JP2017102408A - Fine particle arrangement film and antireflection film - Google Patents

Fine particle arrangement film and antireflection film Download PDF

Info

Publication number
JP2017102408A
JP2017102408A JP2015237939A JP2015237939A JP2017102408A JP 2017102408 A JP2017102408 A JP 2017102408A JP 2015237939 A JP2015237939 A JP 2015237939A JP 2015237939 A JP2015237939 A JP 2015237939A JP 2017102408 A JP2017102408 A JP 2017102408A
Authority
JP
Japan
Prior art keywords
fine particles
fine particle
fine
shape
array film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015237939A
Other languages
Japanese (ja)
Other versions
JP6710949B2 (en
Inventor
豪士 久野
Takeshi Kuno
豪士 久野
孝太 坂口
Kota Sakaguchi
孝太 坂口
早希 伊藤
Saki Ito
早希 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015237939A priority Critical patent/JP6710949B2/en
Publication of JP2017102408A publication Critical patent/JP2017102408A/en
Application granted granted Critical
Publication of JP6710949B2 publication Critical patent/JP6710949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fine particle arrangement film having a large ratio of projection height to projection width and having a uniform structure over a large area, and an antireflection film having an excellent light transmission performance in a visible light region, small light scattering in the visible light region and small coloring of reflected light.SOLUTION: The fine particle arrangement film has irregularities formed by arranging fine particles having shape anisotropy on a base material. The average ratio of major axes/minor axes of the fine particles is 1.3-5.0, and the average minor axis of the fine particles is 50-500 nm; the fine particles are fixed on the base material surface; fine particles of 60% or more out of the fine particles have 45° or more of an angle formed between a long axis and a base material tangent plane; and the arrangement of the fine particles in the base material in-plane direction is irregular.SELECTED DRAWING: Figure 1

Description

本発明は、形状異方性を有する微粒子を設けた微粒子配列膜及び微粒子配列膜を用いた反射防止膜に関する。   The present invention relates to a fine particle arrangement film provided with fine particles having shape anisotropy and an antireflection film using the fine particle arrangement film.

液晶ディスプレイなどの表示装置やカメラなどの光学装置において、外部からの光の反射光による視認性の低下を抑制するために、反射防止膜が利用されている。反射防止膜としては、気相プロセスで作成した誘電体多層膜の光学干渉又は基板上にコーティングした低屈折率材料の光学干渉により低反射率を実現したものが知られている。しかしながら、前者は蒸着等で製膜するために高コストであり、後者は反射防止性能が不十分であるという問題がある。また、波長により反射率の値が異なる為、反射光に発色を生じるという問題がある。他には、基板表面にμmオーダー程度の凹凸を設け、光の散乱により反射像をぼかすことで映り込みを防ぐ防眩フィルムも知られているが、反射そのものを低減するものではなく、高ヘーズであり、画像の鮮明性が低下するという問題がある。   In a display device such as a liquid crystal display and an optical device such as a camera, an antireflection film is used to suppress a decrease in visibility due to reflected light from the outside. As an antireflection film, a film which realizes a low reflectance by optical interference of a dielectric multilayer film produced by a vapor phase process or optical interference of a low refractive index material coated on a substrate is known. However, the former has a problem that the film is formed by vapor deposition or the like and is expensive, and the latter has an insufficient antireflection performance. In addition, since the reflectance value varies depending on the wavelength, there is a problem that the reflected light is colored. Other anti-glare films are also known, which have irregularities of the order of μm on the surface of the substrate and prevent reflections by blurring the reflected image by scattering of light. There is a problem that the sharpness of the image is lowered.

これらとは別の原理を利用した反射防止膜として、表面に蛾の目のような微細凹凸構造を形成し、反射率を低減する反射防止膜が提案されている。これは表面に設けた微細凹凸構造の空間占有率が空気界面から基材側にかけて連続的に変化し、実質的な屈折率が空気界面から基材側にかけて連続的に変化する屈折率傾斜構造が形成されていることで、反射界面が無くなり、反射が起こらなくなることを利用した反射防止膜である。この反射防止膜では、微細凹凸構造の凸部の高さが光の4分の1波長よりも十分大きく、また凸部の周期ピッチが光のおよそ2.5分の1波長よりも小さいことで、可視光領域(380〜780nm)の光に対し、光の散乱を生じずに、高い反射防止性が付与されている。   As an antireflection film using a principle different from these, an antireflection film has been proposed in which a fine concavo-convex structure such as a fringe is formed on the surface to reduce the reflectance. This is because the space occupancy of the fine uneven structure provided on the surface continuously changes from the air interface to the substrate side, and the refractive index gradient structure in which the substantial refractive index continuously changes from the air interface to the substrate side. By being formed, the antireflection film utilizes the fact that the reflection interface disappears and reflection does not occur. In this antireflection film, the height of the convex portion of the fine concavo-convex structure is sufficiently larger than a quarter wavelength of light, and the periodic pitch of the convex portion is smaller than about one-half wavelength of light. High reflection resistance is imparted to light in the visible light region (380 to 780 nm) without causing light scattering.

このような反射防止膜で利用された原理を用いて反射防止性を付与する方法が知られており、該方法を用いた反射防止物品が提案されている(例えば、特許文献1参照。)。特許文献1では、鋳型を利用するため、目的の構造に応じて高価な鋳型が必要であるという問題があり、生産性も低いという問題があった。また、鋳型を用いるために作製可能な微細凹凸構造の形状に制限があることに加え、大面積又は曲率を有する基材上への微細凹凸構造の形成が困難であるという問題があった。さらに、該方法では構造体の内部に周囲とは異なる成分を導入することは困難であり、複雑な屈折率傾斜構造を有する微細凹凸構造の形成が実質的に不可能であった。   A method of imparting antireflection properties using the principle utilized in such an antireflection film is known, and an antireflection article using the method has been proposed (for example, see Patent Document 1). In Patent Document 1, since a mold is used, there is a problem that an expensive mold is necessary according to a target structure, and there is a problem that productivity is low. Further, there is a problem that it is difficult to form a fine concavo-convex structure on a substrate having a large area or a curvature in addition to the limitation on the shape of the fine concavo-convex structure that can be produced because a mold is used. Furthermore, in this method, it is difficult to introduce a component different from the surroundings into the structure, and it is substantially impossible to form a fine concavo-convex structure having a complicated refractive index gradient structure.

一方、微細凹凸構造を有する反射防止膜を低コストかつ大面積で製造する方法として、微粒子を利用した方法が提案されている(例えば、特許文献2〜7及び非特許文献1〜3参照。)。   On the other hand, as a method for producing an antireflection film having a fine concavo-convex structure at a low cost and in a large area, methods using fine particles have been proposed (see, for example, Patent Documents 2 to 7 and Non-Patent Documents 1 to 3). .

しかしながら、特許文献2では、コロイド結晶膜を形成し、アクリル樹脂の一部をプラズマエッチングにより除去することで微細凹凸構造を作製する方法が開示されているが、可視光領域内の入射光に対して特定の波長の光の反射を強めるBragg反射を生じ、干渉色に似た発色が生じるという問題があった。また、球状の微粒子を用いるために凸部高さ/凸部幅の比(凸部高さは凸部の基材面外方向の最大長さ、凸部幅は凸部の基材面内方向の最大長さをそれぞれ示す)が1以下であり、膜の透明性を損なうことなく可視光領域の光に対する十分な反射防止性能を付与することはできないという問題があった。また、特許文献3では、特許文献2と同様の手法を採用しつつ、アモルファス構造となる微細凹凸構造体を作製する方法が提案されているが、該方法ではBragg反射による発色の問題は解決されるものの、凸部高さ/凸部幅の比が1よりも大きな微細凹凸構造を作製することが実質的に不可能であり、膜の透明性を損なうことなく可視光領域の光に対する十分な反射防止性能を付与することはできないという問題があった。   However, Patent Document 2 discloses a method of forming a fine concavo-convex structure by forming a colloidal crystal film and removing a part of the acrylic resin by plasma etching. Thus, there is a problem that Bragg reflection that enhances reflection of light of a specific wavelength is generated, and color development similar to interference color occurs. In addition, since spherical fine particles are used, the ratio of the height of the convex portion / the width of the convex portion (the height of the convex portion is the maximum length of the convex portion in the direction outside the substrate surface, and the convex portion width is the direction in the substrate surface of the convex portion. The maximum length of each of which is 1 or less, and there is a problem that sufficient antireflection performance for light in the visible light region cannot be imparted without impairing the transparency of the film. Further, Patent Document 3 proposes a method for producing a fine concavo-convex structure having an amorphous structure while adopting the same method as that of Patent Document 2, but this method solves the problem of coloring due to Bragg reflection. However, it is practically impossible to produce a fine concavo-convex structure in which the ratio of the convex part height / convex part width is larger than 1, and sufficient for the light in the visible light region without impairing the transparency of the film. There has been a problem that antireflection performance cannot be imparted.

特許文献4では、球状微粒子の表面電荷による基材上への粒子吸着を利用した微細凹凸構造体の形成方法が開示されているが、該方法により凹凸構造体を形成する場合も、凸部高さ/凸部幅の比が1以下となり、膜の透明性を損なうことなく、可視光領域の光に対する十分な反射防止性能を付与することはできないという問題があった。   Patent Document 4 discloses a method for forming a fine concavo-convex structure using particle adsorption on a substrate by the surface charge of spherical fine particles. There was a problem that the ratio of thickness / convex width was 1 or less, and sufficient antireflection performance for light in the visible light region could not be imparted without impairing the transparency of the film.

特許文献5では、基材上に第一の球状微粒子を付着させ、スタンパを用いて第一の球状微粒子と反対の電荷を第一の球状微粒子の上部のみに付与した後に、第ニの球状微粒子を第一の球状微粒子の表面上部のみに付着させる方法が開示されているが、該方法では、スタンパを用いる電荷付与工程が存在するために生産性が低く、また大面積のシートの製造は困難であるという問題があった。また、球状粒子の積層体であるために、積層された球状粒子間で屈折率変化の不連続部分を有し、反射防止性に有効な屈折率傾斜構造となっていないという問題があった。   In Patent Document 5, first spherical fine particles are attached on a base material, and after applying a charge opposite to that of the first spherical fine particles using a stamper only to the top of the first spherical fine particles, the second spherical fine particles are used. Is disclosed only on the upper surface of the first spherical fine particles. However, in this method, there is a charge imparting step using a stamper, so the productivity is low, and it is difficult to produce a large-area sheet. There was a problem of being. Moreover, since it is a laminated body of spherical particles, there is a problem that the refractive index gradient structure is not effective for antireflection because it has discontinuous portions of refractive index change between the laminated spherical particles.

非特許文献1では、形状異方性を有する微粒子(異形粒子)を用い、異形粒子を基材上に塗布することで異形粒子の長軸を基材面外方向へ配向させる方法が提案されているが、該方法では、大面積にわたって異形粒子を基材面外方向のみに配向させることは不可能であり、均一な微粒子配列膜を作製できないという問題があった。また、微粒子同士を密着させずに基材上へ配列させることはできないため、凸部高さ/凸部幅の大きな微細凹凸構造は作製できず、また微粒子が部分的にパッキングした構造の為、コロイド結晶のように反射光に発色を生じるという問題があった。さらには、該微粒子配列膜においては微粒子が基材表面に固定化されておらず、耐擦傷性に劣るという問題があった。   Non-Patent Document 1 proposes a method of orienting the long axis of irregularly shaped particles in the direction of the substrate surface by applying finely shaped particles (shaped particles) having shape anisotropy onto the substrate. However, this method has the problem that it is impossible to orient the irregularly shaped particles only in the direction outside the substrate surface over a large area, and a uniform fine particle array film cannot be produced. In addition, since the fine particles cannot be arranged on the base material without being in close contact with each other, it is impossible to produce a fine concavo-convex structure with a large convex portion height / convex portion width, and because the structure in which the fine particles are partially packed, There was a problem that the reflected light was colored like a colloidal crystal. Furthermore, in the fine particle array film, there is a problem that the fine particles are not immobilized on the surface of the base material and the scratch resistance is poor.

