JP2017160286A - Method for producing flame retardant composite resin material and flame retardant composite resin material - Google Patents

Method for producing flame retardant composite resin material and flame retardant composite resin material Download PDF

Info

Publication number
JP2017160286A
JP2017160286A JP2016043238A JP2016043238A JP2017160286A JP 2017160286 A JP2017160286 A JP 2017160286A JP 2016043238 A JP2016043238 A JP 2016043238A JP 2016043238 A JP2016043238 A JP 2016043238A JP 2017160286 A JP2017160286 A JP 2017160286A
Authority
JP
Japan
Prior art keywords
aluminum hydroxide
retardant composite
resin material
flame
composite resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016043238A
Other languages
Japanese (ja)
Other versions
JP6595374B2 (en
Inventor
高畑 敏夫
Toshio Takahata
敏夫 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOIDE KASEI KK
Toide O-Fit Co Ltd
Original Assignee
TOIDE KASEI KK
Toide O-Fit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOIDE KASEI KK, Toide O-Fit Co Ltd filed Critical TOIDE KASEI KK
Priority to JP2016043238A priority Critical patent/JP6595374B2/en
Publication of JP2017160286A publication Critical patent/JP2017160286A/en
Application granted granted Critical
Publication of JP6595374B2 publication Critical patent/JP6595374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a flame retardant composite material which can be produced by using an inexpensive and general material with a simple process, has high flame retardancy, and has good workability, and to provide a flame retardant composite material.SOLUTION: A method for producing a flame retardant composite material includes melting and kneading aluminum hydroxide and a synthetic resin raw material that is an olefin resin and has a low melting point at 120-180°C. The aluminum hydroxide is mixed in a ratio of 70-90 mass% based on the total amount. The method may include uniformly dispersing aluminum hydroxide into the synthetic resin raw material at the time of melting and kneading, adding liquid paraffin and a compatibilizer to the synthetic resin raw material or without adding the compatibilizer and a surface active agent to the synthetic resin raw material, and thereby performing melting and kneading.SELECTED DRAWING: Figure 1

Description

この発明は、合成樹脂と水酸化アルミニウムを混合して成る難燃性複合樹脂材料の製造方法と難燃性複合樹脂材料に関する。   The present invention relates to a method for producing a flame retardant composite resin material obtained by mixing a synthetic resin and aluminum hydroxide, and a flame retardant composite resin material.

従来、電気コードの被覆材等、難燃性を必要とする樹脂材料は、水酸化アルミニウム等の金属水和物を多量に配合した難燃性複合樹脂材料が用いられている。例えば、特許文献1に開示されている難燃性樹脂組成物は、ポリオレフィン系樹脂と、該ポリオレフィン系樹脂100質量部に対して、有機過酸化物0.01〜0.6質量部と、金属水和物100質量部に対してシランカップリング剤0.5〜8.0質量部の割合で表面処理した表面処理金属水和物40質量部以上を含む金属水和物120〜300質量部とを、前記有機過酸化物の分解温度以上で溶融混合して調整したシランマスターバッチを調整して、シラノール縮合触媒と混合し架橋させて製造するものである。   Conventionally, as a resin material that requires flame retardancy, such as a coating material for an electric cord, a flame retardant composite resin material containing a large amount of a metal hydrate such as aluminum hydroxide has been used. For example, the flame retardant resin composition disclosed in Patent Document 1 includes a polyolefin resin, 0.01 to 0.6 parts by mass of an organic peroxide with respect to 100 parts by mass of the polyolefin resin, a metal 120 to 300 parts by mass of a metal hydrate containing 40 parts by mass or more of a surface-treated metal hydrate that has been surface-treated at a ratio of 0.5 to 8.0 parts by mass of a silane coupling agent with respect to 100 parts by mass of the hydrate; Is prepared by preparing a silane master batch prepared by melting and mixing at a decomposition temperature of the organic peroxide or higher, mixing with a silanol condensation catalyst, and crosslinking.

また、特許文献2に開示されているポリプロピレン系樹脂自消性組成物は、所定の条件を満たすプロピレン―エチレン系共重合体成分99〜70重量%とプロセスオイル成分1〜30重量%の混合成分100重量部と、金属水和物成分50〜300重量部を含有するものである。   Moreover, the polypropylene resin self-extinguishing composition disclosed in Patent Document 2 is a mixed component of 99 to 70% by weight of a propylene-ethylene copolymer component and 1 to 30% by weight of a process oil component satisfying predetermined conditions. It contains 100 parts by weight and 50 to 300 parts by weight of a metal hydrate component.

特開2013−227559号公報JP 2013-227559 A 特開2009−161644号公報JP 2009-161644 A

上記背景技術の場合、特許文献1の難燃性樹脂組成物は、溶融混合する金属水和物にシランカップリング剤で表面処理を行う必要があり、工程が多いものである。また、特許文献2のポリプロピレン系樹脂自消性組成物は、プロピレン―エチレン系共重合体成分の条件が特殊なものであり、一般的では無く安価に安定に入手できないものである。   In the case of the above-described background art, the flame retardant resin composition of Patent Document 1 needs to be surface-treated with a silane coupling agent on a metal hydrate to be melt-mixed, and has many steps. Moreover, the polypropylene resin self-extinguishing composition of Patent Document 2 has special conditions for the propylene-ethylene copolymer component, and is not general and cannot be stably obtained at low cost.

この発明は、上記背景技術の問題点に鑑みてなされたものであり、安価で一般的な材料を用いて簡単な工程で製造することができ、高い難燃性を有し、加工性が良好な難燃性複合樹脂材料の製造方法と難燃性複合樹脂材料を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the background art, and can be manufactured by a simple process using an inexpensive and general material, has high flame retardancy, and has good workability. An object of the present invention is to provide a method for producing a flame-retardant composite resin material and a flame-retardant composite resin material.

本発明は、水酸化アルミニウムと、オレフィン系樹脂であり融点が低い合成樹脂原料を、120℃〜180℃で溶融混錬し、前記合成樹脂原料中に前記水酸化アルミニウムを均一に分散させて難燃性複合樹脂材料を形成する難燃性複合樹脂材料の製造方法である。   In the present invention, it is difficult to melt and knead aluminum hydroxide and a synthetic resin raw material which is an olefin resin and has a low melting point at 120 ° C. to 180 ° C., and uniformly disperse the aluminum hydroxide in the synthetic resin raw material. It is a manufacturing method of the flame-retardant composite resin material which forms a flammable composite resin material.

また、前記水酸化アルミニウムと、オレフィン系樹脂であり融点が低い合成樹脂原料に、流動パラフィンを添加して、120℃〜180℃で溶融混錬し、前記合成樹脂原料中に前記水酸化アルミニウムを均一に分散させて難燃性複合樹脂材料を形成するものである。   Further, liquid paraffin is added to the aluminum hydroxide and a synthetic resin raw material having a low melting point, which is an olefin resin, and melt kneaded at 120 ° C. to 180 ° C., and the aluminum hydroxide is added to the synthetic resin raw material. A flame retardant composite resin material is formed by uniformly dispersing.

