JP2017173258A - 距離測定装置、距離測定方法及びプログラム - Google Patents

距離測定装置、距離測定方法及びプログラム Download PDF

Info

Publication number
JP2017173258A
JP2017173258A JP2016062463A JP2016062463A JP2017173258A JP 2017173258 A JP2017173258 A JP 2017173258A JP 2016062463 A JP2016062463 A JP 2016062463A JP 2016062463 A JP2016062463 A JP 2016062463A JP 2017173258 A JP2017173258 A JP 2017173258A
Authority
JP
Japan
Prior art keywords
distance
scanning range
light
distance measuring
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2016062463A
Other languages
English (en)
Inventor
岡田 英夫
Hideo Okada
英夫 岡田
豊田 治
Osamu Toyoda
治 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016062463A priority Critical patent/JP2017173258A/ja
Publication of JP2017173258A publication Critical patent/JP2017173258A/ja
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】距離測定装置、距離測定方法及びプログラムにおいて、比較的簡単な構成で、移動した測定対象を追従して測定対象までの距離を測定することを目的とする。【解決手段】パルス状のレーザ光を2次元で走査範囲を走査させる投光ユニットと、前記レーザ光の反射光に基づき測定対象までの距離を計測する受光ユニットとを有するセンサ本体と、前記センサ本体を移動するステージと、前記投光ユニットからの前記レーザ光が走査する走査範囲が、前記測定対象を追従するように、前記ステージを制御する制御装置と、を備え、前記投光ユニットは、前記走査範囲内の少なくとも一列に並んだ測距点の領域を拡大領域に拡大し、前記制御装置は、前記拡大領域内の前記測定対象の位置に応じて、前記ステージによる前記センサ本体の移動を制御する。【選択図】図1