非特許文献2では、微粒子分散液に外部電場を印加することで異形粒子を配向させた微粒子配列膜の作製方法が開示されているが、該方法では外部電場を用いるうえ、2枚の基板で微粒子分散液を挟むことで生じる毛管力により微粒子を集積させているため、均質な大面積の構造体を作製することは困難であり、量産性にも劣るという問題があった。また、微粒子を単層で配列させた微粒子薄膜の作製は困難であるという問題があった。さらに、微粒子同士を密着させて基材上へ配列させるため、凸部高さ/凸部幅の比の大きな微粒子配列膜は作製できないという問題があった。   Non-Patent Document 2 discloses a method for producing a fine particle array film in which deformed particles are oriented by applying an external electric field to a fine particle dispersion. In this method, an external electric field is used and two substrates are used. Since the fine particles are accumulated by the capillary force generated by sandwiching the fine particle dispersion, it is difficult to produce a uniform large-area structure, and there is a problem that the mass productivity is inferior. In addition, there is a problem that it is difficult to produce a fine particle thin film in which fine particles are arranged in a single layer. Furthermore, since the fine particles are brought into close contact with each other and arranged on the substrate, there is a problem that a fine particle array film having a large ratio of the convex portion height / the convex portion width cannot be produced.

特許文献6では、異形粒子をポリマーバインダーに分散させ塗布せしめた光拡散フィルムの作製方法が開示されているが、該方法により得られる光拡散フィルムは、反射光を拡散させることが主目的であり、微細凹凸構造により光の反射自体を防ぐものではない。また、特許文献6には異形粒子を配向させる方法は示されておらず、凸部高さ/凸部幅の比の大きな微粒子配列膜の作製は実質的に不可能であった。   Patent Document 6 discloses a method for producing a light diffusion film in which irregularly shaped particles are dispersed and applied in a polymer binder. The main purpose of the light diffusion film obtained by this method is to diffuse reflected light. However, the reflection of light itself is not prevented by the fine uneven structure. Further, Patent Document 6 does not disclose a method for orienting irregularly shaped particles, and it has been substantially impossible to produce a fine particle array film having a large ratio of convex part height / convex part width.

特許文献7では、球状粒子が会合した二次粒子を用いた低反射コーティングの方法が開示されているが、該方法は二次粒子によってコーティング内部に空隙を設けることで低屈折率のコーティング層を形成し、光学干渉によって反射を防止するものであり、微細凹凸構造による反射防止効果が主な作用ではないため、反射防止性能は不十分であった。また、特許文献7には微細凹凸構造形成に必要な二次粒子の長軸を配向させる方法については何ら記載がなく、凸部高さ/凸部幅の比が1よりも大きな微細凹凸構造を作製することが実質的に不可能であるという問題があった。   In Patent Document 7, a method of low reflection coating using secondary particles in which spherical particles are associated is disclosed. In this method, a coating layer having a low refractive index is formed by providing voids inside the coating with secondary particles. The antireflection effect is insufficient because the antireflection effect by the fine concavo-convex structure is not the main function. Patent Document 7 does not describe any method for orienting the major axis of secondary particles necessary for forming a fine concavo-convex structure, and has a fine concavo-convex structure in which the ratio of the convex part height / convex part width is larger than 1. There was a problem that it was practically impossible to produce.

一方、異形粒子を用いた膜であって、異形粒子の長軸を基材面外方向に配向させたものとして、コーン型の異形粒子を配列させた膜が開示されている(例えば、非特許文献3参照。)。しかしながら、非特許文献3には、反射防止性に関する記載はなく、反射防止性の発現に最適な微粒子の粒径や形状については何ら示されていなかった。   On the other hand, a film in which cone-shaped irregularly shaped particles are arranged is disclosed as a film using irregularly shaped particles, in which the long axis of the irregularly shaped particles is oriented in the direction of the substrate surface (for example, non-patent) Reference 3). However, Non-Patent Document 3 does not describe the antireflection property, and does not show any particle size or shape of the fine particles that are optimal for the expression of the antireflection property.

特許文献8では、トナー用外添加材として非球状複合粒子が開示されているが、非球状複合粒子を配向させることに関する記載がないばかりか、非球状複合粒子を用いて光学薄膜を形成することについて、何らの記載がないものであった。   Patent Document 8 discloses non-spherical composite particles as an external additive for toner. However, there is no description regarding the orientation of non-spherical composite particles, and an optical thin film is formed using non-spherical composite particles. Was not described.

特開2008−209540号公報JP 2008-209540 A 特許4625014号公報Japanese Patent No. 4625014 特許5187495号公報Japanese Patent No. 5187495 特許4562894号公報Japanese Patent No. 4562894 特許4263683号公報Japanese Patent No. 4263683 特許5487530号公報Japanese Patent No. 5487530 特開WO2014/119267号公報Japanese Patent Application Publication No. WO2014 / 119267 特開2014−145035号公報Japanese Unexamined Patent Publication No. 2014-145035

J. AM. CHEM. SOC., 2010, 132, 5960−5961J. AM. CHEM. SOC., 2010, 132, 5960-5961 J. AM. CHEM. SOC., 2011, 5, 6695−6700J. AM. CHEM. SOC., 2011, 5, 6695-6700 MACROMOLECULES, 2015, 48, 700−706MACROMOLECULES, 2015, 48, 700-706

本発明は上記課題に鑑みてなされたものであり、その目的は、凸部高さ/凸部幅の比が大きく、大面積にわたって均一構造を有する微粒子配列膜を提供することにある。本発明の目的はまた、該微粒子配列膜を用いることで、可視光領域の光の透過性能に優れ、可視光域の光の散乱が少なく、反射光の発色の少なく、かつ、実用的な耐擦傷性を有する反射防止膜を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fine particle array film having a large ratio of convex part height / convex part width and having a uniform structure over a large area. Another object of the present invention is to use the fine particle array film so that the light transmission performance in the visible light region is excellent, the light scattering in the visible light region is small, the color of reflected light is small, and the practical resistance is reduced. An object is to provide an antireflection film having scratching properties.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、形状異方性を有する微粒子を基材表面上に固定化させた微粒子配列膜によって上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above problem can be solved by a fine particle array film in which fine particles having shape anisotropy are immobilized on the surface of a substrate. It came to complete.

すなわち、本発明は、形状異方性を有する微粒子を基材上に配列させることで凹凸が形成された微粒子配列膜であって、前記微粒子の長径/短径の比の平均は1.3〜5.0であり、微粒子の平均短径は50〜500nmであり、前記微粒子は基材表面に固定化されており、前記微粒子のうち、60%以上の微粒子は長軸と基材接平面とのなす角度が45°以上であり、前記微粒子の基材面内方向の配列が不規則配列であることを特徴とする微粒子配列膜に関するものである。   That is, the present invention is a fine particle arrangement film in which irregularities are formed by arranging fine particles having shape anisotropy on a substrate, and the average of the ratio of the major axis / minor axis of the fine particles is 1.3 to 5.0, the average minor axis of the fine particles is 50 to 500 nm, the fine particles are immobilized on the surface of the substrate, and 60% or more of the fine particles have a major axis and a substrate tangential plane. And the arrangement of the fine particles in the substrate surface direction is an irregular arrangement.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において微粒子配列膜とは、微粒子が単粒子層又は多粒子層で基材上に配列した膜を示す。   In the present invention, the fine particle arrangement film refers to a film in which fine particles are arranged on a substrate in a single particle layer or a multi-particle layer.

本発明の微粒子配列膜は、形状異方性を有する微粒子(異形粒子)を用いることを特徴とする。本発明において、「形状異方性を有する」とは、形状が、球以外の形状かつ正多面体以外の形状であることをいう。本発明において、微粒子が形状異方性を有する粒子であることにより、凸部高さ/凸部幅の比の大きな凹凸構造が形成される。   The fine particle array film of the present invention is characterized by using fine particles having shape anisotropy (deformed particles). In the present invention, “having shape anisotropy” means that the shape is a shape other than a sphere and a shape other than a regular polyhedron. In the present invention, when the fine particles are particles having shape anisotropy, a concavo-convex structure having a large ratio of convex part height / convex part width is formed.

本発明において、微粒子の長径/短径の比(以後、「粒子アスペクト比」という)の平均は1.3〜5.0である。粒子アスペクト比がこの範囲にあることで、実用上必要な微粒子配列膜の強度を損なうことなく、高い反射防止性を付与することができる。粒子アスペクト比が1.3よりも小さい場合、得られる凹凸構造の平均凸部高さ/微粒子の平均短径の比(以後、「平均凸部アスペクト比」という)が小さく、十分な反射防止性能が得られない。粒子アスペクト比が5.0よりも大きな場合、微粒子配列膜の強度が低く、得られる凹凸構造は耐擦傷性に劣るものとなる。   In the present invention, the average of the major axis / minor axis ratio (hereinafter referred to as “particle aspect ratio”) of the fine particles is 1.3 to 5.0. When the particle aspect ratio is in this range, high antireflection properties can be imparted without impairing the strength of the fine particle array film that is practically required. When the particle aspect ratio is smaller than 1.3, the ratio of the average convex part height / average minor axis diameter of the concavo-convex structure is small (hereinafter referred to as “average convex part aspect ratio”), and sufficient antireflection performance Cannot be obtained. When the particle aspect ratio is larger than 5.0, the strength of the fine particle array film is low, and the resulting concavo-convex structure is inferior in scratch resistance.

ここで本発明において、微粒子の長径とは、形状異方性を有する粒子の最大粒径を示すものをいい、長径方向の軸を長軸という。本発明において、微粒子の長径は、例えば、図1(E)における長さlである。また、本発明において、微粒子の短径とは、前記長軸に垂直な方向の最大粒径を示すものをいい、短径方向の軸を短軸という。本発明において、微粒子の短径は、例えば、図1(E)における長さsである。長径及び短径は透過型電子顕微鏡写真又は走査型電子顕微鏡写真上でこれらの長さを測定することで算出できる。   Here, in the present invention, the major axis of the fine particles refers to the one showing the maximum particle diameter of particles having shape anisotropy, and the axis in the major axis direction is called the major axis. In the present invention, the long diameter of the fine particles is, for example, the length 1 in FIG. Further, in the present invention, the minor axis of the fine particles means that which shows the maximum particle diameter in the direction perpendicular to the major axis, and the axis in the minor axis direction is called the minor axis. In the present invention, the short diameter of the fine particles is, for example, the length s in FIG. The major axis and minor axis can be calculated by measuring these lengths on a transmission electron micrograph or scanning electron micrograph.

本発明において、「平均短径」及び「平均長径」とは、無作為に選んだ50点以上の微粒子について長径及び短径を測定し、それぞれ平均して得られる長さをいう。また、本発明において、「平均粒子アスペクト比」とは、無作為に選んだ50点以上の微粒子について粒子アスペクト比を測定し、平均して得られるアスペクト比をいう。   In the present invention, “average minor axis” and “average major axis” mean lengths obtained by measuring the major axis and minor axis of 50 or more randomly selected fine particles and averaging them. In the present invention, the “average particle aspect ratio” refers to an aspect ratio obtained by measuring and averaging the particle aspect ratio of 50 or more randomly selected fine particles.

本発明の微粒子配列膜の作製に用いる微粒子の平均短径は50〜500nmであり、透明性に特に優れる反射防止膜を作製できることから、平均短径50〜300nmであることが好ましく、50〜200nmであることがさらに好ましく、50〜150nmであることが特に好ましい。微粒子の平均短径が50nm以上であることで、反射防止性の発現に必要な凸部高さを得ることができ、かつ、耐擦傷性の高い微粒子配列膜が得ることができる。また、微粒子の平均短径が500nm以下であることで、光の散乱が抑制された微粒子配列膜を得ることができる。   The average minor axis of the fine particles used for the production of the fine particle array film of the present invention is 50 to 500 nm, and since an antireflection film having particularly excellent transparency can be produced, the average minor axis is preferably 50 to 300 nm, preferably 50 to 200 nm. Is more preferable, and it is especially preferable that it is 50-150 nm. When the average minor axis of the fine particles is 50 nm or more, it is possible to obtain the height of convex portions necessary for the expression of antireflection properties and to obtain a fine particle array film having high scratch resistance. Moreover, when the average minor axis of the fine particles is 500 nm or less, a fine particle array film in which light scattering is suppressed can be obtained.

