JP2017139199A - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
JP2017139199A
JP2017139199A JP2016021177A JP2016021177A JP2017139199A JP 2017139199 A JP2017139199 A JP 2017139199A JP 2016021177 A JP2016021177 A JP 2016021177A JP 2016021177 A JP2016021177 A JP 2016021177A JP 2017139199 A JP2017139199 A JP 2017139199A
Authority
JP
Japan
Prior art keywords
solid
positive electrode
solid electrolyte
negative electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016021177A
Other languages
Japanese (ja)
Other versions
JP6697155B2 (en
Inventor
肥田 勝春
Katsuharu Hida
勝春 肥田
山本 保
Tamotsu Yamamoto
保 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016021177A priority Critical patent/JP6697155B2/en
Publication of JP2017139199A publication Critical patent/JP2017139199A/en
Application granted granted Critical
Publication of JP6697155B2 publication Critical patent/JP6697155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid-state battery hardly causing a decrease in capacity even after the state of charge has been left for a long period of time.SOLUTION: An all-solid-state battery includes a positive electrode, a solid electrolyte layer comprising a solid electrolyte, and a negative electrode. The all-solid-state battery has a layer comprising an insulating material different from the material of the solid electrolyte, at least either between the positive electrode and the solid electrolyte layer and between the solid electrolyte layer and the negative electrode.SELECTED DRAWING: Figure 1

Description

本件は、全固体電池に関する。   This case relates to all solid state batteries.

近年、電気エネルギーを蓄積する二次電池は、ハイブリット車、電気自動車などへの応用で注目されている。また、小さな環境エネルギーから発電を行うエネルギーハーベスト技術が省エネ技術として関心を集めており、発電した電気エネルギーを蓄電し、供給可能な前記二次電池は、様々な応用への可能性が広がるため注目されている。例えば、エネルギーハーベストとの組み合わせによるセンサー等への応用も検討されている。   2. Description of the Related Art In recent years, secondary batteries that store electrical energy have attracted attention for application to hybrid vehicles, electric vehicles, and the like. In addition, energy harvesting technology that generates power from small environmental energy is attracting attention as an energy-saving technology, and the secondary battery that can store and supply the generated electrical energy has widespread potential for various applications. Has been. For example, application to a sensor or the like in combination with energy harvesting is also being studied.

これらの応用において、電解質に液体を使用しない全固体電池(例えば、特許文献1参照)は、液体の漏洩の危険がないことから高い関心が集まっている。   In these applications, all-solid-state batteries that do not use liquid as an electrolyte (see, for example, Patent Document 1) are attracting a great deal of attention because there is no risk of liquid leakage.

二次電池としての全固体電池は、様々な応用への可能性が広がる中、使用態様によっては、充電状態を長期間保持する必要があり、その場合、二次電池の容量維持が要求される。   All-solid-state batteries as secondary batteries need to be kept in a charged state for a long period of time, depending on the mode of use. .

特開2005−38843号公報JP 2005-38843 A

本発明は、充電状態を長時間放置しても容量の低下が起こりにくい全固体電池を提供することを目的とする。   An object of the present invention is to provide an all-solid-state battery in which a decrease in capacity is unlikely to occur even when left in a charged state for a long time.

一つの態様では、全固体電池は、
正極と、固体電解質で構成される固体電解質層と、負極とを有し、
更に、前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間の少なくともいずれかに、前記固体電解質とは異なる材質の絶縁材料からなる層を有する。
In one embodiment, the all-solid battery is
Having a positive electrode, a solid electrolyte layer composed of a solid electrolyte, and a negative electrode;
Furthermore, at least one of the positive electrode and the solid electrolyte layer and at least one of the solid electrolyte layer and the negative electrode has a layer made of an insulating material different from the solid electrolyte.

1つの側面として、充電状態を長時間放置しても容量の低下が起こりにくい全固体電池を提供できる。   As one aspect, it is possible to provide an all-solid-state battery in which a decrease in capacity hardly occurs even if the charged state is left for a long time.

図1は、開示の全固体電池の一例の模式図である。FIG. 1 is a schematic diagram of an example of the disclosed all solid state battery. 図2は、開示の全固体電池の他の一例の模式図である。FIG. 2 is a schematic diagram of another example of the disclosed all solid state battery. 図3は、開示の全固体電池の他の一例の模式図である。FIG. 3 is a schematic diagram of another example of the disclosed all solid state battery. 図4は、実施例1の全固体電池の充放電曲線である。FIG. 4 is a charge / discharge curve of the all-solid-state battery of Example 1. 図5は、実施例2の全固体電池の充放電曲線である。FIG. 5 is a charge / discharge curve of the all-solid-state battery of Example 2. 図6は、実施例3の全固体電池の充放電曲線である。6 is a charge / discharge curve of the all-solid-state battery of Example 3. FIG. 図7は、実施例4の全固体電池の充放電曲線である。FIG. 7 is a charge / discharge curve of the all-solid-state battery of Example 4. 図8は、実施例5及び比較例1の全固体電池の容量維持率を示すグラフである。FIG. 8 is a graph showing capacity retention rates of all solid state batteries of Example 5 and Comparative Example 1. 図9は、実施例6及び実施例7の全固体電池の容量維持率を示すグラフである。FIG. 9 is a graph showing the capacity retention rates of the all-solid-state batteries of Example 6 and Example 7. 図10は、実施例8の全固体電池の容量維持率を示すグラフである。FIG. 10 is a graph showing the capacity retention rate of the all-solid-state battery of Example 8.

(全固体電池)
開示の全固体電池は、正極と、負極と、固体電解質層と、絶縁層とを有し、更に必要に応じて、その他の部材を有する。
(All-solid battery)
The disclosed all-solid-state battery includes a positive electrode, a negative electrode, a solid electrolyte layer, and an insulating layer, and further includes other members as necessary.

本発明者らは、充電状態を長時間放置しても容量の低下が起こりにくい全固体電池を提供するために鋭意検討を行った。
そして、正極と固体電解質層との間、及び負極と固体電解質層との間の少なくともいずれかに、充電状態を長時間放置した際の正極及び負極間の電子の移動を抑制する絶縁層を設けることにより、充電状態を長時間放置しても容量の低下が起こりにくくなることを見出し、開示の技術の完成に至った。
The present inventors have intensively studied to provide an all-solid-state battery in which a decrease in capacity is unlikely to occur even if the charged state is left for a long time.
In addition, an insulating layer is provided between at least one of the positive electrode and the solid electrolyte layer and between the negative electrode and the solid electrolyte layer to suppress the movement of electrons between the positive electrode and the negative electrode when the charged state is left for a long time. As a result, it has been found that even if the state of charge is left for a long time, the capacity is hardly reduced, and the disclosed technique has been completed.