Description

本発明は、距離測定装置、距離測定方法及びプログラムに関する。
レーザ光を用いて測定対象までの距離を測定する、レーザレーダ装置とも呼ばれる距離測定装置が提案されている。レーザレーダ装置は、レーザ光を例えばMEMS(Micro Electro Mechanical System)ミラーで2次元走査して照射する投光ユニットを有する。また、レーザレーダ装置は、測定対象からの反射光を光検出器で検出し、走査位置毎に測定対象までの距離を算出する受光ユニットを有する。
投光ユニットは、レーザ光を2次元走査して予め設定された走査範囲を走査する。このため、測定対象が走査範囲内にあれば、受光ユニットにおいて測定対象までの距離を算出できる。しかし、測定対象が走査範囲の外へ移動すると、受光ユニットは測定対象からの反射光を検出できないため、測定対象までの距離を算出できなくなってしまう。
測定対象が移動しても、受光ユニットにおいて測定対象までの距離を算出できるように、例えばレーザレーダ装置の走査範囲よりも広い撮像範囲を撮像するカメラを設けて測定対象を追従可能とする方法がある。この場合、測定対象が移動してレーザレーダ装置の走査範囲から外れても、カメラが撮像範囲内にある測定対象を検知可能である。これにより、レーザレーダ装置のレーザ光の照射方向を、カメラが検知した測定対象の位置に合わせて調整することで、移動した測定対象を追従して測定対象までの距離を測定することができる。しかし、この方法では、レーザレーダ装置を含む第1光学系に加え、カメラを含む第2の光学系が設けられるため、装置の構成が複雑になってしまう。また、第1及び第2の光学系を設ける場合、2つの光学系間の位置合わせが必要となる。さらに、第2の光学系を追加することで、装置のコストが増大してしまう。
特開2010−54429号公報 特開平5−87922号公報 特開2007−155541号公報
従来、移動した測定対象を追従して測定対象までの距離を測定する場合、2つの光学系を設けるため、装置の構成が複雑化してしまう。
そこで、1つの側面では、比較的簡単な構成で、移動した測定対象を追従して測定対象までの距離を測定できる距離測定装置、距離測定方法及びプログラムを提供することを目的とする。
1つの案によれば、パルス状のレーザ光を2次元で走査範囲を走査させる投光ユニットと、前記レーザ光の反射光に基づき測定対象までの距離を計測する受光ユニットとを有するセンサ本体と、前記センサ本体を移動する移動手段と、前記投光ユニットからの前記レーザ光が走査する走査範囲が、前記測定対象を追従するように、前記移動手段を制御する制御手段と、を備え、前記投光ユニットは、前記走査範囲内の少なくとも一列に並んだ測距点の領域を拡大領域に拡大する拡大手段を有し、前記制御手段は、前記拡大領域内の前記測定対象の位置に応じて、前記移動手段による前記センサ本体の移動を制御する距離測定装置が提供される。
一態様によれば、比較的簡単な構成で、移動した測定対象を追従して測定対象までの距離を測定できる。
一実施例における距離測定装置の一例を示す図である。 コンピュータの一例を示すブロック図である。 距離測定処理の一例を説明するフローチャートである。 測定対象と基準位置との関係の一例を説明する図である。 シリンドリカルレンズの第1の例を示す図である。 シリンドリカルレンズの第2の例を示す図である。 シリンドリカルレンズの第3の例を示す図である。 シリンドリカルレンズが設けられない場合のレーザ光の到達位置を説明する図である。 シリンドリカルレンズが設けられる場合のレーザ光の到達位置を説明する図である。
開示の距離測定装置、距離測定方法及びプログラムでは、パルス状のレーザ光を2次元で走査範囲を走査させる投光ユニットと、レーザ光の反射光に基づき測定対象までの距離を計測する受光ユニットとを有するセンサ本体を移動する移動手段を用いる。制御手段は、投光ユニットからのレーザ光が走査する走査範囲が、測定対象を追従するように、移動手段を制御する。投光ユニットは、走査範囲内の少なくとも一列に並んだ測距点の領域を拡大領域に拡大する拡大手段を有し、制御手段は、拡大領域内の測定対象の位置に応じて、移動手段によるセンサ本体の移動を制御する。
以下に、開示の距離測定装置、距離測定方法及びプログラムの各実施例を図面と共に説明する。
図1は、一実施例における距離測定装置の一例を示す図である。図1に示す距離測定装置は、投光ユニット2及び受光ユニット3を含むセンサ本体1と、コンピュータ4と、回転ステージ5とを有する。センサ本体1は、筐体1A内に収納されている。筐体1A(即ち、センサ本体1)は、回転ステージ5上に、回転可能に設けられている。回転ステージ5は、モータなどを有する、筐体1A(即ち、センサ本体1)を移動する移動手段の一例である。回転ステージ5の回転角度は、コンピュータ4により制御可能である。
投光ユニット2は、例えば制御回路21と、発光回路22と、レーザダイオードなどで形成されたレーザ光源23と、2次元MEMS(Micro Electro Mechanical System)ミラー24とを有する周知の構成に加え、シリンドリカルレンズ25を有する。制御回路21は、発光回路22の制御下でレーザ光源23がパルス状のレーザ光(即ち、レーザパルス)を出射するように、発光回路22を制御する。また、制御回路21は、レーザ光源23から出射されたレーザ光を2次元で走査させるように、MEMSミラー24を2次元で駆動する周知の駆動部(図示せず)を制御する。つまり、レーザ光を、例えば行方向(または、地面に対して水平方向)及び列方向(または、地面に対して垂直方向)へラスタ走査させる。これにより、レーザ光は、図1中実線で示すように、開口26またはシリンドリカルレンズ25を介して2次元で走査範囲61を走査する。また、シリンドリカルレンズ25が設けられていることにより、シリンドリカルレンズ25を介して走査される走査範囲61の一部は、拡大領域62を形成する。シリンドリカルレンズ25は、走査範囲61内の少なくとも1行の測距点の領域(または、少なくとも一列に、直線的に並んだ測距点の領域)の領域を拡大する拡大手段の一例である。
