JP2017174609A - High-efficiency radiant heater - Google Patents

High-efficiency radiant heater Download PDF

Info

Publication number
JP2017174609A
JP2017174609A JP2016058925A JP2016058925A JP2017174609A JP 2017174609 A JP2017174609 A JP 2017174609A JP 2016058925 A JP2016058925 A JP 2016058925A JP 2016058925 A JP2016058925 A JP 2016058925A JP 2017174609 A JP2017174609 A JP 2017174609A
Authority
JP
Japan
Prior art keywords
radiator
cavity structure
radiation
wavelength
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016058925A
Other languages
Japanese (ja)
Other versions
JP6753677B2 (en
Inventor
聡 隅田
Satoshi Sumida
聡 隅田
松田 宏
Hiroshi Matsuda
宏 松田
尚久 太田
Naohisa Ota
尚久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2016058925A priority Critical patent/JP6753677B2/en
Publication of JP2017174609A publication Critical patent/JP2017174609A/en
Application granted granted Critical
Publication of JP6753677B2 publication Critical patent/JP6753677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-efficiency radiant heater capable of controlling the wavelength of radiation to any wavelength, without the need for complex structures and controls.SOLUTION: A radiant heater 1 includes a radiator 3 including holes 311 with at least one kind of shape arrayed therein and having a cavity structure 31 on a surface thereof, the cavity structure 31 amplifying radiation of a wavelength in an infrared region. At least the surface of the cavity structure 31 is coated with metal, the radiator 3 has conductivity, and the holes 311 preferably have a square hole shape.SELECTED DRAWING: Figure 1

Description

本発明は、高効率輻射ヒーターに関する。   The present invention relates to a high efficiency radiation heater.

従来、輻射により被加熱物を加熱する輻射ヒーターに関し、輻射される赤外線の波長を制御し、人体等の被加熱物に吸収されやすい特定波長の赤外線を輻射の主波長とすることで、輻射ヒーターの効率を向上させる技術が提案されている。   Conventionally, with respect to a radiant heater that heats an object to be heated by radiation, the radiant heater is controlled by controlling the wavelength of radiated infrared rays and using infrared light of a specific wavelength that is easily absorbed by the object to be heated, such as a human body, as the main wavelength of radiation. A technique for improving the efficiency of the system has been proposed.

上記のような輻射ヒーターとしては、例えば、輻射体であるフィラメントの外周を石英ガラス等で被覆し、石英ガラス等を特定波長以上の波長の赤外線を吸収するローパスフィルタとして用いる輻射ヒーターが提案されている(例えば、後述の特許文献1参照)。   As such a radiation heater, for example, a radiation heater has been proposed in which the outer periphery of a filament, which is a radiator, is coated with quartz glass or the like, and the quartz glass or the like is used as a low-pass filter that absorbs infrared light having a wavelength of a specific wavelength or more. (For example, refer to Patent Document 1 described later).

特許4790092号公報Japanese Patent No. 4790092

特許文献1に記載された輻射ヒーターは、ローパスフィルタとして用いる石英ガラス等自体が昇温して輻射体となり、特定波長以上の波長の赤外線が二次放射される問題がある。そのため、石英ガラス等を冷却するため管を二重構造とし、間に流体を流して冷却する必要があり、構造が複雑となるだけでなく複雑な制御を行う必要がある。   The radiation heater described in Patent Document 1 has a problem in that quartz glass or the like used as a low-pass filter is heated to become a radiator, and infrared rays having a wavelength of a specific wavelength or more are secondarily emitted. Therefore, in order to cool quartz glass or the like, it is necessary to make the tube have a double structure and to cool it by flowing a fluid between them, so that not only the structure is complicated but also complicated control is required.

本発明は、上記に鑑みてなされたものであり、複雑な構造や制御を要することなく輻射の波長を任意の波長に制御できる高効率輻射ヒーターを提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide a high-efficiency radiant heater capable of controlling the wavelength of radiation to an arbitrary wavelength without requiring a complicated structure or control.

上記目的を達成するため、本発明は、少なくとも1種類の形状の孔(例えば、後述の孔311)が配列されてなる、キャビティ構造(例えば、後述のキャビティ構造31)を表面に有する輻射体(例えば、後述の輻射体3)を備え、前記キャビティ構造は、赤外領域の波長の輻射を増幅する輻射ヒーターを提供する。   In order to achieve the above object, the present invention provides a radiator having a cavity structure (for example, a cavity structure 31 to be described later) on the surface, in which holes having at least one shape (for example, a hole 311 to be described later) are arranged. For example, a radiation body 3) described later is provided, and the cavity structure provides a radiation heater that amplifies radiation of wavelengths in the infrared region.