ここで、全固体リチウムイオン二次電池の充放電について簡単に説明する。充電時には、リチウムイオンが正極から負極に移動し、放電時には、リチウムイオンが負極から正極に移動する。充電時には、負極においては、負極に移動したリチウムイオンと、外部から供給された電子とが反応することで、電池の充電が行われる。
そして、充電状態を長期間放置すると、負極の電子が正極に移動することで、自然放電を生じる。
ところが、開示の全固体電池では、正極と固体電解質層との間、及び負極と固体電解質層との間の少なくともいずれかに、充電状態を長時間放置した際の正極及び負極間の電子の移動を抑制する絶縁層を設けることにより、自然放電を抑制することができ、充電状態を長時間放置しても容量の低下が起こりにくくなる。
Here, charging / discharging of the all-solid-state lithium ion secondary battery will be briefly described. During charging, lithium ions move from the positive electrode to the negative electrode, and during discharging, lithium ions move from the negative electrode to the positive electrode. At the time of charging, in the negative electrode, the lithium ion moved to the negative electrode reacts with electrons supplied from the outside, whereby the battery is charged.
When the charged state is left for a long period of time, the negative electrons move to the positive electrode, and spontaneous discharge occurs.
However, in the disclosed all solid state battery, electrons move between the positive electrode and the negative electrode when left in a charged state for a long time between the positive electrode and the solid electrolyte layer and between the negative electrode and the solid electrolyte layer. By providing the insulating layer that suppresses the spontaneous discharge, it is possible to suppress the spontaneous discharge, and it is difficult for the capacity to decrease even if the charged state is left for a long time.

<正極>
前記正極は、例えば、正極集電体と、正極活物質層とを含有し、更に必要に応じて、その他の部材を有する。
<Positive electrode>
The positive electrode includes, for example, a positive electrode current collector and a positive electrode active material layer, and further includes other members as necessary.

<<正極集電体>>
前記正極集電体の大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
前記正極集電体の材質としては、例えば、ダイス鋼、ステンレス鋼、アルミニウム、アルミニウム合金、チタン合金、銅、ニッケルなどが挙げられる。
前記正極集電体の形状としては、例えば、箔状、板状、メッシュ状などが挙げられる。
前記正極集電体の平均厚みとしては、例えば、10μm〜500μmなどが挙げられる。
<< Positive electrode current collector >>
There is no restriction | limiting in particular as a magnitude | size and a structure of the said positive electrode electrical power collector, According to the objective, it can select suitably.
Examples of the material of the positive electrode current collector include die steel, stainless steel, aluminum, aluminum alloy, titanium alloy, copper, and nickel.
Examples of the shape of the positive electrode current collector include a foil shape, a plate shape, and a mesh shape.
Examples of the average thickness of the positive electrode current collector include 10 μm to 500 μm.

<正極活物質層>
前記正極活物質層としては、正極活物質を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記正極活物質層は、前記正極活物質自体であってもよい。
<Positive electrode active material layer>
The positive electrode active material layer is not particularly limited as long as it is a layer containing a positive electrode active material, and can be appropriately selected according to the purpose.
The positive electrode active material layer may be the positive electrode active material itself.

前記正極活物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウム含有複合酸化物などが挙げられる。前記リチウム含有複合酸化物としては、リチウムと他の金属とを含有する複合酸化物であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、LiCoO、LiNiO、LiCrO、LiVO、LiMMn2-x(Mは、Co、Ni、Fe、Cr及びCuの少なくともいずれかである。0≦x<2)、LiFePO、LiCoPOなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
There is no restriction | limiting in particular as said positive electrode active material, According to the objective, it can select suitably, For example, lithium containing complex oxide etc. are mentioned. The lithium-containing composite oxide is not particularly limited as long as it is a composite oxide containing lithium and another metal, and can be appropriately selected according to the purpose. For example, LiCoO 2 , LiNiO 2 , LiCrO 2 , LiVO 2 , LiM x Mn 2−x O 4 (M is at least one of Co, Ni, Fe, Cr, and Cu. 0 ≦ x <2), LiFePO 4 , LiCoPO 4, and the like.
These may be used individually by 1 type and may use 2 or more types together.

前記正極活物質層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、10μm以下が好ましく、10nm〜1μmがより好ましく、50nm〜200nmが特に好ましい。   There is no restriction | limiting in particular as average thickness of the said positive electrode active material layer, Although it can select suitably according to the objective, 10 micrometers or less are preferable, 10 nm-1 micrometer are more preferable, and 50 nm-200 nm are especially preferable.

前記正極活物質層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記正極活物質のターゲット材料を用いたスパッタリング、前記正極活物質を圧縮成形する方法などが挙げられる。   There is no restriction | limiting in particular as a formation method of the said positive electrode active material layer, According to the objective, it can select suitably, For example, sputtering using the target material of the said positive electrode active material, The method of compression-molding the said positive electrode active material Etc.

<負極>
前記負極としては、例えば、負極集電体と、負極活物質層とを含有し、更に必要に応じて、その他の部材を有する。
<Negative electrode>
The negative electrode includes, for example, a negative electrode current collector and a negative electrode active material layer, and further includes other members as necessary.

<<負極集電体>>
前記負極集電体の大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
前記負極集電体の材質としては、例えば、ダイス鋼、金、インジウム、ニッケル、銅、ステンレス鋼などが挙げられる。
前記負極集電体の形状としては、例えば、箔状、板状、メッシュ状などが挙げられる。
前記負極集電体の平均厚みとしては、例えば、10μm〜500μmなどが挙げられる。
<< Negative electrode current collector >>
There is no restriction | limiting in particular as a magnitude | size and a structure of the said negative electrode collector, According to the objective, it can select suitably.
Examples of the material of the negative electrode current collector include die steel, gold, indium, nickel, copper, and stainless steel.
Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh shape.
Examples of the average thickness of the negative electrode current collector include 10 μm to 500 μm.

<<負極活物質層>>
前記負極活物質層としては、負極活物質を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記負極活物質層は、前記負極活物質自体であってもよい。
<< Negative electrode active material layer >>
The negative electrode active material layer is not particularly limited as long as it is a layer containing a negative electrode active material, and can be appropriately selected according to the purpose.
The negative electrode active material layer may be the negative electrode active material itself.

前記負極活物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウム、リチウムアルミニウム合金、非晶質カーボン、天然黒鉛、人造黒鉛などが挙げられる。   There is no restriction | limiting in particular as said negative electrode active material, According to the objective, it can select suitably, For example, lithium, lithium aluminum alloy, amorphous carbon, natural graphite, artificial graphite etc. are mentioned.