図1に示す走査範囲61及び拡大領域62内で、梨地で示す○印は、測距点に相当する。図1からもわかるように、測距点とは、センサ本体1から出射されたレーザ光が到達する、距離を測定する走査範囲61または拡大領域62上の点である。走査範囲61内の測距点は、一定の第1の間隔(または、サンプリング間隔)を有する。これに対し、拡大領域62内の測距点は、一定の第2の間隔(または、サンプリング間隔)を有するが、第2の間隔は、走査範囲61内の測距点の第1の間隔より広い。
走査範囲61及び拡大領域62は、この例では矩形を有するが、形状は特に限定されない。なお、図1に示す例では、拡大領域62は、1行の測距点で形成されているが、2行以上の測距点で形成されていても良い。つまり、拡大領域62は、少なくとも1行の測距点で形成されていれば良い。また、拡大領域62は、この例では矩形の走査範囲61の行方向(即ち、水平方向)に沿って拡大されているが、矩形の走査範囲61の列方向(即ち、垂直方向)に沿って拡大されていても、或いは、矩形の走査範囲61の行列に対して斜め方向(例えば、対角線)に沿って拡大されていても良い。さらに、拡大領域62は、図1に示す例のように走査範囲61の中心を通るように拡大されていても、当該中心を通らないように拡大されていても良い。
図1に示す例では、説明の便宜上、走査範囲61内の測距点が5行×5列であるが、実際は例えば320行×240列などである。このため、図1に示す例のように1行分、または、例えば数行分(例えば、5行以下)の測距点を有する拡大領域62を設けても、拡大領域62内におけるデータの歪みは無視できる程度に小さく、距離測定精度への影響は無視できる程度に少ない。
測定対象100で反射されたレーザ光は、図1中点線で示すように受光ユニット3により受光される。測定対象100は、この例では人間であるが、人間に限定されず、車両などであっても良い。受光ユニット3は、例えば受光レンズ31と、光検出器32と、距離計測回路33とを含む、周知の構成を有する。測定対象100を含む走査範囲61内で反射されたレーザ光は、受光レンズ31を介して光検出器32で検出される。光検出器32の検出出力は、距離計測回路33に供給される。距離計測回路33は、レーザ光を出射してから、レーザ光が測定対象100で反射されて戻ってくるまでの往復時間(TOF:Time Of Flight)ΔTを計測することで、測定対象100までの距離を光学的に計測し、計測した距離を示す距離情報(または、距離信号)を出力する。ここで、高速をc(約30万km/s)で表すと、測定対象100までの距離は、(c×ΔT)/2から求めることができる。
距離計測回路33で計測された各測距点までの距離を示す距離情報は、受光ユニット3からコンピュータ4へ出力される。また、測距点までの距離とは、センサ本体1から測距点までの距離である。コンピュータ4は、各測距点までの距離を示す距離情報に基づき、測定対象100に追従するように回転ステージ5の回転位置を制御する。これにより、測定対象100が例えばスポーツ選手の場合、当該スポーツ選手の動きに追従して、当該スポーツ選手を追従することができる。また、スポーツ選手の動きに追従することで、当該スポーツ選手までの距離を測定することができる。なお、コンピュータ4は、投光ユニット2の制御回路21が制御するレーザ光源23の発光タイミング、発光パワーなどを設定しても良い。
コンピュータ4は、例えば図2に示す構成を有しても良い。図2は、コンピュータの一例を示すブロック図である。図2に示すコンピュータ4は、バス40を介して互いに接続されたプロセッサ41と、メモリ42と、入力装置43と、表示装置44と、インタフェース(または、通信装置)45とを有する。プロセッサ41は、例えば中央処理装置(CPU:Central Processing Unit)などで形成可能であり、メモリ42に記憶されたプログラムを実行して、コンピュータ4全体の制御を司る。メモリ42は、例えば半導体記憶装置、磁気記録媒体、光記録媒体、光磁気記録媒体などの、コンピュータ読み取り可能な記憶媒体により形成可能である。メモリ42は、プロセッサ41が実行する距離測定プログラムを含む各種プログラム、各種データなどを記憶する。
入力装置43は、ユーザ(または、オペレータ)により操作される、例えばキーボードなどで形成可能であり、プロセッサ41にコマンド及びデータを入力するのに用いられる。表示装置44は、ユーザに対するメッセージ、距離測定処理の測定結果などを表示する。インタフェース45は、コンピュータ4を他のコンピュータなどと通信可能に接続する。この例では、コンピュータ4は、インタフェース45を介して受光ユニット3の距離計測回路33に接続されている。コンピュータ4は、インタフェース45を介して投光ユニット2の制御回路21に接続されていても良い。
なお、コンピュータ4は、当該コンピュータ4の構成要素がバス40を介して接続されたハードウェア構成に限定されるものではない。コンピュータ4には、例えば汎用コンピュータを用いても良い。
また、コンピュータ4の入力装置43及び表示装置44は、省略可能である。また、コンピュータ4のインタフェース45をさらに省略したモジュール、半導体チップなどの場合、センサ本体1の出力(即ち、距離計測回路33の出力)は、バス40に接続されても、プロセッサ41に直接接続されても良い。例えばコンピュータ4を半導体チップなどで形成した場合、半導体チップなどは、センサ本体1内に設けられていても良い。コンピュータ4は、投光ユニット2による走査範囲61が測定対象100を追従するように回転ステージ5を制御する制御手段の一例を形成する。