また、前記水酸化アルミニウムと、オレフィン系樹脂であり融点が低い合成樹脂原料に、相溶化剤を添加して、120℃〜180℃で溶融混錬し、前記合成樹脂原料中に前記水酸化アルミニウムを均一に分散させて難燃性複合樹脂材料を形成するものである。または、前記合成樹脂原料中に相溶化剤及び流動パラフィン等の界面活性剤を添加せずに溶融混錬するものでも良い。   Further, a compatibilizing agent is added to the aluminum hydroxide and a synthetic resin raw material which is an olefin resin and has a low melting point, and is melt-kneaded at 120 ° C. to 180 ° C., and the aluminum hydroxide is added to the synthetic resin raw material. Are uniformly dispersed to form a flame-retardant composite resin material. Alternatively, melt kneading may be performed without adding a compatibilizing agent and a surfactant such as liquid paraffin to the synthetic resin raw material.

また、前記水酸化アルミニウムは、全体の70〜90質量%の割合で混合するものである。前記水酸化アルミニウムは、アルミスラッジである。   Moreover, the said aluminum hydroxide mixes in the ratio of 70-90 mass% of the whole. The aluminum hydroxide is aluminum sludge.

また本発明は、水酸化アルミニウムと、融点が120℃〜180℃のオレフィン系樹脂が均一に混合されて成る難燃性複合樹脂材料である。   Further, the present invention is a flame retardant composite resin material obtained by uniformly mixing aluminum hydroxide and an olefin resin having a melting point of 120 ° C to 180 ° C.

また、前記難燃性複合樹脂材料には、流動パラフィンと相溶化剤が添加されている。前記水酸化アルミニウムはアルミスラッジであり、全体の70〜90質量%の割合で混合されている。   Further, liquid paraffin and a compatibilizing agent are added to the flame retardant composite resin material. The aluminum hydroxide is aluminum sludge and is mixed in a proportion of 70 to 90% by mass of the whole.

本発明の難燃性複合樹脂材料の製造方法によれば、一般的な材料で簡単な工程により、高い難燃性を有し加工性が良好な難燃性複合樹脂材料を製造することができる。水酸化アルミニウムを合成樹脂材料に均一に混ぜる際に、混錬する温度が低いため水酸化アルミニウムが酸化アルミニウムに変性することがなく、水酸化アルミニウムによる高い難燃性を維持することができる。水酸化アルミニウムは、産業廃棄物であるアルミスラッジを使用することができ、アルミスラッジを有効に利用することができる。   According to the method for producing a flame-retardant composite resin material of the present invention, a flame-retardant composite resin material having high flame retardancy and good workability can be produced by a simple process using a general material. . When the aluminum hydroxide is uniformly mixed with the synthetic resin material, the kneading temperature is low, so that the aluminum hydroxide is not modified into aluminum oxide, and high flame retardancy due to the aluminum hydroxide can be maintained. Aluminum hydroxide can use aluminum sludge which is industrial waste, and aluminum sludge can be used effectively.

また本発明の難燃性複合樹脂材料は、安価で加工性が高いポレオレフィン系の合成樹脂に水酸化アルミニウムが均一に混ぜられており、高い難燃性を有しなおかつ加工が容易であり、難燃性が高く安価な樹脂成型品を容易に製造することができる。   In addition, the flame-retardant composite resin material of the present invention is a low-cost and highly processable polyolefin-based synthetic resin in which aluminum hydroxide is uniformly mixed, has high flame retardancy and is easy to process, An inexpensive resin molded product having high flame retardancy can be easily produced.

この発明の一実施形態の難燃性複合樹脂材料の製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the flame-retardant composite resin material of one Embodiment of this invention.

以下、この発明の実施形態について図面に基づいて説明する。図1はこの発明の一実施形態を示すもので、この実施形態の難燃性複合樹脂材料10は、水酸化アルミニウム12の粉末と合成樹脂材料14を混合し、混錬して製造する。水酸化アルミニウム12は、合成樹脂材料14中に均一に分散されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention. A flame-retardant composite resin material 10 of this embodiment is produced by mixing and kneading a powder of aluminum hydroxide 12 and a synthetic resin material 14. The aluminum hydroxide 12 is uniformly dispersed in the synthetic resin material 14.

なお、水酸化アルミニウム12は、比重が2.42の無機化合物で、酸やアルカリには溶けるが水にはほとんど溶けない。水酸化アルミニウムを加熱すると、ほぼ200℃以上で、酸化アルミニウム(Al)と水(HO)に変性する。ここで発生した水が気化する際の吸熱によって、素材を燃えにくくして難燃効果を付与するものである。例えば、建築用壁紙材等では防火性の高い不燃紙の製造に使用されている。 Aluminum hydroxide 12 is an inorganic compound having a specific gravity of 2.42, and is soluble in acids and alkalis but hardly in water. When aluminum hydroxide is heated, it is denatured into aluminum oxide (Al 2 O 3 ) and water (H 2 O) at about 200 ° C. or higher. The heat generated when the generated water vaporizes makes the material difficult to burn and imparts a flame retardant effect. For example, it is used in the manufacture of non-combustible paper with high fire resistance in architectural wallpaper materials and the like.

水酸化アルミニウム12は、サッシ加工時等に排出される産業廃棄物であるアルミスラッジを使用するとよい。アルミスラッジにはいくつかのタイプがあり、ここでは水酸化アルミニウムの含有率が高いタイプを使用する。これは、水分量が6質量%前後の粉末状で、主たる成分はギブサイト(水酸化アルミニウム90〜96質量%)で、走査型電子顕微鏡で観察すると形状は粒状で、樹脂類に混錬しやすい形状である。このアルミスラッジは、アルミニウム製品の表面処理を行う際にできるもので、処理液中に沈殿しているものを、乾燥処理して粉末状にしたものである。成分の殆どが水酸化アルミニウムで安定しているため確実に難燃性を付与することができる。   As the aluminum hydroxide 12, it is preferable to use aluminum sludge that is industrial waste discharged during sash processing or the like. There are several types of aluminum sludge. Here, a type having a high aluminum hydroxide content is used. This is a powder with a moisture content of around 6% by mass, the main component is gibbsite (aluminum hydroxide 90-96% by mass), and when observed with a scanning electron microscope, the shape is granular and it is easy to knead into resins. Shape. This aluminum sludge can be produced when the surface treatment of an aluminum product is performed, and the one precipitated in the treatment liquid is dried and powdered. Since most of the components are stable with aluminum hydroxide, flame retardancy can be reliably imparted.