前記キャビティ構造の少なくとも表面は金属で被覆されることが好ましい。   It is preferable that at least the surface of the cavity structure is coated with a metal.

前記輻射体は、導電性を有することが好ましい。   It is preferable that the radiator has conductivity.

前記孔の形状は、角孔状であることが好ましい。   The shape of the hole is preferably a square hole.

前記キャビティ構造は、3μmの波長及び6μmの波長のうち少なくともいずれか1種の波長の輻射を増幅することが好ましい。   The cavity structure preferably amplifies radiation of at least one of a wavelength of 3 μm and a wavelength of 6 μm.

前記キャビティ構造は1種類の形状の孔が配列されてなることが好ましい。   The cavity structure is preferably formed by arranging holes of one type.

前記キャビティ構造を有する輻射体は、シート状であることが好ましい。   The radiator having the cavity structure is preferably in the form of a sheet.

本発明によれば、複雑な構造や制御を要することなく輻射の波長を任意の波長に制御できる高効率輻射ヒーターを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the highly efficient radiation heater which can control the wavelength of radiation to arbitrary wavelengths, without requiring a complicated structure and control can be provided.

本発明の一実施形態に係る輻射ヒーターを模式的に示す図である。It is a figure which shows typically the radiation heater which concerns on one Embodiment of this invention. 本発明の一実施形態に係るキャビティ構造を模式的に示す図である。It is a figure showing typically the cavity structure concerning one embodiment of the present invention. 本発明の一実施形態に係るキャビティ構造の共振のモードを模式的に示す図である。It is a figure which shows typically the mode of resonance of the cavity structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る輻射ヒーターによる輻射のスペクトルと、従来の輻射ヒーターによる輻射のスペクトルを模式的に比較したグラフである。It is the graph which compared typically the spectrum of the radiation by the radiation heater which concerns on one Embodiment of this invention, and the spectrum of the radiation by the conventional radiation heater.

以下、本発明の好ましい一実施形態について図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.

<輻射ヒーター>
本実施形態に係る輻射ヒーターは、例えば人体等の被加熱物を加温するために用いられる。具体的には、例えば、パネルヒーター、床暖房、壁紙、炬燵等として用いられる。
図1に示すように、本実施形態に係る輻射ヒーター1は、本体部2と、輻射体3と、電源装置4と、を備える。
<Radiation heater>
The radiation heater according to the present embodiment is used for heating a heated object such as a human body. Specifically, for example, it is used as a panel heater, floor heating, wallpaper, firewood or the like.
As shown in FIG. 1, the radiation heater 1 according to this embodiment includes a main body 2, a radiator 3, and a power supply device 4.

本体部2は、輻射体3を収容可能な構造を有する。本体部2の材質や形状については特に制限されないが、加熱される輻射体3を収容するため、金属や耐熱性樹脂等、一定の耐熱性を有する材質により構成されることが好ましい。   The main body 2 has a structure that can accommodate the radiator 3. The material and shape of the main body 2 are not particularly limited, but are preferably made of a material having a certain heat resistance, such as a metal or a heat resistant resin, in order to accommodate the radiator 3 to be heated.

輻射体3は、後述する電源装置4により直接あるいは間接に通電加熱されることで一定の波長領域を有する赤外線(電磁波)を輻射する。該赤外線が被加熱物に吸収されることで被加熱物が加温される。被加熱物としては、例えば人体が挙げられる。
ここで、人体が温感を良く感じることができる赤外線の波長、即ち人体への吸収率の高い赤外線の波長は、例えば3μmや6μm付近の波長であることが知られている。従って、そのような特定波長の輻射率を増幅することで、輻射ヒーター1の効率を向上させることができる。
The radiator 3 radiates infrared rays (electromagnetic waves) having a certain wavelength region by being directly or indirectly energized and heated by a power supply device 4 to be described later. The object to be heated is heated by the infrared rays being absorbed by the object to be heated. Examples of the object to be heated include a human body.
Here, it is known that the infrared wavelength at which the human body can feel a sense of warmness, that is, the wavelength of infrared rays having a high absorption rate to the human body is, for example, a wavelength around 3 μm or 6 μm. Therefore, the efficiency of the radiation heater 1 can be improved by amplifying the radiation rate of such a specific wavelength.

