JP2021009003A - Near infrared heating device - Google Patents

Near infrared heating device Download PDF

Info

Publication number
JP2021009003A
JP2021009003A JP2019123971A JP2019123971A JP2021009003A JP 2021009003 A JP2021009003 A JP 2021009003A JP 2019123971 A JP2019123971 A JP 2019123971A JP 2019123971 A JP2019123971 A JP 2019123971A JP 2021009003 A JP2021009003 A JP 2021009003A
Authority
JP
Japan
Prior art keywords
hot water
infrared
infrared radiation
heating device
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019123971A
Other languages
Japanese (ja)
Inventor
洋ロバート 藤橋
Hiroshi Robert Fujiihashi
洋ロバート 藤橋
重樹 安井
Shigeki Yasui
重樹 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujiihashi Hiroshi Robert
Original Assignee
Fujiihashi Hiroshi Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujiihashi Hiroshi Robert filed Critical Fujiihashi Hiroshi Robert
Priority to JP2019123971A priority Critical patent/JP2021009003A/en
Publication of JP2021009003A publication Critical patent/JP2021009003A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

To provide a near infrared heating device capable of raising the temperature of warm water to a higher temperature without using a boiler.SOLUTION: The temperature of warm water is further raised by using a near infrared radiation lamp for radiating a near infrared ray. One or more near infrared radiation lamps are disposed inside a cylindrical warm water passage, and the warm water passage is formed into a cylindrical shape having a fixed diameter by being wound into a coil shape outside the near infrared radiation lamp. Warm water is caused to flow into the warm water passage, and the temperature of the flowing warm water is further raised by the near infrared ray from the near infrared radiation lamp.SELECTED DRAWING: Figure 3

Description

本発明は、温水をさらに加温して高温水を生成する近赤外加温装置に関し、特にボイラーを使わずに近赤外線を用いて、70℃前後の温水を90℃前後の高温水へと加温する近赤外加温装置に関する。 The present invention relates to a near-infrared heating device that further heats hot water to generate high-temperature water, and uses near-infrared rays without using a boiler to convert hot water at around 70 ° C into high-temperature water at around 90 ° C. The present invention relates to a near-infrared heating device for heating.

工場等の生産設備で90℃前後の高温水が必要となる場合、通常はボイラーにて130℃前後の蒸気を生成して、温度を調整する温調タンク等で蒸気を温水へと減温することにより90℃前後の高温水を生成していた。ボイラーを使う場合、小型還流ボイラーであっても年間の燃料費は1000万円単位となる。 When high-temperature water of around 90 ° C is required in production equipment such as factories, steam is usually generated at around 130 ° C in a boiler, and the steam is reduced to hot water in a temperature control tank that adjusts the temperature. As a result, high temperature water of about 90 ° C. was generated. When using a boiler, the annual fuel cost is 10 million yen even for a small reflux boiler.

そこで、近赤外線を用いて高温水を生成することが試みられている。例えば特許文献1には、近赤外線ランプが金属加熱に有利である特性を活かして、所定方向に流れる空気などの流体を加温するための流体加温装置が開示されている。特許文献1では、流体として液体を加温することを想定しておらず、流体を液体に置き換えた場合には良好な加温状態を得ることは難しい。 Therefore, attempts have been made to generate high-temperature water using near-infrared rays. For example, Patent Document 1 discloses a fluid heating device for heating a fluid such as air flowing in a predetermined direction by taking advantage of the characteristics that a near-infrared lamp is advantageous for metal heating. Patent Document 1 does not assume that a liquid is heated as a fluid, and it is difficult to obtain a good heated state when the fluid is replaced with a liquid.

それに対して特許文献2では、より流体を効率よく加温することが可能な流体の温度制御装置が開示されている。特許文献2では、筒状の外側容器内に、金属製の内側容器が挿入され、内側容器内に透明筒が挿入されている。透明筒内に近赤外線を発する、例えばヒータ用のハロゲンランプを内蔵して流体を加温している。 On the other hand, Patent Document 2 discloses a fluid temperature control device capable of heating a fluid more efficiently. In Patent Document 2, a metal inner container is inserted into the tubular outer container, and a transparent cylinder is inserted into the inner container. A halogen lamp that emits near infrared rays, for example, for a heater is built in the transparent cylinder to heat the fluid.

登録実用新案第3174458号公報Registered Utility Model No. 3174458 特開平09−210577号公報JP-A-09-210577

特許文献1に開示されている流体加温装置では、流れる空気をゆるやかに加温するだけであり、液体について加温できるかは定かではない。しかも、近赤外線を直接流体にさらしているので、熱が散逸する割合が高く、工業用に必要となる90℃前後の高温水を得ることができる可能性は低いという問題点があった。 The fluid heating device disclosed in Patent Document 1 only slowly heats the flowing air, and it is not clear whether the liquid can be heated. Moreover, since the near infrared rays are directly exposed to the fluid, there is a problem that the rate of heat dissipation is high and it is unlikely that high temperature water of about 90 ° C. required for industrial use can be obtained.

また、特許文献2では、ヒータ用のハロゲンランプから放出される近赤外線が透明筒を透過して直接、又はフィンを通して間接的に流体を加温している。したがって、透明筒の透過度が汚れや劣化等により低下した場合には、その加温性能を維持することが困難であり、定期的なメンテナンス等、運用するための費用がかさむという問題点があった。 Further, in Patent Document 2, near infrared rays emitted from a halogen lamp for a heater pass through a transparent cylinder and heat the fluid directly or indirectly through fins. Therefore, when the transmittance of the transparent cylinder is lowered due to dirt or deterioration, it is difficult to maintain the heating performance, and there is a problem that the cost for operation such as regular maintenance is high. It was.

さらに、ヒータ用のハロゲンランプから放出される近赤外線が透明筒を透過して流体に熱伝導する効率はそれほど高いものではなく、より効率よく流体を加温することができる工夫が必要である。 Further, the efficiency of near-infrared rays emitted from the halogen lamp for the heater passing through the transparent cylinder and conducting heat to the fluid is not so high, and it is necessary to devise a method capable of heating the fluid more efficiently.

本発明は、上記問題点に鑑みてなされたものであり、ボイラーを用いることなく、温水をさらに加温することにより高温水を生成することが可能な近赤外加温装置を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a near-infrared heating device capable of generating high-temperature water by further heating hot water without using a boiler. The purpose.

上記目的を達成するために本発明に係る近赤外加温装置は、近赤外線を放射する近赤外線放射ランプを用いて温水をさらに加温する近赤外加温装置において、一又は複数の前記近赤外線放射ランプは、筒状の温水路の内側に配置されており、前記温水路は、前記近赤外線放射ランプの外側に、コイル状に巻くことで一定の直径を有する筒状になるよう形成されており、前記温水路内に温水を流し、前記近赤外線放射ランプからの近赤外線によって流れる温水をさらに加温することを特徴とする。 In order to achieve the above object, the near-infrared heating device according to the present invention is a near-infrared heating device that further heats hot water by using a near-infrared radiating lamp that radiates near-infrared rays. The near-infrared radiation lamp is arranged inside a tubular hot water channel, and the hot water channel is formed so as to have a certain diameter by winding it in a coil shape on the outside of the near-infrared radiation lamp. The hot water is allowed to flow in the hot water channel, and the hot water flowing by the near infrared rays from the near infrared radiation lamp is further heated.