本発明において、微粒子は基材表面に固定化されている。本発明において、微粒子が「固定化されている」とは、基材表面と微粒子とを化学反応により結合させる手段、基材表面と微粒子とを融着させる手段、微粒子の一部を溶解及び基材表面で固化させる手段、微粒子表面に高分子薄膜を形成する手段、基材表面に粘着層を形成し前記微粒子を粘着層上に粘着させる手段、のいずれかの手段により、微粒子と基材が結び付けられていることをいう。本発明において、微粒子が基材表面上で固定化されていることにより、微粒子配列膜の強度を高めることができ、耐擦傷性に優れるものとなる。ここで、本発明において基材表面とは、ガラス、樹脂フィルム等の用いる基材そのものの表面を指し示す他、前処理として前記基材表面にハードコート層やアンカーコート層、高分子電解質層等のコート層が形成されている場合を含み、この場合の基材表面とはコート層付き基材の最表面を示す。なお、本発明では、微粒子と基材表面とは、ある一定の面積の接触部(以後、「微粒子接触部」という)を有し、該微粒子接触部において微粒子と基材表面との間に接着力が生じることで固定化が生じているものである。   In the present invention, the fine particles are immobilized on the substrate surface. In the present invention, the fine particles are “immobilized” means that the surface of the substrate and the fine particles are bonded by a chemical reaction, the means of fusing the surface of the substrate and the fine particles, a part of the fine particles are dissolved and The fine particles and the base material are bonded by any one of means for solidifying on the material surface, means for forming a polymer thin film on the surface of the fine particles, and means for forming an adhesive layer on the surface of the base material and sticking the fine particles on the adhesive layer. It means being connected. In the present invention, the fine particles are immobilized on the surface of the substrate, whereby the strength of the fine particle array film can be increased and the scratch resistance is excellent. Here, in the present invention, the surface of the substrate refers to the surface of the substrate itself to be used, such as glass or a resin film, and as a pretreatment, a hard coat layer, an anchor coat layer, a polymer electrolyte layer, etc. Including the case where the coat layer is formed, the substrate surface in this case indicates the outermost surface of the substrate with the coat layer. In the present invention, the fine particles and the substrate surface have a contact area of a certain area (hereinafter referred to as “fine particle contact portion”), and the fine particle and the substrate surface are bonded between the fine particle and the substrate surface. Immobilization is caused by the generation of force.

本発明において、全微粒子のうち、60%以上の微粒子は長軸と基材接平面とのなす角度が45°以上である。ここで、本発明において、「基材接平面」とは、基材表面において、微粒子接触部の中心点における接平面をいう(基材表面が水平面と平行であるとき、該長軸と基材面内方向とのなす角度が長軸と基材接平面とのなす角度となる。)。本発明において、微粒子の長軸と基材接平面とのなす角度が45°以上となる微粒子の割合が60%よりも低い場合、形成される凹凸構造の平均凸部アスペクト比が低く、十分な反射防止性能が得られない。また、前記割合が60%よりも低い場合、膜の透明性を損なう原因となる。本発明において、微粒子の長軸と基材接平面とのなす角度が45°以上となる微粒子の割合が70%以上であることが好ましい。   In the present invention, of the total fine particles, 60% or more of the fine particles have an angle formed by the major axis and the substrate tangent plane of 45 ° or more. Here, in the present invention, the “substrate tangent plane” means a tangent plane at the center point of the fine particle contact portion on the substrate surface (when the substrate surface is parallel to the horizontal plane, the major axis and the substrate The angle formed with the in-plane direction is the angle formed between the major axis and the substrate tangent plane.) In the present invention, when the ratio of the fine particles in which the angle between the long axis of the fine particles and the substrate tangent plane is 45 ° or more is lower than 60%, the average convex portion aspect ratio of the concavo-convex structure to be formed is sufficiently low. Antireflection performance is not obtained. Moreover, when the said ratio is lower than 60%, it becomes a cause which impairs the transparency of a film | membrane. In the present invention, it is preferable that the proportion of the fine particles at which the angle formed between the long axis of the fine particles and the substrate tangent plane is 45 ° or more is 70% or more.

本発明において、微粒子の長軸と基材接平面とのなす角度が90°に近いほど、より高い平均凸部アスペクト比を得ることができ、反射防止性に優れる微粒子配列膜となるため、微粒子の長軸と基材接平面とのなす角度が60°以上となる微粒子の割合が60%以上であることがさらに好ましく、75°以上となる微粒子の割合が60%以上であることが特に好ましい。   In the present invention, as the angle formed between the long axis of the fine particles and the substrate tangent plane is closer to 90 °, a higher average convex portion aspect ratio can be obtained, and the fine particle arrangement film having excellent antireflection properties can be obtained. It is more preferable that the ratio of the fine particles at which the angle between the major axis and the substrate tangent plane is 60 ° or more is 60% or more, and it is particularly preferable that the ratio of the fine particles at 75 ° or more is 60% or more. .

ここで、微粒子の長軸と基材接平面とのなす角度は、具体的には、例えば、図2(B)におけるθである。そして、本発明において、微粒子の長軸と基材接平面とのなす角度は、基材上に配列する該微粒子の長軸を含む面に対して垂直方向から微粒子配列膜断面の電子顕微鏡写真を測定し、該微粒子の長軸と基材接平面がなす角度を求めることで測定可能である。基材接平面に対し微粒子の長軸がなす角度がθ°以上の微粒子の割合は、無作為に選んだ20点以上の粒子について基材接平面に対し微粒子の長軸がなす角度を求め、その角度がθ°以上となる微粒子の割合を求めることで算出できる。   Here, the angle formed between the long axis of the fine particles and the substrate tangent plane is specifically θ in FIG. 2B, for example. In the present invention, the angle formed between the long axis of the fine particles and the plane tangent to the substrate is an electron micrograph of the cross section of the fine particle array film from the direction perpendicular to the plane including the long axes of the fine particles arranged on the substrate. It can be measured by measuring and determining the angle formed by the major axis of the fine particles and the substrate tangent plane. The ratio of the fine particles whose angle formed by the long axis of the fine particles with respect to the substrate tangent plane is θ ° or more is the angle formed by the long axis of the fine particles with respect to the substrate tangent plane for randomly selected 20 or more particles. It can be calculated by obtaining the proportion of fine particles whose angle is θ ° or more.

また、微粒子の形状が後述するダルマ形状の場合には、微粒子の長軸と基材接平面とのなす角度がθ°以上の微粒子の割合を、以下の方法を用いても算出することができる。透過型電子顕微鏡像において測定した微粒子の平均長径を2A、基材表面から各微粒子頂点までの基材面外方向の高さを、微粒子配列膜断面の走査型電子顕微鏡像又は微粒子配列膜表面の原子間力顕微鏡像において測定し、その高さをHとしたとき、A×(1+sinθ°)以上のHを有する微粒子の割合を算出する。無作為に選んだ50点以上の粒子について、この割合を算出することで、微粒子の長軸と基材接平面とのなす角度がθ°以上の微粒子の割合を算出することができる。   In addition, when the shape of the fine particles is a Dalma shape described later, the ratio of the fine particles having an angle between the major axis of the fine particles and the substrate tangent plane of θ ° or more can also be calculated using the following method. . The average major axis of the fine particles measured in the transmission electron microscope image is 2A, the height from the substrate surface to the vertex of each fine particle in the direction outside the substrate surface is the scanning electron microscope image of the fine particle arrangement film cross section or the fine particle arrangement film surface. When measured with an atomic force microscope image and the height is H, the ratio of fine particles having H of A × (1 + sin θ °) or more is calculated. By calculating this ratio for 50 or more randomly selected particles, it is possible to calculate the ratio of fine particles whose angle between the long axis of the fine particles and the substrate tangent plane is θ ° or more.

本発明において、微粒子の基材面内方向の配列は不規則配列である。基材面内方向の微粒子の配列に規則性を持たないことで、ブラッグ反射による光の干渉色の発現を防ぐことができ、本発明の微粒子配列膜を反射防止膜に用いた場合に、反射光に発色を生じない反射防止膜となる。微粒子の基材面内方向の配列が不規則配列であることは、微粒子配列膜表面の原子間力顕微鏡像又は走査型電子顕微鏡像を測定し、それらの像をフーリエ変換したフーリエ変換像における輝点の有無により判断することができる。フーリエ変換により、元画像の濃淡を正弦波の重ね合わせで近似した場合の、各正弦波の波数に対するパワー(輝度の絶対値の二乗)を表す二次元像に変換することができ、元画像の濃淡に規則性がある場合、各正弦波に対応する輝点がフーリエ変換像に現れる。例えば、粒子が六方格子状に規則配列している場合、その形状像の濃淡は3つの正弦波の重ね合わせで表すことができ、60°の角度で6つの輝点が現れる。粒子が六方格子状に規則配列している場合、45°の角度で4つの輝点がフーリエ変換像に現れる。フーリエ変換像において輝点が存在しない場合、微粒子の基材面内方向の配列は不規則配列である。   In the present invention, the arrangement of the fine particles in the substrate in-plane direction is an irregular arrangement. Since there is no regularity in the arrangement of the fine particles in the substrate in-plane direction, it is possible to prevent the occurrence of light interference color due to Bragg reflection, and when the fine particle arrangement film of the present invention is used as an antireflection film, It becomes an antireflection film that does not develop color in light. The irregular arrangement of the fine particles in the substrate surface direction means that the atomic force microscope image or the scanning electron microscope image on the fine particle array film surface is measured and the Fourier transform image obtained by Fourier transforming these images is a bright image. This can be determined by the presence or absence of points. By the Fourier transform, the original image can be converted into a two-dimensional image representing the power (the square of the absolute value of the luminance) for the wave number of each sine wave when the density of the original image is approximated by superimposing sine waves. When the density is regular, a bright spot corresponding to each sine wave appears in the Fourier transform image. For example, when the particles are regularly arranged in a hexagonal lattice shape, the shade of the shape image can be represented by superposition of three sine waves, and six bright spots appear at an angle of 60 °. When the particles are regularly arranged in a hexagonal lattice shape, four bright spots appear in the Fourier transform image at an angle of 45 °. When no bright spot exists in the Fourier transform image, the arrangement of the fine particles in the substrate in-plane direction is an irregular arrangement.

本発明において、微粒子の10%以上は他の微粒子と基材面内方向に互いに接触することなく独立して存在していることが好ましく、30%以上が独立して存在していることがさらに好ましく、50%以上が特に好ましく、70%以上が最も好ましい。ここで微粒子が他の微粒子と基材面内方向に互いに接触することなく独立して存在しているとは、微粒子配列膜が多粒子層の場合、同一層内の微粒子が互いに非接触であることを示す。最表面の微粒子が独立して存在することで、凹凸構造の平均凸部アスペクト比を大きくすることができる。また、空気側を微粒子頂部、基材側を微粒子底部としたとき、同一層内の微粒子が互いに非接触であることで、微粒子頂部から微粒子底部にかけて屈折率傾斜構造を形成するのに好適となり、反射防止性能により優れた膜となる。また、一部の微粒子同士が密着した凝集体を少なくすることで、光の散乱による膜の透明性の低下を抑制することができ、好ましい。独立して存在する微粒子の割合は、基材上に配列する微粒子の表面の電子顕微鏡写真上で無作為に選んだ50点以上の粒子についてこの該非を判定することで、算出することができる。   In the present invention, 10% or more of the fine particles are preferably present independently from each other in the in-plane direction of the other fine particles, and more preferably 30% or more are present independently. Preferably, 50% or more is particularly preferable, and 70% or more is most preferable. Here, the fine particles exist independently of other fine particles in the in-plane direction of the substrate without contacting each other when the fine particle arrangement film is a multi-particle layer, the fine particles in the same layer are not in contact with each other. It shows that. By having the outermost surface fine particles independently, the average convex aspect ratio of the concavo-convex structure can be increased. Further, when the air side is the fine particle top and the base material side is the fine particle bottom, the fine particles in the same layer are not in contact with each other, which is suitable for forming a refractive index gradient structure from the fine particle top to the fine particle bottom. It becomes a film excellent in antireflection performance. In addition, it is preferable to reduce the aggregate in which some of the fine particles are in close contact with each other, whereby a decrease in transparency of the film due to light scattering can be suppressed. The proportion of the fine particles present independently can be calculated by determining this non-existence for 50 or more particles randomly selected on the electron micrograph of the surface of the fine particles arranged on the substrate.