前記負極活物質層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.05μm〜3.0μmが好ましく、0.1μm〜2.0μmがより好ましい。   There is no restriction | limiting in particular as average thickness of the said negative electrode active material layer, Although it can select suitably according to the objective, 0.05 micrometer-3.0 micrometers are preferable, and 0.1 micrometer-2.0 micrometers are more preferable.

前記負極活物質層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記負極活物質のターゲット材料を用いたスパッタリング、前記負極活物質を圧縮成形する方法などが挙げられる。   There is no restriction | limiting in particular as a formation method of the said negative electrode active material layer, According to the objective, it can select suitably, For example, sputtering using the target material of the said negative electrode active material, the method of compression-molding the said negative electrode active material Etc.

<固体電解質層>
前記固体電解質層としては、固体電解質で構成される層であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Solid electrolyte layer>
The solid electrolyte layer is not particularly limited as long as it is a layer composed of a solid electrolyte, and can be appropriately selected according to the purpose.

前記固体電解質としては、電池反応を担うキャリアであるリチウムイオンの伝導性を有する固体の電解質であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化物系固体電解質、硫化物系固体電解質などが挙げられる。   The solid electrolyte is not particularly limited as long as it is a solid electrolyte having lithium ion conductivity, which is a carrier responsible for battery reaction, and can be appropriately selected according to the purpose. For example, an oxide-based solid electrolyte And sulfide-based solid electrolytes.

前記酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物、ガーネット型酸化物などが挙げられる。   Examples of the oxide solid electrolyte include perovskite oxides, NASICON oxides, LISICON oxides, and garnet oxides.

前記ペロブスカイト型酸化物としては、例えば、LiLa1−aTiO等のように表されるLi−La−Ti系ペロブスカイト型酸化物、LiLa1−bTaO等のように表されるLi−La−Ta系ペロブスカイト型酸化物、LiLa1−cNbO等のように表されるLi−La−Nb系ペロブスカイト型酸化物などが挙げられる(前記式中、0<a<1、0<b<1、0<c<1である。)。 Examples of the perovskite oxide include Li-La-Ti perovskite oxides such as Li a La 1-a TiO 3 and Li b La 1-b TaO 3. that Li-La-Ta-based perovskite type oxide, in Li c La 1-c NbO represented by Li-La-Nb-based perovskite type oxide as such 3 and the like (the above formula, 0 <a < 1, 0 <b <1, 0 <c <1.)

前記NASICON型酸化物としては、例えば、Li1+lAlTi2−l(PO等に代表される結晶を主晶とするLi(前記式中、Xは、B、Al、Ga、In、C、Si、Ge、Sn、Sb及びSeからなる群より選択される少なくとも1種の元素であり、Yは、Ti、Zr、Ge、In、Ga、Sn及びAlからなる群より選択される少なくとも1種の元素であり、0≦l≦1、m、n、o、p及びqは、任意の正数である。)で表される酸化物などが挙げられる。 As the NASICON type oxide, for example, Li 1 + l Al l Ti 2-l (PO 4) in Li m X n Y o P p O q ( Formula to ShuAkira crystals typified by 3, X Is at least one element selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb, and Se, and Y is Ti, Zr, Ge, In, Ga, Sn And at least one element selected from the group consisting of Al, and 0 ≦ l ≦ 1, m, n, o, p, and q are arbitrary positive numbers. Can be mentioned.

前記LISICON型酸化物としては、例えば、LiXO−LiYO(前記式中、Xは、Si、Ge、及びTiから選択される少なくとも1種の元素であり、Yは、P、As及びVから選択される少なくとも1種の元素である。)で表される酸化物などが挙げられる。 Examples of the LISICON-type oxide include Li 4 XO 4 -Li 3 YO 4 (wherein X is at least one element selected from Si, Ge, and Ti, and Y is P, An oxide represented by at least one element selected from As and V).

前記ガーネット型酸化物としては、例えば、LiLaZr12等に代表されるLi−La−Zr系酸化物などが挙げられる。 Examples of the garnet oxide include Li—La—Zr-based oxides typified by Li 7 La 3 Zr 2 O 12 and the like.

前記硫化物系固体電解質としては、例えば、LiS−P、LiS−SiS、Li3.250.25Ge0.76、Li4−rGe1−r(式中、0≦r≦1である。)、Li11、LiS−SiS−LiPOなどが挙げられる。前記硫化物系固体電解質は、結晶性硫化物、非晶性硫化物のいずれであってもよい。 Examples of the sulfide-based solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 3.25 P 0.25 Ge 0.76 S 4 , and Li 4-r Ge 1-r. P r S 4 (where a 0 ≦ r ≦ 1.), such as Li 7 P 3 S 11, Li 2 S-SiS 2 -Li 3 PO 4 and the like. The sulfide-based solid electrolyte may be either a crystalline sulfide or an amorphous sulfide.

なお、これらの固体電解質は、結晶構造が同等である限り、元素の一部が他の元素に置換されたものでもよく、元素組成比が異なるものでもよい。
また、これらの固体電解質は、一種を単独で用いてよく、複数種を用いてもよい。
In addition, as long as the crystal structure is equivalent, these solid electrolytes may be those in which some of the elements are replaced with other elements, or may have different element composition ratios.
Moreover, these solid electrolytes may be used individually by 1 type, and may use multiple types.

前記固体電解質としては、Li2.9PO3.30.4、LiAl(P(POが好ましく、高出力であり、かつ高温環境下で安定な全固体電池を得ることができる点で、LiAl(P(POがより好ましい。 As the solid electrolyte, Li 2.9 PO 3.3 N 0.4 and Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 are preferable, high output, and stable in a high temperature environment. Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 is more preferable in that an all-solid battery can be obtained.

前記固体電解質層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、100nm〜2,000nmが好ましく、300nm〜1,500nmがより好ましく、500nm〜1,000nmが特に好ましい。   There is no restriction | limiting in particular as average thickness of the said solid electrolyte layer, Although it can select suitably according to the objective, 100 nm-2,000 nm are preferable, 300 nm-1,500 nm are more preferable, 500 nm-1,000 nm are preferable. Particularly preferred.

前記固体電解質層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、スパッタリング法が、好ましい前記平均厚みの固体電解質層を容易に作製できる点で、好ましい。   There is no restriction | limiting in particular as a formation method of the said solid electrolyte layer, Although it can select suitably according to the objective, Sputtering method is preferable at the point which can produce the solid electrolyte layer of the said preferable average thickness easily.

