and the connector portion 21 and the wire crimping portion 22. And a transition part 23 for connecting the two. The terminal 20 is made of a metal substrate, and the metal substrate is composed only of a base material made of a metal material (copper, aluminum, iron, or an alloy containing these as a main component), or ensures conductivity and strength. For this purpose, a plating layer mainly composed of metal can be provided on the base material.

めっき層は、母材の一部あるいは全部に適宜設けられるものであり、接点特性や耐環境性の観点からすずや銀、金等の貴金属が好ましい。めっき層は1層以上あってもよく、例えば鉄(Fe)やニッケル(Ni)、コバルト(Co)またはこれらを主成分とする合金等の下地をさらに設けてもよい。このめっき層の厚さは、母材の保護及びコスト等を考慮し、合計で0.3μm〜3.0μmである。めっき層が母材の一部に設けられる場合、当該めっき層は、ストライプやスポットなどの形状で形成される。カーボンナノチューブに対して1層目に相当するめっき層は、カーボンナノチューブとの密着力に優れた金属、2層目以上は電気伝導の優れた金属であることが好ましい。   The plating layer is appropriately provided on a part or the whole of the base material, and a noble metal such as tin, silver, or gold is preferable from the viewpoint of contact characteristics and environmental resistance. There may be one or more plating layers, and for example, a base such as iron (Fe), nickel (Ni), cobalt (Co), or an alloy containing these as a main component may be further provided. The thickness of the plating layer is 0.3 μm to 3.0 μm in total in consideration of protection of the base material and cost. When the plating layer is provided on a part of the base material, the plating layer is formed in a shape such as a stripe or a spot. The plating layer corresponding to the first layer with respect to the carbon nanotubes is preferably a metal having excellent adhesion to the carbon nanotubes, and the second and higher layers are preferably metals having excellent electrical conduction.

コネクタ部21は、雄型圧着端子等の挿入タブの挿入を許容するボックス部であり、挿入タブを収容するための収容口21aを有している。本実施形態ではコネクタ部21が雌型端子であるが、雄型端子等の他の形状であってもよい。   The connector portion 21 is a box portion that allows insertion of an insertion tab such as a male crimp terminal, and has an accommodation port 21a for accommodating the insertion tab. In the present embodiment, the connector portion 21 is a female terminal, but may have other shapes such as a male terminal.

トランジション部23は、コネクタ部21と電線圧着部22の橋渡しとなる部分であり、幅方向断面略コの字型に形成されている。トランジション部23は立体的に形成されていても、平面的に形成されていてもよいが、端子長手方向の曲げに対する機械的強度の観点からは、長手方向の断面2次モーメントが大きくなるように設計するのが好ましい。   The transition portion 23 is a portion that serves as a bridge between the connector portion 21 and the wire crimping portion 22, and is formed in a substantially U-shaped cross section in the width direction. The transition portion 23 may be three-dimensionally or planarly formed, but from the viewpoint of mechanical strength against bending in the longitudinal direction of the terminal, the secondary moment in the longitudinal direction is increased. It is preferable to design.

電線圧着部22は、トランジション部23を介してコネクタ部21に連結された線材圧着部22Aと、線材圧着部22Aと長手方向(図中のX方向)に沿って並べて設けられ、線材圧着部22Aのトランジション部23とは反対側に配置された被覆圧着部22Bとを有しており、これらが上記金属基体にて一体成形されている。電線圧着部22の内側面22aには、複数の突起あるいはセレーションなどで形成される凹凸部24が設けられている。   The wire crimping part 22 is provided side by side along the wire crimping part 22A connected to the connector part 21 via the transition part 23, the wire crimping part 22A and the longitudinal direction (X direction in the figure), and the wire crimping part 22A. And a cover crimping portion 22B disposed on the opposite side of the transition portion 23, and these are integrally molded with the metal substrate. The inner surface 22a of the wire crimping portion 22 is provided with an uneven portion 24 formed by a plurality of protrusions or serrations.

圧着前の線材圧着部22Aは、図1(b)に示すように、幅方向断面略U型に形成された部位であり、バレル底部22A−1と、その幅方向(図中のY方向)に関してその両側から斜め外側上方に延出する一対のバレル片22A−2,22A−2とで構成されている。圧着前の被覆圧着部22Bも、線材圧着部22Aと同様、幅方向断面略U型に形成された部位であり、バレル底部22B−1と、幅方向Yに関してその両側から斜め外側上方に延出する一対のバレル片22B−2,22B−2とで構成されている。一対のバレル片22A−2,22A−2及び一対のバレル片22B−2,22B−2は、それぞれ内側に折り曲げて加締められており、線材圧着部22AがCNT線材11の長手方向端部11aに、被覆圧着部22Bが絶縁被覆12にそれぞれ接合されている。   As shown in FIG. 1B, the wire crimping portion 22A before crimping is a portion formed in a substantially U-shaped cross section in the width direction, and the barrel bottom portion 22A-1 and its width direction (Y direction in the figure). Is formed of a pair of barrel pieces 22A-2 and 22A-2 extending obliquely upward from both sides. Similarly to the wire crimping portion 22A, the coated crimping portion 22B before crimping is a portion formed in a substantially U-shaped cross section in the width direction, and extends obliquely outward and upward from both sides of the barrel bottom portion 22B-1 and the width direction Y. And a pair of barrel pieces 22B-2 and 22B-2. The pair of barrel pieces 22A-2, 22A-2 and the pair of barrel pieces 22B-2, 22B-2 are respectively bent and crimped inside, and the wire crimping portion 22A is the longitudinal end portion 11a of the CNT wire 11. In addition, the coating crimping portions 22B are joined to the insulating coating 12, respectively.

(CNT線材及びCNTの構成)
CNT線材11は、1層以上の層構造を有するCNTの複数が束ねられてなるCNT束11A,11A同士(図2(a)参照)を撚り合わせて構成されている。CNT線材11の外径は、0.01〜1mmである。
CNT線材11は、複数のCNTが纏められた束状体となっており、これら複数のCNTの軸方向がほぼ揃って配されている。CNT線材11は、CNT束11Aに異種元素がドープされてなるカーボンナノチューブ複合体の複数を撚り合わせて構成されてもよい。
(Configuration of CNT wire and CNT)
The CNT wire 11 is formed by twisting CNT bundles 11A and 11A (see FIG. 2A) formed by bundling a plurality of CNTs having a layer structure of one or more layers. The outer diameter of the CNT wire 11 is 0.01 to 1 mm.
The CNT wire 11 is a bundle in which a plurality of CNTs are gathered, and the axial directions of the plurality of CNTs are substantially aligned. The CNT wire 11 may be configured by twisting a plurality of carbon nanotube composites formed by doping CNT bundles 11A with different elements.

本実施形態では、CNT線材11は、図1(c)の断面図に示すように、該CNT線材の長手方向端部11aに設けられた凹凸部11−1と、CNT線材11の長手方向端部11aに接続される端子20との接合部30に設けられ、凹凸部11−1を埋めるように配置された所定金属含有部材11−2とを備える。   In the present embodiment, as shown in the cross-sectional view of FIG. 1C, the CNT wire 11 includes an uneven portion 11-1 provided at the longitudinal end portion 11 a of the CNT wire, and the longitudinal end of the CNT wire 11. And a predetermined metal-containing member 11-2 that is provided at a joint portion 30 with the terminal 20 connected to the portion 11a and is disposed so as to fill the uneven portion 11-1.

凹凸部11−1は、例えば長手方向端部11aの粗化処理によって形成される粗化部である。凹凸部11−1は、CNT線材11の一部が延出してなる複数の延出部11−1a,11−1a・・・によって形成されている。これら複数の延出部11−1aは、例えばCNT単体、CNT束、CNT束の複数本の集合体等からなり、これらがランダムに延出している。所定金属含有部材11−2は、接合部30の全体に亘って当該複数の延出部11−1a間に配置されている。   The concavo-convex part 11-1 is a roughened part formed by, for example, a roughening process on the longitudinal end part 11a. The concavo-convex portion 11-1 is formed by a plurality of extending portions 11-1 a, 11-1 a... Formed by extending a part of the CNT wire 11. The plurality of extending portions 11-1a are made of, for example, a single CNT, a CNT bundle, a plurality of aggregates of CNT bundles, and the like, and these extend at random. The predetermined metal-containing member 11-2 is disposed between the plurality of extending portions 11-1a over the entire joint portion 30.

CNT線材11と端子20との接合部30の線I−Iに沿う断面図を、図1(d)に示す。同図に示すように、接合部30は、CNT線材11の長手方向端部11aと、線材圧着部22Aのバレル底部22A−1及び一対のバレル片22A−2,22A−2とが圧着された部位であり、この接合部30において、CNT線材11の長手方向端部11aが所定金属含有部材11−2を介して端子20に圧着されている。   FIG. 1D shows a cross-sectional view along the line II of the joint portion 30 between the CNT wire 11 and the terminal 20. As shown in the figure, in the joining portion 30, the longitudinal end portion 11a of the CNT wire 11, the barrel bottom portion 22A-1 of the wire crimping portion 22A, and the pair of barrel pieces 22A-2 and 22A-2 are crimped. It is a site | part, and in this junction part 30, the longitudinal direction edge part 11a of the CNT wire 11 is crimped | bonded to the terminal 20 via the predetermined metal containing member 11-2.