本発明で用いる微粒子の形状は、以下の(1)形状又は(2)形状から選択される形状に1〜3個の球状突出部を設けた形状であることが好ましい。
(1)球(図1(A))
(2)球表面に該球の半径以下の高さの突起を備えた形状(図1(B))
また、本発明で用いる微粒子の形状は、平均凸部アスペクト比のより高い凹凸構造を形成することができるため、微粒子の形状が前記(1)形状又は(2)形状に1〜2個の球状突出部を設けた形状であることがさらに好ましい。
The shape of the fine particles used in the present invention is preferably a shape in which 1 to 3 spherical protrusions are provided in a shape selected from the following (1) shape or (2) shape.
(1) Sphere (Fig. 1 (A))
(2) A shape having protrusions with a height less than the radius of the sphere on the sphere surface (FIG. 1 (B))
Moreover, since the shape of the fine particles used in the present invention can form a concavo-convex structure having a higher average convex portion aspect ratio, the shape of the fine particles is 1 to 2 in the shape (1) or (2). More preferably, the shape is provided with a protruding portion.

本発明において、前記(1)形状又は(2)形状に球状突出部を1個設けた形状を「ダルマ形状」と呼ぶ。   In the present invention, a shape in which one spherical protrusion is provided in the shape (1) or (2) is referred to as a “dharma shape”.

また、本発明において、微粒子の形状が前記(1)形状又は(2)形状に2個の球状突出部を設けた形状である場合、球状突出部の中心と前記(1)形状又は(2)形状の中心を結ぶ二直線のなす角度(図1(G)におけるφ)が90°以上となるように球状突出部を設けた形状であることが特に好ましい。   In the present invention, when the shape of the fine particles is the shape (2) having two spherical protrusions in the shape (1) or (2), the center of the spherical protrusion and the shape (1) or (2) A shape in which a spherical protrusion is provided so that an angle formed by two straight lines connecting the centers of the shapes (φ in FIG. 1G) is 90 ° or more is particularly preferable.

また、本発明で用いる微粒子の形状は、以下の(3)形状又は(4)形状から選択される形状であることが好ましい。
(3)球状突出部を有しない楕円体(図1(C))
(4)球状突出部を有しない弾丸形状(球状突出部なし)(図1(D))
また、本発明で用いる微粒子の形状は、前記(3)形状又は(4)形状から選択される形状に1個の球状突出部を設けた形状であることが好ましい。
Moreover, it is preferable that the shape of the fine particles used in the present invention is a shape selected from the following (3) shape or (4) shape.
(3) Ellipsoid without spherical protrusions (FIG. 1C)
(4) Bullet shape without spherical protrusion (without spherical protrusion) (FIG. 1 (D))
Moreover, it is preferable that the shape of the fine particles used in the present invention is a shape in which one spherical protrusion is provided in the shape selected from the shape (3) or the shape (4).

ここで球状突出部とは、図1(E)に示すように、前記(1)形状〜(4)形状に球状突出部が一点で結合した場合、球形状を指す他、図1(F)に示すように、前記(1)形状〜(4)形状が球に埋没するような形で球状突出部が存在する場合、球から前記(1)形状〜(4)形状の埋没部分を切り取った残りの部位のことを示す。また、弾丸形状とは、図1(D)に示すように、円柱又は円錐台の一端の平面に、該平面と同径の円平面を有する欠球を、前記平面同士を合わせるように結合した形状を示す。なお、前記突起と前記球状突出部とは、前者が球表面に存在するものであって、該球の半径以下の高さであるものであり、かつ、非球状の形状であるのに対し、後者が球状である点で、相違する。   Here, as shown in FIG. 1 (E), the spherical protruding portion refers to a spherical shape when the spherical protruding portion is joined to the shapes (1) to (4) at a single point, as well as FIG. 1 (F). As shown in Fig. 2, when the spherical protrusions exist such that the shapes (1) to (4) are buried in the sphere, the buried portions of the shapes (1) to (4) were cut from the sphere. The remaining part is shown. In addition, as shown in FIG. 1 (D), the bullet shape is formed by joining a flat surface of one end of a cylinder or a truncated cone with a missing sphere having a circular plane having the same diameter as the plane so that the planes are aligned with each other. Show shape. The protrusions and the spherical protrusions are those in which the former is present on the surface of the sphere and has a height equal to or less than the radius of the sphere, and a non-spherical shape. The latter is different in that it is spherical.

本発明において、粒子の形状が前記のように球状突出部を有する形状であることで、長軸の長さが同じ針状等の微粒子と比較して、基材と微粒子の長軸がなす角度が同じ場合に、より高い凸部高さとすることが可能であり、凹凸構造の形成にとって好ましいものとなる。   In the present invention, the shape of the particle is a shape having a spherical protrusion as described above, so that the angle formed by the major axis of the base material and the fine particle is larger than that of the fine particle such as a needle having the same long axis. Are the same, it is possible to make the height of the convex portion higher, which is preferable for the formation of the concavo-convex structure.

本発明において、粒子の形状が球状突出部をもつ形状、球状突出部を有しない楕円体、又は球状突出部を有しない弾丸形状であるとき、(1)形状〜(4)形状と球状突出部の結合点以外の部分において、基材面内方向の微粒子の空間占有率が連続的に変化した屈折率傾斜構造がより形成され易くなるため、微粒子配列膜を反射防止膜に用いた場合に、より反射防止性に優れる膜となり、好ましいものとなる。   In the present invention, when the shape of the particles is a shape having a spherical protrusion, an ellipsoid having no spherical protrusion, or a bullet shape having no spherical protrusion, (1) shape to (4) shape and the spherical protrusion Since the refractive index gradient structure in which the space occupancy of the fine particles in the in-plane direction of the base material is continuously changed is more easily formed in the portion other than the bonding point, when the fine particle array film is used as an antireflection film, It becomes a film | membrane which is more excellent in antireflection property, and becomes preferable.

前記球状突出部は、図1(F)に示すように、前記(1)形状〜(4)形状と面で接触するように設けられていることが好ましい。球状突出部と各形状が面接触した形状の微粒子を用いることにより、基材面内方向の微粒子の空間占有率が空気界面から基材側にかけて連続的に変化し、実質的な屈折率が空気界面から基材側にかけて連続的に変化する屈折率傾斜構造がより形成され易くなるため、微粒子配列膜を反射防止膜に用いた場合に、より反射防止性に優れる膜となる。   As shown in FIG. 1 (F), the spherical protrusion is preferably provided so as to be in contact with the shapes (1) to (4). By using fine particles whose shape is in surface contact with the spherical protrusion, the space occupancy of the fine particles in the in-plane direction of the base material changes continuously from the air interface to the base material side, and the substantial refractive index is air. Since a refractive index gradient structure that continuously changes from the interface to the substrate side is more easily formed, when the fine particle array film is used as an antireflection film, the film has a better antireflection property.

前記球状突出部はまた、前記球状突出部の直径Dと前記(1)形状〜(4)形状のいずれかの形状の短径Rとの比D/Rが0.1〜5.0であることが好ましく、0.3〜1.0であることがさらに好ましい。D/Rが前記範囲にあることで、微粒子配列膜の平均凸部アスペクト比をより高くすることができ、より反射防止性に優れる微粒子配列膜となる。ここで、球状突出部の直径Dとは、微粒子の透過型電子顕微鏡像において測定した球状突出部の粒径(球状突出部の長径)であり、球状突出部が埋没するような形で存在する場合、球状突出部内の最大径である。また、(1)形状〜(4)形状のいずれかの形状の短径Rとは、(1)形状又は(2)形状に関しては球の直径又は球状突出部を除いた球の直径を示し、(3)又は(4)形状に関しては形状内の長軸に垂直な方向の最大径である。   The spherical protrusion has a ratio D / R of 0.1 to 5.0 between the diameter D of the spherical protrusion and the short diameter R of any one of the shapes (1) to (4). It is preferable that it is 0.3-1.0. When the D / R is in the above range, the average convex aspect ratio of the fine particle array film can be further increased, and the fine particle array film is more excellent in antireflection. Here, the diameter D of the spherical protrusion is a particle diameter of the spherical protrusion (long diameter of the spherical protrusion) measured in the transmission electron microscope image of the fine particle, and exists in such a shape that the spherical protrusion is buried. In this case, it is the maximum diameter in the spherical protrusion. In addition, the short diameter R of any one of the shapes (1) to (4) indicates the diameter of the sphere or the diameter of the sphere excluding the spherical protrusion with respect to the (1) shape or (2) shape, Regarding (3) or (4) shape, it is the maximum diameter in the direction perpendicular to the long axis in the shape.

本発明において、最近接する微粒子間の平均距離が、微粒子の平均長径の3倍以下の距離であることが好ましく、微粒子の平均長径の2倍以下であることがさらに好ましく、微粒子の平均長径以下であることが特に好ましい。また、最近接する微粒子間の平均距離が、微粒子の平均長径の3倍以下かつ微粒子の平均短径の1.05倍以上であることが好ましい。最近接する微粒子間の平均距離が前記範囲内にあることで、反射防止性能を向上させることができ、また可視光領域の光の散乱をより抑制することができる。ここで、微粒子間の距離とは、基材上に配列した各微粒子の頂点間の基材面内方向の距離であり、最近接する微粒子とは、任意の微粒子について前記微粒子間の距離が最小となる粒子を示す。本発明において、最近接する微粒子間の平均距離は、微粒子配列膜表面の走査型電子顕微鏡写真上で無作為に選んだ50点以上の粒子について微粒子間の距離を測定し、平均することで算出できる。   In the present invention, the average distance between the closest adjacent fine particles is preferably a distance of 3 times or less of the average long diameter of the fine particles, more preferably 2 times or less of the average long diameter of the fine particles, and below the average long diameter of the fine particles. It is particularly preferred. Moreover, it is preferable that the average distance between the closest fine particles is 3 times or less the average major axis of the fine particles and 1.05 times or more the average minor axis of the fine particles. When the average distance between the closest particles is within the above range, the antireflection performance can be improved, and the scattering of light in the visible light region can be further suppressed. Here, the distance between the fine particles is the distance in the direction of the substrate surface between the vertices of the fine particles arranged on the substrate, and the closest particle is the smallest distance between the fine particles for any fine particle. Is shown. In the present invention, the average distance between the closest particles can be calculated by measuring and averaging the distance between particles of 50 or more particles randomly selected on the scanning electron micrograph on the surface of the particle array film. .

本発明において、微粒子によって形成される凹凸構造の平均凸部アスペクト比(平均凸部高さ/微粒子の平均短径の比)が1.1〜5.0であることが好ましい。平均凸部アスペクト比を1.1以上とすることで、より高い反射防止性能を付与することができる。また、平均凸部アスペクト比を5.0以下とすることで、微粒子配列膜の強度をより高め、耐擦傷性を向上させることができる。本発明において、凸部高さとは、凸部と、該凸部に隣接する凹部との基材面外方向の距離を示し、例えば、図2(A)におけるab間の基材面外方向の距離dである。凸部高さは微粒子配列膜表面の原子間力顕微鏡像を測定し、隣接する凹部から凸部頂点までの基材面外方向の距離を測定することで算出可能である。また、無作為に選んだ50点以上の凸部について凸部高さを測定し、平均することで平均凸部高さが得られる。   In the present invention, it is preferable that the average convex portion aspect ratio (ratio of average convex portion height / average minor axis of fine particles) of the concavo-convex structure formed by fine particles is 1.1 to 5.0. By setting the average convex portion aspect ratio to 1.1 or more, higher antireflection performance can be imparted. Further, by setting the average convex portion aspect ratio to 5.0 or less, the strength of the fine particle array film can be further increased, and the scratch resistance can be improved. In the present invention, the height of the convex portion refers to the distance in the direction outside the substrate surface between the convex portion and the concave portion adjacent to the convex portion, for example, in the direction outside the substrate surface between ab in FIG. Distance d. The height of the convex portion can be calculated by measuring an atomic force microscope image on the surface of the fine particle array film and measuring the distance in the direction outside the substrate surface from the adjacent concave portion to the vertex of the convex portion. Further, the average height of the convex portions can be obtained by measuring and averaging the height of the convex portions of 50 or more randomly selected convex portions.

本発明において、微粒子の凝集体は光の散乱を生じる原因となり、微粒子配列膜の透明性を損なうため、前記凸部は1個の微粒子によって形成されていることが好ましい。   In the present invention, since the aggregate of fine particles causes light scattering and impairs the transparency of the fine particle array film, the convex portion is preferably formed of a single fine particle.

本発明において、微粒子が基材の面外方向に単粒子層で配列していることが好ましい。微粒子層が単粒子層であることにより、微粒子層を透過する際の光の散乱を最小限に抑えることができ、微粒子配列膜を反射防止膜に用いた場合に、反射防止膜の透明性を高めることができる。   In the present invention, the fine particles are preferably arranged in a single particle layer in the out-of-plane direction of the substrate. Since the fine particle layer is a single particle layer, light scattering when passing through the fine particle layer can be minimized, and when the fine particle array film is used as an antireflection film, the transparency of the antireflection film is improved. Can be increased.