図3は、距離測定処理の一例を説明するフローチャートである。図3に示す距離測定処理は、例えば図2に示すプロセッサ41により実行可能である。
図3において、距離測定処理が開始されると、ステップS1では、プロセッサ41が、投光ユニット2内の制御回路21を介してMEMSミラー24を制御すると共に、制御回路21及び発光回路22を介してレーザ光源23を制御する。これにより、レーザ光(即ち、レーザパルス)が、MEMSミラー24及び開口26またはシリンドリカルレンズ25を介して、図1に示す如き走査範囲61を走査する、2次元走査処理が行われる。測定対象100を含む走査範囲61内で反射されたレーザ光は、受光ユニット3内の受光レンズ31を介して光検出器32で検出され、距離計測回路33において測定対象100の測距点までの距離が計測され、計測した距離を示す距離情報が出力される。
ステップS2では、プロセッサ41が、距離計測回路33から出力される距離情報より、測定対象100の位置を算出する。ステップS3では、プロセッサ41が、測定対象100の走査範囲61に対する位置ズレが、閾値を超えているか否かを判定し、判定結果がNOであると処理はステップS1へ戻り、判定結果がYESであると処理はステップS4へ進む。
図4は、測定対象と基準位置との関係の一例を説明する図である。この例では、走査範囲61内に、予め基準位置p0を設定しておく。基準位置p0は、例えば走査範囲61内の中心位置p3である。この場合、測定対象100の走査範囲61に対する位置ズレはErは、基準位置p0との相対距離の絶対値、即ち、E=|pn−p0|から求めることができる。ここで、nはこの例ではn=1〜5である。走査範囲61内の互いに隣り合う2つの測距点間の距離をdで表すと、例えば閾値が3dの場合、測定対象100が拡大領域62内の測距点の位置p1及び測距点の位置p5にある時に、ステップS3の判定結果がYESとなる。これにより、位置ズレが閾値を超えている場合には、測定対象100の少なくとも一部が走査範囲61外に移動していると判断できる。また、測定対象100が拡大領域62内の測距点の位置p2,p3,p4にある時に、ステップS3の判定結果がNOとなる。位置ズレが閾値以下である場合には、測定対象100が走査範囲61内にあると判断できる。
ステップS4では、プロセッサ41が、測定対象100が走査範囲61内に入るように、測定対象100を追従するための回転ステージ5(または、センサ本体1)の回転補正角度θを算出する。回転補正角θは、測定対象100が走査範囲61内に入るように、測定対象100を追従するための移動手段の移動量の一例である。具体的には、測距点の位置pに基づき、測定対象100を追従するために回転ステージ5を回転させる回転補正角度θを算出する。なお、回転補正角度θは、各測距点の位置pについて予め算出しておいても良い。この場合、表1の如き測距点の位置pに対する回転補正角度θのテーブルをメモリ42などの格納しておき、ステップS4では、プロセッサ41が、測距点の位置pに対応する回転補正角度θをメモリ42内のテーブルから読み出しても良い。図4に示す例では、測定対象100が測距点の位置p4にあるため、テーブルからは回転補正角度θ=−5°が読み出される。表1中、回転補正角度θが負の値の場合には、例えば回転ステージ5を反時計方向(例えば、負方向)へ回転させることを表し、回転補正角度θが正の値の場合には、回転ステージ5を時計方向(例えば、正方向)へ回転させることを表す。
Figure 2017173258
ステップS5では、プロセッサ41が、測定対象100が走査範囲61内に収まるよう
に筐体1A(即ち、センサ本体1)を移動するように、回転ステージ5を制御する。具体
的には、回転ステージ5を、回転補正角度θ=−5°だけ回転するように制御する。これにより、測定対象100は、走査範囲61内となる。ステップS6では、プロセッサ41が、2次元走査処理が終了したか否かを判定し、判定結果がNOであると処理はステップS1へ戻り、判定結果がYESであると距離測定処理は終了する。
次に、シリンドリカルレンズの例を、図5乃至図7と共に説明する。図5は、シリンドリカルレンズの第1の例を示す図である。図5に示すシリンドリカルレンズ25−1は、ライン状に薄くカットされた単一のレンズ部材で形成されており、例えば円形の開口26を形成する筐体1Aの壁に接着されている。シリンドリカルレンズ25−1は、レーザ光が走査する走査範囲61の行方向(または、地面に対して水平方向)と平行に配置されている。なお、シリンドリカルレンズ25−1は、開口26の中心を通るように配置されているので、拡大領域62は、図1に示すように、走査範囲61の中心を通るように拡大される。このため、拡大領域62を用いて、測定対象100の中心部分が走査範囲61外に移動したことを検知できる。
図6は、シリンドリカルレンズの第2の例を示す図である。シリンドリカルレンズ25−2は、ライン状に薄くカットされた複数(この例では、一対)の平行なレンズ部材で形成されており、例えば円形の開口26を形成する筐体1Aの壁に接着されている。シリンドリカルレンズ25−2は、レーザ光が走査する走査範囲61の行方向(または、地面に対して水平方向)と平行に配置されている。なお、シリンドリカルレンズ25−2は、開口26の中心を避けた上下を通るように配置されているので、一対の拡大領域62は、走査範囲61の中心を避けた上下を通るように拡大される。このため、一対の拡大領域62を用いて、測定対象100の上部分及び下部分が走査範囲61外に移動したことを検知できる。つまり、測定対象100が人間の場合、一対の拡大領域62を用いて、人間の頭部と足部とを検知できる。この場合、一対の拡大領域62の夫々は、1行分、または、例えば数行分(例えば、5行以下)の測距点を有しても良い。