合成樹脂材料14は、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸エチル共重合体(EEA)等の結晶度が高いポリオレフィン系の樹脂である。この中で融点が、120℃〜180℃、好ましくは160℃以下、より好ましくは120〜150℃の、比較的低融点の種類を使用する。これら熱可塑性樹脂は、二種以上混合して使用してもよい。特にポリプロピレン(PP)は安価で多くの製品に利用されている一般的な原料であるが、難燃性については機能がないが、この実施形態の方法により水酸化アルミニウム12を混合することにより、難燃性を付与することができる。水酸化アルミニウム12は、ギブサイトのアルミスラッジであり、全体の60〜90質量%、好ましくは70〜90質量%の割合で混合されている。   The synthetic resin material 14 is made of crystals such as low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), ethylene-vinyl acetate copolymer (EVA), and ethylene-ethyl acrylate copolymer (EEA). Polyolefin resin with high degree. Among these, a relatively low melting point type having a melting point of 120 ° C. to 180 ° C., preferably 160 ° C. or less, more preferably 120 to 150 ° C. is used. These thermoplastic resins may be used as a mixture of two or more. In particular, polypropylene (PP) is a general raw material that is inexpensive and used in many products, but has no function for flame retardancy, but by mixing aluminum hydroxide 12 by the method of this embodiment, Flame retardancy can be imparted. The aluminum hydroxide 12 is a gibbsite aluminum sludge and is mixed in a proportion of 60 to 90% by mass, preferably 70 to 90% by mass.

水酸化アルミニウム12と合成樹脂材料14を混合する際に、流動パラフィンを添加してもよい。流動パラフィンは界面活性剤として機能し、水酸化アルミニウム12を合成樹脂材料14中に均一に分散させる。流動パラフィンは、原油から精製された鉱物油の、炭素原子の数が20以上のアルカンであるパラフィンのうち、オレフィン系炭化水素に富み常温では液体の油である。流動パラフィン以外に用いることができる鉱物油としては、潤滑油や作動油等として用いられる油でも良い。流動パラフィンは、動粘度が40℃のとき、10mm/s〜100mm/s、好ましくは20mm/s〜40mm/s、100℃のとき、2.5mm/s〜11.5mm/s、好ましくは4.0mm/s〜7.0mm/sである。 When mixing the aluminum hydroxide 12 and the synthetic resin material 14, liquid paraffin may be added. The liquid paraffin functions as a surfactant and uniformly disperses the aluminum hydroxide 12 in the synthetic resin material 14. Liquid paraffin is a mineral oil refined from crude oil, which is an alkane having 20 or more carbon atoms, and is rich in olefinic hydrocarbons and liquid at room temperature. The mineral oil that can be used in addition to liquid paraffin may be oil used as a lubricating oil or hydraulic oil. Liquid paraffin, when the kinematic viscosity is 40 ℃, 10mm 2 / s~100mm 2 / s, preferably when the 20mm 2 / s~40mm 2 / s, 100 ℃, 2.5mm 2 /s~11.5mm 2 / s, preferably 4.0mm 2 /s~7.0mm 2 / s.

水酸化アルミニウム12と合成樹脂材料14を混合する際に、相溶化剤を添加してもよい。相溶化剤は、溶融状態における異種の樹脂同士の結合を助けたり、加工性の改善や、ガラス繊維、エラストマー、難燃剤を均一に分散させたりするために使用される機能性樹脂である。例えば、無水マレイン酸が用いられ、具体的には、無水マレイン酸グラフト化ポリオレフィン樹脂であるヂュポン株式会社製FUSABONNDO(登録商標)P613RESIN等を用いることができる。   When mixing the aluminum hydroxide 12 and the synthetic resin material 14, a compatibilizing agent may be added. The compatibilizing agent is a functional resin used to help bond different kinds of resins in a molten state, improve processability, and uniformly disperse glass fibers, elastomers, and flame retardants. For example, maleic anhydride is used, and specifically, FUSABONDO (registered trademark) P613 RESIN manufactured by DuPont Co., Ltd., which is a maleic anhydride grafted polyolefin resin, can be used.

次に、この実施形態の難燃性複合樹脂材料10の製造方法について、図1に基づいて説明する。まず、所定の質量の水酸化アルミニウム12と合成樹脂材料14をミキサー16に投入する。この時、流動パラフィンと相溶化剤を添加してもよい。水酸化アルミニウム12は、ギブサイトを全体の60〜90質量%、好ましくは70〜90質量%の割合で混合し、添加剤は2質量%以下であり、その他は合成樹脂材料14である。ミキサー16により混合した混合物18を、難燃性複合樹脂材料10を混錬するための2軸押出機20に投入し、加圧加熱下で混錬工程を行い、難燃性複合樹脂材料10を作る。2軸押出機20の温度は、水酸化アルミニウムの変性温度以下であり、120℃〜180℃、好ましくは160℃以下、より好ましくは120℃〜150℃である。   Next, the manufacturing method of the flame-retardant composite resin material 10 of this embodiment is demonstrated based on FIG. First, a predetermined mass of aluminum hydroxide 12 and synthetic resin material 14 are put into a mixer 16. At this time, liquid paraffin and a compatibilizer may be added. In the aluminum hydroxide 12, gibbsite is mixed in a proportion of 60 to 90% by mass, preferably 70 to 90% by mass, the additive is 2% by mass or less, and the rest is the synthetic resin material 14. The mixture 18 mixed by the mixer 16 is put into a twin-screw extruder 20 for kneading the flame retardant composite resin material 10, and a kneading process is performed under pressure and heating, whereby the flame retardant composite resin material 10 is obtained. create. The temperature of the twin screw extruder 20 is not higher than the modification temperature of aluminum hydroxide, and is 120 ° C. to 180 ° C., preferably 160 ° C. or lower, more preferably 120 ° C. to 150 ° C.

混錬された難燃性複合樹脂材料10は、2軸押出機20の押出口からストランド状に押し出される。押し出された難燃性複合樹脂材料10は、押出口に取り付けられたペレタイズシステムによりペレット化工程が行われる。ペレット状に形成された難燃性複合樹脂材料10は、生活用品やその他の様々な製品の樹脂原料となり、再溶融して成形される。難燃性複合樹脂材料10は、高い難燃性と高い加工性を有するため、難燃性が必要な様々な用途の製品に成形される。   The kneaded flame retardant composite resin material 10 is extruded in a strand form from the extrusion port of the twin-screw extruder 20. The extruded flame retardant composite resin material 10 is subjected to a pelletizing process by a pelletizing system attached to an extrusion port. The flame retardant composite resin material 10 formed into a pellet is used as a resin raw material for household goods and other various products, and is remelted and molded. Since the flame-retardant composite resin material 10 has high flame retardancy and high processability, it is molded into products for various uses that require flame retardancy.