本発明において、微粒子配列膜の耐擦傷性を高めるのに好適であるため、微粒子がポリマー成分により基材上に固定化されていることが好ましく、微粒子に含まれるポリマー成分の融着により基材上に固定化されていることがさらに好ましい。ポリマー成分により微粒子が基材上に固定化されていることで、実用上十分な強度を微粒子配列膜に付与することができ、得られる微粒子配列膜は耐擦傷性に優れるものとなる。また、微粒子配列膜に含まれる微粒子同士の凝集を防ぐことができる。   In the present invention, since it is suitable for improving the scratch resistance of the fine particle array film, the fine particles are preferably fixed on the base material by the polymer component, and the base material is fused by fusing the polymer component contained in the fine particles. More preferably, it is immobilized on the top. Since the fine particles are immobilized on the base material by the polymer component, a practically sufficient strength can be imparted to the fine particle array film, and the resulting fine particle array film has excellent scratch resistance. Moreover, aggregation of the fine particles contained in the fine particle array film can be prevented.

前記の微粒子の基材上への融着のための加熱方法としては如何なる方法も利用可能であるが、例えば、熱風乾燥、遠赤外線乾燥、UV乾燥等を挙げることができる。融着温度としては微粒子の表層成分のガラス転移温度以上の温度であり、微粒子の形状を維持しつつも微粒子を基材表面に強固に融着させ、微粒子配列膜の耐擦傷性を高めるのに好適であるため、ガラス転移温度〜ガラス転移温度+100℃の範囲が好ましい。   Any method can be used as the heating method for fusing the fine particles onto the substrate, and examples thereof include hot air drying, far-infrared drying, and UV drying. The fusing temperature is equal to or higher than the glass transition temperature of the surface layer component of the fine particles, and the fine particles are firmly fused to the substrate surface while maintaining the shape of the fine particles, thereby improving the scratch resistance of the fine particle array film. Since it is suitable, the range of glass transition temperature-glass transition temperature +100 degreeC is preferable.

本発明において、凹凸構造は、基材と微粒子間、及び、微粒子の狭隘部を埋めるようにテーパーが形成された凹凸構造となっていることが好ましい。ここで、テーパーとは、先細りになるように勾配のついた形状のことを示す。本発明において、基材面から基材面外方向へ向けて先細りになるようなテーパーが形成されていることにより、屈折率傾斜構造が反射防止性の発現により好適なものとなり好ましい。特に、凸部頂点から基材面へかけて、構造体の空間占有率が単調増加するような形状であることが好ましい。本発明において、テーパーを有する微粒子配列膜断面は、具体的には例えば、図2(C)である。   In the present invention, the concavo-convex structure is preferably a concavo-convex structure in which a taper is formed so as to fill a narrow portion of the fine particles between the base material and the fine particles. Here, the taper indicates a shape having a gradient so as to be tapered. In the present invention, since the taper is formed so as to taper from the substrate surface toward the outside of the substrate surface, the refractive index gradient structure is more preferable for the expression of antireflection properties. In particular, the shape is preferably such that the space occupancy of the structure monotonously increases from the top of the convex portion to the base material surface. In the present invention, the cross section of the fine particle array film having a taper is specifically, for example, as shown in FIG.

前記テーパーの形成方法としては特に制限はない。前記テーパーの形成方法が微粒子の融解、硬化性樹脂の塗布及び硬化、樹脂の塗布又は吸着、のいずれかから選択されるとき、微粒子配列膜の量産性を損なうことなくテーパーを形成可能である。   There is no restriction | limiting in particular as a formation method of the said taper. When the taper forming method is selected from melting of fine particles, application and curing of a curable resin, and application or adsorption of a resin, the taper can be formed without impairing mass productivity of the fine particle array film.

前記のテーパー形成のための微粒子の融解方法としては、例えば、熱風乾燥、遠赤外線乾燥、UV乾燥等を挙げることができる。融解温度としては、微粒子の形状を維持しつつも微粒子の一部を融解させ、テーパーを形成するのに好適であるため、微粒子の表層成分のガラス転移温度〜融点の範囲で5秒〜60分の融解時間をかけることが好ましい。   Examples of the method for melting fine particles for forming the taper include hot air drying, far-infrared drying, and UV drying. The melting temperature is suitable for melting a part of the fine particles and forming a taper while maintaining the shape of the fine particles, so that it is 5 seconds to 60 minutes in the range of the glass transition temperature to the melting point of the surface layer component of the fine particles. It is preferable to take a melting time of

前記のテーパー形成のための硬化性樹脂の塗布及び硬化に用いる硬化性樹脂としては、例えば、(メタ)アクリレート、トリメチロールプロパンエトキシトリアクリレート、ペンタエリスリトールエトキシテトラアクリレート、トリメチロールプロパンプロポキシトリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、エトキシ化フェニルアクリレート等の多官能(メタ)アクリレート等が挙げられる。単独で用いても、複数の種類の樹脂を組み合わせた混合物を用いても良い。必要に応じて、メトキシポリプロピレングリコールアクリレート、エトキシポリエチレングリコールアクリレート、ポリエチレングリコールアクリレート、ポリプロピレングリコールアクリレート等の単官能アクリレートを混合しても良い。また、必要に応じてその一部を光開始剤、酸化防止剤、重合禁止剤、レベリング剤、シランカップリング剤等の添加剤で置換しても良い。   Examples of the curable resin used for application and curing of the curable resin for taper formation include (meth) acrylate, trimethylolpropane ethoxytriacrylate, pentaerythritol ethoxytetraacrylate, trimethylolpropane propoxytriacrylate, and penta. Examples thereof include polyfunctional (meth) acrylates such as erythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, tricyclodecane dimethanol diacrylate, and ethoxylated phenyl acrylate. Even if it uses independently, the mixture which combined multiple types of resin may be used. If necessary, monofunctional acrylates such as methoxypolypropylene glycol acrylate, ethoxypolyethylene glycol acrylate, polyethylene glycol acrylate, and polypropylene glycol acrylate may be mixed. If necessary, a part thereof may be substituted with additives such as a photoinitiator, an antioxidant, a polymerization inhibitor, a leveling agent, and a silane coupling agent.

前記の光開始剤としては、例えば、ベンゾフェノン、ベンジル、ミヒラーケトン、チオキサントン、アントラキノン等の水素引き抜きによってラジカルを発生するタイプの化合物;ベンゾイン、ジアルコキシアセトフェノン、アシルオキシムエステル、ベンジルケタール、ヒドロキシアルキルフェノン、ハロゲノケトン等の分子内***によってラジカルを発生するタイプの化合物等が挙げられる。市販品としては、IRUGACURE184、IRUGACURE651、IRUGACURE500、IRUGACURE907、DAROCUR1116、DAROCUR1173(BASF社製)等を挙げることができる。また、硬化を促進するためにメチルアミン、ジエタノールアミン、N−メチルジエタノールアミン、トリブチルアミン等の三級アミン等を併用しても良い。   Examples of the photoinitiator include benzophenone, benzyl, Michler ketone, thioxanthone, anthraquinone and the like compounds that generate radicals by hydrogen abstraction; benzoin, dialkoxyacetophenone, acyloxime ester, benzyl ketal, hydroxyalkylphenone, halogeno Examples include compounds that generate radicals by intramolecular splitting such as ketones. Examples of commercially available products include IRUGACURE184, IRUGACURE651, IRUGACURE500, IRUGACURE907, DAROCUR1116, DAROCUR1173 (manufactured by BASF). In order to accelerate curing, tertiary amines such as methylamine, diethanolamine, N-methyldiethanolamine and tributylamine may be used in combination.

前記のテーパー形成のための樹脂の塗布又は吸着に用いる樹脂としては、例えば、前記硬化性樹脂の重合体が挙げられる他、ポリエチレンイミンおよびその4級化物、ポリジアリルジメチルアンモニウムクロライド、ポリ(N,N’−ジメチル−3,5−ジメチレン−ピペリジニウムクロライド)ポリアリルアミンおよびその4級化物、ポリジメチルアミノエチル(メタ)アクリレートおよびその4 級化物、ポリジメチルアミノプロピル(メタ)アクリルアミドおよびその4級化物、ポリジメチル(メタ)アクリルアミドおよびその4 級化物、ポリ(メタ)アクリル酸およびそのイオン化物、ポリスチレンスルホン酸ナトリウム、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)、ポリアミック酸、ポリビニルスルホン酸カリウム等の高分子電解質が挙げられる。   Examples of the resin used for the application or adsorption of the resin for forming the taper include a polymer of the curable resin, polyethyleneimine and a quaternized product thereof, polydiallyldimethylammonium chloride, poly (N, N′-dimethyl-3,5-dimethylene-piperidinium chloride) polyallylamine and its quaternary product, polydimethylaminoethyl (meth) acrylate and its quaternary product, polydimethylaminopropyl (meth) acrylamide and its quaternary product , Polydimethyl (meth) acrylamide and its quaternized product, poly (meth) acrylic acid and its ionized product, sodium polystyrene sulfonate, poly (2-acrylamido-2-methyl-1-propanesulfonic acid), polyamic acid, Polyvinylsulfone Polyelectrolytes such as potassium can be mentioned.

本発明で用いる微粒子は、微粒子配列膜の耐擦傷性を高めるのに好適であるため、微粒子表面がポリマーにより被覆されたものであることが好ましく、微粒子を構成する成分が全てポリマーであってもよい。前記ポリマーの種類に特に制限はないが、基材としてポリエチレンテレフタレート、トリアセチルセルロースフィルム等を用いた場合に、微粒子と基材との屈折率差を小さくでき、屈折率傾斜構造の形成により好適であることから、芳香族ビニル系単量体単位又は極性官能基含有単量体単位を含む重合体であることが好ましく、芳香族ビニル系単量体単位を60〜98質量%含む重合体であることがさらに好ましい。   Since the fine particles used in the present invention are suitable for enhancing the scratch resistance of the fine particle array film, the surface of the fine particles is preferably coated with a polymer, and even if all the components constituting the fine particles are polymers. Good. The type of the polymer is not particularly limited, but when a polyethylene terephthalate, triacetyl cellulose film or the like is used as the base material, the difference in refractive index between the fine particles and the base material can be reduced, which is more preferable for forming a refractive index gradient structure. Therefore, a polymer containing an aromatic vinyl monomer unit or a polar functional group-containing monomer unit is preferable, and a polymer containing 60 to 98% by mass of an aromatic vinyl monomer unit. More preferably.