上記発明では、一又は複数の近赤外線放射ランプが、筒状の温水路の内側に配置されている。温水路は、近赤外線放射ランプの外側に、コイル状に巻くことで一定の直径を有する筒状になるよう形成されている。温水路内に温水を流し、近赤外線放射ランプからの近赤外線によって流れる温水をさらに加温することにより、例えば真空式温水ヒータ等で70℃前後まで温められている温水を、温水路内において確実に90℃以上の高温水へと加温することができ、熱伝導効率の低下を抑制しつつ効率よく加温することが可能となる。 In the above invention, one or more near-infrared radiation lamps are arranged inside a tubular hot water channel. The hot water channel is formed on the outside of the near-infrared radiation lamp so as to have a tubular shape having a constant diameter by winding it in a coil shape. By flowing hot water through the hot water channel and further heating the hot water flowing by the near infrared rays from the near-infrared radiation lamp, for example, hot water that has been warmed to around 70 ° C by a vacuum hot water heater or the like can be reliably obtained in the hot water channel. It is possible to heat the water to a high temperature of 90 ° C. or higher, and it is possible to efficiently heat the water while suppressing a decrease in heat conduction efficiency.

次に、上記目的を達成するために本発明に係る近赤外加温装置は、近赤外線を放射する近赤外線放射ランプを用いて温水をさらに加温する近赤外加温装置において、一又は複数の前記近赤外線放射ランプは、筒状の温水路の内側に配置されており、前記温水路は、前記近赤外線放射ランプの外側に、下方から上方へと蛇腹状に積み重ねることで一定の直径を有する筒状になるよう形成されており、前記温水路内に温水を流し、前記近赤外線放射ランプからの近赤外線によって流れる温水をさらに加温することを特徴とする。 Next, in order to achieve the above object, the near-infrared heating device according to the present invention is a near-infrared heating device that further heats hot water using a near-infrared radiating lamp that radiates near-infrared rays. The plurality of near-infrared radiation lamps are arranged inside a tubular hot water channel, and the hot water channels have a constant diameter by being stacked on the outside of the near-infrared radiation lamp in a bellows shape from bottom to top. It is formed so as to have a tubular shape, and is characterized in that hot water flows through the hot water channel and the hot water flowing by near infrared rays from the near infrared radiation lamp is further heated.

上記発明では、一又は複数の近赤外線放射ランプが、筒状の温水路の内側に配置されている。温水路は、近赤外線放射ランプの外側に、下方から上方へと蛇腹状に積み重ねることで一定の直径を有する筒状になるよう形成されている。温水路内に温水を流し、近赤外線放射ランプからの近赤外線によって流れる温水をさらに加温することにより、例えば真空式温水ヒータ等で70℃前後まで温められている温水を、温水路内において確実に90℃以上の高温水へと加温することができ、熱伝導効率の低下を抑制しつつ効率よく加温することが可能となる。 In the above invention, one or more near-infrared radiation lamps are arranged inside a tubular hot water channel. The hot water channel is formed on the outside of the near-infrared radiation lamp so as to have a tubular shape having a constant diameter by stacking them in a bellows shape from the bottom to the top. By flowing hot water through the hot water channel and further heating the hot water flowing by the near infrared rays from the near-infrared radiation lamp, for example, hot water that has been warmed to around 70 ° C by a vacuum hot water heater or the like can be reliably obtained in the hot water channel. It is possible to heat the water to a high temperature of 90 ° C. or higher, and it is possible to efficiently heat the water while suppressing a decrease in heat conduction efficiency.

また、本発明に係る近赤外加温装置は、前記温水路が、筒状の長手方向に沿った鉛直面で二系統に二分されており、それぞれ下方に給水口、上方に排水口を設けてあることが好ましい。温水路内を常に温水で満たすことができるので、空洞部分の空気の過加熱による温水路の破損を未然に回避することが可能となるからである。 Further, in the near-infrared heating device according to the present invention, the hot water channel is divided into two systems in a vertical direction along a tubular longitudinal direction, and a water supply port is provided below and a drain port is provided above each. Is preferable. This is because the inside of the hot water channel can always be filled with hot water, so that it is possible to prevent damage to the hot water channel due to overheating of the air in the cavity portion.

また、本発明に係る近赤外加温装置は、前記赤外線放射ランプが、一本の管球を屈曲させて二本の略平行な管球として構成されていることが好ましい。電極部分を一方側に集約することができ、近赤外線ランプの交換等のメンテナンスが容易になるからである。 Further, in the near-infrared heating device according to the present invention, it is preferable that the infrared radiation lamp is configured as two substantially parallel tubes by bending one tube. This is because the electrode portions can be integrated on one side, and maintenance such as replacement of the near-infrared lamp becomes easy.

また、本発明に係る近赤外加温装置は、複数の前記赤外線放射ランプを備える場合、前記赤外線放射ランプと前記温水路の前記赤外線放射ランプと対向している面との距離が均一であることが好ましい。温水路を流れる温水を均等に加温することができるからである。 Further, when the near-infrared heating device according to the present invention includes a plurality of the infrared radiating lamps, the distance between the infrared radiating lamp and the surface of the hot water channel facing the infrared radiating lamp is uniform. Is preferable. This is because the hot water flowing through the hot water channel can be heated evenly.

また、本発明に係る近赤外加温装置は、複数の前記赤外線放射ランプを備える場合、前記赤外線放射ランプ同士が対向している管球の面の一部又は全部に反射板(リフレクタ)としてエネルギーを集中させることができるセラミックコートを施してあることが好ましい。近赤外線の損失を最小限に抑制するためである。 Further, when the near-infrared heating device according to the present invention is provided with a plurality of the infrared radiating lamps, the infrared radiating lamps serve as a reflector on a part or all of the surfaces of the tubes facing each other. It is preferable that a ceramic coat is applied so that energy can be concentrated. This is to minimize the loss of near infrared rays.

上記発明によれば、温水路内に温水を流し、近赤外線放射ランプからの近赤外線によって流れる温水をさらに加温することにより、例えば真空式温水ヒータ等で70℃前後まで温められている温水を、温水路内において確実に90℃以上の高温水へと加温することができ、熱伝導効率の低下を抑制しつつ効率よく加温することが可能となる。 According to the above invention, hot water is allowed to flow in the hot water channel, and the hot water flowing by the near infrared rays from the near infrared radiation lamp is further heated to obtain hot water heated to about 70 ° C. by, for example, a vacuum hot water heater. In the hot water channel, it is possible to reliably heat the water to a high temperature of 90 ° C. or higher, and it is possible to efficiently heat the water while suppressing a decrease in heat conduction efficiency.

従来の高温水の製造方法を示す概要図である。It is a schematic diagram which shows the conventional manufacturing method of high temperature water. 本発明の実施の形態に係る高温水の生成方法を示す概要図である。It is a schematic diagram which shows the method of generating high temperature water which concerns on embodiment of this invention. 本発明の実施の形態1に係る近赤外加温装置の構成を示す三面図である。It is a three-view view which shows the structure of the near-infrared heating apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る近赤外加温装置の、屈曲させた近赤外線放射ランプを用いる場合の構成を示す三面図である。It is a three-view view which shows the structure in the case of using the bent near-infrared radiant lamp of the near-infrared heating apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る近赤外加温装置の、近赤外線放射ランプを二本備えた場合の構成を示す三面図である。FIG. 3 is a three-view view showing a configuration of the near-infrared heating device according to the first embodiment of the present invention when two near-infrared radiating lamps are provided. 本発明の実施1の形態に係る近赤外加温装置の、それぞれ屈曲させた近赤外線放射ランプを二本用いる場合の構成を示す三面図である。It is a three-sided view which shows the structure in the case of using two bent near-infrared radiating lamps of the near-infrared heating apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る近赤外加温装置の、近赤外線放射ランプを三本備えた場合の構成を示す三面図である。It is a three-view view which shows the structure of the near-infrared heating apparatus which concerns on Embodiment 1 of this invention in the case of having three near-infrared radiating lamps. 本発明の実施の形態1に係る近赤外加温装置の、それぞれ屈曲させた近赤外線ランプを三本用いる場合の構成を示す三面図である。It is a three-view view which shows the structure in the case of using three bent near-infrared lamps of the near-infrared heating apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る近赤外加温装置の構成を示す三面図である。It is a three-view view which shows the structure of the near-infrared heating apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る近赤外加温装置の、近赤外線放射ランプを複数備えた場合の構成を示す模式図である。It is a schematic diagram which shows the structure of the near-infrared heating apparatus which concerns on Embodiment 2 of this invention when a plurality of near-infrared radiating lamps are provided.