<絶縁層>
前記絶縁層としては、前記固体電解質とは異なる材質の絶縁材料からなる層であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記絶縁層は、前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間の少なくともいずれかに配される。
前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間の少なくともいずれかに前記絶縁層を配することにより、充電状態を長時間放置した際の正極及び負極間の電子の移動を抑制することができ、充電状態を長時間放置しても容量の低下が起こりにくい全固体電池が得られる。
<Insulating layer>
The insulating layer is not particularly limited as long as it is a layer made of an insulating material different from the solid electrolyte, and can be appropriately selected according to the purpose.
The insulating layer is disposed at least between the positive electrode and the solid electrolyte layer and between the solid electrolyte layer and the negative electrode.
By disposing the insulating layer between at least one of the positive electrode and the solid electrolyte layer and between the solid electrolyte layer and the negative electrode, between the positive electrode and the negative electrode when the charged state is left for a long time. The movement of electrons can be suppressed, and an all-solid-state battery is obtained in which the capacity is hardly reduced even if the charged state is left for a long time.

前記絶縁層は、多孔質ではないことが好ましい。前記絶縁層が多孔質ではないことは、例えば、全固体電池を電子顕微鏡(例えば、走査型電子顕微鏡、透過型電子顕微鏡)で観察し、前記絶縁層中に空隙が観察されないことにより、確認できる。   The insulating layer is preferably not porous. The fact that the insulating layer is not porous can be confirmed by, for example, observing an all solid state battery with an electron microscope (for example, a scanning electron microscope or a transmission electron microscope) and not observing voids in the insulating layer. .

前記絶縁層は、充電状態を長時間放置した際の容量の低下をより抑制できる点で、前記固体電解質層と前記負極との間に配されることが好ましく、前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間に配されることがより好ましい。
前記絶縁層が、前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間に配される際には、それぞれの絶縁層における絶縁材料は、同じ材質であってもよいし、異なる材質であってもよい。
The insulating layer is preferably disposed between the solid electrolyte layer and the negative electrode in that it can suppress a decrease in capacity when the charged state is left for a long time, and the positive electrode, the solid electrolyte layer, And between the solid electrolyte layer and the negative electrode are more preferable.
When the insulating layer is disposed between the positive electrode and the solid electrolyte layer and between the solid electrolyte layer and the negative electrode, the insulating material in each insulating layer may be the same material. It may be a different material.

前記絶縁材料としては、絶縁性の材料であれば、特に制限はなく、目的に応じて適宜選択することができる。ここで、絶縁性とは、前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間の少なくともいずれかに前記絶縁層を配した際に、充電状態を長時間放置した際の正極及び負極間の電子の移動を抑制することができる程度の絶縁性であればよく、例えば、前記絶縁材料は、半導体、導電体以外のいわゆる絶縁体であればよい。   The insulating material is not particularly limited as long as it is an insulating material, and can be appropriately selected according to the purpose. Here, the insulating property means that the charged state is left for a long time when the insulating layer is disposed between at least one of the positive electrode and the solid electrolyte layer and between the solid electrolyte layer and the negative electrode. It is sufficient that the insulating material has a degree of insulation that can suppress the movement of electrons between the positive electrode and the negative electrode. For example, the insulating material may be a so-called insulator other than a semiconductor or a conductor.

前記絶縁材料は、無機材料であることが好ましい。前記絶縁材料が、前記無機材料であると、薄膜の前記絶縁層を形成できる。その結果、前記全固体電池の電池特性(例えば、充放電特性)を犠牲にすることなく、充電状態を長時間放置しても容量の低下が起こりにくい全固体電池が得られる。   The insulating material is preferably an inorganic material. When the insulating material is the inorganic material, the thin insulating layer can be formed. As a result, it is possible to obtain an all-solid battery in which the capacity is hardly reduced even if the state of charge is left for a long time without sacrificing the battery characteristics (for example, charge / discharge characteristics) of the all-solid battery.

前記絶縁材料としては、前記固体電解質とは異なる材質の材料であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、LiNbO、Alなどが挙げられる。
なお、Alは、汎用的な絶縁材料である。後述する実施例において、Alからなる絶縁層を用いた場合に、全固体電池において2次電池としての動作が確認され、かつ充電状態を長時間放置しても容量の低下が起こりにくいことから、一般的な絶縁材料においても、本発明の効果が得られることが理解される。
The insulating material is not particularly limited as long as it is a material different from the solid electrolyte, and can be appropriately selected according to the purpose. Examples thereof include LiNbO 3 and Al 2 O 3 .
Al 2 O 3 is a general-purpose insulating material. In an example to be described later, when an insulating layer made of Al 2 O 3 is used, the operation as a secondary battery is confirmed in an all-solid-state battery, and the capacity is hardly lowered even if the state of charge is left for a long time. Thus, it is understood that the effects of the present invention can be obtained even with a general insulating material.

前記絶縁層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記固体電解質層の平均厚みよりも薄いことが好ましい。
前記絶縁層の平均厚みとしては、0.5nm〜100nmが好ましく、0.8nm〜80nmがより好ましく、1nm〜70nmが特に好ましい。
前記絶縁層が、前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間に配される際には、それぞれの絶縁層の平均厚みは同じであってもよいし、異なっていてもよい。
There is no restriction | limiting in particular as average thickness of the said insulating layer, Although it can select suitably according to the objective, It is preferable that it is thinner than the average thickness of the said solid electrolyte layer.
The average thickness of the insulating layer is preferably 0.5 nm to 100 nm, more preferably 0.8 nm to 80 nm, and particularly preferably 1 nm to 70 nm.
When the insulating layer is disposed between the positive electrode and the solid electrolyte layer and between the solid electrolyte layer and the negative electrode, the average thickness of each insulating layer may be the same. , May be different.

前記絶縁層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、スパッタリング法が、好ましい前記平均厚みの絶縁層を容易に作製できる点で、好ましい。   There is no restriction | limiting in particular as a formation method of the said insulating layer, Although it can select suitably according to the objective, Sputtering method is preferable at the point which can produce the insulating layer of the said preferable average thickness easily.

<その他の部材>
前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電池ケースなどが挙げられる。
<Other members>
There is no restriction | limiting in particular as said other member, According to the objective, it can select suitably, For example, a battery case etc. are mentioned.

<<電池ケース>>
前記電池ケースとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、従来の全固体電池で使用可能な公知のラミネートフィルムなどが挙げられる。前記ラミネートフィルムとしては、例えば、樹脂製のラミネートフィルム、樹脂製のラミネートフィルムに金属を蒸着させたフィルムなどが挙げられる。
<< Battery case >>
There is no restriction | limiting in particular as said battery case, According to the objective, it can select suitably, For example, the well-known laminate film etc. which can be used with the conventional all-solid-state battery are mentioned. Examples of the laminate film include a resin laminate film, a film obtained by vapor-depositing a metal on a resin laminate film, and the like.