図7は、シリンドリカルレンズの第3の例を示す図である。シリンドリカルレンズ25−3は、ライン状に薄くカットされた単一のレンズ部材で形成されており、例えば円形の開口26を形成する筐体1Aの壁に接着されている。シリンドリカルレンズ25−2は、レーザ光が走査する走査範囲61の行方向(または、地面に対して水平方向)に対して、或いは、走査範囲61の列方向(または、地面に対して垂直方向)に対して、平行以外の傾いた配置を有する。なお、シリンドリカルレンズ25−3は、開口26の中心を通るように斜めに配置されているので、拡大領域62は、走査範囲61の中心を通るように斜めに拡大される。このため、拡大領域62を用いて、測定対象100の上部分が水平方向に沿って一方の方向(例えば、左方向)へ走査範囲61外に移動したことを検知すると共に、測定対象100の下部分が水平方向に沿って他方の方向(例えば、右方向)へ走査範囲61外に移動したことを検知することができる。なお、斜めの配置を有するシリンドリカルレンズ25−3は、開口26の中心を避けて配置しても良く、複数のレンズ部材で形成されていても良い。
筐体1Aに回転可能な円形のスリーブが設けられ、開口26がスリーブの壁により形成される場合には、スリーブを回転させることで、各シリンドリカルレンズ25,25−1〜25−3を任意の回転角度に設定可能である。なお、この場合のスリーブは、開口26を有するリング部材であり、例えば図1において開口26の部分に相当するため、図示は省略する。
次に、レーザ光の到達位置について、図8及び図9と共に説明する。図8は、シリンドリカルレンズが設けられない場合のレーザ光の到達位置を説明する図である。また、図9は、シリンドリカルレンズが設けられる場合のレーザ光の到達位置を説明する図である。図8及び図9において、Mpは、MEMSミラー24の反射面の位置を示し、Sp1,Sp2は、位置Mpからの距離がLである走査範囲61の位置を示す。
図8に示すように、MEMSミラー24の地面と平行な水平面に対する振り角をθとすると、シリンドリカルレンズ25を通らず、開口26を介して出射されるレーザ光の光路長kは、位置Mpからの水平距離をLを用いてk=L/cosθで表すことができる。図8において、dは、位置Mpから水平距離Lの位置における、この例では開口26の中心を通る水平面に対するレーザ光のビーム位置(または、高さ位置)を示す。
一方、図9に示すように、シリンドリカルレンズ25を介して出射されるレーザ光の光路長kについては、レーザ光のビーム位置をdと、位置Mpからシリンドリカルレンズ25までの水平距離をsとし、シリンドリカルレンズ25を通るレーザ光の水平面に対する振り角をθとすると、次式(1)が成り立つ。図9において、dは、位置Mpから水平距離Lの位置における、シリンドリカルレンズ25を通る水平面に対するレーザ光のビーム位置(または、高さ位置)を示す。
tanθ=(d−s×tanθ)/(L−s) ・・・式(1)
従って、シリンドリカルレンズ25を介して出射されるレーザ光の光路長kは、上記の式(1)を用いて次式(2)から算出することができる。図8及び図9からもわかるように、シリンドリカルレンズ25を介して出射されるレーザ光の光路長kは、シリンドリカルレンズ25を通らず、開口26を介して出射されるレーザ光の光路長kより長くなる。
=(s/cosθ)+{(L−s)/cosθ)} ・・・式(2)
図3に示すステップS2において、プロセッサ41は、シリンドリカルレンズ25を通らず、開口26を介して出射されるレーザ光の測距点については、上記の光路長kに基づき測定対象100の位置を算出することで、測定対象100までの距離を測定できる。また、ステップS2において、プロセッサ41は、シリンドリカルレンズ25を介して出射されるレーザ光の測距点については、上記の光路長kに基づき多測定対象100の位置を算出することで、測定対象100までの距離を測定できる。このように、シリンドリカルレンズ25を介して出射されるレーザ光の測距点については、シリンドリカルレンズ25を通らず、開口26を介して出射されるレーザ光の測距点について算出した測定対象100の位置を補正して、測定対象100までの距離を測定しても良い。このような補正を行う場合、測定対象100までの距離の測定精度を向上することができる。
なお、振り角θの時のビーム位置dを予め求めておき、データテーブルに登録しておいても良い。この場合、データテーブルは、図2に示すメモリ42などに格納可能である。振り角θに対する光路長kは、データテーブルから読み出したビーム位置dを用いて、上記の式(1),(2)に基づいて算出することができる。さらに、シリンドリカルレンズ25の光学条件がわかる場合には、光学シミュレーションにより振り角θと光路長kとの関係を算出してメモリ42などに格納しておいても良い。この場合、振り角θに対する光路長kは、メモリ42から読み出した関係から求めることができる。
上記実施例によれば、単一の光学系を用いた比較的簡単な構成で、移動した測定対象を追従して測定対象までの距離を測定できる。また、単一の光学系を用いた比較的簡単な構成を用いるため、2つの光学系を設けた場合のような、2つの光学系間の位置合わせが不要となる。さらに、単一の光学系を用いた比較的簡単な構成を用いるため、距離測定装置のコストの増大を避けることができる。
以上の実施例を含む実施形態に関し、更に以下の付記を開示する。
(付記1)
パルス状のレーザ光を2次元で走査範囲を走査させる投光ユニットと、前記レーザ光の反射光に基づき測定対象までの距離を計測する受光ユニットとを有するセンサ本体と、
前記センサ本体を移動する移動手段と、
前記投光ユニットからの前記レーザ光が走査する走査範囲が、前記測定対象を追従するように、前記移動手段を制御する制御手段と、
を備え、
前記投光ユニットは、前記走査範囲内の少なくとも一列に並んだ測距点の領域を拡大領域に拡大する拡大手段を有し、