所定金属含有部材11−2は、導電性部材であり、後述する所定金属が含有された流動性部材を固化或いは硬化した物である。流動性部材は、例えばめっき又は導電性接着剤である。上記めっきは、例えば後述する所定金属が含有されためっきであり、はんだめっき、銅めっき、ニッケルめっき、ニッケル−亜鉛合金めっき、パラジウムめっき、コバルトめっき、錫めっき又は銀めっきである。上記導電性接着剤は、例えば導電性材料からなるフィラーが充填されたエポキシ系などの導電性樹脂に、後述する所定金属が含有されてなる。また、銅ナノ粒子、銀ナノ粒子、金ナノ粒子などの金属微粒子を含有した接合材料を用いてもよい。   The predetermined metal-containing member 11-2 is a conductive member, and is a solidified or cured product of a fluid member containing a predetermined metal described later. The fluid member is, for example, plating or a conductive adhesive. The plating is, for example, plating containing a predetermined metal described later, and is solder plating, copper plating, nickel plating, nickel-zinc alloy plating, palladium plating, cobalt plating, tin plating, or silver plating. The conductive adhesive includes, for example, a predetermined metal described later in a conductive resin such as an epoxy resin filled with a filler made of a conductive material. Further, a bonding material containing metal fine particles such as copper nanoparticles, silver nanoparticles, and gold nanoparticles may be used.

所定金属含有部材11−2に含有される所定金属は、タンタル(Ta)、チタン(Ti)、ニッケル(Ni)、パラジウム(Pd)、銅(Cu)、銀(Ag)、金(Au)、鉄(Fe)及びコバルト(Co)からなる群から選択される少なくとも1つの材料であるか、又はそれらの合金であってもよい。上記の1又は複数の材料が所定金属含有部材11−2に含有されていると、上記所定金属の結晶構造とCNT線材11におけるCNTの結晶構造との相性が良好であるため、所定金属含有部材11−2と端子20との界面接続における導電性が良好となる。また、上記所定金属は、遷移金属であるのが好ましい。遷移金属は、他の金属と化合物を容易に形成する特徴を有しており、複数の遷移金属を構成させることにより、異なる金属の界面おいて優れた密着性、電気伝導性を発現させることができる。とりわけ、電気伝導率の高い、銅、銀、金、ニッケルの層を設けることにより、接合界面の電気伝導が良好となる。また、所定金属含有部材11−2に含有される金属は、六方晶金属であるのが好ましく、CNT線材11と端子20との接合部30で優れた導電性を実現することができる。   The predetermined metal contained in the predetermined metal-containing member 11-2 is tantalum (Ta), titanium (Ti), nickel (Ni), palladium (Pd), copper (Cu), silver (Ag), gold (Au), It may be at least one material selected from the group consisting of iron (Fe) and cobalt (Co), or an alloy thereof. When the one or more materials are contained in the predetermined metal-containing member 11-2, the compatibility between the crystal structure of the predetermined metal and the crystal structure of the CNT in the CNT wire 11 is good. The conductivity at the interface connection between 11-2 and the terminal 20 becomes good. The predetermined metal is preferably a transition metal. Transition metals have the characteristic of easily forming compounds with other metals, and by forming multiple transition metals, excellent adhesion and electrical conductivity can be expressed at the interface of different metals. it can. In particular, by providing a copper, silver, gold, or nickel layer having high electrical conductivity, electrical conductivity at the bonding interface is improved. Further, the metal contained in the predetermined metal-containing member 11-2 is preferably a hexagonal metal, and excellent electrical conductivity can be realized at the joint 30 between the CNT wire 11 and the terminal 20.

CNT線材11を構成するCNTは、単層構造又は複層構造を有する筒状体であり、それぞれSWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。例えば、2層構造を有するCNTは、六角形格子の網目構造を有する2つの筒状体が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。   The CNTs constituting the CNT wire 11 are cylindrical bodies having a single-layer structure or a multi-layer structure, and are called SWNT (single-walled nanotube) and MWNT (multi-walled nanotube), respectively. For example, a CNT having a two-layer structure has a three-dimensional network structure in which two cylindrical bodies having a hexagonal lattice network structure are arranged substantially coaxially, and is called DWNT (Double-walled nanotube). The hexagonal lattice, which is a structural unit, is a six-membered ring in which a carbon atom is arranged at the apex, and these are continuously bonded adjacent to another six-membered ring.

CNTの性質は、上記のような筒状体のカイラリティ(chirality)に依存する。カイラリティは、アームチェア型、ジグザグ型、及びそれ以外のカイラル型に大別され、アームチェア型は金属性、カイラル型は半導体性、ジグザグ型はその中間の挙動を示す。よってCNTの導電性はいずれのカイラリティを有するかによって大きく異なり、CNT集合体の導電性を向上させるには、金属性の挙動を示すアームチェア型のCNTの割合を増大させることが重要とされてきた。一方、半導体性を有するカイラル型のCNTに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、金属的挙動を示すことが分かっている。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性CNTに異種元素をドープした場合には、導電性の低下を引き起こす。   The nature of CNT depends on the chirality of the cylindrical body as described above. Chirality is broadly divided into armchair type, zigzag type, and other chiral types. Armchair type is metallic, chiral type is semiconducting, and zigzag type shows intermediate behavior. Therefore, the conductivity of CNTs varies greatly depending on which chirality is present, and in order to improve the conductivity of CNT aggregates, it has been important to increase the proportion of armchair CNTs that exhibit metallic behavior. It was. On the other hand, it has been found that doping a chiral CNT having semiconducting properties with a substance (heterogeneous element) having an electron donating property or an electron accepting property exhibits a metallic behavior. In addition, in general metals, doping of different elements causes scattering of conduction electrons inside the metal, resulting in a decrease in conductivity. Similarly, when metallic CNTs are doped with different elements. , Causing a decrease in conductivity.

このように、金属性CNT及び半導体性CNTへのドーピング効果は、導電性の観点からはトレードオフの関係にあると言えることから、理論的には金属性CNTと半導体性CNTとを別個に作製し、半導体性CNTにのみドーピング処理を施した後、これらを組み合わせることが望ましい。しかし、現状の製法技術では金属性CNTと半導体性CNTとを選択的に作り分けることは困難であり、金属性CNTと半導体性CNTが混在した状態で作製される。このため、金属性CNTと半導体性CNTの混合物からなるCNT線材の導電性を向上させるには、異種元素・分子によるドーピング処理が効果的となるCNT構造を選択することが好ましい。   Thus, since the doping effect on metallic CNT and semiconducting CNT can be said to have a trade-off relationship from the viewpoint of conductivity, theoretically, metallic CNT and semiconducting CNT are produced separately. In addition, it is desirable to combine these after performing doping treatment only on the semiconducting CNTs. However, it is difficult to selectively produce metallic CNT and semiconducting CNT selectively with the current manufacturing technique, and the metallic CNT and semiconducting CNT are produced in a mixed state. For this reason, in order to improve the electrical conductivity of the CNT wire made of a mixture of metallic CNT and semiconducting CNT, it is preferable to select a CNT structure in which the doping treatment with different elements / molecules is effective.

複数のCNTの集合体で構成されるCNT束11Aにおいて、複数のCNTの個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が50%以上であるのが好ましく、75%以上であるのがより好ましい。すなわち、一のCNT束を構成する全CNTの総数をNTOTAL、上記全CNTのうち2層構造を有するCNT(2)の数の和をNCNT(2)、上記全CNTのうち3層構造を有するCNT(3)の数の和をNCNT(3)としたとき
、下記式(1)で表すことができる。
(NCNT(2)+NCNT(3))/NTOTAL×100(%)≧50(%) ・・・(1)
In the CNT bundle 11A composed of an assembly of a plurality of CNTs, the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure to the number of the plurality of CNTs is preferably 50% or more, and 75% The above is more preferable. That is, the total number of all CNTs constituting one CNT bundle is N TOTAL , the sum of the number of CNTs (2) having a two-layer structure among all the CNTs is N CNT (2) , and the three-layer structure among all the CNTs When the sum of the number of CNTs (3) having N is N CNT (3) , it can be represented by the following formula (1).
(N CNT (2) + N CNT (3) ) / N TOTAL × 100 (%) ≧ 50 (%) (1)