この実施形態の難燃性複合樹脂材料10及びその製造方法によれば、水酸化アルミニウム12の粒子が合成樹脂材料14に均一かつ緻密に分散し、水酸化アルミニウム12による高い難燃性を有する難燃性複合樹脂材料10を形成することができる。難燃性複合樹脂材料10は安価で加工性が高く、高い難燃性を必要とするいろいろな製品の原料となる。水酸化アルミニウム12は、産業廃棄物であるアルミスラッジを使用することができ、アルミスラッジを有効に利用することができる。   According to the flame retardant composite resin material 10 and the manufacturing method thereof of this embodiment, the particles of aluminum hydroxide 12 are uniformly and densely dispersed in the synthetic resin material 14, and the aluminum hydroxide 12 has high flame retardancy. The flammable composite resin material 10 can be formed. The flame retardant composite resin material 10 is inexpensive, has high processability, and is a raw material for various products that require high flame resistance. As the aluminum hydroxide 12, aluminum sludge that is industrial waste can be used, and aluminum sludge can be effectively used.

この製造方法は、低融点の合成樹脂材料14を使用して混錬する温度を低く設定するため、製造工程での水酸化アルミニウム12の変性を抑えることができ、高い難燃性を持たせることができる。またこの製造方法は工程が短く、製造装置がシンプルであり、製造効率が良く、装置の簡易化や混錬エネルギーの削減を図ることができ、製造コストを抑えることができる。   In this manufacturing method, since the kneading temperature is set low by using the low melting point synthetic resin material 14, the modification of the aluminum hydroxide 12 in the manufacturing process can be suppressed, and high flame retardancy should be provided. Can do. Further, this manufacturing method has a short process, a simple manufacturing apparatus, high manufacturing efficiency, simplification of the apparatus and reduction of kneading energy, and manufacturing cost can be suppressed.

また、流動パラフィンを入れた場合、流動パラフィンは、混合物の流動性を高める働きをするため混錬性が格段に向上し、溶融した合成樹脂材料14の中に水酸化アルミニウム12の粒子が塊を作ることがなく、均一に分散させることができる。しかも、混錬工程の抵抗を少なくすることができ、2軸押出機20の負担も軽減される。また、流動パラフィンの添加割合により難燃性複合樹脂材料10の流動性を調節することができ、ペレット化工程での押出状態を、装置や環境その他の状況に合わせて任意に調節することができる。なお、流動パラフィンは、高温安定性が高いため、混錬条件の設定がしやすいものである。   Further, when liquid paraffin is added, the liquid paraffin functions to enhance the fluidity of the mixture, so that the kneadability is remarkably improved, and the particles of the aluminum hydroxide 12 are agglomerated in the molten synthetic resin material 14. It can be dispersed uniformly without making. In addition, the resistance of the kneading process can be reduced, and the burden on the twin-screw extruder 20 can be reduced. Moreover, the fluidity | liquidity of the flame-retardant composite resin material 10 can be adjusted with the addition ratio of a liquid paraffin, and the extrusion state in a pelletization process can be adjusted arbitrarily according to an apparatus, an environment, or other conditions. . Since liquid paraffin has high temperature stability, kneading conditions can be easily set.

また、相溶化剤を入れた場合、水酸化アルミニウム12と合成樹脂材料14との界面接着性が改善されるため、成形品の機械的強度を大きく向上させることができ、水酸化アルミニウム12の混入量を増加させても高性能を維持することができる。   Further, when a compatibilizing agent is added, since the interfacial adhesion between the aluminum hydroxide 12 and the synthetic resin material 14 is improved, the mechanical strength of the molded product can be greatly improved, and the aluminum hydroxide 12 is mixed. High performance can be maintained even if the amount is increased.

なお、この発明の難燃性複合樹脂材料の製造方法と難燃性複合樹脂材料によれば、上記実施の形態に限定されるものではなく、混錬工程で用いる混錬装置は、上記の2軸押出機以外でもよく、製造する難燃性複合樹脂材料の材料や量、用途等により適宜選択される。合成樹脂材料の種類は上記以外でもよく、低温で溶融するものであれば適宜変更可能である。   In addition, according to the manufacturing method of the flame-retardant composite resin material and the flame-retardant composite resin material of the present invention, the kneading apparatus used in the kneading process is not limited to the above-described embodiment. It may be other than a screw extruder, and is appropriately selected depending on the material, amount, use and the like of the flame-retardant composite resin material to be produced. The kind of the synthetic resin material may be other than the above, and can be appropriately changed as long as it melts at a low temperature.

この発明の実施例について、水酸化アルミニウム12の難燃性の試験を行った。試験方法は、UL94試験である。UL94試験には、試験片を水平に保持して接炎するHB試験と、垂直に保持して接炎するV試験がある。等級的には、V試験の方が厳しいものである。試料は、水酸化アルミニウム12としてギブサイトのアルミスラッジを使用し、合成樹脂材料14はポリエチレンを使用し、混合率はアルミスラッジ20質量%(以下、単に%と示す)である。   About the Example of this invention, the flame retardance test of the aluminum hydroxide 12 was done. The test method is the UL94 test. The UL94 test includes an HB test in which a test piece is held horizontally to make a flame contact and a V test in which a test piece is held vertically to make a flame contact. In terms of grade, the V test is more severe. The sample uses gibbsite aluminum sludge as the aluminum hydroxide 12, the synthetic resin material 14 uses polyethylene, and the mixing ratio is 20% by mass of aluminum sludge (hereinafter simply referred to as%).

HV試験の結果、接炎直後は幾分有炎燃焼している様子が観察できたが、すぐに自消する結果となった。燃焼速度等を評価するための基準である第一標線に達する前に自消したため、測定不能(難燃・不燃である)という結果となった。一方、より厳しいV試験の結果は、自消するまでの時間は平均で約300秒となり、V試験は一回目の接炎後に30秒以内に自消する必要があり、基準を満たさない結果となった。しかし、自消した際には試験片の殆どの部分が燃え残り、エッジ部のみが燃焼した。このことから、アルミスラッジの混合によって十分な難燃性を有する難燃性複合樹脂材料10の作製が可能である。   As a result of the HV test, it was observed that the flame was burning slightly after the flame contact, but the result immediately disappeared. Since it self-extinguished before reaching the first mark, which is the standard for evaluating the burning rate, etc., the result was that measurement was impossible (flame retardant / non-flammable). On the other hand, the result of the stricter V test is that the average time to self-extinguish is about 300 seconds, and the V test needs to self-extinguish within 30 seconds after the first flame contact, became. However, when self-extinguishing, most of the test piece remained unburned and only the edge portion burned. From this, the flame-retardant composite resin material 10 having sufficient flame retardancy can be produced by mixing aluminum sludge.