以下、本発明の実施の形態に係る近赤外加温装置について、図面に基づいて詳細に説明する。以下の実施の形態は、特許請求の範囲に記載された発明を限定するものではなく、実施の形態の中で説明されている特徴的事項の組み合わせの全てが解決手段の必須事項であるとは限らないことは言うまでもない。 Hereinafter, the near-infrared heating device according to the embodiment of the present invention will be described in detail with reference to the drawings. The following embodiments do not limit the invention described in the claims, and it is said that all combinations of characteristic matters described in the embodiments are essential matters of the solution. Needless to say, it is not limited.

また、本発明は多くの異なる態様にて実施することが可能であり、実施の形態の記載内容に限定して解釈されるべきものではない。実施の形態を通じて同じ要素には同一の符号を付している。 In addition, the present invention can be implemented in many different embodiments and should not be construed as limited to the description of the embodiments. The same elements are designated by the same reference numerals throughout the embodiment.

本発明の実施の形態によれば、温水路内に温水を流し、近赤外線放射ランプからの近赤外線によって流れる温水をさらに加温することにより、例えば真空式温水ヒータ等で70℃前後まで温められている温水を、温水路内において確実に90℃以上の高温水へと加温することができ、熱伝導効率の低下を抑制しつつ効率よく加温することが可能となる。 According to the embodiment of the present invention, hot water is allowed to flow in the hot water channel, and the hot water flowing by the near infrared rays from the near infrared radiation lamp is further heated to be heated to about 70 ° C. by, for example, a vacuum hot water heater. It is possible to reliably heat the hot water to high temperature water of 90 ° C. or higher in the hot water channel, and it is possible to efficiently heat the hot water while suppressing a decrease in heat conduction efficiency.

図1は、従来の高温水の製造方法を示す概要図である。図1に示すように、従来、ボイラー11を用いて100℃以上、具体的には約130℃の水蒸気を生成する。そして、生成された水蒸気を温調タンク12にて減温することで、工業用に用いることができる約90℃の比較的温度が高めの温水(以下、高温水)を製造していた。 FIG. 1 is a schematic view showing a conventional method for producing high-temperature water. As shown in FIG. 1, conventionally, the boiler 11 is used to generate steam at 100 ° C. or higher, specifically about 130 ° C. Then, by reducing the temperature of the generated steam in the temperature control tank 12, hot water having a relatively high temperature of about 90 ° C. (hereinafter, high temperature water) that can be used for industrial purposes was produced.

ボイラー11を用いるので、メンテナンス費用及び燃料費も高額になる。また、一度130℃前後まで温度を上げたのちに温度を下げるので、大量の熱エネルギーを捨てることにもなり、熱効率は比較的低くなる。 Since the boiler 11 is used, maintenance costs and fuel costs are also high. In addition, since the temperature is once raised to around 130 ° C. and then lowered, a large amount of heat energy is wasted, and the thermal efficiency becomes relatively low.

そこで、本実施の形態では、従来の真空式温水ヒータで加温された温水をさらに加温することで高温水を生成する。図2は、本発明の実施の形態に係る高温水の生成方法を示す概要図である。 Therefore, in the present embodiment, high-temperature water is generated by further heating the hot water heated by the conventional vacuum type hot water heater. FIG. 2 is a schematic view showing a method for producing hot water according to an embodiment of the present invention.

図2に示すように、真空式温水ヒータ13で70℃前後の温水を生成する。従来の真空式温水ヒータ13では、70℃前後が温度上昇の限界である。そこで、本発明の実施の形態に係る近赤外加温装置20を真空式温水ヒータ13の出口に設置することで、温水をさらに加温することにより90℃前後の高温水を生成する。 As shown in FIG. 2, the vacuum type hot water heater 13 generates hot water at around 70 ° C. In the conventional vacuum type hot water heater 13, the temperature rise limit is around 70 ° C. Therefore, by installing the near-infrared heating device 20 according to the embodiment of the present invention at the outlet of the vacuum type hot water heater 13, the hot water is further heated to generate high temperature water of about 90 ° C.

(実施の形態1)
図3は、本発明の実施の形態1に係る近赤外加温装置20の構成を示す三面図である。図3(a)は、本実施の形態1に係る近赤外加温装置20の長手方向の中心線を含む鉛直面での断面図を、図3(b)は、本実施の形態1に係る近赤外加温装置20の長手方向の中心線を含む平行面での断面図を、図3(c)は、本実施の形態1に係る近赤外加温装置20の長手方向に直交する面での断面図を、それぞれ示している。
(Embodiment 1)
FIG. 3 is a three-view view showing the configuration of the near-infrared heating device 20 according to the first embodiment of the present invention. FIG. 3A is a cross-sectional view taken along the vertical plane including the center line in the longitudinal direction of the near-infrared heating device 20 according to the first embodiment, and FIG. 3B is the first embodiment. A cross-sectional view of the near-infrared heating device 20 in a parallel plane including the center line in the longitudinal direction is shown in FIG. 3 (c), which is orthogonal to the longitudinal direction of the near-infrared heating device 20 according to the first embodiment. The cross-sectional views of the planes are shown.

図3に示すように、本実施の形態1に係る近赤外加温装置20は、近赤外線を放射する近赤外線放射ランプ21と、近赤外線放射ランプ21からの近赤外線を受け得る範囲に配置された、内部を温水が流れる温水路である温水管22を近赤外線放射ランプ21の外側に、コイル状に巻くことで一定の直径を有する筒状に形成した金属筒23とを備えている。 As shown in FIG. 3, the near-infrared heating device 20 according to the first embodiment is arranged in a range where the near-infrared radiation lamp 21 that emits near-infrared rays and the near-infrared rays from the near-infrared radiation lamp 21 can be received. The hot water pipe 22 which is a hot water channel through which hot water flows is provided on the outside of the near-infrared radiation lamp 21 with a metal cylinder 23 formed into a tubular shape having a constant diameter by winding it in a coil shape.

金属筒23を構成する温水管22の材質は、熱伝導性の高い銅、ステンレス等が好ましい。発熱量によってはSUS444クラスの耐熱性が要求される。いずれも、近赤外線の放射により温度が上昇しやすく、熱伝導性も高いので、温水管22内を流れる温水の温度をさらに上昇させることができる。なお、SUS444を採用した場合には、温水管23内部の水流による経年劣化に対して耐摩耗性を強化することもできる。 The material of the hot water pipe 22 constituting the metal cylinder 23 is preferably copper, stainless steel or the like having high thermal conductivity. Depending on the amount of heat generated, SUS444 class heat resistance is required. In each case, the temperature is likely to rise due to the radiation of near infrared rays and the thermal conductivity is high, so that the temperature of the hot water flowing in the hot water pipe 22 can be further raised. When SUS444 is adopted, the wear resistance can be enhanced against aging deterioration due to the water flow inside the hot water pipe 23.