2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高い。また、ドーパントは、CNTの最内層の内部、もしくは複数のCNTで形成されるCNT間の隙間に導入される。CNTの層間距離はグラファイトの層間距離である0.335nmと同等であり、多層CNTの場合その層間にドーパントが入り込むことはサイズ的に困難である。このことからドーピング効果はCNTの内部および外部にドーパントが導入されることで発現するが、多層CNTの場合は最外層および最内層に接していない内部に位置するチューブのドープ効果が発現しにくくなる。以上のような理由により、複層構造のCNTにそれぞれドーピング処理を施した際には、2層構造又は3層構造を有するCNTでのドーピング効果が最も高い。また、ドーパントは、強い求電子性もしくは求核性を示す、反応性の高い試薬であることが多い。単層構造のCNTは多層よりも剛性が弱く、耐薬品性に劣るためにドーピング処理を施すと、CNT自体の構造が破壊されてしまうことがある。よって本発明ではCNT集合体に含まれる2層構造又は3層構造を有するCNTの個数に着目する。また、2層又は3層構造のCNTの個数の和の比率が50%未満であると、単層構造或いは4層以上の複層構造を有するCNTの比率が高くなり、CNT集合体全体としてドーピング効果が小さくなり、高導電率が得にくくなる。よって、2層又は3層構造のCNTの個数の和の比率を上記範囲内の値とする。   A CNT with a small number of layers such as a two-layer structure or a three-layer structure has a relatively higher conductivity than a CNT with a larger number of layers. In addition, the dopant is introduced into the innermost layer of the CNT or in a gap between the CNTs formed by a plurality of CNTs. The interlayer distance of CNT is equivalent to 0.335 nm which is the interlayer distance of graphite, and in the case of multilayer CNT, it is difficult in terms of size for the dopant to enter the interlayer. From this, the doping effect is manifested by introducing dopants inside and outside the CNT, but in the case of multi-walled CNT, the doping effect of the tube located inside the outermost layer and the innermost layer that is not in contact with the innermost layer becomes difficult to manifest. . For the reasons described above, when doping treatment is performed on CNTs having a multi-layer structure, the doping effect of CNTs having a two-layer structure or a three-layer structure is the highest. In addition, the dopant is often a highly reactive reagent that exhibits strong electrophilicity or nucleophilicity. CNTs having a single-layer structure are less rigid than multilayers and have poor chemical resistance. Therefore, when a doping process is performed, the structure of the CNTs itself may be destroyed. Therefore, the present invention focuses on the number of CNTs having a two-layer structure or a three-layer structure included in the CNT aggregate. In addition, when the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure is less than 50%, the ratio of CNTs having a single-layer structure or a multi-layer structure of four or more layers increases, and the CNT aggregate as a whole is doped. The effect is reduced and high conductivity is difficult to obtain. Therefore, the ratio of the sum of the number of CNTs having a two-layer or three-layer structure is set to a value within the above range.

CNTにドープされるドーパントは、導電性が向上すれば特に限定はないが、例えば硝酸、硫酸、ヨウ素、臭素、カリウム、ナトリウム、ホウ素及び窒素からなる群から選択される1つ以上の異種元素もしくは分子である。   The dopant doped in CNT is not particularly limited as long as the conductivity is improved. For example, one or more different elements selected from the group consisting of nitric acid, sulfuric acid, iodine, bromine, potassium, sodium, boron, and nitrogen or Is a molecule.

また、CNT束11Aを構成するCNTの最外層の外径は5.0nm以下であるのが好ましい。CNT束11Aを構成するCNTの最外層の外径が5.0nmを超えると、CNT間および最内層の隙間に起因する空孔率が大きくなり、導電性が低下してしまうため、好ましくない。したがって、CNT束11Aを構成するCNTの最外層の外径を5.0nm以下とする。   In addition, the outer diameter of the outermost layer of CNT constituting the CNT bundle 11A is preferably 5.0 nm or less. If the outer diameter of the outermost layer of the CNTs constituting the CNT bundle 11A exceeds 5.0 nm, the porosity due to the gap between the CNTs and the innermost layer is increased, which is not preferable. Therefore, the outer diameter of the outermost layer of CNT constituting the CNT bundle 11A is set to 5.0 nm or less.

CNT線材11は、線材全体の強度及び導電性の観点から、その当該線材に分散配置された他の金属部材を有していてもよい。他の金属部材は、例えば長尺状の線材或いは粒子であり、このような形状を有する他の金属部材がCNTに混合されている。上記他の金属部材の金属は、例えば銅、銅合金、アルミニウム、アルミニウム合金を主成分とする材料である。
本発明における所定金属含有部材11−2は、上述のように、CNT線材11の長手方向端部11aに配置されるものであり、CNT線材11の長手方向全体に亘って含有される他の金属部材とは異なる。本発明のCNT線材11の接合部30におけるCNT線材11に対する所定金属含有部材11−2の含有量は、1〜85質量%が好ましく、より好ましくは10〜50質量%である。より具体的には、CNT線材11の長手方向端部11aに設けられた凹凸部11−1のCNTの質量と凹凸部11−1に配置された所定金属含有部材11−2との合計質量に対する、凹凸部11−1に配置された所定金属含有部材11−2の質量の比率が、1〜85質量%が好ましく、10〜50質量%であるのがより好ましい。1質量%以上とすることで接合部の金属含有量が増大し、金属圧着時の嵌合がし易くなる。また、上記含有量を85質量%以下とすることで導電性と接合部重量のバランスを担保でき、更に、50質量%以下とすることで導電性と接合部重量のバランスをより好適に保つことができる。また、CNT線材11におけるCNTに対する上記所定金属の金属含有量は、当該CNTに対する上記他の金属部材の金属含有量よりも大きい。尚、本発明のCNT線材11は、炭素(C)を主成分とする線材であり、銅、銅合金、アルミニウム、アルミニウム合金等の金属を主成分とする線材と異なることは言うまでもない。
The CNT wire 11 may have other metal members dispersedly arranged on the wire from the viewpoint of the strength and conductivity of the entire wire. The other metal member is, for example, a long wire or particle, and the other metal member having such a shape is mixed with the CNT. The metal of said other metal member is a material which has copper, copper alloy, aluminum, and aluminum alloy as a main component, for example.
As described above, the predetermined metal-containing member 11-2 according to the present invention is disposed at the longitudinal end portion 11a of the CNT wire 11 and is contained in the entire length of the CNT wire 11 in the other direction. It is different from the member. As for content of the predetermined metal containing member 11-2 with respect to the CNT wire 11 in the junction part 30 of the CNT wire 11 of this invention, 1-85 mass% is preferable, More preferably, it is 10-50 mass%. More specifically, with respect to the total mass of the CNT of the concavo-convex part 11-1 provided at the longitudinal end 11a of the CNT wire 11 and the predetermined metal-containing member 11-2 arranged in the concavo-convex part 11-1. Moreover, 1-85 mass% is preferable, and, as for the ratio of the mass of the predetermined metal containing member 11-2 arrange | positioned at the uneven | corrugated | grooved part 11-1, it is more preferable that it is 10-50 mass%. By setting the content to 1% by mass or more, the metal content in the joint portion increases, and the fitting during the metal crimping becomes easy. Moreover, the balance of electroconductivity and a junction weight can be ensured by making the said content into 85 mass% or less, Furthermore, the balance of electroconductivity and a junction weight can be maintained more suitably by setting it as 50 mass% or less. Can do. Further, the metal content of the predetermined metal with respect to the CNT in the CNT wire 11 is larger than the metal content of the other metal member with respect to the CNT. Note that the CNT wire 11 of the present invention is a wire mainly composed of carbon (C), and needless to say, is different from a wire mainly composed of metal such as copper, copper alloy, aluminum, and aluminum alloy.

<カーボンナノチューブ線材接続構造体の製造方法>
図2(a)〜(e)は、図1のカーボンナノチューブ線材接続構造体1の製造方法の一例を示す図である。
先ず、CNT電線10の絶縁被覆12の一部を剥いで、CNT線材11の長手方向端部11aを露出させたものを準備する(図2(a))。次いで、超音波発生装置Dを用いて、露出したCNT線材11の長手方向端部11aに超音波を付与し、当該長手方向端部11aを粗化する(図2(b))。この粗化処理は、超音波以外に、レーザ或いはブラストを用いて行ってもよい。これにより、CNT線材11の長手方向端部11aに、複数の延出部11−1a,11−1aからなる凹凸部11−1(粗化部分)が形成される。複数の延出部あるいは凹凸部の長手方向長さは、端子20との接続部の長さに因って決定される。
<Method for producing carbon nanotube wire connecting structure>
2A to 2E are views showing an example of a method for manufacturing the carbon nanotube wire connecting structure 1 shown in FIG.
First, a part of the insulating coating 12 of the CNT electric wire 10 is peeled off to expose the longitudinal end 11a of the CNT wire 11 (FIG. 2A). Next, using the ultrasonic generator D, ultrasonic waves are applied to the exposed longitudinal end portion 11a of the CNT wire 11 to roughen the longitudinal end portion 11a (FIG. 2B). This roughening treatment may be performed using laser or blasting in addition to ultrasonic waves. Thereby, the uneven | corrugated | grooved part 11-1 (roughening part) which consists of several extension part 11-1a, 11-1a in the longitudinal direction edge part 11a of the CNT wire 11 is formed. The length in the longitudinal direction of the plurality of extending portions or uneven portions is determined based on the length of the connection portion with the terminal 20.