輻射体3の材質としては、特に制限されず、一定の耐熱性を有する材質であればよい。このような材質としては、例えば、金属、セラミックス、耐熱性樹脂等が挙げられる。但し、輻射体3の加熱方式を、輻射体3に直接通電して加熱する直接抵抗加熱とする場合、輻射体3としては一定の導電性及び抵抗率を有する金属やセラミックスを用いることが好ましい。輻射体3の加熱方式として直接抵抗加熱を用いる場合、高い加熱効率が得られる。
また、輻射体3の加熱方式を、他の輻射体に通電して輻射体3を加熱する間接抵抗加熱とする場合、輻射体3の材質は導電性や抵抗率を有するものに限定されず、樹脂等を輻射体3の材質として用いる事ができるため、後述のキャビティ構造31を輻射体3に容易に形成することができる。
The material of the radiator 3 is not particularly limited as long as it has a certain heat resistance. Examples of such materials include metals, ceramics, and heat resistant resins. However, when the heating method of the radiator 3 is direct resistance heating in which the radiator 3 is directly energized and heated, it is preferable to use a metal or ceramic having a certain conductivity and resistivity as the radiator 3. When direct resistance heating is used as the heating method of the radiator 3, high heating efficiency can be obtained.
In addition, when the heating method of the radiator 3 is indirect resistance heating in which the other radiators are energized to heat the radiator 3, the material of the radiator 3 is not limited to one having conductivity or resistivity, Since resin or the like can be used as the material of the radiator 3, a cavity structure 31 described later can be easily formed in the radiator 3.

輻射体3の形状としては、特に制限されないが、輻射体3の加熱方式を他の輻射体により加熱する間接抵抗加熱とする場合、輻射体3をシート状とすることで、容易に他の輻射体と組み合わせて用いることができる。   The shape of the radiator 3 is not particularly limited, but when the heating method of the radiator 3 is indirect resistance heating in which the radiator 3 is heated by another radiator, other radiation can be easily formed by making the radiator 3 into a sheet shape. Can be used in combination with the body.

また、輻射体3は、キャビティ構造31を表面に有する。
キャビティ構造31は、特定波長の電磁波を共振により増幅させ輻射する孔311が多数配列された構造である。
図2は、キャビティ構造31を模式的に示す図である。図2に示す通り、キャビティ構造31は、孔311と、壁部312とを有する。図2中、L及びLは孔311の開口部の一辺の長さをそれぞれ示し、Lは孔311の深さ方向の長さを示す。かかる孔311により、特定波長の電磁波が共振により増幅され、孔311の開口部から輻射される。従って、輻射体3の、孔311の開口部が設けられた面を特定波長の吸収率が高い被加熱物に向けることで、被加熱物を効率よく加温することができる。換言すれば、輻射体3において、キャビティ構造31は被加熱物に向けられる面にのみ形成されていればよい。
The radiator 3 has a cavity structure 31 on the surface.
The cavity structure 31 is a structure in which a large number of holes 311 that amplify and radiate electromagnetic waves of a specific wavelength by resonance are arranged.
FIG. 2 is a diagram schematically showing the cavity structure 31. As shown in FIG. 2, the cavity structure 31 has a hole 311 and a wall portion 312. In FIG. 2, L X and L Y indicate the length of one side of the opening of the hole 311, and L Z indicates the length of the hole 311 in the depth direction. Due to the hole 311, an electromagnetic wave having a specific wavelength is amplified by resonance and radiated from the opening of the hole 311. Therefore, the object to be heated can be efficiently heated by directing the surface of the radiator 3 on which the opening of the hole 311 is provided to the object to be heated having a high absorption rate of the specific wavelength. In other words, in the radiator 3, the cavity structure 31 only needs to be formed on the surface directed to the object to be heated.

孔311の形状は、特定波長の共振が起こり得る形状であれば特に制限されず、例えば丸孔状であってもよい。しかし、孔311を密に配列することができ、また、後述する特定波長を増幅するための形状設計が容易であることから、図2に示すような角孔状であることが好ましい。   The shape of the hole 311 is not particularly limited as long as resonance with a specific wavelength can occur, and may be, for example, a round hole shape. However, since the holes 311 can be densely arranged and the shape design for amplifying a specific wavelength to be described later is easy, a rectangular hole shape as shown in FIG. 2 is preferable.

図3は、キャビティ構造31の共振のモードを模式的に示す図である。図3に示すように、孔311においては、αで示す1次共振の他に、δで示す2次共振や、θで示す3次共振等、様々なモードで共振が起こる。孔311の形状に基づく共振波長λは、以下の式(1)によって示される。   FIG. 3 is a diagram schematically illustrating a resonance mode of the cavity structure 31. As shown in FIG. 3, in the hole 311, resonance occurs in various modes such as a secondary resonance indicated by δ and a tertiary resonance indicated by θ in addition to the primary resonance indicated by α. The resonance wavelength λ based on the shape of the hole 311 is expressed by the following equation (1).

Figure 2017174609
(式(1)中、n、n、nは、孔311のそれぞれの方向に対応するモードナンバーを示す整数である。)
Figure 2017174609
(In formula (1), n X , n Y , and n Z are integers indicating mode numbers corresponding to the respective directions of the hole 311.)