次に、この発明の実施例について、ペレット作製や射出成形時に受ける熱履歴が、難燃性複合樹脂材料10の難燃性・不燃性に与える影響について試験を行った。試料の作製方法は、水酸化アルミニウム12と合成樹脂材料14を混合して圧粉成型を行う。ここで圧粉成型について説明する。圧粉金型は、パンチ及びコンテナ内径は30mmであり、片側からプレス機によって圧縮力を加える。コンテナの外周にバンドヒーターを取り付け、コンテナの下部のプレートにカートリッジヒーターを取り付け、圧粉時に加熱することが可能である。圧粉成型では、まずコンテナを設定温度まで加熱し、ミキサーによって混合した水酸化アルミニウム12と合成樹脂材料14の粉末をコンテナに投入し、常圧で3分間設定温度に加熱する。その後、20MPaまで加圧し、そのまま3分間保持する。加圧したまま、冷却し、除荷後に取り出す。このように圧粉成型した試料を用いて難燃性を簡易的に評価した。   Next, the Example of this invention was tested about the influence which the thermal history received at the time of pellet preparation or injection molding has on the flame retardance and nonflammability of the flame retardant composite resin material 10. As a method for preparing the sample, aluminum hydroxide 12 and the synthetic resin material 14 are mixed and compacted. Here, the compacting will be described. The dust mold has a punch and container inner diameter of 30 mm, and applies a compression force from one side by a press. A band heater can be attached to the outer periphery of the container, a cartridge heater can be attached to the lower plate of the container, and heating can be performed during compaction. In compacting, the container is first heated to a set temperature, and the powder of aluminum hydroxide 12 and synthetic resin material 14 mixed by a mixer is put into the container and heated to the set temperature at normal pressure for 3 minutes. Thereafter, the pressure is increased to 20 MPa and is maintained for 3 minutes. Cool with pressure and take out after unloading. The flame retardancy was simply evaluated using the compacted sample.

試料の材料は、水酸化アルミニウム12としてアルミスラッジを使用し、合成樹脂材料14はポリエチレンを使用し、混合率はアルミスラッジ20%である。比較のため、不燃材として一般に使用されている水酸化マグネシウムをポリエチレンに20%混合した試料を作製した。またポリエチレン100%の試料も作製した。各試料について、成型する温度は常温(20℃)と120℃の2種類で行った。   The sample material is aluminum sludge as the aluminum hydroxide 12, the synthetic resin material 14 is polyethylene, and the mixing ratio is 20% of aluminum sludge. For comparison, a sample was prepared by mixing 20% magnesium hydroxide, which is generally used as a nonflammable material, with polyethylene. A sample of 100% polyethylene was also produced. About each sample, the temperature which shape | molds was performed by normal temperature (20 degreeC) and 120 degreeC.

試験方法は、金網上に圧粉成型した試料を置き、その下300mmのところにUL94試験と同様に脱脂綿を設置し、燃焼材の滴化の有無の評価を行う。最初に試料片端部に斜め上方からブンゼンバーナーで10分間接炎し、接炎後の試料の燃焼時間を計測する。自消した場合、再び接炎し、これを最大4回まで繰り返した。ただし、接炎時間は、接炎回数の増加に伴い10秒ずつ増加させることとした。各試料について燃焼した様子を観察し、また接炎回数、最大燃焼時間、脱脂綿の燃焼の有無を測定し、常温成型の試料の結果を表1、120℃成型の試料の結果を表2に記す。   In the test method, a compacted sample is placed on a wire mesh, and an absorbent cotton is installed at a lower portion of 300 mm in the same manner as in the UL94 test to evaluate whether or not the combustion material is dripped. First, an indirect flame is fired at one end of the sample from above obliquely with a Bunsen burner, and the burning time of the sample after contact is measured. When self-extinguishing, the flame was contacted again and this was repeated up to 4 times. However, the flame contact time was increased by 10 seconds as the number of flame contacts increased. Observe the state of burning for each sample, measure the number of flame contact, the maximum burning time, the presence or absence of burning of absorbent cotton, Table 1 shows the results of the room temperature molded sample, and Table 2 shows the results of the 120 ° C. molded sample .

Figure 2017160286
Figure 2017160286

Figure 2017160286
燃焼した様子は、いずれの試料も一度の接炎ではすぐに自消した。接炎回数を増加させることで燃焼し始め、一度燃焼を始めるとおよそ全てが燃焼した。特にポリエチレン100%で120℃成型は、大きな炎を出した有炎燃焼となり、燃焼後に燃えカスが残らなかった。その他の試料では、有炎燃焼はほぼ見られなかった。燃えカスに関しては、アルミスラッジ20%試料、水酸化マグネシウム20%試料の両方で、常温成型と120℃成型のいずれも多く残ったが、明瞭な難燃性は見られなかった。接炎回数と最大燃焼時間の関係については、明らかな傾向が見られなかった。一方、最大燃焼時間のみを見ると、常温成型では差は見られないものの、120℃成型では、ポリエチレン100%と比較して、アルミスラッジ20%と水酸化マグネシウム20%で2倍以上に長くなっており、やや難燃の傾向が表れた。常温成型で難燃の傾向に差が表れなかった理由は、密度の低さにあると考えられる。成型体内に空隙が存在するため、酸素が供給されアルミスラッジや水酸化マグネシウムを混合しても燃焼が継続したと考えられる。一方、120℃成型の場合、成型体内部がより高密度となったため、一部難燃性の高い傾向が表れたといえる。成型体の密度や混合率を高めることで、さらに難燃性の高い材料となると思われる。
Figure 2017160286
The state of burning was extinguished immediately after each sample was in contact with flame. It started to burn by increasing the number of flame contact, and once it started burning, almost everything burned. In particular, molding at 120 ° C. with 100% polyethylene resulted in flammable combustion with a large flame, and no burning residue remained after combustion. In other samples, almost no flammable combustion was observed. As for the burnt residue, both the 20% aluminum sludge sample and the 20% magnesium hydroxide sample both remained at room temperature and 120 ° C., but no clear flame retardancy was observed. There was no clear trend regarding the relationship between the number of flame contact and the maximum burning time. On the other hand, looking only at the maximum burning time, there is no difference in normal temperature molding, but in 120 ° C molding, 20% aluminum sludge and 20% magnesium hydroxide are more than twice as long as 100% polyethylene. A slight flame retardant tendency appeared. The reason why there was no difference in the flame retardant tendency at room temperature molding is thought to be the low density. Since there are voids in the molded body, it is considered that combustion continued even when oxygen was supplied and aluminum sludge or magnesium hydroxide was mixed. On the other hand, in the case of molding at 120 ° C., the inside of the molded body has a higher density, and thus it can be said that a tendency toward high flame retardancy appears in part. It seems that by increasing the density and mixing ratio of the molded body, it becomes a material having higher flame retardancy.

次に、この発明の実施例について、水酸化アルミニウム12の混合率が、難燃性複合樹脂材料10の強度と流動性に与える影響について試験を行った。試料の材料は、水酸化アルミニウム12としてギブサイトのアルミスラッジを使用し、アルミスラッジの含水率1%程度まで乾燥させて使用した。合成樹脂材料14は、超低融点で高流動樹脂のポリプロピレンである、WSX03(日本ポリプロ社製)を用いた。混合率は、アルミスラッジ30%、40%、50%、60%、70%の5種類を行い、アルミスラッジ0%の無添加のWSX03(日本ポリプロ社製)と比較した。   Next, the Example of this invention was tested about the influence which the mixing rate of the aluminum hydroxide 12 has on the intensity | strength and fluidity | liquidity of the flame-retardant composite resin material 10. FIG. The sample material used was Gibbsite aluminum sludge as aluminum hydroxide 12, and the aluminum sludge was used after being dried to a moisture content of about 1%. As the synthetic resin material 14, WSX03 (manufactured by Nippon Polypro Co., Ltd.), which is a polypropylene having a very low melting point and a high fluidity resin, was used. The mixing ratio was 5 types of aluminum sludge of 30%, 40%, 50%, 60%, and 70%, and compared with WSX03 (Nihon Polypro Co., Ltd.) with no aluminum sludge added.