次に、CNT線材11の長手方向端部11aに流動性部材を塗布する。流動性部材としてはんだめっきを用いる場合、図3(a)に示すように、長手方向端部11aの凹凸部11−1をはんだ槽40の溶融はんだに浸漬し、はんだ槽40内の超音波振動板41を用いて溶融はんだに超音波振動を付与し、所定時間経過後、凹凸部11−1を溶融はんだから引き上げる。このとき、溶融はんだが、毛細管現象によって複数の延出部11−1a間の空隙部に入り込み、凹凸部11−1の空隙部全体に行き渡る。その結果、CNT線材11の長手方向端部11aに、当該凹凸部11−1を埋めるように所定金属含有部材11−2が配置される(図3(b))。   Next, a fluid member is applied to the longitudinal end portion 11 a of the CNT wire 11. When solder plating is used as the fluid member, as shown in FIG. 3A, the concavo-convex portion 11-1 of the longitudinal end portion 11a is immersed in the molten solder in the solder bath 40, and ultrasonic vibration in the solder bath 40 is obtained. Ultrasonic vibration is applied to the molten solder using the plate 41, and after the predetermined time has elapsed, the concavo-convex portion 11-1 is pulled up from the molten solder. At this time, the molten solder enters the space between the plurality of extending portions 11-1a by the capillary phenomenon, and spreads over the entire space of the uneven portion 11-1. As a result, the predetermined metal-containing member 11-2 is arranged in the longitudinal end portion 11a of the CNT wire 11 so as to fill the uneven portion 11-1 (FIG. 3B).

次に、図2(d)において、銅または銅合金の金属基体からなる板材を圧延して、所定厚さの板材を作製する。このとき、必要に応じて、母材からなる板材全体或いは板材の一部にめっき層を設けて金属部材を形成し、また、繰り返し形状の構成単位となる各板状部位における圧着部用板状体の表面に凹凸部を形成する。その後、この金属基体からなる板材を、プレス加工(1次プレス)にて、複数の圧着端子が平面展開した状態となるように、繰り返し形状で打ち抜く。その後、繰り返し形状の構成単位となる各板状部位に曲げ加工を施して(2次プレス)、コネクタ部21、トランジション部23及び電線圧着部22を有する端子20を形成する。   Next, in FIG.2 (d), the board | plate material which consists of a copper or copper alloy metal base | substrate is rolled, and the board | plate material of predetermined thickness is produced. At this time, if necessary, a metal layer is formed by providing a plating layer on the whole plate material or a part of the plate material, and the plate shape for the crimping portion in each plate-shaped portion that becomes a repetitive unit. An uneven portion is formed on the surface of the body. Thereafter, the plate material made of the metal substrate is punched out in a repetitive shape by pressing (primary pressing) so that a plurality of crimp terminals are in a flattened state. Thereafter, bending is performed on each plate-like portion serving as a repetitive unit (secondary press) to form the terminal 20 having the connector portion 21, the transition portion 23, and the wire crimping portion 22.

次いで、上記のように作製された端子20をCNT線材11の長手方向端部11aと圧着し、CNT線材接続構造体1を形成する(図2(e))。このとき、線材圧着部22Aのバレル底部22A−1にCNT線材11の所定金属含有部材11−2を載置すると共に、被覆圧着部22Bのバレル底部22B−1に絶縁被覆12を載置して、一対のバレル片22A−2,22A−2及び一対のバレル片22B−2,22B−2をそれぞれ内側に折り曲げて加締める。これにより、線材圧着部22AがCNT線材11の所定金属含有部材11−2に、被覆圧着部22Bが絶縁被覆12にそれぞれ接合され、CNT線材11の所定金属含有部材11−2と線材圧着部22Aとの接合部30が形成される。   Next, the terminal 20 produced as described above is pressure-bonded to the longitudinal end portion 11a of the CNT wire 11 to form the CNT wire connection structure 1 (FIG. 2 (e)). At this time, the predetermined metal-containing member 11-2 of the CNT wire 11 is placed on the barrel bottom 22A-1 of the wire crimping portion 22A, and the insulating coating 12 is placed on the barrel bottom 22B-1 of the coating crimping portion 22B. The pair of barrel pieces 22A-2 and 22A-2 and the pair of barrel pieces 22B-2 and 22B-2 are bent inward and crimped. As a result, the wire crimping portion 22A is joined to the predetermined metal-containing member 11-2 of the CNT wire 11, and the coating crimping portion 22B is joined to the insulating coating 12, respectively, and the predetermined metal-containing member 11-2 of the CNT wire 11 and the wire crimping portion 22A. The joint part 30 is formed.

CNT線材11は、CNTの弾性的性質により、金属製線材と比較して塑性変形し難く、弾性変形し易い。そこで、接合部30に所定金属含有部材11−2を配置して、端子20との圧着時に所定金属含有部材11−2を塑性変形させることにより、CNT線材11の弾性変形を抑制することができ、CNT線材11と端子20との良好な機械的接続を実現することができる。   The CNT wire 11 is less likely to be plastically deformed and more easily elastically deformed than the metal wire due to the elastic properties of CNTs. Therefore, the elastic deformation of the CNT wire 11 can be suppressed by arranging the predetermined metal-containing member 11-2 in the joint portion 30 and plastically deforming the predetermined metal-containing member 11-2 at the time of crimping with the terminal 20. A good mechanical connection between the CNT wire 11 and the terminal 20 can be realized.

図4(a)〜(d)は、図1のCNT線材接続構造体1の変形例及びその製造方法を示す図である。図1のCNT線材接続構造体1は、CNT線材11といわゆるオープンバレル型の端子20との接続構造を有するが、これに限らず、CNT線材11とクローズドバレル型の端子との接続構造を有していてもよい。   4A to 4D are views showing a modification of the CNT wire connecting structure 1 shown in FIG. 1 and a method for manufacturing the same. The CNT wire connection structure 1 in FIG. 1 has a connection structure between the CNT wire 11 and a so-called open barrel type terminal 20, but is not limited thereto, and has a connection structure between the CNT wire 11 and a closed barrel type terminal. You may do it.

具体的には、端子60は、不図示の外部端子と電気的に接続されるコネクタ部21と、該コネクタ部とトランジション部23を介して設けられ、CNT電線10と圧着される電線圧着部61とを備える(図4(a))。電線圧着部61は、トランジション部23側が閉塞された形状(片端閉塞形状)を有する筒部材であって、CNT電線10の絶縁被覆12と圧着される被覆圧着部61Aと、電線挿入口62側からトランジション部23側に向かって縮径する縮径部61Bと、CNT線材11と圧着される線材圧着部61Cと、電線挿入口62側からトランジション部23側に向かって更に縮径し、その端部が溶接により閉塞される縮径部61Dとを有している。コネクタ部21及びトランジション部23の構成は、図1の端子20と同じであるので、その説明を省略する。   Specifically, the terminal 60 is provided via a connector portion 21 electrically connected to an external terminal (not shown), and the connector portion and the transition portion 23, and a wire crimping portion 61 that is crimped to the CNT electric wire 10. (FIG. 4A). The wire crimping portion 61 is a cylindrical member having a shape (one-end closed shape) in which the transition portion 23 side is closed, and from the side of the wire insertion port 62 and a covering crimping portion 61A to be crimped to the insulating coating 12 of the CNT electric wire 10. A diameter-reduced part 61B that is reduced in diameter toward the transition part 23 side, a wire-material crimping part 61C that is crimped to the CNT wire 11, and a diameter that is further reduced from the wire insertion port 62 side toward the transition part 23 side. Has a reduced diameter portion 61D closed by welding. Since the structure of the connector part 21 and the transition part 23 is the same as the terminal 20 of FIG. 1, the description is abbreviate | omitted.

この電線圧着部61は、例えば平面展開した金属基体を立体的にプレス加工すると共に、断面が略C字型となる筒状体を形成し、この筒状体の開放部分(突き合わせ部)をレーザ溶接することにより形成される。筒状体のレーザ溶接は、該筒状体の長手方向(X方向)に沿って行われるため、その長手方向と略同一の方向に帯状溶接部(溶接ビード)が形成され、これにより電線圧着部61が形成される。また、電線圧着部61を形成した後、電線圧着部61のトランジション部23側の端部がレーザ溶接によって封止されるのが好ましい。この封止溶接は、圧着端子の長手方向に対して垂直な方向(Y方向)に沿って行われる。この封止溶接により、トランジション部23側からの水分等の浸入が防止される。また、線材圧着部61Cの内周面61aには、複数の突起或いはセレーション等で形成される凹凸部63が設けられてもよい(図4(b))。   For example, the wire crimping portion 61 three-dimensionally presses a flatly developed metal base and forms a cylindrical body having a substantially C-shaped cross section. The open portion (butting portion) of the cylindrical body is formed by a laser. It is formed by welding. Laser welding of the tubular body is performed along the longitudinal direction (X direction) of the tubular body, so that a belt-like welded portion (weld bead) is formed in the substantially same direction as the longitudinal direction, thereby crimping the wire. Part 61 is formed. Moreover, after forming the wire crimping part 61, it is preferable that the edge part by the side of the transition part 23 of the wire crimping part 61 is sealed by laser welding. This sealing welding is performed along a direction (Y direction) perpendicular to the longitudinal direction of the crimp terminal. By this sealing welding, intrusion of moisture and the like from the transition part 23 side is prevented. Further, an uneven portion 63 formed by a plurality of protrusions or serrations may be provided on the inner peripheral surface 61a of the wire crimping portion 61C (FIG. 4B).