前記制御手段は、前記拡大領域内の前記測定対象の位置に応じて、前記移動手段による前記センサ本体の移動を制御することを特徴とする、距離測定装置。
(付記2)
前記拡大手段は、前記センサ本体の筐体の開口に設けられた、単一のレンズ部材で形成されたシリンドリカルレンズを有することを特徴とする、付記1記載の距離測定装置。
(付記3)
前記シリンドリカルレンズは、前記開口の中心を通るように配置され、前記拡大領域は、前記走査範囲の中心を通ることを特徴とする、付記2記載の距離測定装置。
(付記4)
前記拡大手段は、前記センサ本体の筐体の開口に設けられた、複数の平行なレンズ部材で形成されたシリンドリカルレンズを有することを特徴とする、付記1記載の距離測定装置。
(付記5)
前記シリンドリカルレンズは、地面に対して水平方向に対して、或いは、前記地面に対して垂直方向に対して、平行以外の傾いた配置を有することを特徴とする、付記2乃至4のいずれか1項記載の距離測定装置。
(付記6)
前記センサ本体の筐体に設けられた回転可能な円形のスリーブを備え、
前記シリンドリカルレンズは、前記開口を形成する前記スリーブの壁に設けられ、
前記シリンドリカルレンズの回転角度は、前記スリーブを回転することで設定可能される、
付記5記載の距離測定装置。
(付記7)
前記制御手段は、
前記シリンドリカルレンズを介して出射される前記レーザ光の測距点については、前記シリンドリカルレンズを通らず、前記開口を介して出射される前記レーザ光の測距点について算出した前記測定対象の位置を補正して、測定対象までの距離を測定することを特徴とする、付記2乃至6のいずれか1項記載の距離測定装置。
(付記8)
前記測距点の位置に基づき、前記測定対象を追従するために前記移動手段の移動量が各測距点の位置について予め算出された、前記測距点の位置に対する前記移動量のテーブルを格納したメモリをさらに備え、
前記制御手段は、各測距点の位置に対応する移動量を前記メモリ内の前記テーブルから読み出して、前記移動手段を読み出した当該移動量だけ、当該移動量の値の正負に応じた方向へ移動するように制御することを特徴とする、付記1乃至7のいずれか1項記載の距離測定装置。
(付記9)
コンピュータが、パルス状のレーザ光を2次元で走査範囲を走査させる投光ユニットと、前記レーザ光の反射光に基づき測定対象までの距離を計測する受光ユニットとを有するセンサ本体を移動する移動手段を、前記投光ユニットからの前記レーザ光が走査する走査範囲が、前記測定対象を追従するように制御し、
前記投光ユニットの拡大手段が、前記走査範囲内の少なくとも一列に並んだ測距点の領域を拡大領域に拡大し、
前記コンピュータが、前記拡大領域内の前記測定対象の位置に応じて、前記移動手段による前記センサ本体の移動を制御することを特徴とする、距離測定方法。
(付記10)
前記コンピュータが、
前記拡大手段を形成するシリンドリカルレンズを介して出射される前記レーザ光の測距点については、前記シリンドリカルレンズを通らず出射される前記レーザ光の測距点について算出した前記測定対象の位置を補正して、測定対象までの距離を測定することを特徴とする、付記9記載の距離測定方法。
(付記11)
前記測距点の位置に基づき、前記測定対象を追従するために前記移動手段の移動量が各測距点の位置について予め算出された、前記測距点の位置に対する前記移動量のテーブルがメモリされており、
前記コンピュータが、各測距点の位置に対応する移動量を前記メモリ内の前記テーブルから読み出して、前記移動手段を読み出した当該移動量だけ、当該移動量の値の正負に応じた方向へ移動するように制御することを特徴とする、付記9または10記載の距離測定方法。
(付記12)
コンピュータに、距離測定処理を実行させるプログラムであって、
パルス状のレーザ光を2次元で走査範囲を走査させる投光ユニットと、前記レーザ光の反射光に基づき測定対象までの距離を計測する受光ユニットとを有するセンサ本体を移動する移動手段を、前記投光ユニットからの前記レーザ光が走査する走査範囲が、前記測定対象を追従するように制御し、
前記投光ユニットの拡大手段が、前記走査範囲内の少なくとも一列に並んだ測距点の領域を拡大した拡大領域内の前記測定対象の位置に応じて、前記移動手段による前記センサ本体の移動を制御する、
処理を前記コンピュータに実行させることを特徴とする、プログラム。
(付記13)
前記拡大手段を形成する前記シリンドリカルレンズを介して出射される前記レーザ光の測距点については、前記シリンドリカルレンズを通らず出射される前記レーザ光の測距点について算出した前記測定対象の位置を補正して、測定対象までの距離を測定する、
処理を前記コンピュータにさらに実行させることを特徴とする、付記12記載のプログラム。
(付記14)
前記測距点の位置に基づき、前記測定対象を追従するために前記移動手段の移動量が各測距点の位置について予め算出された、前記測距点の位置に対する前記移動量のテーブルがメモリされており、
各測距点の位置に対応する移動量を前記メモリ内の前記テーブルから読み出して、前記移動手段を読み出した当該移動量だけ、当該移動量の値の正負に応じた方向へ移動するように制御する、
処理を前記コンピュータにさらに実行させることを特徴とする、付記12または13記載のプログラム。
以上、開示の距離測定装置、距離測定方法及びプログラムを実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能であることは言うまでもない。
1 センサ本体
1A 筐体
2 投光ユニット
3 受光ユニット
4 コンピュータ
5 回転ステージ
21 制御回路
22 発光回路
23 レーザ光源
24 2次元MEMSミラー
25,25−1〜25−3 シリンドリカルレンズ
26 開口
31 受光レンズ
32 光検出器
33 距離計測回路
41 プロセッサ
42 メモリ
43 入力装置
44 表示装置
45 インタフェース
61 走査範囲
62 拡大領域