ここで、最も輻射率が増幅する共振波長のモードは、(n、n、n)が(1,0,0)又は(0,1,0)である。従って、上記のモード時に共振波長が特定波長となるよう、孔311のL、L、Lを設計することで、特定波長の輻射率の増幅効果が高いキャビティ構造31が得られる。 Here, the resonance wavelength mode in which the emissivity is amplified most is (1, 0, 0) or (0, 1, 0) of (n X , n Y , n Z ). Therefore, by designing L X , L Y , and L Z of the hole 311 so that the resonance wavelength becomes the specific wavelength in the above mode, the cavity structure 31 having a high effect of amplifying the emissivity of the specific wavelength can be obtained.

本実施形態に係るキャビティ構造31において、2種類以上の孔を設ける場合、その形状設計方法は特に制限されないが、上記L、L、LのうちLを一定とし、L、Lを変更して複数種類の孔を設計することが、キャビティ構造31の製造工程を簡易化できるため好ましい。 In the case of providing two or more types of holes in the cavity structure 31 according to the present embodiment, the shape design method is not particularly limited, but L Z is constant among L X , L Y , and L Z , and L X , L It is preferable to design a plurality of types of holes by changing Y because the manufacturing process of the cavity structure 31 can be simplified.

孔311のL、即ち深さ方向の長さは、径方向の長さであるL、Lに対し一定以上の長さを有することが好ましい。具体的には、LはL、Lの平均値に対し0.5倍以上の長さであることが好ましい。L、Lに対しLが小さすぎる場合、回折現象により、特定波長の輻射率の好ましい増幅効果が得られない。 L Z of the hole 311, that is, the length in the depth direction, preferably has a certain length or more with respect to L X and L Y that are radial lengths. Specifically, L Z is preferably 0.5 or more times longer than the average value of L X and L Y. If L X, L Y to L Z is too small, the diffraction phenomenon can not be obtained preferred amplification effect of emissivity of a specific wavelength.

孔311同士の間隔である壁部312の厚みは、キャビティ構造31の十分な耐久性を確保できる限りにおいて小さい方が好ましい。キャビティ構造31において、孔311においては特定波長の輻射率の増幅が起こるが、壁部312においては特定波長の輻射率の増幅は起こらず、通常の材料に由来する輻射が起こる。そのため、壁部312の厚みを小さくし、即ち孔311同士の間隔を密にして、孔311の開口部の面積割合を増大させることで、特定波長の輻射率の増幅効果をより高めることができる。   The thickness of the wall portion 312 that is the distance between the holes 311 is preferably small as long as sufficient durability of the cavity structure 31 can be secured. In the cavity structure 31, the emissivity of a specific wavelength occurs in the hole 311, but the emissivity of the specific wavelength does not occur in the wall 312, and radiation derived from a normal material occurs. Therefore, by reducing the thickness of the wall 312, that is, by increasing the space ratio between the holes 311 and increasing the area ratio of the openings of the holes 311, the effect of amplifying the emissivity of the specific wavelength can be further enhanced. .

孔311において共振が起こる条件は、孔311で図3に示すような電磁波の反射が起こることである。従って、孔311が配列されるキャビティ構造31の少なくとも表面は電磁波の反射率が高い金属等で被覆されていることが好ましい。このような金属等としては特に制限されないが、例えば、金、銀、銅、アルミ、チタン等の金属を用いる事ができる。金属の被覆方法としては特に制限されず、例えば、めっき法、蒸着法、スパッタリング法等、公知の方法を用いる事ができる。   The condition that resonance occurs in the hole 311 is that the electromagnetic wave is reflected in the hole 311 as shown in FIG. Therefore, it is preferable that at least the surface of the cavity structure 31 in which the holes 311 are arranged is covered with a metal having a high electromagnetic wave reflectance. Such a metal or the like is not particularly limited. For example, a metal such as gold, silver, copper, aluminum, and titanium can be used. The metal coating method is not particularly limited, and known methods such as plating, vapor deposition, and sputtering can be used.

図4は、従来のキャビティ構造を有さない輻射体の輻射スペクトル(図4上「A」で示す)と、本実施形態に係る、キャビティ構造を有し、増幅される特定波長を3μmとして設計した輻射体の輻射スペクトル(図4上「B」で示す)を模式的に比較したグラフである。図4上、縦軸は輻射強度(単位は任意単位A.U.)を示し、横軸は波長(単位はμm)を示す。   FIG. 4 shows a radiation spectrum of a radiator having no conventional cavity structure (shown as “A” in FIG. 4) and a cavity structure according to the present embodiment, which is designed with a specific wavelength to be amplified of 3 μm. It is the graph which compared typically the radiation spectrum (it shows with "B" on FIG. 4) of the made radiator. In FIG. 4, the vertical axis indicates the radiation intensity (unit: arbitrary unit AU), and the horizontal axis indicates the wavelength (unit: μm).