端子60を用いてCNT線材接続構造体1Aを作製する場合にも、図2の場合と同様にして、CNT線材11の長手方向端部11aに、複数の延出部11−1a,11−1aからなる凹凸部11−1を形成し、その後、CNT線材11の長手方向端部11aにはんだめっきなどの流動性部材を塗布し、該流動性部材を冷却、固化することにより、長手方向端部11aの凹凸部11−1に所定金属含有部材11−2を配置する。   When the CNT wire connecting structure 1A is manufactured using the terminal 60, a plurality of extending portions 11-1a and 11-1a are formed on the longitudinal end portion 11a of the CNT wire 11 in the same manner as in FIG. A longitudinal end portion is formed by applying a fluid member such as solder plating to the longitudinal end portion 11a of the CNT wire 11, and cooling and solidifying the fluid member. The predetermined metal-containing member 11-2 is disposed on the uneven portion 11-1 of 11a.

その後、CNT線材11の長手方向端部11aを電線圧着部61内に挿入し(図4(c))、線材圧着部61CにCNT線材11の所定金属含有部材11−2を載置すると共に、被覆圧着部61Aに絶縁被覆12を載置する。そして、電線圧着部61を加締めて、電線圧着部61をCNT線材11と圧着する(図4(d))。これにより、CNT線材11の所定金属含有部材11−2と端子60の線材圧着部61Cとの接合部66が形成され、この接合部66において、CNT線材11の長手方向端部11aの凹凸部11−1と線材圧着部61Cとの間に所定金属含有部材11−2が形成される。このとき、所定金属含有部材11−2が圧着荷重に対する緩衝材の役割を果たすため、圧着によってCNT線材11が機械的、電気的特性が劣化するのを防止することができる。その後、接合部66の全体又は部分的に熱エネルギーを付与して所定金属含有部材11−2を加熱、溶融し、その後冷却して硬化する。   Thereafter, the longitudinal end 11a of the CNT wire 11 is inserted into the wire crimping portion 61 (FIG. 4C), and the predetermined metal-containing member 11-2 of the CNT wire 11 is placed on the wire crimping portion 61C. The insulating coating 12 is placed on the coating crimping portion 61A. And the wire crimping part 61 is crimped, and the wire crimping part 61 is crimped | bonded with the CNT wire 11 (FIG.4 (d)). Thereby, the joining part 66 of the predetermined metal containing member 11-2 of the CNT wire 11 and the wire crimping part 61C of the terminal 60 is formed, and the uneven part 11 of the longitudinal direction end part 11a of the CNT wire 11 is formed in this joining part 66. -1 and the wire rod crimping part 61C are formed with a predetermined metal-containing member 11-2. At this time, since the predetermined metal-containing member 11-2 serves as a buffer material against the compression load, the mechanical and electrical characteristics of the CNT wire 11 can be prevented from being deteriorated by the compression. After that, the predetermined metal-containing member 11-2 is heated and melted by applying thermal energy to the whole or a part of the joint portion 66, and then cooled and hardened.

上述したように、本実施形態によれば、CNT線材11の長手方向端部11aに凹凸部11−1が設けられ、また、所定金属含有部材11−2が、CNT線材11の長手方向端部11aに接続される端子20との接合部30に設けられ、且つ凹凸部11−1を埋めるように配置されるので、CNT線材11の長手方向端部11aと端子20との間に所定金属含有部材11−2を介在させることができ、CNT線材11が、当該所定金属含有部材11−2を介して端子20と良好に接合される。したがって、CNT線材11と端子20との界面接続における導電性の低下を抑制して、端子20との接合部30における良好な導電性及び強度を実現することができる。   As described above, according to the present embodiment, the concavo-convex portion 11-1 is provided at the longitudinal end portion 11 a of the CNT wire 11, and the predetermined metal-containing member 11-2 is arranged at the longitudinal end portion of the CNT wire 11. Since it is provided in the joint part 30 with the terminal 20 connected to 11a and is arranged so as to fill the uneven part 11-1, a predetermined metal content is included between the longitudinal end part 11a of the CNT wire 11 and the terminal 20. The member 11-2 can be interposed, and the CNT wire 11 is satisfactorily joined to the terminal 20 via the predetermined metal-containing member 11-2. Therefore, it is possible to suppress a decrease in conductivity at the interface connection between the CNT wire 11 and the terminal 20 and to realize good conductivity and strength at the joint portion 30 with the terminal 20.

また、凹凸部11−1が、CNT線材11の一部が延出してなる複数の延出部11−1aによって形成されており、所定金属含有部材11−2が、接合部30の全体に亘って上記複数の延出部11−1a間に配置されているので、CNT線材11の長手方向端部11aの断面において、所定金属含有部材11−2が海部に相当し、上記複数の延出部11−1aが島部に相当する海島構造を形成することができる。よって、CNT線材11と端子20との界面接続における導電性が良好となり、端子20との接合部30においてより良好な導電性及び強度を実現することができる。   Moreover, the uneven | corrugated | grooved part 11-1 is formed of the some extension part 11-1a in which a part of CNT wire 11 extends, and the predetermined metal containing member 11-2 covers the whole junction part 30. In the cross section of the longitudinal end portion 11a of the CNT wire 11, the predetermined metal-containing member 11-2 corresponds to the sea portion, and the plurality of extension portions are disposed between the plurality of extension portions 11-1a. A sea-island structure in which 11-1a corresponds to an island part can be formed. Therefore, the conductivity at the interface connection between the CNT wire 11 and the terminal 20 becomes good, and better conductivity and strength can be realized at the joint portion 30 with the terminal 20.

以上、本発明の実施形態に係るCNT接続構造体およびその製造方法について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。   Although the CNT connection structure and the manufacturing method thereof according to the embodiments of the present invention have been described above, the present invention is not limited to the described embodiments, and various modifications and changes can be made based on the technical idea of the present invention. Is possible.

上記実施形態では、CNT線材接続構造体は、CNT電線10とオープンバレル型の端子20との接続構造、或いはCNT電線10とクローズドバレル型の端子60との接続構造を有しているが、CNT電線と他の形状の端子との接続構造を有していてもよい。
例えば、図5(a)において、CNT線材接続構造体1Bの端子70は、不図示の外部端子と電気的に接続されるコネクタ部21と、該コネクタ部とトランジション部23を介して設けられ、CNT電線10と圧着される電線圧着部71とを備えている。
In the above embodiment, the CNT wire connecting structure has a connection structure between the CNT electric wire 10 and the open barrel type terminal 20 or a connection structure between the CNT electric wire 10 and the closed barrel type terminal 60. You may have the connection structure of an electric wire and the terminal of another shape.
For example, in FIG. 5A, the terminal 70 of the CNT wire connecting structure 1B is provided via a connector part 21 electrically connected to an external terminal (not shown), the connector part and the transition part 23, A CNT wire 10 and a wire crimping portion 71 to be crimped are provided.

圧着前の電線圧着部71は、図5(b)に示すように、長手方向に関してその両端が開放した形状(両端開放形状)を有する筒部材であって、トランジション部23を介してコネクタ部21に連結され且つCNT線材11と圧着される線材圧着部71Aと、線材圧着部71Aのトランジション部23とは反対側に配置され、絶縁被覆12と圧着される被覆圧着部71Bとを有しており、これらが金属基体にて一体成形されている。電線圧着部71は、被覆圧着部71Bの長手方向端部に電線挿入口72を有すると共に、線材圧着部71Aの長手方向端部に開口73を有している。コネクタ部21及びトランジション部23の構成は、図1の端子20と基本的に同じであるので、その説明を省略する。   As shown in FIG. 5B, the wire crimping portion 71 before crimping is a cylindrical member having a shape in which both ends thereof are open in the longitudinal direction (both ends open shape), and the connector portion 21 via the transition portion 23. And a wire crimping portion 71A that is crimped to the CNT wire 11, and a coating crimping portion 71B that is disposed on the opposite side of the transition crimping portion 23 of the wire crimping portion 71A and that is crimped to the insulating coating 12. These are integrally formed of a metal substrate. The electric wire crimping portion 71 has an electric wire insertion port 72 at the longitudinal end portion of the covering crimping portion 71B and an opening 73 at the longitudinal end portion of the wire crimping portion 71A. Since the structure of the connector part 21 and the transition part 23 is fundamentally the same as the terminal 20 of FIG. 1, the description is abbreviate | omitted.

端子70を用いてCNT線材接続構造体1Bを作製する場合にも、上記と同様に、CNT線材11の長手方向端部11aに、複数の延出部11−1a,11−1aからなる凹凸部11−1を形成し、その後、CNT線材11の長手方向端部11aにはんだめっきなどの流動性部材を塗布し、該流動性部材を冷却、固化することにより、長手方向端部11aの凹凸部11−1に所定金属含有部材11−2を配置する。   In the case of producing the CNT wire connecting structure 1B using the terminal 70, as in the above, the concavo-convex portion including a plurality of extending portions 11-1a and 11-1a is formed on the longitudinal end portion 11a of the CNT wire 11. 11-1 is formed, and then a flowable member such as solder plating is applied to the longitudinal end portion 11a of the CNT wire 11, and the flowable member is cooled and solidified, whereby the uneven portion of the longitudinal end portion 11a. A predetermined metal-containing member 11-2 is disposed on 11-1.