加温する対象となる温水は、給水口25から温水管22へと誘導され、排水口26から排出される。温水管22内を流れる温水は、近赤外線放射ランプ21からの近赤外線によって温水管22自体が加熱され、加熱された温水管22からの熱伝導により加温される。 The hot water to be heated is guided from the water supply port 25 to the hot water pipe 22 and discharged from the drain port 26. The hot water flowing in the hot water pipe 22 is heated by the near infrared rays from the near infrared radiation lamp 21 and the hot water pipe 22 itself is heated by heat conduction from the heated hot water pipe 22.

近赤外線放射ランプ21としては、ハロゲンランプに代表される近赤外線を発生させるランプを用いる。本実施の形態では、円筒形状のガラス管を備え、ガラス管の内部に赤外線を発光するフィラメントが挿通されている形式のランプを採用している。ハロゲンランプは、放射する光の大部分が近赤外線領域にピーク波長を有する、具体的には0.75μm〜1.75μmの波長の近赤外線を放射するので、近赤外線放射ランプ21に適している。もちろん、近赤外線を放射できるものであれば、他のヒータやランプであっても良いことは言うまでもない。 As the near-infrared radiation lamp 21, a lamp that generates near-infrared rays represented by a halogen lamp is used. In the present embodiment, a lamp having a cylindrical glass tube and a filament that emits infrared rays is inserted inside the glass tube is adopted. The halogen lamp is suitable for the near-infrared radiation lamp 21 because most of the emitted light has a peak wavelength in the near-infrared region, specifically, it emits near-infrared rays having a wavelength of 0.75 μm to 1.75 μm. .. Of course, it goes without saying that other heaters and lamps may be used as long as they can radiate near infrared rays.

本実施の形態1では、発光部が直線状であり、金属筒23の略中央部分において、直線状の発光部の長手方向が前後方向に伸びるように配置されている。両端は、ソケット状の支持部27により支持され、電源(図示せず)に配線されている。 In the first embodiment, the light emitting portion is linear, and the linear light emitting portion is arranged so as to extend in the front-rear direction in the substantially central portion of the metal cylinder 23. Both ends are supported by a socket-shaped support portion 27 and are wired to a power supply (not shown).

なお、近赤外線放射ランプ21は、一本の円筒形状のガラス管を屈曲させて、二本一組のランプとして用いても良い。図4は、本発明の実施の形態1に係る近赤外加温装置20の、屈曲させた近赤外線放射ランプ21を用いる場合の構成を示す三面図である。図4(a)は、本実施の形態1に係る近赤外加温装置20の、屈曲させた近赤外線放射ランプ21を用いる場合における長手方向の中心線を含む鉛直面での断面図を、図4(b)は、本実施の形態1に係る近赤外加温装置20の、屈曲させた近赤外線放射ランプ21を用いる場合における長手方向の中心線を含む平行面での断面図を、図4(c)は、本実施の形態1に係る近赤外加温装置20の、屈曲させた近赤外線放射ランプ21を用いる場合における長手方向に直交する面での断面図を、それぞれ示している。 The near-infrared radiation lamp 21 may be used as a set of two lamps by bending one cylindrical glass tube. FIG. 4 is a three-view view showing a configuration of the near-infrared heating device 20 according to the first embodiment of the present invention when a bent near-infrared radiant lamp 21 is used. FIG. 4A is a cross-sectional view of the near-infrared heating device 20 according to the first embodiment in a vertical plane including a center line in the longitudinal direction when a bent near-infrared radiation lamp 21 is used. FIG. 4B is a cross-sectional view of the near-infrared heating device 20 according to the first embodiment in a parallel plane including a center line in the longitudinal direction when a bent near-infrared radiation lamp 21 is used. FIG. 4C shows a cross-sectional view of the near-infrared heating device 20 according to the first embodiment in a plane orthogonal to the longitudinal direction when a bent near-infrared radiation lamp 21 is used. There is.

図4(a)、(b)及び(c)に示すように、一本の円筒形状のガラス管を屈曲させて、二本一組で近赤外線放射ランプ21を形成している。二本のガラス管の互いに対向する面には、セラミックコーティングを施すことが好ましい。互いの近赤外線による発熱を回避するとともに、反射板(リフレクタ)としてエネルギーを集中させることができ、周囲の温水管22の発熱効率を高めることができるからである。斯かる構成にすることにより、一本の近赤外線放射ランプ21を設けている場合よりも近赤外線の発熱効率を高めることができるとともに、ソケット状の支持部27を一端側(図4の右端側)のみに設ければ良く、ランプの交換等のメンテナンスが容易となる。 As shown in FIGS. 4A, 4B and 4C, one cylindrical glass tube is bent to form a near-infrared radiation lamp 21 in pairs. It is preferable to apply a ceramic coating to the facing surfaces of the two glass tubes. This is because heat generation due to mutual near infrared rays can be avoided, energy can be concentrated as a reflector, and the heat generation efficiency of the surrounding hot water pipe 22 can be improved. With such a configuration, the heat generation efficiency of near infrared rays can be improved as compared with the case where one near infrared radiation lamp 21 is provided, and the socket-shaped support portion 27 is placed on one end side (right end side in FIG. 4). ), Which facilitates maintenance such as lamp replacement.

さらに、近赤外線放射ランプ21を金属筒23内に設ける本数は特に限定されるものではない。図5は、本発明の実施の形態1に係る近赤外加温装置20の、近赤外線放射ランプ21を二本備えた場合の構成を示す三面図である。図5(a)は、本実施の形態1に係る近赤外加温装置20の、近赤外線放射ランプ21を二本備えた場合における長手方向の中心線を含む鉛直面での断面図を、図5(b)は、本実施の形態1に係る近赤外加温装置20の、近赤外線放射ランプ21を二本備えた場合における長手方向の中心線を含む平行面での断面図を、図5(c)は、本実施の形態1に係る近赤外加温装置20の、近赤外線放射ランプ21を二本備えた場合における長手方向に直交する面での断面図を、それぞれ示している。 Further, the number of near-infrared radiation lamps 21 provided in the metal cylinder 23 is not particularly limited. FIG. 5 is a three-view view showing the configuration of the near-infrared heating device 20 according to the first embodiment of the present invention when two near-infrared radiating lamps 21 are provided. FIG. 5A is a cross-sectional view of the near-infrared heating device 20 according to the first embodiment in a vertical plane including a center line in the longitudinal direction when two near-infrared radiation lamps 21 are provided. FIG. 5B is a cross-sectional view of the near-infrared heating device 20 according to the first embodiment in a parallel plane including a center line in the longitudinal direction when two near-infrared radiation lamps 21 are provided. FIG. 5C shows a cross-sectional view of the near-infrared heating device 20 according to the first embodiment in a plane orthogonal to the longitudinal direction when two near-infrared radiation lamps 21 are provided. There is.

図5(a)、(b)及び(c)に示すように、近赤外線放射ランプ21は、二本の円筒形状のガラス管を互いに対向するように金属筒23の内部に配置されている。二本のガラス管の互いに対向する面には、セラミックコーティングを施すことが好ましい。互いの近赤外線による発熱を回避するとともに、反射板(リフレクタ)としてエネルギーを集中させることができ、周囲の温水管22の発熱効率を高めることができるからである。斯かる構成とすることにより、一本の近赤外線放射ランプ21を設けている場合よりも近赤外線の発熱効率を高めることができる。 As shown in FIGS. 5A, 5B and 5C, the near-infrared radiation lamp 21 is arranged inside the metal cylinder 23 so that two cylindrical glass tubes face each other. It is preferable to apply a ceramic coating to the facing surfaces of the two glass tubes. This is because heat generation due to mutual near infrared rays can be avoided, energy can be concentrated as a reflector, and the heat generation efficiency of the surrounding hot water pipe 22 can be improved. With such a configuration, it is possible to increase the heat generation efficiency of near infrared rays as compared with the case where one near infrared radiation lamp 21 is provided.