図4に示す通り、本実施形態に係る輻射体の輻射スペクトルは、従来のキャビティ構造を有さない輻射体の輻射スペクトルに対し、特定波長である3μmの輻射強度が増幅されている。また、特定波長である3μm以上の波長領域における輻射強度は減衰している。従って、本実施形態に係る輻射体においては、不要な長波長領域の輻射エネルギーが特定波長の輻射エネルギーに転換されている。このため本実施形態に係るキャビティ構造を有する輻射体は、高いエネルギー効率を有する。
また、輻射体の温度を低下させ、輻射スペクトルが長波長側にシフトした場合であっても、特定波長の輻射を増幅できるため、従来の輻射体を用いた場合と同等の効果が得られると考えられる。このため、輻射体の低温化が可能となり、輻射体の材料選択の余地が高まると考えられる。
As shown in FIG. 4, the radiation spectrum of the radiator according to the present embodiment has a specific wavelength of 3 μm, which is amplified with respect to the radiation spectrum of a radiator having no conventional cavity structure. Further, the radiation intensity in the wavelength region of 3 μm or more which is the specific wavelength is attenuated. Therefore, in the radiator according to the present embodiment, unnecessary radiation energy in the long wavelength region is converted to radiation energy of a specific wavelength. For this reason, the radiator having the cavity structure according to the present embodiment has high energy efficiency.
In addition, even when the temperature of the radiator is lowered and the radiation spectrum is shifted to the longer wavelength side, the radiation of a specific wavelength can be amplified, and therefore the same effect as when using a conventional radiator can be obtained. Conceivable. For this reason, it is considered that the temperature of the radiator can be lowered, and the room for selecting the material of the radiator is increased.

電源装置4は、輻射体3に通電する装置である。電源装置4によって通電された輻射体3は、内部抵抗によりジュール熱を発生し加熱され、一定温度に達すると一定の波長領域を有する赤外線(電磁波)を輻射する。
電源装置4は、輻射体3に通電可能な装置であれば特に制限されない。また、電源装置4による加熱方式は輻射体3に直接通電して加熱する、直接抵抗加熱を用いた加熱方式には限定されず、間接抵抗加熱を用いた加熱方式としてもよい。例えば、シート状の輻射体3を既存のパネルヒーター等の輻射ヒーターに貼り付ける等して輻射体3を加熱してもよい。
その他、電源装置4による誘導加熱や誘電加熱により輻射体3を加熱してもよい。
The power supply device 4 is a device that energizes the radiator 3. The radiator 3 energized by the power supply device 4 generates Joule heat by an internal resistance, is heated, and radiates infrared rays (electromagnetic waves) having a certain wavelength region when reaching a certain temperature.
The power supply device 4 is not particularly limited as long as it is a device capable of energizing the radiator 3. Further, the heating method by the power supply device 4 is not limited to the heating method using direct resistance heating, in which the radiator 3 is directly energized and heated, and may be a heating method using indirect resistance heating. For example, the radiator 3 may be heated by attaching the sheet-like radiator 3 to an existing radiation heater such as a panel heater.
In addition, the radiator 3 may be heated by induction heating or dielectric heating by the power supply device 4.

<輻射体3の製造方法>
キャビティ構造31を表面に有する輻射体3の製造方法としては、特に制限されないが、例えばフォトリソグラフィによる方法が挙げられる。フォトリソグラフィによるキャビティ構造31の形成方法を以下に例示する。
<Manufacturing method of radiator 3>
The method for manufacturing the radiator 3 having the cavity structure 31 on the surface is not particularly limited, and for example, a method by photolithography may be mentioned. A method for forming the cavity structure 31 by photolithography will be exemplified below.

まず、輻射体3の基材表面に感光物質(レジスト)をスピンコート等により均一に塗布し、乾燥させた後、孔311の開口部形状(L、L)に対応する所望のパターンで露光するパターニングを行う。
次に、不要箇所のレジストを現像液により除去する。
次に、レジストが除去された箇所をドライエッチング、ウェットエッチング等によりエッチングする。この際のエッチング条件により、孔311のLを調整できる。
エッチング後、基材上に残ったレジストを除去することにより、キャビティ構造31を表面に有する輻射体3が得られる。
First, a photosensitive material (resist) is uniformly applied to the substrate surface of the radiator 3 by spin coating or the like, dried, and then in a desired pattern corresponding to the opening shape (L X , L Y ) of the hole 311. Patterning for exposure is performed.
Next, unnecessary portions of the resist are removed with a developer.
Next, the portion where the resist is removed is etched by dry etching, wet etching, or the like. The etching conditions at this time, can be adjusted L Z holes 311.
After the etching, the resist remaining on the substrate is removed to obtain the radiator 3 having the cavity structure 31 on the surface.