試験した項目は、シャルピー衝撃値、引張応力、引張弾性率、曲げ応力、曲げ弾性率、MFRである。試験結果を、表3に示す。   The tested items are Charpy impact value, tensile stress, tensile elastic modulus, bending stress, bending elastic modulus, and MFR. The test results are shown in Table 3.

Figure 2017160286
以上の結果より、アルミスラッジの混合率が高くなると、強度が低下する可能性があり、特にシャルピー衝撃値が大幅に低下していた。流動性を示すMFRは、ポリプロピレンのJIS温度でもある230℃で行った結果、アルミスラッジが熱反応を生じ、正確に測定することができなかった。また、この配合で難燃性を示したのは70%の試料であり、アルミスラッジを70%以上混錬することで難燃性を持つ難燃性複合樹脂材料10ができることが分かった。
Figure 2017160286
From the above results, when the mixing ratio of the aluminum sludge increases, the strength may decrease, and in particular, the Charpy impact value significantly decreases. MFR showing fluidity was performed at 230 ° C., which is also the JIS temperature of polypropylene. As a result, aluminum sludge caused a thermal reaction and could not be measured accurately. In addition, it was found that 70% of the samples showed flame retardancy with this formulation, and it was found that the flame retardant composite resin material 10 having flame retardancy can be produced by kneading 70% or more of aluminum sludge.

次に、この発明の実施例について、添加した相溶化剤が、難燃性複合樹脂材料10の強度と流動性、難燃性に与える影響について試験を行った。試料の材料は、水酸化アルミニウム12としてギブサイトのアルミスラッジを使用し、合成樹脂材料14はポリプロピレンであるWSX03(日本ポリプロ社製)を用いた。混合率はアルミスラッジ70%である。添加する相溶化剤は2種類が使用され、相溶化剤AはフサボンドP613(デュポン社製カップリング剤、融点162℃、酸変性率中程度、難燃性向上)であり、相溶化剤BはフサボンドN493(デュポン社製改質剤、融点50℃、酸変性率中程度、強度強化)であり、混錬率はいずれも3%である。なお、それぞれに流動パラフィン0.3%を添加した。比較のため、相溶化剤と流動パラフィンを添加しない試料を用意した。また、ポリプロピレンの他にポリエチレンであるHJ362N(日本ポリエチレン社製)にアルミスラッジ70%を混錬したものを用意した。これも相溶化剤と流動パラフィンを添加しないものである。   Next, about the Example of this invention, it tested about the influence which the added compatibilizer has on the intensity | strength of the flame-retardant composite resin material 10, fluidity | liquidity, and a flame retardance. The sample material used was Gibbsite aluminum sludge as the aluminum hydroxide 12, and the synthetic resin material 14 was polypropylene WSX03 (manufactured by Nippon Polypro). The mixing rate is 70% aluminum sludge. Two types of compatibilizers are used, Compatibilizer A is Fusabond P613 (DuPont coupling agent, melting point 162 ° C., medium acid modification rate, improved flame retardancy), Compatibilizer B is Husabond N493 (DuPont modifier, melting point 50 ° C., medium acid modification rate, strength enhancement), and the kneading rate is 3%. In addition, 0.3% of liquid paraffin was added to each. For comparison, a sample to which no compatibilizer and liquid paraffin were added was prepared. In addition to polypropylene, HJ362N (manufactured by Nippon Polyethylene Co., Ltd.), which is polyethylene, was prepared by kneading 70% aluminum sludge. This also does not add a compatibilizer and liquid paraffin.

試験した項目は、シャルピー衝撃値、引張応力、引張弾性率、曲げ応力、曲げ弾性率、MFR、密度、UL94HB、UL94Vである。試験結果を、表4に示す。   The tested items are Charpy impact value, tensile stress, tensile elastic modulus, bending stress, bending elastic modulus, MFR, density, UL94HB, UL94V. The test results are shown in Table 4.

Figure 2017160286
以上の結果より、いずれの試料でも難燃性を示すことがわかり、アルミスラッジを70%以上混錬することが重要である。また、相溶化剤A70%と相溶化剤B70%は、溶化剤無しのポリプロピレンと比べて強度が強くなり、実用上問題の無い値を示した。また、相溶化剤として上記以外のフサボンドC190(デュポン社製)を添加したところ、同様の難燃性を示した。このことから、相溶化剤の種類にかかわらず難燃性が維持されると思われる。
Figure 2017160286
From the above results, it can be seen that any sample exhibits flame retardancy, and it is important to knead aluminum sludge by 70% or more. Moreover, 70% of the compatibilizer A and 70% of the compatibilizer B were stronger than the polypropylene without the compatibilizer, and showed practically no problem values. Moreover, when Fusabond C190 (made by DuPont) other than the above was added as a compatibilizing agent, the same flame retardancy was exhibited. From this, it seems that flame retardancy is maintained regardless of the type of compatibilizer.

10 難燃性複合樹脂材料
12 水酸化アルミニウム
14 合成樹脂材料
16 ミキサー
18 混合物
20 2軸押出機
10 Flame Retardant Composite Resin Material 12 Aluminum Hydroxide 14 Synthetic Resin Material 16 Mixer 18 Mixture 20 Twin Screw Extruder

Claims (8)