前記芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、p−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、4−エチルスチレン、4−tert−ブチルスチレン、3,4−ジメチルスチレン、4−メトキシスチレン、4−エトキシスチレン、2−クロロスチレン、3−クロロスチレン、4−クロロスチレン、2,4−ジクロロスチレン、2,6−ジクロロスチレン、4−クロロ−3−メチルスチレン、ジビニルベンゼン、1−ビニルナフタレン、2−ビニルピリジン、4−ビニルピリジン、p−スチレンスルホン酸ナトリウム等を挙げることができる。前記極性官能基含有単量体としては、コア粒子を形成する(メタ)アクリレート系単量体の他、クロトン酸、ケイ皮酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル、へキサヒドロフタル酸モノ−2−(メタ)アクリロイルオキシエチル等のカルボキシル基含有不飽和単量体、及びその無水物類;N−メチロール(メタ)アクリルアミド、N,N−ジメチロール(メタ)アクリルアミド等のN−メチロール化不飽和カルボン酸アミド類;2−ジメチルアミノエチルアクリルアミド等のアミノアルキル基含有アクリルアミド類;(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N,N−エチレンビス(メタ)アクリルアミド、マレイン酸アミド、マレイミド等の不飽和カルボン酸のアミド類又はイミド類;N−メチルアクリルアミド、N,N−ジメチルアクリルアミド等のN−モノアルキル(メタ)アクリルアミド、N,N−ジアルキルアクリルアミド類;2−ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル基含有(メタ)アクリレート類;2−(ジメチルアミノエトキシ)エチル(メタ)アクリレート、等のアミノアルコキシアルキル基含有(メタ)アクリレート類;塩化ビニル、塩化ビニリデン、脂肪酸ビニルエステル等のハロゲン化ビニル化合物類;1,3−ブタジエン、2−メチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン等の共役ジエン化合物類等が挙げられる。   Examples of the aromatic vinyl monomer include styrene, α-methyl styrene, vinyl toluene, p-methyl styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, 4-ethyl styrene, 4-tert- Butylstyrene, 3,4-dimethylstyrene, 4-methoxystyrene, 4-ethoxystyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 2,4-dichlorostyrene, 2,6-dichlorostyrene, 4 -Chloro-3-methylstyrene, divinylbenzene, 1-vinylnaphthalene, 2-vinylpyridine, 4-vinylpyridine, sodium p-styrenesulfonate, and the like. Examples of the polar functional group-containing monomer include (meth) acrylate monomers that form core particles, crotonic acid, cinnamic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride Carboxyl group-containing unsaturated monomers such as monomethyl maleate, monoethyl maleate, monomethyl itaconate, monoethyl itaconate, mono-2- (meth) acryloyloxyethyl hexahydrophthalate, and anhydrides thereof; N -N-methylolated unsaturated carboxylic acid amides such as methylol (meth) acrylamide, N, N-dimethylol (meth) acrylamide; aminoalkyl group-containing acrylamides such as 2-dimethylaminoethylacrylamide; (meth) acrylamide, N -Methoxymethyl (meth) acrylamide, N, N-ethylene Amides or imides of unsaturated carboxylic acids such as S (meth) acrylamide, maleic acid amide, maleimide; N-monoalkyl (meth) acrylamides such as N-methylacrylamide, N, N-dimethylacrylamide, N, N- Dialkylacrylamides; aminoalkyl group-containing (meth) acrylates such as 2-dimethylaminoethyl (meth) acrylate; aminoalkoxyalkyl group-containing (meth) acrylates such as 2- (dimethylaminoethoxy) ethyl (meth) acrylate Halogenated vinyl compounds such as vinyl chloride, vinylidene chloride and fatty acid vinyl ester; 1,3-butadiene, 2-methyl-1,3-butadiene, 2-chloro-1,3-butadiene, 2,3-dimethyl- Conjugated diene compounds such as 1,3-butadiene And the like.

本発明で用いる微粒子はまた、微粒子の内部にコア粒子として、スチレン系単量体単位又はアクリレート系単量体単位若しくはメタアクリレート系単量体単位を含む重合体粒子、又はシリカ粒子を有していてもよい。コア粒子の形状と成分を選択することにより微粒子内部に屈折率傾斜構造を付与し、反射防止性の発現により好適な屈折率傾斜構造を形成可能である。コア粒子の形状としてはいかなる形状でもよいが、球状や楕円体等、コア粒子の存在により屈折率の連続変化性を損なわないものが好ましく、さらに好ましくは球状、又は微粒子の長軸方向に配向した楕円体のコア粒子である。   The fine particles used in the present invention also have polymer particles containing styrene monomer units, acrylate monomer units or methacrylate monomer units, or silica particles as core particles inside the fine particles. May be. By selecting the shape and components of the core particles, it is possible to impart a refractive index gradient structure inside the fine particles, and to form a suitable refractive index gradient structure by exhibiting antireflection properties. The shape of the core particle may be any shape, but it is preferably a spherical shape or an ellipsoid which does not impair the continuous change in refractive index due to the presence of the core particle, and more preferably spherical or oriented in the major axis direction of the fine particles. It is an ellipsoidal core particle.

前記のスチレン系単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、p−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、4−エチルスチレン、4−tert−ブチルスチレン、3,4−ジメチルスチレン、4−メトキシスチレン、4−エトキシスチレン、2−クロロスチレン、3−クロロスチレン、4−クロロスチレン、2,4−ジクロロスチレン、2,6−ジクロロスチレン、4−クロロ−3−メチルスチレン、ジビニルベンゼン、p−スチレンスルホン酸ナトリウム等を挙げることができる。   Examples of the styrene monomer include styrene, α-methylstyrene, vinyltoluene, p-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, and 4-tert-butyl. Styrene, 3,4-dimethylstyrene, 4-methoxystyrene, 4-ethoxystyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 2,4-dichlorostyrene, 2,6-dichlorostyrene, 4- Examples include chloro-3-methylstyrene, divinylbenzene, sodium p-styrenesulfonate, and the like.

前記のアクリレート系単量体若しくはメタアクリレート系単量体としては、(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−へキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(シクロ)アルキル(メタ)アクリレート類; 2−メトキシエチル(メタ)アクリレート、p−メトキシシクロヘキシル(メタ)アクリレート等のアルコキシ(シクロ)アルキル(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート等の多価(メタ)アクレート類;酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル等のビニルエステル類;2−シアノエチル(メタ)アクリレート、2−シアノプロピル(メタ)アクリレート、3−シアノプロピル(メタ)アクリレート等のシアノアクリレート類;ヒドロキシメチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、4−ヒドロキシシクロヘキシル(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、 3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、3−アミノ−2−ヒドロキシプロピル(メタ)アクリレート等の置換ヒドロキシ(メタ)アクリレート類;グリシジル(メタ)アクリレート、メチルグリシジルメチルアクリレート、エポキシ化シクロヘキシル(メタ)アクリレートグリシジル基含有アクリレート類;トリメチロールプロパンエトキシトリアクリレート、ペンタエリスリトールエトキシテトラアクリレート、トリメチロールプロパンプロポキシトリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、エトキシ化フェニルアクリレート等の多官能(メタ)アクリレート類等の(メタ)アクリレートを単量体単位とする重合体粒子が挙げられる。また、前記アクリレートは架橋したものであってもよい。   Examples of the acrylate monomer or methacrylate monomer include (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-hexyl (meth) acrylate, 2 -(Cyclo) alkyl (meth) acrylates such as ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate; alkoxy (cyclo) alkyl such as 2-methoxyethyl (meth) acrylate and p-methoxycyclohexyl (meth) acrylate (meta ) Acrylates; polyvalent (meth) acrylates such as trimethylolpropane tri (meth) acrylate; vinyl esters such as vinyl acetate, vinyl propionate and vinyl versatate; 2-cyanoethyl (meth) acrylate, 2-silane Cyanoacrylates such as anopropyl (meth) acrylate and 3-cyanopropyl (meth) acrylate; hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 4-hydroxycyclohexyl ( Substituted hydroxy (meth) acrylates such as (meth) acrylate, neopentyl glycol mono (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 3-amino-2-hydroxypropyl (meth) acrylate; glycidyl ( (Meth) acrylate, methyl glycidyl methyl acrylate, epoxidized cyclohexyl (meth) acrylate glycidyl group-containing acrylates; trimethylolpropane ethoxytriacrylate, Intererythritol ethoxytetraacrylate, trimethylolpropane propoxytriacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, tricyclodecane dimethanol diacrylate, ethoxylated phenyl Examples thereof include polymer particles having a monomer unit of (meth) acrylate such as polyfunctional (meth) acrylates such as acrylate. The acrylate may be cross-linked.

本発明で用いる微粒子は、シランカップリング剤等の無機表面改質剤を含んでいてもよい。前記シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3−ウレイドプロピルトリアルコキシシラン、3−メルカプトプロピルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン等が挙げられる。   The fine particles used in the present invention may contain an inorganic surface modifier such as a silane coupling agent. Examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and p-styryltrimethoxy. Silane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N- 2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, tris- (trimethoxysilylpropyl) isocyanurate , 3-ureidopropyltrialkoxysilane, 3-mercaptopropylmethyldimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, and the like.

本発明で用いる微粒子は、重合開始剤を含んでいてもよく、例えば、ペルオキソ二硫酸カリウム、過酸化水素、アゾビスイソブチロニトリル、過酸化ベンゾイル等が挙げられる。   The fine particles used in the present invention may contain a polymerization initiator, and examples thereof include potassium peroxodisulfate, hydrogen peroxide, azobisisobutyronitrile, and benzoyl peroxide.

本発明において、凹凸構造のばらつきを抑制するのにより好適であるため、微粒子配列膜の作製に用いる微粒子の粒径分布の指標である分散度(多分散指数)が10%以下であることが好ましく、8%以下がさらに好ましく、5%以下が特に好ましい。本発明において分散度は、動的光散乱法により測定し、キュムラント法により求めた多分散指数を分散度として用いる。   In the present invention, since it is more preferable to suppress variation in the uneven structure, it is preferable that the degree of dispersion (polydispersity index), which is an index of the particle size distribution of the fine particles used for producing the fine particle array film, is 10% or less. 8% or less is more preferable, and 5% or less is particularly preferable. In the present invention, the degree of dispersion is measured by a dynamic light scattering method, and the polydispersity index obtained by the cumulant method is used as the degree of dispersion.

本発明に用いる基材としては特に制限はなく、例えば、樹脂、ガラス、セラミックス等が挙げられ、形状的にはフィルム、シート、板の他、曲面を有する形状の構造物等如何なる形状の基材であっても用いることができる。   The substrate used in the present invention is not particularly limited, and examples thereof include resins, glass, ceramics, etc., and the shape of the substrate is any shape such as a film, sheet, plate, or a structure having a curved surface. Can be used.

樹脂基材としては、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロース等のセルロース系樹脂;ポリエチレンテレフタレート等のポリエステル樹脂;ポリカーボネート樹脂;ポリメタクリル酸メチル等のアクリル系樹脂;ポリウレタン系樹脂;ポリエーテル樹脂;ポリスルホン樹脂;ポリエーテルサルホン;ポリエーテルケトン等が挙げられる。   Examples of resin base materials include cellulose resins such as triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose; polyester resins such as polyethylene terephthalate; polycarbonate resins; acrylic resins such as polymethyl methacrylate; polyurethane resins; Polysulfone resin; polyether sulfone; polyether ketone and the like.

前記の基材の表面には耐擦傷性や密着性等を高めるため、ハードコート層やアンカーコート層、高分子電解質層等のコート層を形成してあっても良く、密着性や塗工性等を高めるため、UVオゾン洗浄、プラズマ処理、コロナ処理等の表面処理を施してあっても良い。   In order to enhance the scratch resistance, adhesion, etc. on the surface of the substrate, a coat layer such as a hard coat layer, an anchor coat layer, or a polymer electrolyte layer may be formed. In order to improve the above, surface treatment such as UV ozone cleaning, plasma treatment, and corona treatment may be performed.

本発明の微粒子配列膜は、反射防止膜として用いることができる。本発明の微粒子配列膜を反射防止膜として用いる場合、光の損失が少なく透過性能及びエネルギー効率に優れた反射防止膜を得るのにより好適であるため、可視光域の全範囲の波長において透過率が92%以上であることが好ましく、93%以上であることがさらに好ましく、94%以上であることが特に好ましい。   The fine particle array film of the present invention can be used as an antireflection film. When the fine particle array film of the present invention is used as an antireflection film, it is more preferable to obtain an antireflection film with low light loss and excellent transmission performance and energy efficiency. Is preferably 92% or more, more preferably 93% or more, and particularly preferably 94% or more.

本発明の微粒子配列膜を反射防止膜として用いる場合、透明性の高い反射防止膜を得るためにより好適であることから、次式で求められるΔHの値が1.2%以下であることが好ましく、0.6%以下であることがさらに好ましい。ここで、ΔHとは、JIS−K−7136におけるヘーズ(%)、全光線透過率(%)を用いて、ΔH(%)=(片面に微粒子配列膜を形成した基材のヘーズ(%)×片面に微粒子配列膜を形成した基材の全光線透過率(%)/100)−(基材のヘーズ(%)×基材の全光線透過率(%)/100)で定義される値である。   When the fine particle array film of the present invention is used as an antireflection film, it is more preferable to obtain a highly transparent antireflection film. Therefore, it is preferable that the value of ΔH obtained by the following formula is 1.2% or less. More preferably, it is 0.6% or less. Here, ΔH means haze (%) in JIS-K-7136, total light transmittance (%), ΔH (%) = (haze of base material on which fine particle array film is formed (%) X Total light transmittance (%) / 100 of substrate having fine particle array film formed on one side-value defined by (haze of substrate (%) x total light transmittance of substrate (%) / 100) It is.

本発明の微粒子配列膜を反射防止膜として用いる場合、視感反射率の抑制により好適であることから、波長580nmの光の反射率が2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましく、0.5%以下であることが特に好ましい。   When the fine particle array film of the present invention is used as an antireflection film, the reflectance of light having a wavelength of 580 nm is preferably 2% or less, and is preferably 1.5% or less because it is more suitable for suppressing luminous reflectance. More preferably, it is more preferably 1% or less, and particularly preferably 0.5% or less.