前記全固体電池の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円筒型、角型、ボタン型、コイン型、扁平型などが挙げられる。   There is no restriction | limiting in particular as a shape of the said all-solid-state battery, According to the objective, it can select suitably, For example, a cylindrical shape, a square shape, a button shape, a coin shape, a flat type etc. are mentioned.

前記全固体電池は、前記正極、前記負極、前記固体電解質層、及び前記絶縁層を、気相法を用いて積層した、いわゆる薄膜型全固体電池であることが、サイクル寿命が優れる点で好ましい。   The all solid state battery is preferably a so-called thin film type all solid state battery in which the positive electrode, the negative electrode, the solid electrolyte layer, and the insulating layer are laminated using a vapor phase method, in view of excellent cycle life. .

図1は、開示の全固体電池の一例の断面模式図である。図1の全固体電池においては、正極1上に、正極側絶縁層4A、固体電解質層3、及び負極2がこの順で積層されている。
図2は、開示の全固体電池の他の一例の断面模式図である。図2の全固体電池においては、正極1上に、固体電解質層3、負極側絶縁層4B、及び負極2がこの順で積層されている。
図3は、開示の全固体電池の他の一例の断面模式図である。図3の全固体電池においては、正極1上に、正極側絶縁層4A、固体電解質層3、負極側絶縁層4B、及び負極2がこの順で積層されている。
FIG. 1 is a schematic cross-sectional view of an example of the disclosed all solid state battery. In the all solid state battery of FIG. 1, a positive electrode side insulating layer 4A, a solid electrolyte layer 3, and a negative electrode 2 are laminated on a positive electrode 1 in this order.
FIG. 2 is a schematic cross-sectional view of another example of the disclosed all solid state battery. In the all solid state battery of FIG. 2, the solid electrolyte layer 3, the negative electrode side insulating layer 4 </ b> B, and the negative electrode 2 are laminated on the positive electrode 1 in this order.
FIG. 3 is a schematic cross-sectional view of another example of the disclosed all solid state battery. In the all solid state battery of FIG. 3, a positive electrode side insulating layer 4A, a solid electrolyte layer 3, a negative electrode side insulating layer 4B, and a negative electrode 2 are laminated on the positive electrode 1 in this order.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
SiO/Si基板上に、薄膜プロセスを用いて、正極集電体、正極活物質層、絶縁層、固体電解質層、及び負極をこの順で形成し、全固体電池を得た。
Example 1
On the SiO 2 / Si substrate, a positive electrode current collector, a positive electrode active material layer, an insulating layer, a solid electrolyte layer, and a negative electrode were formed in this order using a thin film process to obtain an all-solid battery.

<全固体電池の構成>
・正極集電体:Pt/Ti、平均厚み200nm
・正極活物質層:LiFePO、平均厚み50nm
・絶縁層:LiNbO、平均厚み10nm
・固体電解質層:LiAl(P(PO、平均厚み800nm
・負極:Li、平均厚み2.0μm
<Configuration of all-solid battery>
Positive electrode current collector: Pt / Ti, average thickness 200 nm
Positive electrode active material layer: LiFePO 4 , average thickness 50 nm
Insulating layer: LiNbO 3 , average thickness 10 nm
Solid electrolyte layer: Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 , average thickness 800 nm
Negative electrode: Li, average thickness 2.0 μm

正極集電体、正極活物質層、絶縁層、及び固体電解質層は、スパッタリング法で製膜した。
負極は、蒸着で製膜した。
The positive electrode current collector, the positive electrode active material layer, the insulating layer, and the solid electrolyte layer were formed by a sputtering method.
The negative electrode was formed by vapor deposition.

得られた全固体電池について定電流充放電を行った。結果を図4に示した。
条件は、以下のとおりである。
・装置:充放電試験機(東洋システム株式会社製、TOSCAT)
・充電:CC−CV、4μAcm−2、4.0V終止
・放電:CC、4μAcm−2、1.0V終止
その結果、得られた全固体電池が二次電池として機能することを確認した。
The obtained all solid state battery was subjected to constant current charge / discharge. The results are shown in FIG.
The conditions are as follows.
・ Equipment: Charge / discharge tester (TOSCAT, Toyo System Co., Ltd.)
Charge: CC-CV, 4 μAcm −2 , 4.0 V termination. Discharge: CC, 4 μAcm −2 , 1.0 V termination As a result, it was confirmed that the obtained all solid state battery functions as a secondary battery.

(実施例2)
実施例1において、絶縁層(LiNbO、平均厚み10nm)を絶縁層(Al、平均厚み5nm)に変えた以外は、実施例1と同様にして、全固体電池を作製した。
(Example 2)
An all-solid battery was produced in the same manner as in Example 1, except that the insulating layer (LiNbO 3 , average thickness 10 nm) was changed to the insulating layer (Al 2 O 3 , average thickness 5 nm).

<全固体電池の構成>
・正極集電体:Pt/Ti、平均厚み200nm
・正極活物質層:LiFePO、平均厚み50nm
・絶縁層:Al、平均厚み5nm
・固体電解質層:LiAl(P(PO、平均厚み800nm
・負極:Li、平均厚み2.0μm
<Configuration of all-solid battery>
Positive electrode current collector: Pt / Ti, average thickness 200 nm
Positive electrode active material layer: LiFePO 4 , average thickness 50 nm
Insulating layer: Al 2 O 3 , average thickness 5 nm
Solid electrolyte layer: Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 , average thickness 800 nm
Negative electrode: Li, average thickness 2.0 μm

得られた全固体電池について、実施例1と同様にして、定電流充放電を行った。結果を図5に示した。その結果、得られた全固体電池が二次電池として機能することを確認した。   About the obtained all-solid-state battery, it carried out similarly to Example 1, and performed constant current charging / discharging. The results are shown in FIG. As a result, it was confirmed that the obtained all solid state battery functions as a secondary battery.

(実施例3)
SiO/Si基板上に、薄膜プロセスを用いて、正極集電体、正極活物質層、固体電解質層、絶縁層、及び負極をこの順で形成し、全固体電池を得た。
(Example 3)
A positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, an insulating layer, and a negative electrode were formed in this order on a SiO 2 / Si substrate by using a thin film process to obtain an all-solid battery.