もちろん、近赤外線放射ランプ21は、二本設ける場合であっても、それぞれ一本の円筒形状のガラス管を屈曲させて、二本一組のランプとして二組の近赤外線放射ランプ21を設けても良い。図6は、本発明の実施1の形態に係る近赤外加温装置20の、それぞれ屈曲させた近赤外線放射ランプ21を二本用いる場合の構成を示す三面図である。図6(a)は、本実施の形態1に係る近赤外加温装置20の、それぞれ屈曲させた近赤外線放射ランプ21を二本用いる場合における長手方向の中心線を含む鉛直面での断面図を、図6(b)は、本実施の形態1に係る近赤外加温装置20の、それぞれ屈曲させた近赤外線放射ランプ21を二本用いる場合における長手方向の中心線を含む平行面での断面図を、図6(c)は、本実施の形態1に係る近赤外加温装置20の、それぞれ屈曲させた近赤外線放射ランプ21を二本用いる場合における長手方向に直交する面での断面図を、それぞれ示している。 Of course, even if two near-infrared radiation lamps 21 are provided, one cylindrical glass tube is bent to provide two sets of near-infrared radiation lamps 21 as a pair of lamps. Is also good. FIG. 6 is a three-view view showing the configuration of the near-infrared heating device 20 according to the first embodiment of the present invention when two bent near-infrared radiant lamps 21 are used. FIG. 6A is a cross section of the near-infrared heating device 20 according to the first embodiment in a vertical plane including a center line in the longitudinal direction when two bent near-infrared radiation lamps 21 are used. FIG. 6B shows a parallel plane including the center line in the longitudinal direction when two bent near-infrared radiation lamps 21 of the near-infrared heating device 20 according to the first embodiment are used. 6 (c) shows a cross-sectional view of the near-infrared heating device 20 according to the first embodiment, which is a plane orthogonal to the longitudinal direction when two bent near-infrared radiation lamps 21 are used. The cross-sectional views in are shown respectively.

図6(a)、(b)及び(c)に示すように、一本の円筒形状のガラス管を屈曲させて、二本一組で二組の近赤外線放射ランプ21を形成している。二組のガラス管の互いに対向する面には、セラミックコーティングを施すことが好ましい。互いの近赤外線による発熱を回避するとともに、反射板(リフレクタ)としてエネルギーを集中させることができ、周囲の温水管22の発熱効率を高めることができるからである。斯かる構成にすることにより、屈曲させていない場合よりも近赤外線の発熱効率を高めることができるとともに、ソケット状の支持部27を一端側(図6の右端側)のみに設ければ良く、ランプの交換等のメンテナンスが容易となる。 As shown in FIGS. 6 (a), 6 (b) and 6 (c), one cylindrical glass tube is bent to form two sets of near-infrared radiation lamps 21. It is preferable to apply a ceramic coating to the facing surfaces of the two sets of glass tubes. This is because heat generation due to mutual near infrared rays can be avoided, energy can be concentrated as a reflector, and the heat generation efficiency of the surrounding hot water pipe 22 can be improved. With such a configuration, the heat generation efficiency of near infrared rays can be improved as compared with the case where the lamp is not bent, and the socket-shaped support portion 27 may be provided only on one end side (right end side in FIG. 6). Maintenance such as lamp replacement becomes easy.

また、近赤外線放射ランプ21を金属筒23内に設ける本数が三本であっても良い。図7は、本発明の実施の形態1に係る近赤外加温装置20の、近赤外線放射ランプ21を三本備えた場合の構成を示す三面図である。図7(a)は、本実施の形態1に係る近赤外加温装置20の、近赤外線放射ランプ21を三本備えた場合における近赤外加温装置20の長手方向の中心線を含む鉛直面での断面図を、図7(b)は、本実施の形態1に係る近赤外加温装置20の、近赤外線放射ランプ21を三本備えた場合における近赤外加温装置20の長手方向の中心線を含む平行面での断面図を、図7(c)は、本実施の形態1に係る近赤外加温装置20の、近赤外線放射ランプ21を三本備えた場合における近赤外加温装置20の長手方向に直交する面での断面図を、それぞれ示している。 Further, the number of near-infrared radiation lamps 21 provided in the metal cylinder 23 may be three. FIG. 7 is a three-view view showing the configuration of the near-infrared heating device 20 according to the first embodiment of the present invention when three near-infrared radiant lamps 21 are provided. FIG. 7A includes the longitudinal center line of the near-infrared heating device 20 according to the first embodiment when the near-infrared heating device 20 is provided with three near-infrared radiation lamps 21. 7 (b) shows a cross-sectional view of the vertical plane, in which the near-infrared heating device 20 according to the first embodiment is provided with three near-infrared radiation lamps 21. 7 (c) shows a cross-sectional view of the parallel plane including the center line in the longitudinal direction of the above, in the case where three near-infrared radiation lamps 21 of the near-infrared heating device 20 according to the first embodiment are provided. The cross-sectional view of the near-infrared heating device 20 in the plane orthogonal to the longitudinal direction is shown respectively.

図7(a)、(b)及び(c)に示すように、近赤外線放射ランプ21は、三本の円筒形状のガラス管を金属筒23の内部において中心角が均等になるような位置に配置している。三本のガラス管の互いに対向する面には、セラミックコーティングを施すことが好ましい。互いの近赤外線による発熱を回避するとともに、反射板(リフレクタ)としてエネルギーを集中させることができ、周囲の温水管22の発熱効率を高めることができるからである。斯かる構成とすることにより、一本の近赤外線放射ランプを設けている場合よりも近赤外線の発熱効率を高めることができる。 As shown in FIGS. 7 (a), 7 (b) and 7 (c), the near-infrared radiation lamp 21 has three cylindrical glass tubes placed at positions inside the metal cylinder 23 so that the central angles are even. It is arranged. It is preferable to apply a ceramic coating to the surfaces of the three glass tubes facing each other. This is because heat generation due to mutual near infrared rays can be avoided, energy can be concentrated as a reflector, and the heat generation efficiency of the surrounding hot water pipe 22 can be improved. With such a configuration, it is possible to increase the heat generation efficiency of near infrared rays as compared with the case where one near infrared radiation lamp is provided.

もちろん、近赤外線放射ランプ21は、三本設ける場合であっても、それぞれ一本の円筒形状のガラス管を屈曲させて、二本一組のランプを三組設けても良い。図8は、本発明の実施の形態1に係る近赤外加温装置20の、近赤外線放射ランプ21を三本備えた場合において、屈曲させた近赤外線放射ランプ21を用いる場合の構成を示す三面図である。図8(a)は、本実施の形態1に係る近赤外加温装置20の、それぞれ屈曲させた近赤外線ランプを三本用いる場合における長手方向の中心線を含む鉛直面での断面図を、図8(b)は、本実施の形態1に係る近赤外加温装置20の、それぞれ屈曲させた近赤外線ランプを三本用いる場合における長手方向の中心線を含む平行面での断面図を、図8(c)は、本実施の形態1に係る近赤外加温装置20の、それぞれ屈曲させた近赤外線ランプを三本用いる場合における長手方向に直交する面での断面図を、それぞれ示している。 Of course, even if three near-infrared radiation lamps 21 are provided, one set of two lamps may be provided by bending one cylindrical glass tube. FIG. 8 shows the configuration of the near-infrared heating device 20 according to the first embodiment of the present invention when the near-infrared radiating lamps 21 are provided and the bent near-infrared radiating lamps 21 are used. It is a three-view view. FIG. 8A is a cross-sectional view of the near-infrared heating device 20 according to the first embodiment in a vertical plane including a center line in the longitudinal direction when three bent near-infrared lamps are used. 8 (b) is a cross-sectional view of the near-infrared heating device 20 according to the first embodiment in a parallel plane including a center line in the longitudinal direction when three bent near-infrared lamps are used. 8 (c) is a cross-sectional view of the near-infrared heating device 20 according to the first embodiment in a plane orthogonal to the longitudinal direction when three bent near-infrared lamps are used. Each is shown.