本発明の微粒子配列膜を反射防止膜として用いる場合、反射光の発色の抑制により好適であることから、波長380nmの光の反射率をR(380)(%)、波長580nmの光の反射率をR(580)(%)、波長780nmの光の反射率をR(780)(%)とし、さらにこれらの反射率の差の絶対値を、ΔR1(%)=|R(380)−R(580)|、ΔR2(%)=|R(580)−R(780)|、ΔR3(%)=|R(380)−R(780)|としたとき、ΔR1、ΔR2、ΔR3がそれぞれ1%以下であることが好ましく、0.8%以下であることがさらに好ましく、0.5%以下であることが特に好ましく、0.3%以下であることが最も好ましい。   When the fine particle array film of the present invention is used as an antireflection film, it is preferable to suppress the color development of reflected light. Therefore, the reflectance of light having a wavelength of 380 nm is R (380) (%), and the reflectance of light having a wavelength of 580 nm is used. Is R (580) (%), the reflectance of light having a wavelength of 780 nm is R (780) (%), and the absolute value of the difference between these reflectances is ΔR1 (%) = | R (380) −R (580) |, ΔR2 (%) = | R (580) −R (780) |, ΔR3 (%) = | R (380) −R (780) |, where ΔR1, ΔR2, and ΔR3 are each 1. % Or less, more preferably 0.8% or less, particularly preferably 0.5% or less, and most preferably 0.3% or less.

本発明の微粒子配列膜を用いた反射防止膜は、微粒子を配列させ形成することを特徴とすることから、高い生産性で大面積の反射防止膜を作製可能であることを特徴とする。   Since the antireflection film using the fine particle array film of the present invention is formed by arranging fine particles, the antireflection film having a large area can be produced with high productivity.

本発明の微粒子配列膜を反射防止膜として用いる場合には、該反射防止膜がない場合と比較して可視光域の光の散乱を増加させないことから、ディスプレイの視認性を損なうことなく、外光の映り込みを防止することができる。また、反射を防止した分だけ透過光量を向上させることが可能であることから、太陽電池の光取り込み効率の向上、及び有機ELの光取り出し効率の向上のために用いることができる。また、凹凸による回折構造の形成、内部構造への凹凸構造の形成により、有機ELにおける内部構造での全反射を抑制し、輝度の向上のために用いることができる。   When the fine particle array film of the present invention is used as an antireflection film, it does not increase the scattering of light in the visible light region as compared with the case without the antireflection film, so that the visibility of the display is not impaired. Reflection of light can be prevented. Further, since the amount of transmitted light can be improved by the amount of preventing reflection, it can be used for improving the light capturing efficiency of the solar cell and the light extracting efficiency of the organic EL. In addition, the formation of a diffractive structure by unevenness and the formation of an uneven structure on the internal structure can suppress total reflection at the internal structure in the organic EL, and can be used to improve luminance.

本発明の微粒子配列膜は、基材の撥水性又は親水性向上のために用いることができる。微粒子の表面成分として疎水性の成分を有する微粒子を用いることで高撥水性又は超撥水性を付与することができ、微粒子の表面成分として親水性の成分を有する微粒子を用いることで高親水性又は超親水性を付与することができる。前記疎水性成分としては例えば、ポリエチレン、ポリスチレン、パーフルオロエチレン、3−フルオロスチレン、4−フルオロスチレン、トリフルオロスチレン等が挙げられ、また前記親水性成分としてはシリカ、(メタ)アクリルポリマー等が挙げられる。   The fine particle array film of the present invention can be used for improving the water repellency or hydrophilicity of a substrate. High water repellency or super water repellency can be imparted by using fine particles having a hydrophobic component as the surface component of the fine particles, and high hydrophilicity or by using fine particles having a hydrophilic component as the surface component of the fine particles. Super hydrophilicity can be imparted. Examples of the hydrophobic component include polyethylene, polystyrene, perfluoroethylene, 3-fluorostyrene, 4-fluorostyrene, trifluorostyrene, and the hydrophilic component includes silica, (meth) acrylic polymer, and the like. Can be mentioned.

本発明の微粒子配列膜は、細胞培養基材として用いることができる。この場合、細胞の増殖を促すのに好適なため、微粒子の長径として500nm以上のものを用いることが好ましい。   The fine particle array film of the present invention can be used as a cell culture substrate. In this case, since it is suitable for promoting cell growth, it is preferable to use a fine particle having a major axis of 500 nm or more.

本発明によれば、平均凸部アスペクト比の大きな微粒子配列膜を提供することができる。また、本発明によれば、該微粒子配列膜を用いることで、可視光領域の光の透過性能に優れ、可視光域の光の散乱が少なく、反射光の発色の少ない反射防止膜を提供することができる。   According to the present invention, it is possible to provide a fine particle array film having a large average convex portion aspect ratio. Further, according to the present invention, by using the fine particle array film, an antireflection film having excellent light transmission performance in the visible light region, less light scattering in the visible light region, and less coloration of reflected light is provided. be able to.

以下、本発明を実施例及び比較例によってより具体的に説明するが、本発明はこれらに限定されるものではない。実施例及び比較例における微粒子の分散度、微粒子の形状、微粒子の長径及び短径、最近接する微粒子間の平均距離、微粒子配列膜の平均凸部高さ、基材接平面に対し45°の角度をなして配列する微粒子の割合、全光線透過率、ヘーズ値、各波長の反射率及び透過率の測定、膜の均一性及び干渉光の確認、耐擦傷性の確認は以下の方法により行った。
[微粒子の分散度測定]
微粒子の分散度は動的光散乱法(大塚電子社製ELSZ−1000ZS)により測定し、キュムラント法により多分散指数を算出した。測定には粒子濃度0.1wt%の水分散液を使用した。
[微粒子の形状、長径及び短径の測定]
微粒子の長径及び短径は透過型電子顕微鏡(日本電子社製JEM−2100F)を用い、微粒子分散液をコロジオン支持銅メッシュ上にキャスト乾燥したサンプルを測定した写真上で、微粒子の最大粒径を測定することで長径を算出し、また長径方向の軸を長軸とし、長軸に垂直な方向の最大長さを測定することで短径を算出した。また、無作為に選んだ50点の粒子の長径及び短径、粒子アスペクト比の平均を求め、平均長径、平均短径、平均粒子アスペクト比とした。
[最近接する微粒子間の距離の測定]
最近接する微粒子間の距離は、走査型電子顕微鏡(キーエンス社製VE−9800)を用いて微粒子配列膜表面を測定し、微粒子頂点間の基材面内方向の長さを測定することで求めた。また、無作為に選んだ50点の粒子について、最近接する微粒子との頂点間の基材面内方向の距離を求め平均することで、最近接する微粒子間の平均距離を算出した。
[微粒子配列膜の凸部高さの測定]
凸部高さは原子間力顕微鏡(日立ハイテクサイエンス社製AFM5100)を用い、微粒子配列膜表面像を測定し、隣接する凸部と凹部の高さの差を求めることで算出した。また、無作為に選んだ50点の粒子について凸部高さを測定し、平均することで平均凸部高さを算出した。
[長軸が基材と45°以上の角度をなして配列する微粒子の割合の算出]
基材接平面に対し長軸を45°の角度をなして配列する微粒子の割合は、ダルマ形状の場合には、原子間力顕微鏡(日立ハイテクサイエンス社製AFM5100)を用い、オリンパス社製カンチレバーOMCL−AC200TSを用いてダイナミックフォースモードで微粒子配列膜表面の形状像を測定し、隣接する凸部と凹部の高さの差を求めることで微粒子ごとに凸部高さを求め、凸部高さが微粒子の平均長径の(1+sin45°)/2以上となる粒子の割合を、無作為に選んだ50点の粒子について算出することで求めた。ただし、凸部高さが微粒子の平均長径の2倍以上のものに関しては、凝集物と判断し、割合算出の計算から除外した。また、微粒子にテーパー形状を形成させる場合、テーパー形成前の微粒子配列膜について割合を算出し、テーパー形成後の該割合もその値と同様とした。微粒子の形状がダルマ形状以外の場合には、走査型電子顕微鏡(キーエンス社製VE−9800)を用いて微粒子配列膜断面及び表面の走査型電子顕微鏡像を測定し、各微粒子の基材面外方向の高さ及び基材面内方向の長さを測定し、無作為に選んだ20点の粒子について基材面外方向の高さ/基材面内方向の長さの比がtan45°以上となる粒子の割合を求めることで算出した。
[独立して存在する微粒子の割合の算出]
独立して存在する微粒子の割合は、微粒子配列膜表面の走査型電子顕微鏡写真において、無作為に選んだ50点の粒子について、他の微粒子と非接触の微粒子の割合を求めることで算出した。
[全光線透過率、ヘーズの測定]
全光線透過率、ヘーズの測定は日本電色工業製NDH−5000を用いてJIS−K−7136に従い、基材となるガラス基板を含めて測定した。なお、用いたガラス基板の全光線透過率は92.0%、ヘーズ値は0.4%であった。求めた全光線透過率およびヘーズの値からΔHを求めた。
[反射率の測定]
反射率は分光光度計(日立ハイテクサイエンス社製U−4100)及び角度可変絶対反射付属装置を用い、入射角10°、波長380〜780nmにおける反射率を5nm間隔で測定した。反射率測定にあたっては裏面反射の影響を除くために、試料の裏面をマジックで黒く塗りつぶし、さらに裏面に黒色テープを貼り測定した。
[各波長における透過率の測定]
可視光域の各波長における透過率については、分光光度計(日立ハイテクサイエンス社製U−4100)を用い、入射角0°、波長380〜780nmにおける透過率を5nm間隔で測定した。
[膜の均一性及び干渉光の確認]
膜の均一性及び干渉光の有無は目視により確認し、以下のように評価した。
〇:膜の外観が均一であり、光干渉による発色を生じていない。
×:膜の外観が不均一である、または光干渉による発色を生じている。
[耐擦傷性の確認]
耐擦傷性は以下のように評価した。
〇:指で触れても膜が破壊されない。
×:指で触れることにより膜が破壊される。
[実施例1]
スターラーを備えたフラスコに固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)0.99g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシラン (信越化学社製KBM−503)を加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.2gのメチルメタアクリレート (MMA)を加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.27gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。
40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド(Mw=150000)溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記異形粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。基板上に3mLのエチレングリコールを滴下し、110℃で15分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention more concretely, this invention is not limited to these. Fine particle dispersity, fine particle shape, fine particle major and minor diameters, average distance between nearest neighboring fine particles, average convex portion height of fine particle array film, 45 ° angle with respect to substrate contact plane in Examples and Comparative Examples The ratio of fine particles arranged in the form of, the total light transmittance, the haze value, the reflectance and transmittance of each wavelength, the uniformity of the film and the interference light, and the scratch resistance were confirmed by the following methods. .
[Measurement of degree of dispersion of fine particles]
The degree of dispersion of the fine particles was measured by a dynamic light scattering method (ELSZ-1000ZS manufactured by Otsuka Electronics Co., Ltd.), and a polydispersity index was calculated by a cumulant method. For the measurement, an aqueous dispersion having a particle concentration of 0.1 wt% was used.
[Measurement of shape, major axis and minor axis of fine particles]
The major axis and minor axis of the fine particles are measured with a transmission electron microscope (JEM-2100F manufactured by JEOL Ltd.), and the maximum particle size of the fine particles is determined on a photograph of a sample obtained by casting and drying the fine particle dispersion on a collodion-supported copper mesh. The major axis was calculated by measurement, the major axis was taken as the major axis, and the minor axis was computed by measuring the maximum length in the direction perpendicular to the major axis. Moreover, the average of the major axis, minor axis, and particle aspect ratio of 50 randomly selected particles was determined and used as the average major axis, average minor axis, and average particle aspect ratio.
[Measurement of distance between closest particles]
The distance between the closest particles was determined by measuring the surface of the particle array film using a scanning electron microscope (VE-9800 manufactured by Keyence Corporation) and measuring the length in the substrate in-plane direction between the particle vertices. . Further, for 50 randomly selected particles, the average distance between the closest particles was calculated by calculating the distance in the in-plane direction between the apexes with the closest particles and averaging them.
[Measurement of convex height of fine particle array film]
The height of the convex portion was calculated by measuring the surface image of the fine particle array film using an atomic force microscope (AFM5100 manufactured by Hitachi High-Tech Science Co., Ltd.) and obtaining the difference in height between the adjacent convex portion and the concave portion. Further, the height of the convex portion was measured and averaged for 50 particles selected at random, and the average convex portion height was calculated.
[Calculation of ratio of fine particles whose major axis forms an angle of 45 ° or more with the base material]
In the case of a dharma shape, the ratio of fine particles arranged with an angle of 45 ° to the substrate tangent plane is determined using an atomic force microscope (AFM5100, manufactured by Hitachi High-Tech Science Co., Ltd.), and a cantilever OMCL manufactured by Olympus. -The shape image of the surface of the fine particle array film is measured in dynamic force mode using AC200TS, and the height of the convex portion is obtained for each fine particle by obtaining the difference in height between the adjacent convex portion and the concave portion. The proportion of particles having an average major axis of fine particles of (1 + sin 45 °) / 2 or more was determined by calculating 50 randomly selected particles. However, when the height of the convex portion was twice or more the average major axis of the fine particles, it was judged as an aggregate and excluded from the calculation of the ratio. Further, when forming a tapered shape on the fine particles, the ratio was calculated for the fine particle array film before the taper was formed, and the ratio after the taper was formed was the same as the value. When the shape of the fine particles is other than a dharma shape, the cross-section of the fine particle array film and the scanning electron microscopic image of the surface are measured using a scanning electron microscope (VE-9800 manufactured by Keyence Corporation), and each fine particle is out of the substrate surface. Measure the height in the direction and the length in the in-plane direction, and the ratio of the height in the out-of-plane direction / the length in the in-plane direction of tan 45 ° or more for 20 randomly selected particles It calculated by calculating | requiring the ratio of the particle | grains used as.
[Calculation of the proportion of fine particles present independently]
The proportion of fine particles present independently was calculated by determining the proportion of fine particles that were not in contact with other fine particles for 50 randomly selected particles in the scanning electron micrograph on the surface of the fine particle arrangement film.
[Measurement of total light transmittance and haze]
The total light transmittance and haze were measured using NDH-5000 manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS-K-7136, including the glass substrate as the base material. The glass substrate used had a total light transmittance of 92.0% and a haze value of 0.4%. ΔH was determined from the calculated total light transmittance and haze value.
[Measurement of reflectance]
The reflectance was measured at an interval of 5 nm at an incident angle of 10 ° and a wavelength of 380 to 780 nm using a spectrophotometer (U-4100 manufactured by Hitachi High-Tech Science Co., Ltd.) and an angle variable absolute reflection accessory. In measuring the reflectance, in order to remove the influence of the back surface reflection, the back surface of the sample was painted black with a magic, and a black tape was further applied to the back surface.
[Measurement of transmittance at each wavelength]
About the transmittance | permeability in each wavelength of a visible light region, the transmittance | permeability in the incident angle of 0 degree and the wavelength of 380-780 nm was measured at 5 nm space | interval using the spectrophotometer (H-4100 by Hitachi High-Tech Science company).
[Confirmation of film uniformity and interference light]
The uniformity of the film and the presence or absence of interference light were confirmed by visual observation and evaluated as follows.
◯: The appearance of the film is uniform and no color is generated due to light interference.
X: The appearance of the film is not uniform, or color development is caused by light interference.
[Confirmation of scratch resistance]
The scratch resistance was evaluated as follows.
◯: The film is not destroyed even when touched with a finger.
X: The film is destroyed by touching with a finger.
[Example 1]
To a flask equipped with a stirrer, 0.99 g of an aqueous colloidal silica solution (ST-20L, Nissan Chemical Industries, Ltd.) and 17.06 g of ion-exchanged water were added, and deaerated by nitrogen bubbling for 30 minutes. 0.0199 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution obtained by adding 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.2 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask, and further stirred at 300 rpm for 2 hours. Two hours later, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of potassium peroxodisulfate (KPS) was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the solution, and degassed by nitrogen bubbling for 30 minutes. 0.27 g of styrene (St) was added, and the mixture was stirred at 300 rpm for 4 hours under a nitrogen atmosphere. After 4 hours, the solution was heated to 65 ° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. The reaction was carried out for 7 hours under stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged and the supernatant was discarded, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a deformed particle concentration of 2 wt%.
A 40 × 50 mm square glass substrate was immersed in a 1 mg / mL polydiallyldimethylammonium chloride (Mw = 150,000) solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The deformed particle dispersion was dropped onto the substrate, and washed with ion exchange water after 10 seconds. 3 mL of ethylene glycol was dropped on the substrate and heated at 110 ° C. for 15 minutes. It was washed with ion exchange water and dried by blowing air.