そして、電線挿入口72からCNT線材11の長手方向端部11aを挿入し、線材圧着部71AにCNT線材11の長手方向端部11aを載置すると共に、被覆圧着部71Bに絶縁被覆12を載置する(図5(b))。そして、電線圧着部71を加締めて、電線圧着部61をCNT線材11と圧着し、CNT線材11の所定金属含有部材11−2と端子70の線材圧着部71Aとの接合部75を形成する(図5(a))。本接続構造体によっても、CNT線材11の凹凸部11−1と線材圧着部71Aとの間に所定金属含有部材11−2を介在させることができる。   Then, the longitudinal end 11a of the CNT wire 11 is inserted from the wire insertion port 72, the longitudinal end 11a of the CNT wire 11 is placed on the wire crimping portion 71A, and the insulating coating 12 is placed on the covering crimping portion 71B. (FIG. 5B). And the electric wire crimping part 71 is crimped, the electric wire crimping part 61 is crimped | bonded with the CNT wire 11, and the junction part 75 of the predetermined metal containing member 11-2 of the CNT wire 11 and the wire crimping part 71A of the terminal 70 is formed. (FIG. 5 (a)). Also with this connection structure, the predetermined metal-containing member 11-2 can be interposed between the uneven portion 11-1 of the CNT wire 11 and the wire crimping portion 71A.

また、図1のCNT線材接続構造体1では、端子のコネクタ部が雌型端子であるが、コネクタ部の細部形状は、特に限定されず、外部端子と係止あるいは嵌合して電気的に接続し得るものであれば、他の形状を有していてもよい。例えば図6に示すように、丸型端子80は、電線圧着部22と平板状のトランジション部81を介して一体接続され、中央の孔82にボルト等が挿通されて他の部材に固定されるリング部83を有していてもよい。
また、他の変形例として、CNT線材接続構造体が、雌型端子のコネクタ部に代えて、雄型端子のコネクタ部を有していてもよく、雄型端子が、例えば長尺状の接続部(挿入タブ)であってもよい。
Further, in the CNT wire connecting structure 1 in FIG. 1, the connector portion of the terminal is a female terminal, but the detailed shape of the connector portion is not particularly limited, and is electrically engaged with or engaged with an external terminal. As long as it can be connected, it may have another shape. For example, as shown in FIG. 6, the round terminal 80 is integrally connected to the wire crimping portion 22 via a flat plate-like transition portion 81, and a bolt or the like is inserted into the central hole 82 and fixed to another member. You may have the ring part 83. FIG.
As another modification, the CNT wire connecting structure may have a male terminal connector instead of the female terminal connector, and the male terminal is, for example, a long connection. Part (insert tab).

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1〜23及び比較例1〜4)
先ず、浮遊触媒気相成長(CCVD)法を用い、電気炉によって1300℃に加熱された、内径φ60mm、長さ1600mmのアルミナ管内部に、炭素源であるデカヒドロナフタレン、触媒であるフェロセン、及び反応促進剤であるチオフェンを、体積比率にてそれぞれ100:4:1で含む原料溶液Lを、スプレー噴霧により供給した。キャリアガスは、水素を9.5L/minで供給した。得られたCNTを回収機にてシート状に回収し、これらを集めてCNT集合体を製造し、更にCNT集合体を束ねてCNT線材を製造した。得られたCNT線材を、大気下において500℃に加熱し、さらに酸処理を施すことによって高純度化を行った。
(Examples 1 to 23 and Comparative Examples 1 to 4)
First, decahydronaphthalene as a carbon source, ferrocene as a catalyst, and an alumina tube having an inner diameter of 60 mm and a length of 1600 mm heated to 1300 ° C. by an electric furnace using a floating catalyst vapor deposition (CCVD) method, A raw material solution L containing thiophene as a reaction accelerator at a volume ratio of 100: 4: 1 was supplied by spraying. As the carrier gas, hydrogen was supplied at 9.5 L / min. The obtained CNTs were collected in a sheet form by a collecting machine, and these were collected to produce a CNT aggregate, and further the CNT aggregate was bundled to produce a CNT wire. The obtained CNT wire was heated to 500 ° C. in the atmosphere, and further subjected to acid treatment to achieve high purity.

次いで、YAGレーザ(波長:1064nm)、出力100W、周波数200Hz、デューティー比10%のレーザ条件にて、CNT線材の長手方向端部に、CNT線材の軸方向からレーザを照射し、30秒間、60秒間、90秒間、120秒間又は150秒間で粗化処理を施した。   Next, under the YAG laser (wavelength: 1064 nm), laser output of 100 W, frequency of 200 Hz, and duty ratio of 10%, the longitudinal direction end of the CNT wire is irradiated with the laser from the axial direction of the CNT wire for 30 seconds for 60 seconds. The roughening treatment was performed for 90 seconds, 120 seconds, or 150 seconds.

その後、上記粗化処理によって得られた粗化部分を、表1に示すような所定金属を含有するはんだのめっき浴に浸漬し、当該粗化部分にめっき処理が施されたCNT線材を作製した。   Thereafter, the roughened portion obtained by the roughening treatment was immersed in a solder plating bath containing a predetermined metal as shown in Table 1 to produce a CNT wire having the roughened portion plated. .

(比較例5)
CNT線材の長手方向端部に180秒間で粗化処理を施し且つめっき処理を施さなかったこと以外は、実施例1〜23及び比較例1〜4と同様にして、粗化部分に所定金属を含まないCNT線材を作製した。
(Comparative Example 5)
A predetermined metal was applied to the roughened portion in the same manner as in Examples 1 to 23 and Comparative Examples 1 to 4, except that the end portion in the longitudinal direction of the CNT wire was subjected to the roughening treatment in 180 seconds and not subjected to the plating treatment. A CNT wire not containing was prepared.

次に、実施例1〜23及び比較例1〜5について、下記方法にてCNT線材を測定、評価した。   Next, about Examples 1-23 and Comparative Examples 1-5, the CNT wire was measured and evaluated by the following method.

(a)CNT線材の長手方向端部における所定金属の含有量
上記めっき処理が施された長手方向端部の断面SEM像からCNTと所定金属の面積比を計測し、CNT及び所定金属の密度を乗算することにより、CNT線材の長手方向端部における所定金属の含有量(質量%)を測定した。
(A) Content of the predetermined metal at the longitudinal end of the CNT wire rod The area ratio of the CNT and the predetermined metal is measured from the cross-sectional SEM image of the longitudinal end subjected to the plating process, and the density of the CNT and the predetermined metal is determined. By multiplying, the content (mass%) of the predetermined metal in the longitudinal direction edge part of a CNT wire was measured.

(b)接触抵抗
上記めっき処理を施したCNT線材の長手方向端部に端子を圧着接合してCNT線材接続構造体を作製した。そして、4端子法にて、CNT線材の長手方向端部の抵抗R1、端子の抵抗R2、及びCNT線材接続構造体におけるCNT線材−端子間の抵抗R3をそれぞれ測定し、次の式により接合部の接触抵抗R4を算出した。尚、比較例5ではめっき処理を施さないCNT線材に端子を圧着接合してCNT線材接続構造体を作製し、上記と同様にして接合部の接触抵抗を算出した。
4=R3−R2−R1
接合部の接触抵抗が20mΩ未満である場合を極めて良好「◎」、20mΩ以上100mΩ未満である場合を良好「〇」、100mΩ以上300mΩ未満である場合をほぼ良好「△」、300mΩ以上(1Ω程度)である場合を不良「×」とした。
(B) Contact resistance The terminal was crimped | bonded to the longitudinal direction edge part of the CNT wire which performed the said plating process, and the CNT wire connection structure was produced. Then, the resistance R 1 at the longitudinal end of the CNT wire, the resistance R 2 of the terminal, and the resistance R 3 between the CNT wire and the terminal in the CNT wire connecting structure are measured by the four-terminal method, respectively, Was used to calculate the contact resistance R 4 of the joint. In Comparative Example 5, a terminal was crimped and bonded to a CNT wire not subjected to plating treatment to produce a CNT wire connection structure, and the contact resistance of the joint was calculated in the same manner as described above.
R 4 = R 3 -R 2 -R 1
Very good when contact resistance of joint is less than 20 mΩ “「 ”, good when 20 mΩ or more and less than 100 mΩ,“ good ”when 100 mΩ or more and less than 300 mΩ“ △ ”, 300 mΩ or more (about 1Ω) ) Is defined as a defective “x”.

(c)CNT線材−端子の圧着接合性
上記と同様にCNT線材接続構造体を作製し、引張試験機(島津製作所製、装置名「オートグラフAG−IS」)にて引張試験を行い、CNT線材−端子の圧着接合性を評価した。引張強度400MPa以上でもCNT線材が端子から抜けず、或いはCNT線材が端子から抜けずに断線した場合を良好「〇」、引張強度300MPa以上400MPa未満でCNT線材が端子から抜けた場合をほぼ良好「△」、300MPa未満でCNT線材が端子から抜けた場合を不良「×」とした。尚、CNT線材の代わりに銅線を用い、銅線の長手方向端部に粗化処理及びめっき処理のいずれも施さず、銅線の長手方向端部と端子とを圧着接合した銅線材接続構造体を作製して銅線材−端子の圧着接合性を評価すると、引張強度300MPa以上400MPa未満で銅線材が断線した。
(C) CNT wire-terminal crimping bondability As described above, a CNT wire connection structure was prepared and subjected to a tensile test with a tensile tester (manufactured by Shimadzu Corporation, apparatus name “Autograph AG-IS”). The crimp bonding property of the wire rod-terminal was evaluated. Even when the tensile strength is 400 MPa or more, the CNT wire does not come out from the terminal, or when the CNT wire breaks without coming out from the terminal, “good”, and when the tensile strength is 300 MPa or more and less than 400 MPa, the CNT wire comes out from the terminal almost “ “△”, a case where the CNT wire was pulled out of the terminal at less than 300 MPa was defined as a defective “x”. A copper wire connecting structure in which a copper wire is used instead of the CNT wire, and the copper wire is bonded to the longitudinal end portion of the copper wire and the terminal without any roughening or plating treatment on the longitudinal end portion of the copper wire. When the body was prepared and the crimp bonding property of the copper wire-terminal was evaluated, the copper wire was disconnected at a tensile strength of 300 MPa or more and less than 400 MPa.