上記工程後、必要に応じてスパッタリング法等により、輻射体3の表面を金属で被覆する。以上により、キャビティ構造31を表面に有する輻射体3を製造できる。   After the above steps, the surface of the radiator 3 is coated with a metal by a sputtering method or the like as necessary. Thus, the radiator 3 having the cavity structure 31 on the surface can be manufactured.

以上、本実施形態に係る輻射ヒーターによれば、以下のような効果を奏する。   As mentioned above, according to the radiation heater concerning this embodiment, there exist the following effects.

本実施形態に係る輻射ヒーター1は、少なくとも1種類の形状の孔311が配列されてなる、キャビティ構造31を表面に有する輻射体3を備える。
これにより、輻射ヒーター1を、被加熱物に吸収されやすい特定波長の輻射を、輻射体のキャビティ構造により増幅し、かつ特定波長以上の輻射を減衰するものとすることができるため、複雑な構造や制御を要することなく輻射の波長を任意の波長に制御できる高効率輻射ヒーター1が得られる。
The radiant heater 1 according to the present embodiment includes a radiant body 3 having a cavity structure 31 on the surface, in which holes 311 having at least one kind of shape are arranged.
Thereby, the radiation heater 1 can amplify the radiation of the specific wavelength that is easily absorbed by the object to be heated by the cavity structure of the radiator and attenuate the radiation of the specific wavelength or more. Thus, a high-efficiency radiant heater 1 that can control the wavelength of radiation to an arbitrary wavelength without requiring control is obtained.

また、キャビティ構造31の少なくとも表面は金属で被覆される。
これにより、キャビティ構造31により共振が起こりやすくなるため、より確実に特定波長の輻射の増幅と、特定波長以上の輻射の減衰が起こる輻射ヒーター1が得られる。
Further, at least the surface of the cavity structure 31 is covered with metal.
As a result, resonance easily occurs due to the cavity structure 31, so that the radiation heater 1 in which the amplification of the radiation of the specific wavelength and the attenuation of the radiation of the specific wavelength or more are more reliably obtained.

また、輻射体3は導電性を有する。
これにより、輻射体3の加熱方式を加熱効率の高い直接抵抗加熱とすることができる。
Moreover, the radiator 3 has conductivity.
Thereby, the heating method of the radiator 3 can be set to direct resistance heating with high heating efficiency.

また、孔311の形状は角孔状である。
これにより、キャビティ構造31において孔311を密に配列することができるため、特定波長の輻射の増幅効果が増大する。また、孔311の形状設計が容易となる。
The shape of the hole 311 is a square hole.
Thereby, since the holes 311 can be densely arranged in the cavity structure 31, the amplification effect of radiation of a specific wavelength is increased. Further, the shape design of the hole 311 is facilitated.

また、キャビティ構造31は、3μmの波長及び6μmの波長のうち少なくともいずれか1種の波長の輻射を増幅する。
これにより、輻射ヒーター1の被加熱物が人体である場合において、人体に吸収されやすい3μmや6μmの波長の赤外線の輻射を増幅できるため、高効率な輻射ヒーター1が得られる。
The cavity structure 31 amplifies radiation of at least one of a wavelength of 3 μm and a wavelength of 6 μm.
Thereby, when the object to be heated of the radiant heater 1 is a human body, infrared radiation having a wavelength of 3 μm or 6 μm, which is easily absorbed by the human body, can be amplified, and thus a highly efficient radiant heater 1 can be obtained.

また、キャビティ構造31は1種類の形状の孔311が配列されてなる。
これにより、キャビティ構造31において孔311を更に密に配列することが可能となるため、特定波長の輻射の増幅効果が更に高い輻射ヒーター1が得られる。
The cavity structure 31 is formed by arranging holes 311 having one type of shape.
As a result, the holes 311 can be arranged more densely in the cavity structure 31, so that the radiation heater 1 having a higher amplification effect of radiation of a specific wavelength can be obtained.

また、キャビティ構造31を表面に有する輻射体3は、シート状である。
これにより、キャビティ構造31を表面に有する輻射体3を、既存の輻射ヒーターと組み合わせて用いる事ができ、既存の輻射ヒーターの効率を高めることができる。また、輻射体3への直接の通電を要しないため、輻射体3は導電性を有するものに限定されず、輻射体3の材料選択の余地を高めることができる。
Further, the radiator 3 having the cavity structure 31 on the surface thereof is in the form of a sheet.
Thereby, the radiator 3 which has the cavity structure 31 on the surface can be used in combination with the existing radiation heater, and the efficiency of the existing radiation heater can be increased. Further, since direct energization to the radiator 3 is not required, the radiator 3 is not limited to one having conductivity, and the room for selecting the material of the radiator 3 can be increased.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。   Note that the present invention is not limited to the above-described embodiment, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.