図8(a)、(b)及び(c)に示すように、一本の円筒形状のガラス管を屈曲させて、二本一組で三組の近赤外線放射ランプ21を形成している。三組のガラス管の互いに対向する面には、セラミックコーティングを施すことが好ましい。互いの近赤外線による発熱を回避するとともに、反射板(リフレクタ)としてエネルギーを集中させることができ、周囲の温水管22の発熱効率を高めることができるからである。斯かる構成にすることにより、屈曲させていない場合よりも近赤外線の発熱効率を高めることができるとともに、ソケット状の支持部27を一端側のみに設ければ良く、ランプの交換等のメンテナンスが容易となる。 As shown in FIGS. 8A, 8B and 8C, one cylindrical glass tube is bent to form three sets of near-infrared radiation lamps 21 in pairs. It is preferable to apply a ceramic coating to the facing surfaces of the three sets of glass tubes. This is because heat generation due to mutual near infrared rays can be avoided, energy can be concentrated as a reflector, and the heat generation efficiency of the surrounding hot water pipe 22 can be improved. With such a configuration, the heat generation efficiency of near infrared rays can be improved as compared with the case where the lamp is not bent, and the socket-shaped support portion 27 may be provided only on one end side, so that maintenance such as lamp replacement can be performed. It will be easy.

以上にように本実施の形態1によれば、温水管22内に温水を流し、近赤外線放射ランプ21からの近赤外線によって流れる温水をさらに加温することにより、例えば真空式温水ヒータ等で70℃前後まで温められている温水を、温水管22内において確実に90℃以上の高温水へと加温することができ、熱伝導効率の低下を抑制しつつ効率よく加温することが可能となる。 As described above, according to the first embodiment, hot water is allowed to flow in the hot water pipe 22, and the hot water flowing by the near infrared rays from the near infrared radiation lamp 21 is further heated, so that, for example, a vacuum hot water heater or the like 70 It is possible to reliably heat hot water that has been warmed to around ° C to high temperature water of 90 ° C or higher in the hot water pipe 22, and it is possible to heat efficiently while suppressing a decrease in heat conduction efficiency. Become.

(実施の形態2)
本発明の実施の形態2に係る近赤外加温装置20は、温水管22の構成が実施の形態1とは相違する。図9は、本発明の実施の形態2に係る近赤外加温装置20の構成を示す模式図である。図9(a)は、本実施の形態2に係る近赤外加温装置20の長手方向の中心線を含む鉛直面での断面図を、図9(b)は、本実施の形態2に係る近赤外加温装置20の長手方向の中心線を含む平行面での断面図を、図9(c)は、本実施の形態2に係る近赤外加温装置20の長手方向に直交する面での断面図を、それぞれ示している。
(Embodiment 2)
In the near-infrared heating device 20 according to the second embodiment of the present invention, the configuration of the hot water pipe 22 is different from that of the first embodiment. FIG. 9 is a schematic view showing the configuration of the near-infrared heating device 20 according to the second embodiment of the present invention. FIG. 9A is a cross-sectional view taken along the vertical plane including the center line in the longitudinal direction of the near-infrared heating device 20 according to the second embodiment, and FIG. 9B is the second embodiment. A cross-sectional view of the near-infrared heating device 20 in a parallel plane including the center line in the longitudinal direction is shown in FIG. 9 (c), which is orthogonal to the longitudinal direction of the near-infrared heating device 20 according to the second embodiment. The cross-sectional views of the planes are shown.

図9に示すように、本実施の形態2に係る近赤外加温装置20は、近赤外線を放射する近赤外線放射ランプ21と、近赤外線放射ランプ21からの近赤外線を受け得る範囲に配置された金属筒23とを備えている。金属筒23は、実施の形態1とは異なり、内部を温水が流れる温水路である温水管22を近赤外線放射ランプ21と下方から上方へと蛇腹状に積み重ねて、端部を屈曲させることで一定の直径を有する筒状の温水路が形成されている。 As shown in FIG. 9, the near-infrared heating device 20 according to the second embodiment is arranged in a range where the near-infrared radiation lamp 21 that emits near-infrared rays and the near-infrared rays from the near-infrared radiation lamp 21 can be received. It is provided with a metal cylinder 23. Unlike the first embodiment, the metal cylinder 23 is formed by stacking a hot water pipe 22 which is a hot water channel through which hot water flows inside in a bellows shape with a near-infrared radiation lamp 21 from below to above and bending the end portion thereof. A tubular hot water channel with a constant diameter is formed.

金属筒23を構成する温水管22の材質は、熱伝導性の高い銅、ステンレス等が好ましい。発熱量によってはSUS444クラスの耐熱性が要求される。いずれも、近赤外線の放射により温度が上昇しやすく、熱伝導性も高いので、温水管22内を流れる温水の温度をさらに上昇させることができる。なお、SUS444を採用した場合には、温水管23内部の水流による経年劣化に対して耐摩耗性を強化することもできる。 The material of the hot water pipe 22 constituting the metal cylinder 23 is preferably copper, stainless steel or the like having high thermal conductivity. Depending on the amount of heat generated, SUS444 class heat resistance is required. In each case, the temperature is likely to rise due to the radiation of near infrared rays and the thermal conductivity is high, so that the temperature of the hot water flowing in the hot water pipe 22 can be further raised. When SUS444 is adopted, the wear resistance can be enhanced against aging deterioration due to the water flow inside the hot water pipe 23.

また、温水管22内を流れる温水は、可能な限り連続して流す必要がある。空気が入り込むことにより、膨張して温水管22自体を破損する恐れがあるからである。そこで、本実施の形態2では、温水を下から上へと一方向に流し込むために、温水の流れる経路を二系統にしている。 Further, the hot water flowing in the hot water pipe 22 needs to flow continuously as much as possible. This is because there is a risk of expansion and damage to the hot water pipe 22 itself due to the ingress of air. Therefore, in the second embodiment, in order to allow the hot water to flow in one direction from the bottom to the top, the hot water flows through two systems.

図9(c)に示すように、給水口25a、25bは下方に設けてある。そして、給水口25aから給水された温水は、温水管22aをジグザグ状に上昇して、最後は上方に設けてある排水口26aから排水される。同様に、給水口25bから給水された温水は、温水管22bをジグザグ状に上昇して、最後は上方に設けてある排水口26bから排水される。 As shown in FIG. 9C, the water supply ports 25a and 25b are provided below. Then, the hot water supplied from the water supply port 25a rises in a zigzag shape on the hot water pipe 22a, and is finally drained from the drainage port 26a provided above. Similarly, the hot water supplied from the water supply port 25b rises in a zigzag shape on the hot water pipe 22b, and is finally drained from the drainage port 26b provided above.