Claims (6)

  1. パルス状のレーザ光を2次元で走査範囲を走査させる投光ユニットと、前記レーザ光の反射光に基づき測定対象までの距離を計測する受光ユニットとを有するセンサ本体と、
    前記センサ本体を移動する移動手段と、
    前記投光ユニットからの前記レーザ光が走査する走査範囲が、前記測定対象を追従するように、前記移動手段を制御する制御手段と、
    を備え、
    前記投光ユニットは、前記走査範囲内の少なくとも一列に並んだ測距点の領域を拡大領域に拡大する拡大手段を有し、
    前記制御手段は、前記拡大領域内の前記測定対象の位置に応じて、前記移動手段による前記センサ本体の移動を制御することを特徴とする、距離測定装置。
  2. 前記拡大手段は、前記センサ本体の筐体の開口に設けられた、単一のレンズ部材で形成されたシリンドリカルレンズを有することを特徴とする、請求項1記載の距離測定装置。
  3. 前記拡大手段は、前記センサ本体の筐体の開口に設けられた、複数の平行なレンズ部材で形成されたシリンドリカルレンズを有することを特徴とする、請求項1記載の距離測定装置。
  4. 前記制御手段は、
    前記シリンドリカルレンズを介して出射される前記レーザ光の測距点については、前記シリンドリカルレンズを通らず、前記開口を介して出射される前記レーザ光の測距点について算出した前記測定対象の位置を補正して、測定対象までの距離を測定することを特徴とする、請求項2または3記載の距離測定装置。
  5. コンピュータが、パルス状のレーザ光を2次元で走査範囲を走査させる投光ユニットと、前記レーザ光の反射光に基づき測定対象までの距離を計測する受光ユニットとを有するセンサ本体を移動する移動手段を、前記投光ユニットからの前記レーザ光が走査する走査範囲が、前記測定対象を追従するように制御し、
    前記投光ユニットの拡大手段が、前記走査範囲内の少なくとも一列に並んだ測距点の領域を拡大領域に拡大し、
    前記コンピュータが、前記拡大領域内の前記測定対象の位置に応じて、前記移動手段による前記センサ本体の移動を制御することを特徴とする、距離測定方法。
  6. コンピュータに、距離測定処理を実行させるプログラムであって、
    パルス状のレーザ光を2次元で走査範囲を走査させる投光ユニットと、前記レーザ光の反射光に基づき測定対象までの距離を計測する受光ユニットとを有するセンサ本体を移動する移動手段を、前記投光ユニットからの前記レーザ光が走査する走査範囲が、前記測定対象を追従するように制御し、
    前記投光ユニットの拡大手段が、前記走査範囲内の少なくとも一列に並んだ測距点の領域を拡大した拡大領域内の前記測定対象の位置に応じて、前記移動手段による前記センサ本体の移動を制御する、
    処理を前記コンピュータに実行させることを特徴とする、プログラム。
JP2016062463A 2016-03-25 2016-03-25 距離測定装置、距離測定方法及びプログラム Ceased JP2017173258A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016062463A JP2017173258A (ja) 2016-03-25 2016-03-25 距離測定装置、距離測定方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016062463A JP2017173258A (ja) 2016-03-25 2016-03-25 距離測定装置、距離測定方法及びプログラム