例えば、上記実施形態においては、輻射ヒーター1を、電源装置4によって輻射体3に直接又は間接に通電等して加熱するものとして説明したが、本発明において輻射体の加熱方式は電気を加熱源とするものには限定されず、燃料を加熱源とするものであってもよい。例えば、燃料によって加温した流体等により輻射を行う床暖房や壁暖房等を、本発明に係る輻射体を備えるものとして構成してもよい。   For example, in the above-described embodiment, the radiant heater 1 is described as being heated by directly or indirectly energizing the radiant 3 with the power supply device 4. However, in the present invention, the heating method of the radiant body uses electricity as a heating source. However, the fuel may be a heat source. For example, you may comprise the floor heating, wall heating, etc. which radiate | emit by the fluid etc. which were heated with the fuel are provided with the radiator which concerns on this invention.

また、上記実施形態においては、輻射ヒーター1を、輻射体3を収容する箱状の本体部2を有するものとして説明したが、これに限定されない。例えば、床暖房や壁暖房等のように輻射体3の収容部は建物等に固定されたものであってもよい。   Moreover, in the said embodiment, although the radiation heater 1 was demonstrated as what has the box-shaped main-body part 2 which accommodates the radiator 3, it is not limited to this. For example, the housing part of the radiator 3 may be fixed to a building or the like, such as floor heating or wall heating.

また、本実施形態においてはキャビティ構造を有する輻射体3の製造方法を、フォトリソグラフィを用いた方法として説明したが、これに限定されない。キャビティ構造を有する輻射体の製造方法としては、輻射体表面に微細パターンを形成できる公知の方法を用いる事ができる。例えば、ナノインプリント法やモールドを用いた射出成型等により、キャビティ構造を輻射体表面に形成してもよい。   Moreover, although the manufacturing method of the radiator 3 which has a cavity structure was demonstrated as a method using photolithography in this embodiment, it is not limited to this. As a method for manufacturing a radiator having a cavity structure, a known method capable of forming a fine pattern on the surface of the radiator can be used. For example, the cavity structure may be formed on the surface of the radiator by nanoimprinting or injection molding using a mold.

1 輻射ヒーター
3 輻射体
31 キャビティ構造
311 孔
1 Radiant heater 3 Radiant 31 Cavity structure 311 Hole

Claims (7)

少なくとも1種類の形状の孔が配列されてなる、キャビティ構造を表面に有する輻射体を備え、
前記キャビティ構造は、赤外領域の波長の輻射を増幅する輻射ヒーター。
A radiator having a cavity structure on the surface, in which holes having at least one shape are arranged,
The cavity structure is a radiation heater that amplifies radiation of wavelengths in the infrared region.
前記キャビティ構造の少なくとも表面は金属で被覆される請求項1に記載の輻射ヒーター。   The radiation heater according to claim 1, wherein at least a surface of the cavity structure is coated with a metal. 前記輻射体は、導電性を有する請求項1又は2に記載の輻射ヒーター。   The radiant heater according to claim 1, wherein the radiator has conductivity. 前記孔の形状は、角孔状である、請求項1から3いずれかに記載の輻射ヒーター。   The shape of the said hole is a radiation heater in any one of Claim 1 to 3 which is a square hole shape. 前記キャビティ構造は、3μmの波長及び6μmの波長のうち少なくともいずれか1種の波長の輻射を増幅する、請求項1から4いずれかに記載の輻射ヒーター。   5. The radiation heater according to claim 1, wherein the cavity structure amplifies radiation of at least one of a wavelength of 3 μm and a wavelength of 6 μm. 前記キャビティ構造は1種類の形状の孔が配列されてなる、請求項1から5いずれかに記載の輻射ヒーター。   The radiation heater according to any one of claims 1 to 5, wherein the cavity structure is formed by arranging holes of one kind of shape. 前記キャビティ構造を有する輻射体は、シート状である請求項1から6いずれかに記載の輻射ヒーター。   The radiant heater according to claim 1, wherein the radiant body having the cavity structure has a sheet shape.
JP2016058925A 2016-03-23 2016-03-23 High efficiency radiant heater Active JP6753677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058925A JP6753677B2 (en) 2016-03-23 2016-03-23 High efficiency radiant heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058925A JP6753677B2 (en) 2016-03-23 2016-03-23 High efficiency radiant heater