水酸化アルミニウムと、オレフィン系樹脂であり融点が低い合成樹脂原料を、120℃〜180℃で溶融混錬し、前記合成樹脂原料中に前記水酸化アルミニウムを均一に分散させて難燃性複合樹脂材料を形成することを特徴とする難燃性複合樹脂材料の製造方法。   A flame retardant composite resin obtained by melting and kneading aluminum hydroxide and a synthetic resin raw material having a low melting point at 120 ° C. to 180 ° C. and uniformly dispersing the aluminum hydroxide in the synthetic resin raw material. A method for producing a flame-retardant composite resin material, comprising forming a material. 前記水酸化アルミニウムと、オレフィン系樹脂であり融点が低い合成樹脂原料に、流動パラフィンを添加して、120℃〜180℃で溶融混錬し、前記合成樹脂原料中に前記水酸化アルミニウムを均一に分散させる請求項1記載の難燃性複合樹脂材料の製造方法。   Liquid paraffin is added to the aluminum hydroxide and a synthetic resin raw material having a low melting point, which is an olefin resin, and melted and kneaded at 120 ° C. to 180 ° C. to uniformly distribute the aluminum hydroxide in the synthetic resin raw material. The manufacturing method of the flame-retardant composite resin material of Claim 1 to disperse | distribute. 前記水酸化アルミニウムと、オレフィン系樹脂であり融点が低い合成樹脂原料に、相溶化剤を添加して、120℃〜180℃で溶融混錬し、前記合成樹脂原料中に前記水酸化アルミニウムを均一に分散させる請求項1記載の難燃性複合樹脂材料の製造方法。   A compatibilizing agent is added to the aluminum hydroxide and a synthetic resin raw material having a low melting point, which is an olefin resin, and melt-kneaded at 120 ° C. to 180 ° C. to uniformly distribute the aluminum hydroxide in the synthetic resin raw material. The method for producing a flame retardant composite resin material according to claim 1, which is dispersed in a resin. 前記合成樹脂原料中に相溶化剤及び界面活性剤を添加せずに溶融混錬する請求項1記載の難燃性複合樹脂材料の製造方法。   The method for producing a flame retardant composite resin material according to claim 1, wherein the synthetic resin raw material is melt kneaded without adding a compatibilizing agent and a surfactant. 前記水酸化アルミニウムは、全体の70〜90質量%の割合で混合する請求項1記載の難燃性複合樹脂材料の製造方法。   The said aluminum hydroxide is a manufacturing method of the flame-retardant composite resin material of Claim 1 mixed in the ratio of 70-90 mass% of the whole. 前記水酸化アルミニウムは、アルミスラッジである請求項1記載の難燃性複合樹脂材料の製造方法。   The method for producing a flame retardant composite resin material according to claim 1, wherein the aluminum hydroxide is aluminum sludge. 水酸化アルミニウムと、融点が120℃〜180℃のオレフィン系樹脂が均一に混合されて成ることを特徴とする難燃性複合樹脂材料。   A flame-retardant composite resin material comprising aluminum hydroxide and an olefin resin having a melting point of 120 ° C. to 180 ° C. mixed uniformly. 前記難燃性複合樹脂材料には、流動パラフィンと相溶化剤が添加され、前記水酸化アルミニウムはアルミスラッジであり、全体の70〜90質量%の割合で混合されている請求項7記載の難燃性複合樹脂材料。   8. The flame retardant composite resin material according to claim 7, wherein liquid paraffin and a compatibilizer are added to the flame retardant composite resin material, and the aluminum hydroxide is aluminum sludge and is mixed at a ratio of 70 to 90% by mass of the whole. Flammable composite resin material.
JP2016043238A 2016-03-07 2016-03-07 Method for producing flame retardant composite resin material Active JP6595374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016043238A JP6595374B2 (en) 2016-03-07 2016-03-07 Method for producing flame retardant composite resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016043238A JP6595374B2 (en) 2016-03-07 2016-03-07 Method for producing flame retardant composite resin material

Publications (2)

Publication Number Publication Date
JP2017160286A true JP2017160286A (en) 2017-09-14
JP6595374B2 JP6595374B2 (en) 2019-10-23

Family

ID=59854800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016043238A Active JP6595374B2 (en) 2016-03-07 2016-03-07 Method for producing flame retardant composite resin material

Country Status (1)

Country Link
JP (1) JP6595374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113512378A (en) * 2021-04-28 2021-10-19 深圳市力容电子有限公司 Modified fixing material capable of improving heat dissipation and flame retardance of aluminum electrolytic capacitor and preparation method thereof

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966724A (en) * 1972-09-27 1974-06-28
JPS5684732A (en) * 1979-12-14 1981-07-10 Japan Atom Energy Res Inst Production of flame-retarding polyolefin molding
JPS6241244A (en) * 1985-08-16 1987-02-23 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Fire retarant thermoplastic composition containing no halogen
JPS6334805A (en) * 1986-07-28 1988-02-15 日立電線株式会社 Flame resisting electrically insulating composition
JPS6337145A (en) * 1986-08-01 1988-02-17 Hitachi Cable Ltd Flame-retardant electrical insulation composition
JPS6337509A (en) * 1986-08-01 1988-02-18 日立電線株式会社 Flame resisting electrically insulating composition
JPS6343205A (en) * 1986-08-08 1988-02-24 日立電線株式会社 Flame resisting electrically insulating composition
JPS6343204A (en) * 1986-08-08 1988-02-24 日立電線株式会社 Flame resisting electrically insulating composition
JPH0280441A (en) * 1988-09-16 1990-03-20 Showa Denko Kk Flame-retarding polyolefin resin composition
JPH05222294A (en) * 1992-02-10 1993-08-31 Nitto Denko Corp Flame-retardant material and its use
JPH05239269A (en) * 1992-02-28 1993-09-17 Showa Denko Kk Flame-retardant resin composition and its production
JPH08151477A (en) * 1994-11-30 1996-06-11 Sumitomo Chem Co Ltd Thermoplastic resin composition for interior material
JPH09296116A (en) * 1996-05-01 1997-11-18 Suzuki Sogyo Co Ltd Asphalt composition
JPH101520A (en) * 1996-06-14 1998-01-06 Sumitomo Bakelite Co Ltd Production of flame-retardant silane-cross-linked polyolefin
JPH1112397A (en) * 1997-06-25 1999-01-19 Asahi Chem Ind Co Ltd Flame-retardant composition
JP2000178360A (en) * 1998-12-14 2000-06-27 Asahi Gosei Kogyo Kk Production of flame-retarded polyolefin resin pellet
JP2003128849A (en) * 2001-08-13 2003-05-08 Riken Technos Corp Flame retardant thermoplastic elastomer composition
JP2003192849A (en) * 2001-12-27 2003-07-09 Du Pont Mitsui Polychem Co Ltd Flame-retardant resin composition
WO2004033538A1 (en) * 2002-10-10 2004-04-22 Fa. M Inc. Process for the production of resin compositions
JP2004217778A (en) * 2003-01-15 2004-08-05 Du Pont Mitsui Polychem Co Ltd Flame-retardant resin composition
JP2004285184A (en) * 2003-03-20 2004-10-14 Riken Technos Corp Crosslinkable thermoplastic resin composition, its manufacturing process and its molding
JP2005060612A (en) * 2003-08-19 2005-03-10 Riken Technos Corp Flame-retardant thermoplastic resin composition and use thereof
JP2005298807A (en) * 2004-03-17 2005-10-27 Du Pont Mitsui Polychem Co Ltd Flame retardant resin composition
JP2006083322A (en) * 2004-09-17 2006-03-30 Riken Technos Corp Crosslinked thermoplastic flame-retardant resin composition, method for producing the same and its molded article
JP2007302906A (en) * 2007-08-29 2007-11-22 Riken Technos Corp Crosslinkable thermoplastic resin composition, method of producing the same and molded product therefrom
JP2011501766A (en) * 2007-09-28 2011-01-13 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー Bimodal filler system for improving flame retardancy
JP2014047246A (en) * 2012-08-29 2014-03-17 Sumitomo Electric Ind Ltd Silane crosslinkable resin composition, insulation electric wire and production method of insulation electric wire
JP2014518902A (en) * 2011-03-23 2014-08-07 フルオシュミ フランクフルト ゲーエムベーハー Flame retardant
JP5669924B1 (en) * 2013-12-04 2015-02-18 株式会社フジクラ Flame-retardant resin composition and cable using the same
WO2015111309A1 (en) * 2014-01-21 2015-07-30 株式会社フジクラ Flame-retardant resin composition and cable using same