このような構成とすることにより、給水された温水は重力により下方から順次温水管22a、22bに充填されるので、温水管22内に空洞ができにくい。したがって、近赤外線による温水と空気との膨張率の相違による管内温度の不均衡等が生じにくく、確実に温水をさらに加温することが可能となる。 With such a configuration, the supplied hot water is sequentially filled into the hot water pipes 22a and 22b from the bottom by gravity, so that it is difficult for a cavity to be formed in the hot water pipe 22. Therefore, imbalance of the temperature in the pipe due to the difference in expansion coefficient between the hot water and the air due to the near infrared rays is unlikely to occur, and the hot water can be reliably further heated.

近赤外線放射ランプ21としては、ハロゲンランプに代表される近赤外線を発生させるランプを用いる。本実施の形態では、円筒形状のガラス管を備え、ガラス管の内部に赤外線を発光するフィラメントが挿通されている形式のランプを採用している。ハロゲンランプは、放射する光の大部分が近赤外線領域にピーク波長を有する、具体的には0.75μm〜1.75μmの波長の近赤外線を放射するので、近赤外線放射ランプ21に適している。もちろん、近赤外線を放射できるものであれば、他のヒータやランプであっても良いことは言うまでもない。 As the near-infrared radiation lamp 21, a lamp that generates near-infrared rays represented by a halogen lamp is used. In the present embodiment, a lamp having a cylindrical glass tube and a filament that emits infrared rays is inserted inside the glass tube is adopted. The halogen lamp is suitable for the near-infrared radiation lamp 21 because most of the emitted light has a peak wavelength in the near-infrared region, specifically, it emits near-infrared rays having a wavelength of 0.75 μm to 1.75 μm. .. Of course, it goes without saying that other heaters and lamps may be used as long as they can radiate near infrared rays.

なお、近赤外線放射ランプ21は、実施の形態1と同様、一本の円筒形状のガラス管を屈曲させて、二本一組のランプとして用いても良い。図9は、屈曲させた近赤外線放射ランプ21を用いた場合について図示している。 As in the first embodiment, the near-infrared radiation lamp 21 may be used as a set of two lamps by bending one cylindrical glass tube. FIG. 9 illustrates the case where the bent near-infrared radiation lamp 21 is used.

すなわち、図9(a)、(b)及び(c)に示すように、一本の円筒形状のガラス管を屈曲させて、二本一組で近赤外線放射ランプ21を形成している。二本のガラス管の互いに対向する面には、セラミックコーティングを施すことが好ましい。互いの近赤外線による発熱を回避するとともに、反射板(リフレクタ)としてエネルギーを集中させることができ、周囲の温水管22の発熱効率を高めることができるからである。斯かる構成にすることにより、一本の近赤外線放射ランプを設けている場合よりも近赤外線の発熱効率を高めることができるとともに、ソケット状の支持部27を一端側のみに設ければ良く、ランプの交換等のメンテナンスが容易となる。 That is, as shown in FIGS. 9A, 9B and 9C, one cylindrical glass tube is bent to form a near-infrared radiation lamp 21 in pairs. It is preferable to apply a ceramic coating to the facing surfaces of the two glass tubes. This is because heat generation due to mutual near infrared rays can be avoided, energy can be concentrated as a reflector, and the heat generation efficiency of the surrounding hot water pipe 22 can be improved. With such a configuration, the heat generation efficiency of near-infrared rays can be improved as compared with the case where one near-infrared radiation lamp is provided, and the socket-shaped support portion 27 may be provided only on one end side. Maintenance such as lamp replacement becomes easy.

さらに、近赤外線放射ランプ21を金属筒23内に設ける本数は特に限定されるものではない。図10は、本発明の実施の形態2に係る近赤外加温装置20の、近赤外線放射ランプ21を複数備えた場合の構成を示す模式図である。図10(a)は、本実施の形態2に係る近赤外加温装置20の、近赤外線放射ランプ21を二本備えた場合における近赤外加温装置20の長手方向に直交する面での断面図を、図10(b)は、本実施の形態2に係る近赤外加温装置20の、近赤外線放射ランプ21を三本備えた場合における近赤外加温装置20の長手方向に直交する面での断面図を、それぞれ示している。 Further, the number of near-infrared radiation lamps 21 provided in the metal cylinder 23 is not particularly limited. FIG. 10 is a schematic view showing a configuration of the near-infrared heating device 20 according to the second embodiment of the present invention when a plurality of near-infrared radiating lamps 21 are provided. FIG. 10A shows a plane of the near-infrared heating device 20 according to the second embodiment, which is orthogonal to the longitudinal direction of the near-infrared heating device 20 when two near-infrared radiation lamps 21 are provided. 10 (b) shows a cross-sectional view of the near-infrared heating device 20 according to the second embodiment in the longitudinal direction of the near-infrared heating device 20 when three near-infrared radiation lamps 21 are provided. The cross-sectional view in the plane orthogonal to is shown respectively.

図10(a)では、近赤外線放射ランプ21は、二本の円筒形状のガラス管を屈曲させて、二本一組のランプとして二組の近赤外線放射ランプ21を設けている。二組のガラス管の互いに対向する面には、セラミックコーティングを施すことが好ましい。互いの近赤外線による発熱を回避するとともに、反射板(リフレクタ)としてエネルギーを集中させることができ、周囲の温水管22の発熱効率を高めることができるからである。斯かる構成にすることにより、屈曲させていない場合よりも近赤外線の発熱効率を高めることができるとともに、ソケット状の支持部27を一端側のみに設ければ良く、ランプの交換等のメンテナンスが容易となる。 In FIG. 10A, the near-infrared radiation lamp 21 is provided with two sets of near-infrared radiation lamps 21 as a set of two lamps by bending two cylindrical glass tubes. It is preferable to apply a ceramic coating to the facing surfaces of the two sets of glass tubes. This is because heat generation due to mutual near infrared rays can be avoided, energy can be concentrated as a reflector, and the heat generation efficiency of the surrounding hot water pipe 22 can be improved. With such a configuration, the heat generation efficiency of near infrared rays can be improved as compared with the case where the lamp is not bent, and the socket-shaped support portion 27 may be provided only on one end side, so that maintenance such as lamp replacement can be performed. It will be easy.

図10(b)では、近赤外線放射ランプ21は、二本の円筒形状のガラス管を屈曲させて、二本一組のランプとして三組の近赤外線放射ランプ21を設けている。三組のガラス管の互いに対向する面には、セラミックコーティングを施すことが好ましい。互いの近赤外線による発熱を回避するとともに、反射板(リフレクタ)としてエネルギーを集中させることができ、周囲の温水管22の発熱効率を高めることができるからである。斯かる構成にすることにより、屈曲させていない場合よりも近赤外線の発熱効率を高めることができるとともに、ソケット状の支持部27を一端側のみに設ければ良く、ランプの交換等のメンテナンスが容易となる。 In FIG. 10B, the near-infrared radiation lamp 21 is provided with three sets of near-infrared radiation lamps 21 as a set of two lamps by bending two cylindrical glass tubes. It is preferable to apply a ceramic coating to the facing surfaces of the three sets of glass tubes. This is because heat generation due to mutual near infrared rays can be avoided, energy can be concentrated as a reflector, and the heat generation efficiency of the surrounding hot water pipe 22 can be improved. With such a configuration, the heat generation efficiency of near infrared rays can be improved as compared with the case where the lamp is not bent, and the socket-shaped support portion 27 may be provided only on one end side, so that maintenance such as lamp replacement can be performed. It will be easy.