Publications (2)

Publication Number Publication Date
JP2017174609A true JP2017174609A (en) 2017-09-28
JP6753677B2 JP6753677B2 (en) 2020-09-09

Family

ID=59972156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058925A Active JP6753677B2 (en) 2016-03-23 2016-03-23 High efficiency radiant heater

Country Status (1)

Country Link
JP (1) JP6753677B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109688648A (en) * 2019-01-09 2019-04-26 江苏华旦科技有限公司 A kind of infrared emittance
CN109951905A (en) * 2019-01-09 2019-06-28 江苏华旦科技有限公司 A kind of infra-red radiation part and the infrared emittance including it
JP2020053285A (en) * 2018-09-27 2020-04-02 株式会社Lixil Radiation heater and radiation heater system
CN113473653A (en) * 2021-06-04 2021-10-01 佛山市龙之声电热科技股份有限公司 Radiation hole design method of heat radiation member and heat radiation member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085851U (en) * 1973-12-10 1975-07-22
JP2004209203A (en) * 2003-01-08 2004-07-29 Kihara Project Office:Kk Far infrared radiation sheet, and clothing for installation of far infrared radiation sheet
WO2007023691A1 (en) * 2005-08-26 2007-03-01 Matsushita Electric Industrial Co., Ltd. Reflector and device having the reflector
JP2015044351A (en) * 2013-08-28 2015-03-12 株式会社リコー Image forming device and drying device included by the same
JP2015198063A (en) * 2014-04-03 2015-11-09 日本碍子株式会社 infrared heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085851U (en) * 1973-12-10 1975-07-22
JP2004209203A (en) * 2003-01-08 2004-07-29 Kihara Project Office:Kk Far infrared radiation sheet, and clothing for installation of far infrared radiation sheet
WO2007023691A1 (en) * 2005-08-26 2007-03-01 Matsushita Electric Industrial Co., Ltd. Reflector and device having the reflector
JP2015044351A (en) * 2013-08-28 2015-03-12 株式会社リコー Image forming device and drying device included by the same
JP2015198063A (en) * 2014-04-03 2015-11-09 日本碍子株式会社 infrared heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053285A (en) * 2018-09-27 2020-04-02 株式会社Lixil Radiation heater and radiation heater system
CN109688648A (en) * 2019-01-09 2019-04-26 江苏华旦科技有限公司 A kind of infrared emittance
CN109951905A (en) * 2019-01-09 2019-06-28 江苏华旦科技有限公司 A kind of infra-red radiation part and the infrared emittance including it
CN113473653A (en) * 2021-06-04 2021-10-01 佛山市龙之声电热科技股份有限公司 Radiation hole design method of heat radiation member and heat radiation member
CN113473653B (en) * 2021-06-04 2024-01-09 佛山市龙之声电热科技股份有限公司 Method for designing radiation hole of heat radiation member and heat radiation member

Also Published As

Publication number Publication date
JP6753677B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
JP6753677B2 (en) High efficiency radiant heater
JPH0822417B2 (en) Radiant wall oven and method for producing infrared radiation with non-uniform radiation distribution
CN108925146B (en) Radiation device and processing device using the same
JP2019500996A5 (en)
JP2003500844A (en) Apparatus and method for heat treating a substrate
US1926473A (en) Heating stove
JP6692046B2 (en) Infrared heater
JP2016065786A (en) Infrared radiating element, manufacturing method thereof, and gas analyzer
JP6977943B2 (en) Infrared radiant device
KR100805357B1 (en) A stone bed installed heat source as near-infrared rays
JP6783571B2 (en) Radiation equipment and processing equipment using radiation equipment
JP2741995B2 (en) Far-infrared radiation electric heater
JP2020053285A (en) Radiation heater and radiation heater system
KR101028910B1 (en) Far infrared ray heating apparatus
CN113039165B (en) Method for producing glass article and method for heating sheet glass
JP2000311768A (en) Heating device and heating fluid generating device
JP2017174610A (en) Arbitrary spectrum light source
WO2017179563A1 (en) Heat-electromagnetic wave conversion structure, heat-electromagnetic wave conversion member, wavelength selective heat dissipation device, wavelength selective heating device, wavelength selective heat dissipation method, wavelength selective heating method, and method for manufacturing heat-electromagnetic wave conversion structure
JP2021009003A (en) Near infrared heating device
KR100918492B1 (en) Infrared explosion proof heater
KR100724132B1 (en) Apparatus for drying using near infrared ray lamp
JP2010073584A (en) Ceramic heater and heater device
KR101736961B1 (en) Heating apparatus using radiator panel
KR20200142246A (en) Wall Heating Panel
JP2014164233A (en) Wavelength conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6753677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350