<全固体電池の構成>
・正極集電体:Pt/Ti、平均厚み200nm
・正極活物質層:LiFePO、平均厚み50nm
・固体電解質層:LiAl(P(PO、平均厚み800nm
・絶縁層:LiNbO、平均厚み5nm
・負極:Li、平均厚み2.0μm
<Configuration of all-solid battery>
Positive electrode current collector: Pt / Ti, average thickness 200 nm
Positive electrode active material layer: LiFePO 4 , average thickness 50 nm
Solid electrolyte layer: Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 , average thickness 800 nm
Insulating layer: LiNbO 3 , average thickness 5 nm
Negative electrode: Li, average thickness 2.0 μm

正極集電体、正極活物質層、固体電解質層、及び絶縁層は、スパッタリング法で製膜した。
負極は、蒸着で製膜した。
得られた全固体電池について、実施例1と同様にして、定電流充放電を行った。結果を図6に示した。その結果、得られた全固体電池が二次電池として機能することを確認した。
The positive electrode current collector, the positive electrode active material layer, the solid electrolyte layer, and the insulating layer were formed by a sputtering method.
The negative electrode was formed by vapor deposition.
About the obtained all-solid-state battery, it carried out similarly to Example 1, and performed constant current charging / discharging. The results are shown in FIG. As a result, it was confirmed that the obtained all solid state battery functions as a secondary battery.

(実施例4)
実施例3において、絶縁層(LiNbO、平均厚み5nm)を絶縁層(Al、平均厚み10nm)に変えた以外は、実施例1と同様にして、全固体電池を作製した。
Example 4
An all-solid battery was produced in the same manner as in Example 1 except that the insulating layer (LiNbO 3 , average thickness 5 nm) was changed to the insulating layer (Al 2 O 3 , average thickness 10 nm) in Example 3.

<全固体電池の構成>
・正極集電体:Pt/Ti、平均厚み200nm
・正極活物質層:LiFePO、平均厚み50nm
・固体電解質層:LiAl(P(PO、平均厚み800nm
・絶縁層:Al、平均厚み10nm
・負極:Li、平均厚み2.0μm
<Configuration of all-solid battery>
Positive electrode current collector: Pt / Ti, average thickness 200 nm
Positive electrode active material layer: LiFePO 4 , average thickness 50 nm
Solid electrolyte layer: Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 , average thickness 800 nm
Insulating layer: Al 2 O 3 , average thickness 10 nm
Negative electrode: Li, average thickness 2.0 μm

得られた全固体電池について、実施例1と同様にして、定電流充放電を行った。結果を図7に示した。その結果、得られた全固体電池が二次電池として機能することを確認した。   About the obtained all-solid-state battery, it carried out similarly to Example 1, and performed constant current charging / discharging. The results are shown in FIG. As a result, it was confirmed that the obtained all solid state battery functions as a secondary battery.

(実施例5)
SiO/Si基板上に、薄膜プロセスを用いて、正極集電体、正極活物質層、絶縁層、固体電解質層、及び負極をこの順で形成し、全固体電池を得た。
(Example 5)
On the SiO 2 / Si substrate, a positive electrode current collector, a positive electrode active material layer, an insulating layer, a solid electrolyte layer, and a negative electrode were formed in this order using a thin film process to obtain an all-solid battery.

<全固体電池の構成>
・正極集電体:Pt/Ti、平均厚み200nm
・正極活物質層:LiFePO、平均厚み50nm
・絶縁層:LiNbO、平均厚み5nm
・固体電解質層:LiAl(P(PO、平均厚み800nm
・負極:Li、平均厚み2.0μm
<Configuration of all-solid battery>
Positive electrode current collector: Pt / Ti, average thickness 200 nm
Positive electrode active material layer: LiFePO 4 , average thickness 50 nm
Insulating layer: LiNbO 3 , average thickness 5 nm
Solid electrolyte layer: Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 , average thickness 800 nm
Negative electrode: Li, average thickness 2.0 μm

正極集電体、正極活物質層、絶縁層、及び固体電解質層は、スパッタリング法で製膜した。
負極は、蒸着で製膜した。
The positive electrode current collector, the positive electrode active material layer, the insulating layer, and the solid electrolyte layer were formed by a sputtering method.
The negative electrode was formed by vapor deposition.

得られた全固体電池の容量維持率(%)を測定した。まず、実施例1と同様にして、充放電試験を行い、1サイクル目の放電容量(初期放電容量)を求めた。次いで、充電を行った後に、一定時間放置した後の放電容量を求めた。その時の放電容量を初期放電容量で除した値を、容量維持率(%)とした。結果を図8に示した。   The capacity retention rate (%) of the obtained all solid state battery was measured. First, in the same manner as in Example 1, a charge / discharge test was performed to determine the discharge capacity (initial discharge capacity) at the first cycle. Next, after charging, the discharge capacity after standing for a certain time was determined. A value obtained by dividing the discharge capacity at that time by the initial discharge capacity was defined as a capacity retention rate (%). The results are shown in FIG.

(比較例1)
実施例5において、絶縁層を設けない以外は、実施例5と同様にして、全固体電池を得た。
(Comparative Example 1)
In Example 5, an all solid state battery was obtained in the same manner as in Example 5 except that the insulating layer was not provided.

<全固体電池の構成>
・正極集電体:Pt/Ti、平均厚み200nm
・正極活物質層:LiFePO、平均厚み50nm
・固体電解質層:LiAl(P(PO、平均厚み800nm
・負極:Li、平均厚み2.0μm
<Configuration of all-solid battery>
Positive electrode current collector: Pt / Ti, average thickness 200 nm
Positive electrode active material layer: LiFePO 4 , average thickness 50 nm
Solid electrolyte layer: Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 , average thickness 800 nm
Negative electrode: Li, average thickness 2.0 μm

得られた全固体電池の容量維持率(%)を実施例5と同様にして求めた。結果を図8に示した。   The capacity retention rate (%) of the obtained all solid state battery was determined in the same manner as in Example 5. The results are shown in FIG.

(実施例6)
SiO/Si基板上に、薄膜プロセスを用いて、正極集電体、正極活物質層、絶縁層、固体電解質層、絶縁層、及び負極をこの順で形成し、全固体電池を得た。
(Example 6)
A positive electrode current collector, a positive electrode active material layer, an insulating layer, a solid electrolyte layer, an insulating layer, and a negative electrode were formed in this order on a SiO 2 / Si substrate using a thin film process to obtain an all-solid battery.