以上にように本実施の形態2によれば、温水管22内に温水を流し、近赤外線放射ランプ21からの近赤外線によって流れる温水をさらに加温することにより、例えば真空式温水ヒータ等で70℃前後まで温められている温水を、温水管22内において確実に90℃以上の高温水へと加温することができ、熱伝導効率の低下を抑制しつつ効率よく加温することが可能となる。 As described above, according to the second embodiment, hot water is allowed to flow in the hot water pipe 22, and the hot water flowing by the near infrared rays from the near infrared radiation lamp 21 is further heated, so that, for example, a vacuum hot water heater or the like 70 It is possible to reliably heat hot water that has been warmed to around ° C to high temperature water of 90 ° C or higher in the hot water pipe 22, and it is possible to heat efficiently while suppressing a decrease in heat conduction efficiency. Become.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲内であれば多種の変形、置換等が可能であることは言うまでもない。例えば温水管の構成は、金属筒23を形成できる構成であれば上記実施例に限定されるものではない。 It goes without saying that the present invention is not limited to the above-described embodiment, and various modifications, substitutions, etc. are possible within the scope of the gist of the present invention. For example, the configuration of the hot water pipe is not limited to the above embodiment as long as it can form the metal cylinder 23.

13 真空式温水ヒータ
20 近赤外加温装置
21 近赤外線放射ランプ
22 温水管
23 金属筒
25 給水口
26 排水口
27 支持部
13 Vacuum type hot water heater 20 Near infrared heating device 21 Near infrared radiant lamp 22 Hot water pipe 23 Metal cylinder 25 Water supply port 26 Drain port 27 Support

Claims (6)

近赤外線を放射する近赤外線放射ランプを用いて温水をさらに加温する近赤外加温装置において、
一又は複数の前記近赤外線放射ランプは、筒状の温水路の内側に配置されており、
前記温水路は、前記近赤外線放射ランプの外側に、コイル状に巻くことで一定の直径を有する筒状になるよう形成されており、
前記温水路内に温水を流し、
前記近赤外線放射ランプからの近赤外線によって流れる温水をさらに加温することを特徴とする近赤外加温装置。
In a near-infrared heating device that further heats hot water using a near-infrared radiation lamp that emits near-infrared rays
The one or more near-infrared radiation lamps are arranged inside a tubular hot water channel.
The hot water channel is formed on the outside of the near-infrared radiation lamp so as to have a tubular shape having a constant diameter by winding it in a coil shape.
Hot water is allowed to flow through the hot water channel.
A near-infrared heating device characterized by further heating hot water flowing by near-infrared rays from the near-infrared radiation lamp.
近赤外線を放射する近赤外線放射ランプを用いて温水をさらに加温する近赤外加温装置において、
一又は複数の前記近赤外線放射ランプは、筒状の温水路の内側に配置されており、
前記温水路は、前記近赤外線放射ランプの外側に、下方から上方へと蛇腹状に積み重ねることで一定の直径を有する筒状になるよう形成されており、
前記温水路内に温水を流し、
前記近赤外線放射ランプからの近赤外線によって流れる温水をさらに加温することを特徴とする近赤外加温装置。
In a near-infrared heating device that further heats hot water using a near-infrared radiation lamp that emits near-infrared rays
The one or more near-infrared radiation lamps are arranged inside a tubular hot water channel.
The hot water channel is formed on the outside of the near-infrared radiation lamp so as to have a tubular shape having a constant diameter by stacking them in a bellows shape from the bottom to the top.
Hot water is allowed to flow through the hot water channel.
A near-infrared heating device characterized by further heating hot water flowing by near-infrared rays from the near-infrared radiation lamp.
前記温水路は、筒状の長手方向に沿った鉛直面で二系統に二分されており、それぞれ下方に給水口、上方に排水口を設けてあることを特徴とする請求項2に記載の近赤外加温装置。 The near-field according to claim 2, wherein the hot water channel is divided into two systems with a vertical plane along the longitudinal direction of the cylinder, and each has a water supply port below and a drainage port above. Infrared warmer. 前記赤外線放射ランプは、一本の管球を屈曲させて二本の略平行な管球として構成されていることを特徴とする請求項1乃至3のいずれか一項に記載の近赤外加温装置。 The near-infrared ray addition according to any one of claims 1 to 3, wherein the infrared radiation lamp is configured as two substantially parallel tubes by bending one tube. Heating device. 複数の前記赤外線放射ランプを備える場合、前記赤外線放射ランプと前記温水路の前記赤外線放射ランプと対向している面との距離が均一であることを特徴とする請求項1乃至4のいずれか一項に記載の近赤外加温装置。 Any one of claims 1 to 4, wherein when a plurality of the infrared radiation lamps are provided, the distance between the infrared radiation lamp and the surface of the hot water channel facing the infrared radiation lamp is uniform. The near-infrared heating device according to the section. 複数の前記赤外線放射ランプを備える場合、前記赤外線放射ランプ同士が対向している管球の面の一部又は全部にセラミックコートを施してあることを特徴とする請求項1乃至5のいずれか一項に記載の近赤外加温装置。 Any one of claims 1 to 5, wherein when the plurality of infrared radiation lamps are provided, a ceramic coat is applied to a part or all of the surfaces of the tubes facing each other of the infrared radiation lamps. The near-infrared heating device according to the section.
JP2019123971A 2019-07-02 2019-07-02 Near infrared heating device Pending JP2021009003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019123971A JP2021009003A (en) 2019-07-02 2019-07-02 Near infrared heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123971A JP2021009003A (en) 2019-07-02 2019-07-02 Near infrared heating device

Publications (1)

Publication Number Publication Date
JP2021009003A true JP2021009003A (en) 2021-01-28

Family

ID=74199774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123971A Pending JP2021009003A (en) 2019-07-02 2019-07-02 Near infrared heating device

Country Status (1)

Country Link
JP (1) JP2021009003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236174B1 (en) * 2021-04-20 2023-03-09 株式会社九州日昌 heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236174B1 (en) * 2021-04-20 2023-03-09 株式会社九州日昌 heating device
US11646647B2 (en) 2021-04-20 2023-05-09 Kyushu Nissho Co., Ltd. Heating apparatus

Similar Documents

Publication Publication Date Title
US20140373794A1 (en) Hot water storage tank-type condensing boiler having multi-stage structure
JP2012078079A (en) Hot water making device using carbon heater
JP2021009003A (en) Near infrared heating device
KR20150028468A (en) Instantaneous heating apparatus for electricity
KR200458891Y1 (en) Hot wind blowing nano carbon heater
KR20120042393A (en) A boiler using heat exchanger of heating method several story coil type
KR20200015206A (en) Heat exchanger having spiral blade
CN210663355U (en) Circular ventilation type heater
KR20100010404U (en) Lamp pipe heater and thermal exchanger using the same
KR101327384B1 (en) Unitized heat radiator
KR101809169B1 (en) Apparatus for Heating Fluid
JP2020020555A (en) High-temperature water production device
KR100797580B1 (en) A heat exchanger with an electric heater
KR200284723Y1 (en) Heat Exchanger of Gas Boiler for Home use
CN202522066U (en) Online quartz heater
ES2738409T3 (en) Boiler with preset measures, but suitable for containing heat exchangers of different sizes
CN203074349U (en) Cooking stove heating tube
CN211211164U (en) Ceramic heating structure of baking machine
KR200497503Y1 (en) Electric heater with fan
RU2641419C2 (en) Electrooptical heating element of hot water boiler
JP3322322B2 (en) Fluid heating device
KR100958693B1 (en) A heat accumulation type boiler
KR20170035201A (en) CG heater type Electric fan heater
CN106052435A (en) Worm-type feed supply device
KR20210001722U (en) Heating pipe for electric boiler