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966724A (en) * 1972-09-27 1974-06-28
JPS5684732A (en) * 1979-12-14 1981-07-10 Japan Atom Energy Res Inst Production of flame-retarding polyolefin molding
JPS6241244A (en) * 1985-08-16 1987-02-23 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Fire retarant thermoplastic composition containing no halogen
JPS6334805A (en) * 1986-07-28 1988-02-15 日立電線株式会社 Flame resisting electrically insulating composition
JPS6337145A (en) * 1986-08-01 1988-02-17 Hitachi Cable Ltd Flame-retardant electrical insulation composition
JPS6337509A (en) * 1986-08-01 1988-02-18 日立電線株式会社 Flame resisting electrically insulating composition
JPS6343205A (en) * 1986-08-08 1988-02-24 日立電線株式会社 Flame resisting electrically insulating composition
JPS6343204A (en) * 1986-08-08 1988-02-24 日立電線株式会社 Flame resisting electrically insulating composition
JPH0280441A (en) * 1988-09-16 1990-03-20 Showa Denko Kk Flame-retarding polyolefin resin composition
JPH05222294A (en) * 1992-02-10 1993-08-31 Nitto Denko Corp Flame-retardant material and its use
JPH05239269A (en) * 1992-02-28 1993-09-17 Showa Denko Kk Flame-retardant resin composition and its production
JPH08151477A (en) * 1994-11-30 1996-06-11 Sumitomo Chem Co Ltd Thermoplastic resin composition for interior material
JPH09296116A (en) * 1996-05-01 1997-11-18 Suzuki Sogyo Co Ltd Asphalt composition
JPH101520A (en) * 1996-06-14 1998-01-06 Sumitomo Bakelite Co Ltd Production of flame-retardant silane-cross-linked polyolefin
JPH1112397A (en) * 1997-06-25 1999-01-19 Asahi Chem Ind Co Ltd Flame-retardant composition
JP2000178360A (en) * 1998-12-14 2000-06-27 Asahi Gosei Kogyo Kk Production of flame-retarded polyolefin resin pellet
JP2003128849A (en) * 2001-08-13 2003-05-08 Riken Technos Corp Flame retardant thermoplastic elastomer composition
JP2003192849A (en) * 2001-12-27 2003-07-09 Du Pont Mitsui Polychem Co Ltd Flame-retardant resin composition
WO2004033538A1 (en) * 2002-10-10 2004-04-22 Fa. M Inc. Process for the production of resin compositions
JP2004217778A (en) * 2003-01-15 2004-08-05 Du Pont Mitsui Polychem Co Ltd Flame-retardant resin composition
JP2004285184A (en) * 2003-03-20 2004-10-14 Riken Technos Corp Crosslinkable thermoplastic resin composition, its manufacturing process and its molding
JP2005060612A (en) * 2003-08-19 2005-03-10 Riken Technos Corp Flame-retardant thermoplastic resin composition and use thereof
JP2005298807A (en) * 2004-03-17 2005-10-27 Du Pont Mitsui Polychem Co Ltd Flame retardant resin composition
JP2006083322A (en) * 2004-09-17 2006-03-30 Riken Technos Corp Crosslinked thermoplastic flame-retardant resin composition, method for producing the same and its molded article
JP2007302906A (en) * 2007-08-29 2007-11-22 Riken Technos Corp Crosslinkable thermoplastic resin composition, method of producing the same and molded product therefrom
JP2011501766A (en) * 2007-09-28 2011-01-13 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー Bimodal filler system for improving flame retardancy
JP2014518902A (en) * 2011-03-23 2014-08-07 フルオシュミ フランクフルト ゲーエムベーハー Flame retardant
JP2014047246A (en) * 2012-08-29 2014-03-17 Sumitomo Electric Ind Ltd Silane crosslinkable resin composition, insulation electric wire and production method of insulation electric wire
JP5669924B1 (en) * 2013-12-04 2015-02-18 株式会社フジクラ Flame-retardant resin composition and cable using the same
WO2015111309A1 (en) * 2014-01-21 2015-07-30 株式会社フジクラ Flame-retardant resin composition and cable using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113512378A (en) * 2021-04-28 2021-10-19 深圳市力容电子有限公司 Modified fixing material capable of improving heat dissipation and flame retardance of aluminum electrolytic capacitor and preparation method thereof

Also Published As

Publication number Publication date
JP6595374B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
CN1914279B (en) Flame resistant thermoplastic resin composition
JP5594185B2 (en) Molded product and electric wire coated with the molded product
CN101659779B (en) Halogen-free flame-retardant ABS resin and preparation method thereof
CN104231575B (en) Halogen-free and phosphorus-free PBT enhanced composite material and preparation method thereof
CN107955368B (en) Heat-conducting nylon with improved heat resistance and preparation method thereof
CN104194161A (en) Precipitation resistant, toughening and flame-retardant polypropylene composite material and preparation method thereof
Zhang et al. Synergistic effects of ammonium polyphosphate/melamine intumescent system with macromolecular char former in flame-retarding polyoxymethylene
JP6070575B2 (en) Pellet mixture, carbon fiber reinforced polypropylene resin composition, molded product, and method for producing pellet mixture
CN112321947B (en) 5 VA-grade halogen-free flame-retardant polypropylene material and preparation method thereof
JPS62267351A (en) Polyacetal resin composition and its production
JP4894168B2 (en) Polyamide resin composition and method for producing the same
JP2009155359A (en) Thermoplastic resin molding
JP6595374B2 (en) Method for producing flame retardant composite resin material
JP6472350B2 (en) Flame retardant masterbatch
KR100688993B1 (en) Polypropylene resin composition for automobile wire
CN108384178A (en) A kind of halogen-free flame-retardant ABS compound material and preparation method thereof
KR101561724B1 (en) Thermoplastic polymer and novolac composition and method
KR100546792B1 (en) Flame Retardant Polypropylene Resin Composition comprising Nanoclay Masterbatch
CN104861620A (en) Halogen-free flame-retardant enhanced PC/PBT alloy and preparation method therefor
KR100586361B1 (en) Composite for high condensed and high dispersed incombustible master batch for olefin resin and product thereby
CN109456532A (en) A kind of glass fiber reinforced flame-retarded polypropylene composite and preparation method thereof
JPH10279800A (en) Polyphenylene sulfide resin composition
CN104845135A (en) Heat-resistant and reinforced flame retardant PET/PTT composite material
JP2021138857A (en) Thermoplastic resin composition and method for producing the same, and electronic device
CN104845079A (en) Antistatic halogen-free flame-retardant PET/PTT alloy and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6595374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250