<全固体電池の構成>
・正極集電体:Pt/Ti、平均厚み200nm
・正極活物質層:LiFePO、平均厚み50nm
・絶縁層(正極側):LiNbO、平均厚み5nm
・固体電解質層:LiAl(P(PO、平均厚み800nm
・絶縁層(負極側):LiNbO、平均厚み1nm
・負極:Li、平均厚み2.0μm
<Configuration of all-solid battery>
Positive electrode current collector: Pt / Ti, average thickness 200 nm
Positive electrode active material layer: LiFePO 4 , average thickness 50 nm
Insulating layer (positive electrode side): LiNbO 3 , average thickness 5 nm
Solid electrolyte layer: Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 , average thickness 800 nm
Insulating layer (negative electrode side): LiNbO 3 , average thickness 1 nm
Negative electrode: Li, average thickness 2.0 μm

正極集電体、正極活物質層、絶縁層、及び固体電解質層は、スパッタリング法で製膜した。
負極は、蒸着で製膜した。
The positive electrode current collector, the positive electrode active material layer, the insulating layer, and the solid electrolyte layer were formed by a sputtering method.
The negative electrode was formed by vapor deposition.

得られた全固体電池の容量維持率(%)を測定した。まず、実施例1と同様にして、充放電試験を行い、5サイクル目の放電容量(初期放電容量)を求めた。次いで、充電を行った後に、一定時間放置した後の放電容量を求めた。その時の放電容量を初期放電容量で除した値を、容量維持率(%)とした。結果を図9に示した。   The capacity retention rate (%) of the obtained all solid state battery was measured. First, a charge / discharge test was performed in the same manner as in Example 1, and the discharge capacity (initial discharge capacity) at the fifth cycle was obtained. Next, after charging, the discharge capacity after standing for a certain time was determined. A value obtained by dividing the discharge capacity at that time by the initial discharge capacity was defined as a capacity retention rate (%). The results are shown in FIG.

(実施例7)
実施例5で作製した全固体電池の容量維持率(%)を実施例6と同様の評価方法で求めた。結果を図9に示した。
(Example 7)
The capacity retention rate (%) of the all solid state battery produced in Example 5 was determined by the same evaluation method as in Example 6. The results are shown in FIG.

図8より、絶縁層を有しない比較例1の全固体電池では、充電後の放置により、放電容量が徐々に低下している(容量維持率が低下している)のに比べ、絶縁層を有する実施例5の全固体電池では、放電容量の低下(容量維持率の低下)がほとんど見られなかった。   From FIG. 8, in the all-solid-state battery of Comparative Example 1 that does not have an insulating layer, the insulating layer is less than the case where the discharge capacity gradually decreases (the capacity retention rate decreases) by being left after charging. In the all-solid-state battery of Example 5 having, almost no reduction in discharge capacity (decrease in capacity maintenance rate) was observed.

図9より、正極と固体電解質層との間に絶縁層を設けた実施例7の全固体電池に比べ、実施例6のように、正極と固体電解質層との間、及び負極と固体電解質層との間に絶縁層を設けることで、容量維持率の低下をより防ぐことができることが確認できた。
なお、実施例7では、実施例5で作製した全固体電池を用いているが、図8と図9とで容量維持率の挙動が異なるのは、図8と図9とでは測定条件(放置時間)が異なるためである。
From FIG. 9, compared with the all-solid-state battery of Example 7 which provided the insulating layer between the positive electrode and the solid electrolyte layer, like Example 6, between a positive electrode and a solid electrolyte layer, and a negative electrode and a solid electrolyte layer It was confirmed that a decrease in capacity retention rate could be further prevented by providing an insulating layer between the two.
In Example 7, the all solid state battery produced in Example 5 was used. However, the behavior of the capacity retention rate in FIGS. 8 and 9 is different between FIGS. This is because the time is different.

(実施例8)
実施例3で作製した全固体電池の容量維持率(%)を実施例6と同様の評価方法で求めた。結果を図10に示した。
充電後の短時間の放置において容量維持率が50%程度まで低下したが、その後、容量維持率の低下の割合は大きく減少し、容量維持率は40%程度を維持した。
図9及び図10の結果を踏まえると、負極と固体電解質層との間に絶縁層を配する際には、絶縁層の平均厚みは薄い(例えば、0.5nm〜2nm)方が良いと考えられる。
(Example 8)
The capacity retention rate (%) of the all solid state battery produced in Example 3 was determined by the same evaluation method as in Example 6. The results are shown in FIG.
The capacity retention rate decreased to about 50% when left for a short time after charging, but thereafter, the rate of decrease in the capacity retention rate greatly decreased and the capacity retention rate was maintained at about 40%.
Based on the results of FIGS. 9 and 10, when an insulating layer is disposed between the negative electrode and the solid electrolyte layer, it is considered that the average thickness of the insulating layer is preferably thin (for example, 0.5 nm to 2 nm). It is done.

以上の実施形態に関し、更に以下の付記を開示する。
(付記1)
正極と、固体電解質で構成される固体電解質層と、負極とを有し、
更に、前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間の少なくともいずれかに、前記固体電解質とは異なる材質の絶縁材料からなる層を有する、
ことを特徴とする全固体電池。
(付記2)
前記絶縁材料が、無機材料である付記1に記載の全固体電池。
(付記3)
前記固体電解質層と前記負極との間に、前記絶縁材料からなる層を有する付記1又は2に記載の全固体電池。
(付記4)
前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間に、前記絶縁材料からなる層を有する付記1から3のいずれかに記載の全固体電池。
(付記5)
前記絶縁材料が、LiNbO及びAlのいずれかである付記1から4のいずれかに記載の全固体電池。
(付記6)
前記固体電解質が、LiAl(P(POである付記1から5のいずれかに記載の全固体電池。
(付記7)
前記正極が、正極集電体と、正極活物質とを含有し、
前記正極活物質が、LiFePOである、
付記1から6のいずれかに記載の全固体電池。
Regarding the above embodiment, the following additional notes are disclosed.
(Appendix 1)
Having a positive electrode, a solid electrolyte layer composed of a solid electrolyte, and a negative electrode;
Furthermore, at least one of the positive electrode and the solid electrolyte layer and between the solid electrolyte layer and the negative electrode has a layer made of an insulating material different from the solid electrolyte,
An all-solid-state battery.
(Appendix 2)
The all-solid-state battery according to appendix 1, wherein the insulating material is an inorganic material.
(Appendix 3)
The all-solid-state battery of Additional remark 1 or 2 which has a layer which consists of the said insulating material between the said solid electrolyte layer and the said negative electrode.
(Appendix 4)
The all-solid-state battery according to any one of appendices 1 to 3, further including a layer made of the insulating material between the positive electrode and the solid electrolyte layer and between the solid electrolyte layer and the negative electrode.
(Appendix 5)
The all-solid-state battery according to any one of supplementary notes 1 to 4, wherein the insulating material is any one of LiNbO 3 and Al 2 O 3 .
(Appendix 6)
The all-solid-state battery according to any one of appendices 1 to 5, wherein the solid electrolyte is Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 .
(Appendix 7)
The positive electrode contains a positive electrode current collector and a positive electrode active material;
The positive electrode active material is LiFePO 4 ;
The all-solid battery according to any one of appendices 1 to 6.