(d)密度
アルキメデス法により、上記めっき処理が施された長手方向端部の密度を測定した。長手方向端部の密度が2g/cm未満である場合を極めて良好「◎」、2g/cm以上4g/cm未満である場合を良好「〇」、4g/cm以上6g/cm未満である場合をほぼ良好「△」、6g/cm以上である場合を不良「×」とした。
(D) Density The density of the end portion in the longitudinal direction subjected to the plating treatment was measured by the Archimedes method. Very good when the density at the end in the longitudinal direction is less than 2 g / cm 3 “◎”, good when 2 g / cm 3 or more and less than 4 g / cm 3 “◯”, 4 g / cm 3 or more and 6 g / cm 3 The case of less than “good” was regarded as “good”, and the case of 6 g / cm 3 or more was judged as “bad”.

上記実施例1〜24及び比較例1〜5の測定、算出結果を表1に示す。   Table 1 shows the measurement and calculation results of Examples 1 to 24 and Comparative Examples 1 to 5.

Figure 2017183281
Figure 2017183281

表1に示すように、実施例1〜23では、CNT線材の長手方向端部における所定金属の含有量が1〜85質量%の範囲内であり、CNT線材−端子間の接触抵抗が、ほぼ良好、良好或いは極めて良好であることが分かった。特に、実施例2,3,7,8,11,13,16,19,21,23では、CNT線材の長手方向端部における所定金属の含有量が10〜50質量%の範囲内であり、CNT線材−端子間の接触抵抗、圧着接合性及びCNT線材の長手方向端部の密度のいずれも、良好或いは極めて良好であることが分かった。   As shown in Table 1, in Examples 1 to 23, the content of the predetermined metal at the end in the longitudinal direction of the CNT wire is in the range of 1 to 85% by mass, and the contact resistance between the CNT wire and the terminal is almost equal. It was found to be good, good or very good. In particular, in Examples 2, 3, 7, 8, 11, 13, 16, 19, 21, 23, the content of the predetermined metal at the end in the longitudinal direction of the CNT wire is in the range of 10 to 50 mass%, It was found that all of the contact resistance between the CNT wire-terminal, the pressure bonding property, and the density of the end portion in the longitudinal direction of the CNT wire were good or extremely good.

一方、比較例1〜4では、CNT線材の長手方向端部における所定金属の含有量が1〜80質量%の範囲外であり、CNT線材−端子間の接触抵抗及び圧着接合性の双方が不良であることが分かった。また、比較例5では、CNT線材の長手方向端部に所定金属が含まれないため、CNT線材−端子間の接触抵抗及び圧着接合性の双方が不良であった。   On the other hand, in Comparative Examples 1 to 4, the content of the predetermined metal at the end in the longitudinal direction of the CNT wire is outside the range of 1 to 80% by mass, and both the contact resistance between the CNT wire and the terminal and the pressure bonding property are poor. It turns out that. Further, in Comparative Example 5, since the predetermined metal was not included in the end portion in the longitudinal direction of the CNT wire, both the contact resistance between the CNT wire and the terminal and the pressure bonding property were poor.

1 CNT線材接続構造体
1A CNT線材接続構造体
1B CNT線材接続構造体
11 CNT線材
11A CNT束
11a 長手方向端部
11−1 凹凸部
11−1a 延出部
11−2 所定金属含有部材
12 絶縁被覆
20 端子
21 コネクタ部
22 電線圧着部
22A 線材圧着部
22A−1 バレル底部
22A−2,22A−2 一対のバレル片
22B 被覆圧着部
22B−1 バレル底部
22B−2,22B−2一対のバレル片
22a 内側面
23 トランジション部
24 凹凸部
30 接合部
40 はんだ槽
41 超音波振動板
60 端子
61 電線圧着部
61A 被覆圧着部
61B 縮径部
61C 線材圧着部
61D 縮径部
61a 内周面
62 電線挿入口
63 凹凸部
66 接合部
70 端子
71 電線圧着部
71A 線材圧着部
71B 被覆圧着部
72 電線挿入口
75 接合部
80 丸型端子
81 トランジション部
82 孔
83 リング部
D 超音波発生装置
DESCRIPTION OF SYMBOLS 1 CNT wire connection structure 1A CNT wire connection structure 1B CNT wire connection structure 11 CNT wire 11A CNT bundle 11a Longitudinal end part 11-1 Uneven part 11-1a Extension part 11-2 Predetermined metal containing member 12 Insulation coating 20 Terminal 21 Connector portion 22 Wire crimping portion 22A Wire rod crimping portion 22A-1 Barrel bottom portion 22A-2, 22A-2 Pair of barrel pieces 22B Covering crimp portion 22B-1 Barrel bottom portions 22B-2, 22B-2 Pair of barrel pieces 22a Inner side surface 23 Transition portion 24 Uneven portion 30 Joint portion 40 Solder tank 41 Ultrasonic vibration plate 60 Terminal 61 Wire crimp portion 61A Cover crimp portion 61B Reduced diameter portion 61C Wire rod crimp portion 61D Reduced diameter portion 61a Inner circumferential surface 62 Wire insertion port 63 Concavity and convexity portion 66 Joint portion 70 Terminal 71 Wire crimping portion 71A Wire material crimping portion 71B Covering crimping portion 72 Wire insertion port 75 Contact Joint part 80 Round terminal 81 Transition part 82 Hole 83 Ring part D Ultrasonic generator

Claims (12)