Publications (1)

Publication Number Publication Date
JP2017173258A true JP2017173258A (ja) 2017-09-28

Family

ID=59970948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062463A Ceased JP2017173258A (ja) 2016-03-25 2016-03-25 距離測定装置、距離測定方法及びプログラム

Country Status (1)

Country Link
JP (1) JP2017173258A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174678A (zh) * 2018-02-20 2019-08-27 欧姆龙株式会社 对象物检测装置
JP2020085798A (ja) * 2018-11-29 2020-06-04 株式会社リコー 三次元位置検出装置、三次元位置検出システム、及び三次元位置検出方法
US11061139B2 (en) 2019-07-16 2021-07-13 Sharp Kabushiki Kaisha Ranging sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166783A (ja) * 1990-10-30 1992-06-12 Topcon Corp 測量機
JPH11153664A (ja) * 1997-09-30 1999-06-08 Sumitomo Electric Ind Ltd 繰り返しパルス光を利用した物体検知装置
JP2000162533A (ja) * 1998-11-30 2000-06-16 Aisin Seiki Co Ltd 光走査装置
JP2006030147A (ja) * 2004-07-22 2006-02-02 Hitachi Ltd 環境認識システムおよび移動機構
JP2009058341A (ja) * 2007-08-31 2009-03-19 Sanyo Electric Co Ltd ビーム照射装置およびレーザレーダ
JP2009229192A (ja) * 2008-03-21 2009-10-08 Topcon Corp 測量機、測量システム、測定対象の検出方法、および測定対象の検出プログラム
US20120038903A1 (en) * 2010-08-16 2012-02-16 Ball Aerospace & Technologies Corp. Electronically steered flash lidar

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166783A (ja) * 1990-10-30 1992-06-12 Topcon Corp 測量機
JPH11153664A (ja) * 1997-09-30 1999-06-08 Sumitomo Electric Ind Ltd 繰り返しパルス光を利用した物体検知装置
JP2000162533A (ja) * 1998-11-30 2000-06-16 Aisin Seiki Co Ltd 光走査装置
JP2006030147A (ja) * 2004-07-22 2006-02-02 Hitachi Ltd 環境認識システムおよび移動機構
JP2009058341A (ja) * 2007-08-31 2009-03-19 Sanyo Electric Co Ltd ビーム照射装置およびレーザレーダ
JP2009229192A (ja) * 2008-03-21 2009-10-08 Topcon Corp 測量機、測量システム、測定対象の検出方法、および測定対象の検出プログラム
US20120038903A1 (en) * 2010-08-16 2012-02-16 Ball Aerospace & Technologies Corp. Electronically steered flash lidar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
天野俊之 日浦慎作 山口証 井口征士: "固有空間照合法に基づく距離画像からの物体の姿勢検出", 電子情報通信学会論文誌, vol. 第J80-D-II巻 第5号, JPN6019044539, 25 May 1997 (1997-05-25), JP, pages 1136 - 1143, ISSN: 0004155045 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174678A (zh) * 2018-02-20 2019-08-27 欧姆龙株式会社 对象物检测装置
JP2019144072A (ja) * 2018-02-20 2019-08-29 オムロン株式会社 対象物検出装置
US11609327B2 (en) 2018-02-20 2023-03-21 Omron Corporation Target detecting device
JP2020085798A (ja) * 2018-11-29 2020-06-04 株式会社リコー 三次元位置検出装置、三次元位置検出システム、及び三次元位置検出方法
JP7206855B2 (ja) 2018-11-29 2023-01-18 株式会社リコー 三次元位置検出装置、三次元位置検出システム、及び三次元位置検出方法
US11061139B2 (en) 2019-07-16 2021-07-13 Sharp Kabushiki Kaisha Ranging sensor

Similar Documents

Publication Publication Date Title
CN109642952B (zh) 混合扫描lidar***
US8384914B2 (en) Device for optically scanning and measuring an environment
US7715998B2 (en) Surveying instrument
JP2019203822A (ja) 測量装置
US11644575B2 (en) Surveying device and surveying method
US20130107037A1 (en) Image Measuring System
JP2014020978A (ja) 照射装置、距離測定装置、照射装置のキャリブレーションプログラム及びキャリブレーション方法
JP2022153541A (ja) 測量装置、測量方法およびプログラム
JP2006276012A (ja) 物体の六つの自由度を求めるための測定システム
EP3258290B1 (en) Survey system
JP7313955B2 (ja) 測量装置、測量方法および測量用プログラム
JP2018132328A (ja) 測量機
US20170252918A1 (en) Measurement and installation data indicating apparatus and measurement and installation data indicating method
US11598854B2 (en) Surveying system
US11500096B2 (en) Surveying instrument
US11913786B2 (en) Surveying instrument
JP2017173258A (ja) 距離測定装置、距離測定方法及びプログラム
JP6186863B2 (ja) 測距装置及びプログラム
JP7183017B2 (ja) 測量装置及び写真測量方法
JP2010048629A (ja) 3次元形状測定装置および3次元形状測定方法
JP7336927B2 (ja) 3次元測量装置、3次元測量方法および3次元測量プログラム
JP2014119366A (ja) 空間座標測定装置および空間座標測定方法
JP6749191B2 (ja) スキャナ装置および測量装置
US20220099807A1 (en) Tracking Method, Laser Scanner, And Tracking Program
US20210389430A1 (en) Scanning surveying system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20200804