1 正極
2 負極
3 固体電解質層
4A 正極側絶縁層
4B 負極側絶縁層
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Solid electrolyte layer 4A Positive electrode side insulating layer 4B Negative electrode side insulating layer

Claims (7)

正極と、固体電解質で構成される固体電解質層と、負極とを有し、
更に、前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間の少なくともいずれかに、前記固体電解質とは異なる材質の絶縁材料からなる層を有する、
ことを特徴とする全固体電池。
Having a positive electrode, a solid electrolyte layer composed of a solid electrolyte, and a negative electrode;
Furthermore, at least one of the positive electrode and the solid electrolyte layer and between the solid electrolyte layer and the negative electrode has a layer made of an insulating material different from the solid electrolyte,
An all-solid-state battery.
前記絶縁材料が、無機材料である請求項1に記載の全固体電池。   The all-solid-state battery according to claim 1, wherein the insulating material is an inorganic material. 前記固体電解質層と前記負極との間に、前記絶縁材料からなる層を有する請求項1又は2に記載の全固体電池。   The all-solid-state battery of Claim 1 or 2 which has a layer which consists of the said insulating material between the said solid electrolyte layer and the said negative electrode. 前記正極と前記固体電解質層との間、及び前記固体電解質層と前記負極との間に、前記絶縁材料からなる層を有する請求項1から3のいずれかに記載の全固体電池。   The all-solid-state battery in any one of Claim 1 to 3 which has a layer which consists of the said insulating material between the said positive electrode and the said solid electrolyte layer, and between the said solid electrolyte layer and the said negative electrode. 前記絶縁材料が、LiNbO及びAlのいずれかである請求項1から4のいずれかに記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the insulating material is any one of LiNbO 3 and Al 2 O 3 . 前記固体電解質が、LiAl(P(POである請求項1から5のいずれかに記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the solid electrolyte is Li 9 Al 3 (P 2 O 7 ) 3 (PO 4 ) 2 . 前記正極が、正極集電体と、正極活物質とを含有し、
前記正極活物質が、LiFePOである、
請求項1から6のいずれかに記載の全固体電池。
The positive electrode contains a positive electrode current collector and a positive electrode active material;
The positive electrode active material is LiFePO 4 ;
The all-solid-state battery in any one of Claim 1 to 6.
JP2016021177A 2016-02-05 2016-02-05 All solid state battery Active JP6697155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021177A JP6697155B2 (en) 2016-02-05 2016-02-05 All solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021177A JP6697155B2 (en) 2016-02-05 2016-02-05 All solid state battery

Publications (2)

Publication Number Publication Date
JP2017139199A true JP2017139199A (en) 2017-08-10
JP6697155B2 JP6697155B2 (en) 2020-05-20

Family

ID=59566083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021177A Active JP6697155B2 (en) 2016-02-05 2016-02-05 All solid state battery

Country Status (1)

Country Link
JP (1) JP6697155B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195101A1 (en) 2019-03-25 2020-10-01 パナソニックIpマネジメント株式会社 Power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218178A (en) * 2007-03-02 2008-09-18 Sumitomo Electric Ind Ltd Lithium ion cell
JP2011192414A (en) * 2010-03-12 2011-09-29 Sumitomo Electric Ind Ltd Method of manufacturing nonaqueous electrolyte battery
JP2015079702A (en) * 2013-10-18 2015-04-23 日本特殊陶業株式会社 Lithium ion conductive ceramics material, method for manufacturing the same, and lithium ion battery
JP2015153507A (en) * 2014-02-12 2015-08-24 富士通株式会社 All solid state battery
WO2016069749A1 (en) * 2014-10-28 2016-05-06 University Of Maryland, College Park Interfacial layers for solid-state batteries methods of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218178A (en) * 2007-03-02 2008-09-18 Sumitomo Electric Ind Ltd Lithium ion cell
JP2011192414A (en) * 2010-03-12 2011-09-29 Sumitomo Electric Ind Ltd Method of manufacturing nonaqueous electrolyte battery
JP2015079702A (en) * 2013-10-18 2015-04-23 日本特殊陶業株式会社 Lithium ion conductive ceramics material, method for manufacturing the same, and lithium ion battery
JP2015153507A (en) * 2014-02-12 2015-08-24 富士通株式会社 All solid state battery
WO2016069749A1 (en) * 2014-10-28 2016-05-06 University Of Maryland, College Park Interfacial layers for solid-state batteries methods of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195101A1 (en) 2019-03-25 2020-10-01 パナソニックIpマネジメント株式会社 Power storage device

Also Published As

Publication number Publication date
JP6697155B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6748344B2 (en) All solid state battery
JP6885309B2 (en) Series stacked all-solid-state battery
JP6187069B2 (en) Lithium battery
JP5348607B2 (en) All-solid lithium secondary battery
US9614224B2 (en) Cathode active material for lithium battery, lithium battery, and method for producing cathode active material for lithium battery
JP2020516029A (en) System and method for forming a simple lithium metal anode interface with a solid electrolyte
KR20130076810A (en) Positive electrode body for nonaqueous electrolyte battery, method for producing same, and nonaqueous electrolyte battery
JP2012014892A (en) Nonaqueous electrolyte battery
JP2015069848A (en) All-solid-state battery
WO2011043267A1 (en) Non-aqueous electrolyte cell
Haruta et al. Oxygen-content dependence of cycle performance and morphology changes in amorphous-SiOx thin-film negative electrodes for lithium-ion batteries
JP6331282B2 (en) Solid electrolyte composite, all solid-state ion battery, and method for producing solid electrolyte composite
JP2017157394A (en) All-solid battery
JP6748348B2 (en) All solid state battery
JP2012054151A (en) Solid electrolyte battery
JP6730584B2 (en) All-solid-state battery and method of manufacturing all-solid-state battery
US20110070503A1 (en) Solid Electrolyte, Fabrication Method Thereof and Thin Film Battery Comprising the Same
JP2013044701A (en) Battery system
JP2011113735A (en) Nonaqueous electrolyte battery
JP6856868B2 (en) All-solid-state battery, its manufacturing method, and bonding material
JP6697155B2 (en) All solid state battery
JP3254066B2 (en) Non-aqueous or solid electrolyte secondary battery
US10505185B2 (en) Solid electrolyte and all-solid-state battery
JP6958462B2 (en) Sulfide all-solid-state battery
JP7025308B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6697155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150