複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材であって、
前記カーボンナノチューブ線材の長手方向端部に設けられた凹凸部と、
前記カーボンナノチューブ線材の前記長手方向端部に接続される端子との接合部に設けられ、前記凹凸部に配置された所定金属含有部材と、を備えることを特徴とするカーボンナノチューブ線材。
A carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles,
Concave and convex portions provided at the longitudinal ends of the carbon nanotube wire,
A carbon nanotube wire comprising: a predetermined metal-containing member provided at a joint portion between the carbon nanotube wire and a terminal connected to the end portion in the longitudinal direction, and disposed on the uneven portion.
前記カーボンナノチューブ線材の長手方向に亘って含有された金属部材を有し、
前記カーボンナノチューブ線材におけるカーボンナノチューブに対する前記所定金属の金属含有量が、前記カーボンナノチューブに対する前記金属部材の金属含有量よりも大きいことを特徴とする、請求項1記載のカーボンナノチューブ線材。
Having a metal member contained over the longitudinal direction of the carbon nanotube wire,
The carbon nanotube wire according to claim 1, wherein a metal content of the predetermined metal with respect to the carbon nanotube in the carbon nanotube wire is larger than a metal content of the metal member with respect to the carbon nanotube.
前記凹凸部は、前記カーボンナノチューブ線材の一部が延出してなる複数の延出部によって形成されており、
前記所定金属含有部材が、前記接合部の全体に亘って前記複数の延出部間に配置されていることを特徴とする、請求項1記載のカーボンナノチューブ線材。
The concavo-convex part is formed by a plurality of extending parts formed by extending a part of the carbon nanotube wire,
2. The carbon nanotube wire according to claim 1, wherein the predetermined metal-containing member is disposed between the plurality of extending portions over the entire joining portion.
前記所定金属含有部材に含有される所定金属は、タンタル、チタン、ニッケル、パラジウム、銅、銀、金、鉄及びコバルトからなる群から選択される少なくとも1つの材料であることを特徴とする、請求項1〜3のいずれか1項に記載のカーボンナノチューブ線材。   The predetermined metal contained in the predetermined metal-containing member is at least one material selected from the group consisting of tantalum, titanium, nickel, palladium, copper, silver, gold, iron, and cobalt. Item 4. The carbon nanotube wire according to any one of Items 1 to 3. 前記所定金属は、遷移金属であることを特徴とする、請求項4記載のカーボンナノチューブ線材。   The carbon nanotube wire according to claim 4, wherein the predetermined metal is a transition metal. 前記所定金属含有部材は、前記所定金属が含有されためっきであることを特徴とする、請求項1〜5のいずれか1項に記載のカーボンナノチューブ線材。   The carbon nanotube wire according to claim 1, wherein the predetermined metal-containing member is a plating containing the predetermined metal. 異種元素がドープされていることを特徴とする、請求項1又は2記載のカーボンナノチューブ線材。   The carbon nanotube wire according to claim 1 or 2, wherein a different element is doped. 前記カーボンナノチューブ線材を構成するカーボンナノチューブが、2層又は3層の層構造を有することを特徴とする、請求項1〜3のいずれか1項に記載のカーボンナノチューブ線材。   4. The carbon nanotube wire according to claim 1, wherein the carbon nanotubes constituting the carbon nanotube wire have a two-layer or three-layer structure. 5. 前記長手方向端部に設けられた前記凹凸部のカーボンナノチューブの質量と前記凹凸部に配置された前記所定金属含有部材の質量との合計質量に対する、前記凹凸部に配置された前記所定金属含有部材の質量の比率が、1〜85質量%であることを特徴とする、請求項1〜8のいずれか1項に記載のカーボンナノチューブ線材。   The said predetermined metal containing member arrange | positioned at the said uneven | corrugated part with respect to the total mass of the mass of the carbon nanotube of the said uneven | corrugated part provided in the said longitudinal direction edge part, and the mass of the said predetermined metal containing member arrange | positioned at the said uneven | corrugated part. The carbon nanotube wire according to claim 1, wherein the mass ratio of the carbon nanotube wire is 1 to 85 mass%. 前記長手方向端部に設けられた前記凹凸部のカーボンナノチューブの質量と前記凹凸部に配置された前記所定金属含有部材の質量との合計質量に対する、前記凹凸部に配置された前記所定金属含有部材の質量の比率が、10〜50質量%であることを特徴とする、請求項9記載のカーボンナノチューブ線材。   The said predetermined metal containing member arrange | positioned at the said uneven | corrugated part with respect to the total mass of the mass of the carbon nanotube of the said uneven | corrugated part provided in the said longitudinal direction edge part, and the mass of the said predetermined metal containing member arrange | positioned at the said uneven | corrugated part. The carbon nanotube wire according to claim 9, wherein a mass ratio of the carbon nanotube wire is 10 to 50 mass%. 複数のカーボンナノチューブ束を撚り合わせてなるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続される端子とを備えるカーボンナノチューブ線材接続構造体であって、
前記カーボンナノチューブ線材の長手方向端部に設けられた凹凸部と、
前記カーボンナノチューブ線材の前記長手方向端部に接続される前記端子との接合部に設けられ、前記凹凸部に配置された所定金属含有部材と、を備えることを特徴とする、カーボンナノチューブ線材接続構造体。
A carbon nanotube wire connecting structure comprising a carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles, and a terminal connected to the carbon nanotube wire,
Concave and convex portions provided at the longitudinal ends of the carbon nanotube wire,
A carbon nanotube wire connecting structure, comprising: a predetermined metal-containing member provided at a joint portion with the terminal connected to the longitudinal end portion of the carbon nanotube wire, and disposed on the concavo-convex portion. body.
前記接合部において、前記カーボンナノチューブ線材の前記長手方向端部が、前記所定金属含有部材を介して前記端子に圧着されていることを特徴とする、請求項11記載のカーボンナノチューブ線材接続構造体。   The carbon nanotube wire connecting structure according to claim 11, wherein the longitudinal end portion of the carbon nanotube wire is crimped to the terminal via the predetermined metal-containing member in the joint portion.
JP2017054012A 2016-03-24 2017-03-21 Carbon nanotube wire rod and carbon nanotube wire rod connection structure Active JP6767292B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016060730 2016-03-24
JP2016060730 2016-03-24

Publications (2)

Publication Number Publication Date
JP2017183281A true JP2017183281A (en) 2017-10-05
JP6767292B2 JP6767292B2 (en) 2020-10-14

Family

ID=60006251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054012A Active JP6767292B2 (en) 2016-03-24 2017-03-21 Carbon nanotube wire rod and carbon nanotube wire rod connection structure

Country Status (1)

Country Link
JP (1) JP6767292B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021158067A (en) * 2020-03-30 2021-10-07 古河電気工業株式会社 Connection structure and method for manufacturing the same
WO2021201096A1 (en) * 2020-03-31 2021-10-07 古河電気工業株式会社 Connection structure for carbon nanotube wire
CN114846199A (en) * 2019-12-27 2022-08-02 特线工业株式会社 Method for producing long article comprising carbon nanotubes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53158891U (en) * 1977-05-20 1978-12-13
JP2008222516A (en) * 2007-03-14 2008-09-25 Toray Ind Inc Inorganic matrix-carbon fiber composite wire material for reinforcing concrete or the like, method for manufacturing the composite material, and structure of concrete or the like
JP2009052091A (en) * 2007-08-27 2009-03-12 Brother Co Ltd Method for preventing falling of carbon fiber from carbon fiber-reinforced plastic and metal-coated carbon fiber-reinforced plastic obtained by using the same
US20090277897A1 (en) * 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
JP2011082127A (en) * 2008-11-19 2011-04-21 Autonetworks Technologies Ltd Electric wire with terminal connector, and manufacturing method of electric wire with terminal connector
JP2012129178A (en) * 2010-11-26 2012-07-05 Yazaki Corp Connection structure of electric wire and terminal, and manufacturing method therefor
JP2013047402A (en) * 2011-08-29 2013-03-07 Denso Corp Carbon nano-tube yarn connection body and method for producing the same
JP2015230901A (en) * 2014-06-03 2015-12-21 三菱瓦斯化学株式会社 Resin laminate and printed wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53158891U (en) * 1977-05-20 1978-12-13
JP2008222516A (en) * 2007-03-14 2008-09-25 Toray Ind Inc Inorganic matrix-carbon fiber composite wire material for reinforcing concrete or the like, method for manufacturing the composite material, and structure of concrete or the like
JP2009052091A (en) * 2007-08-27 2009-03-12 Brother Co Ltd Method for preventing falling of carbon fiber from carbon fiber-reinforced plastic and metal-coated carbon fiber-reinforced plastic obtained by using the same
US20090277897A1 (en) * 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
JP2011082127A (en) * 2008-11-19 2011-04-21 Autonetworks Technologies Ltd Electric wire with terminal connector, and manufacturing method of electric wire with terminal connector
JP2012129178A (en) * 2010-11-26 2012-07-05 Yazaki Corp Connection structure of electric wire and terminal, and manufacturing method therefor
JP2013047402A (en) * 2011-08-29 2013-03-07 Denso Corp Carbon nano-tube yarn connection body and method for producing the same
JP2015230901A (en) * 2014-06-03 2015-12-21 三菱瓦斯化学株式会社 Resin laminate and printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114846199A (en) * 2019-12-27 2022-08-02 特线工业株式会社 Method for producing long article comprising carbon nanotubes
CN114846199B (en) * 2019-12-27 2023-08-08 特线工业株式会社 Method for producing long article composed of carbon nanotubes
JP2021158067A (en) * 2020-03-30 2021-10-07 古河電気工業株式会社 Connection structure and method for manufacturing the same
JP7470554B2 (en) 2020-03-30 2024-04-18 古河電気工業株式会社 Connection structure and method for manufacturing the same
WO2021201096A1 (en) * 2020-03-31 2021-10-07 古河電気工業株式会社 Connection structure for carbon nanotube wire

Also Published As

Publication number Publication date
JP6767292B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP2017174689A (en) Carbon nanotube wire and carbon nanotube wire-connected structure
RU2639181C2 (en) Composite materials based on volume carbon nanotubes and metal and method of their manufacture
WO2018223954A1 (en) Joint of copper terminal and aluminium conductor and ultrasonic welding method thereof
JP5458931B2 (en) Electric wire with terminal
JP6122061B2 (en) Carbon nanotube composite lead wire
US10115492B2 (en) Electrically conductive carbon nanotube wire having a metallic coating and methods of forming same
JP5959807B2 (en) Actuator and actuator structure
JP6738627B2 (en) Carbon nanotube wire and carbon nanotube wire connecting structure
US9236669B2 (en) Electrically and thermally non-metallic conductive nanostructure-based adapters
JP6767292B2 (en) Carbon nanotube wire rod and carbon nanotube wire rod connection structure
TW201320484A (en) Electrical contact component
JP6928526B2 (en) Manufacturing method of carbon nanotube wire rod, carbon nanotube wire rod connecting structure and carbon nanotube wire rod
US20140314949A1 (en) Carbon nanotube conductor with enhanced electrical conductivity
JP3226612U (en) Copper-aluminum joint
JP6868402B2 (en) Method for manufacturing carbon nanotube aggregate, carbon nanotube wire rod and carbon nanotube aggregate
JP6588132B2 (en) Method for producing porous metal composite structure
JP2012009427A (en) Conductive material and manufacturing method thereof
JP6719244B2 (en) Carbon nanotube wire connecting method and carbon nanotube wire connecting structure
JP7097165B2 (en) Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod
JP7370917B2 (en) connection structure
RU178132U1 (en) EXTERNAL CONDUCTOR FOR COAXIAL TYPE ELECTRIC COMMUNICATION CABLES
CN109019563B (en) Porous metal composite structure
EP3800738B1 (en) Electrical terminal
JP2018115086A (en) Carbon nanotube aggregate and carbon nanotube wire
JP7254708B2 (en) Carbon nanotube composite wire, carbon nanotube coated wire and wire harness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200917

R151 Written notification of patent or utility model registration

Ref document number: 6767292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350