得られた異形粒子の透過型電子顕微鏡像を図3に、微粒子配列膜の走査型電子顕微鏡像を図4〜図6にそれぞれ示す。   A transmission electron microscope image of the obtained irregularly shaped particles is shown in FIG. 3, and scanning electron microscope images of the fine particle array film are shown in FIGS.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に示す。   Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film and the physical properties of the obtained fine particle array film.

Figure 2017102408
Figure 2017102408

得られた微粒子配列膜における微粒子のアスペクト比は2.01であった。87%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また71%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の96%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例2]
微粒子合成時に0.2gのMMAを用いる代わりに、0.4gのMMAを用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The aspect ratio of the fine particles in the obtained fine particle array film was 2.01. 87% of the fine particles are arranged with the major axis at an angle of 30 ° or more with respect to the substrate, and 71% of the fine particles are arranged with an angle of 45 ° or more with respect to the substrate. Observed. Further, 96% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. A uniform structure was formed over a wide area. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Example 2]
Instead of using 0.2 g of MMA during fine particle synthesis, 0.4 g of MMA was used, and other operations were performed in the same manner as in Example 1 to prepare a fine particle array film.

得られた異形粒子の透過型電子顕微鏡像を図7に、微粒子配列膜の走査型電子顕微鏡像を図8〜図10にそれぞれ示す。   FIG. 7 shows a transmission electron microscope image of the obtained irregularly shaped particles, and FIGS. 8 to 10 show scanning electron microscope images of the fine particle array film, respectively.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 1.

得られた微粒子配列膜における粒子アスペクト比は1.48であった。89%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また70%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の93%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例3]
微粒子合成時に0.27gのStを用いる代わりに、0.52gのStを用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The particle aspect ratio of the obtained fine particle array film was 1.48. 89% of fine particles are arranged with the major axis at an angle of 30 ° or more with respect to the substrate, and 70% of the fine particles are arranged with an angle of 45 ° or more with respect to the substrate at an angle of 45 ° or more. Observed. Further, 93% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. A uniform structure was formed over a wide area. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Example 3]
Instead of using 0.27 g of St during the fine particle synthesis, 0.52 g of St was used, and other operations were performed in the same manner as in Example 1 to prepare a fine particle array film.

得られた異形粒子の透過型電子顕微鏡像を図11に示す。   FIG. 11 shows a transmission electron microscope image of the obtained irregularly shaped particles.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 1.

得られた微粒子配列膜における粒子アスペクト比は1.90であった。78%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また62%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の94%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例4]
微粒子合成時に固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)を用いる代わりに、以下の方法で合成したポリメチルメタアクリレート微粒子分散液を用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The particle aspect ratio of the obtained fine particle array film was 1.90. 78% of the fine particles are arranged with the major axis at an angle of 30 ° or more with respect to the substrate, and 62% of the fine particles are arranged with an angle of 45 ° or more with respect to the substrate. Observed. Further, 94% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. A uniform structure was formed over a wide area. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Example 4]
Instead of using a colloidal silica aqueous solution (ST-20L manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20 wt% at the time of fine particle synthesis, a polymethyl methacrylate fine particle dispersion synthesized by the following method was used. In the same manner, a fine particle array film was produced.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.43gのMMAを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。   0.0199 g of KBM-503 was added to 20 g of ion-exchanged water and stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.43 g of MMA were dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of KPS was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a fine particle concentration of 10 wt%.

得られた異形粒子の透過型電子顕微鏡像を図12に示す。   FIG. 12 shows a transmission electron microscope image of the obtained irregularly shaped particles.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 1.

得られた微粒子配列膜における粒子アスペクト比は1.32であった。89%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また75%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の95%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例5]
微粒子合成時に固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)を用いる代わりに、以下の方法で合成したポリスチレン微粒子分散液を用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The particle aspect ratio of the obtained fine particle array film was 1.32. 89% of fine particles are arranged with the major axis at an angle of 30 ° or more with respect to the base material, and 75% of the fine particles are arranged with an angle of 45 ° or more with respect to the base material at an angle of 45 ° or more. Observed. Further, 95% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. A uniform structure was formed over a wide area. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Example 5]
Instead of using a colloidal silica aqueous solution (ST-20L manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20 wt% during fine particle synthesis, a polystyrene fine particle dispersion synthesized by the following method was used, and the other operations were the same as in Example 1. Thus, a fine particle array film was prepared.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.43gのStを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。   0.0199 g of KBM-503 was added to 20 g of ion-exchanged water and stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.43 g of St was dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of KPS was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a fine particle concentration of 10 wt%.

得られた異形粒子の透過型電子顕微鏡像を図13に示す。   FIG. 13 shows a transmission electron microscope image of the obtained irregularly shaped particles.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 1.

得られた微粒子配列膜における粒子アスペクト比は1.31であった。90%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また76%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の94%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例6]
実施例1と同様の異形粒子分散液を用い、以下の方法により高分子フィルム基材上に微粒子配列膜を作製した。
The particle aspect ratio of the obtained fine particle array film was 1.31. 90% of the fine particles are arranged with the major axis at an angle of 30 ° or more with respect to the substrate, and 76% of the fine particles are arranged with an angle of 45 ° or more with respect to the substrate. Observed. Further, 94% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. A uniform structure was formed over a wide area. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Example 6]
Using the same shaped particle dispersion as in Example 1, a fine particle array film was produced on a polymer film substrate by the following method.

40×50mm角のポリエチレンテレフタレート(PET)フィルム(フィルム単体のヘーズ値1.6%)に、プラズマ表面処理装置(真空デバイス社製PIB−20)を用い、キャリアガスとして空気を用い、圧力20Pa、出力20mAで3分秒間プラズマ照射を行った。このフィルム基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板を上記微粒子分散液に10秒間浸漬し、イオン交換水により洗浄した。基板上に3mLのエチレングリコールを滴下し、100℃で15分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。   Using a 40 × 50 mm square polyethylene terephthalate (PET) film (haze value of the film alone: 1.6%) using a plasma surface treatment apparatus (PIB-20 manufactured by Vacuum Device Inc.), using air as a carrier gas, a pressure of 20 Pa, Plasma irradiation was performed at an output of 20 mA for 3 minutes. This film substrate was immersed in a 1 mg / mL polydiallyldimethylammonium chloride solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. This substrate was immersed in the fine particle dispersion for 10 seconds and washed with ion exchange water. 3 mL of ethylene glycol was dropped on the substrate and heated at 100 ° C. for 15 minutes. It was washed with ion exchange water and dried by blowing air.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 1.

得られた微粒子配列膜の微粒子のうち、85%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また68%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の95%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例7]
実施例1と同様の異形粒子分散液を用い、以下の方法により微粒子配列膜を作製した。
Of the fine particles of the obtained fine particle array film, 85% of the fine particles are arranged at an angle of 30 ° or more with respect to the base axis of the long axis, and 68% of the fine particles are at least 45 ° with respect to the base material of the long axis. It was observed that they were arranged at an angle of. Further, 95% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. A uniform structure was formed over a wide area. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Example 7]
Using the same shaped particle dispersion as in Example 1, a fine particle array film was prepared by the following method.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。基板上に3mLのイオン交換水を滴下し、95℃で15分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。   A 40 × 50 mm square glass substrate was immersed in a 1 mg / mL polydiallyldimethylammonium chloride solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion was dropped onto the substrate, and washed with ion-exchanged water after 10 seconds. 3 mL of ion exchange water was dropped on the substrate and heated at 95 ° C. for 15 minutes. It was washed with ion exchange water and dried by blowing air.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 1.

得られた微粒子配列膜の微粒子のうち、70%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また62%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の82%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例8]
実施例1と同様の異形粒子分散液を用い、以下の方法によりテーパーを形成した微粒子配列膜を作製した。
Of the fine particles of the obtained fine particle array film, 70% of the fine particles are arranged with the major axis at an angle of 30 ° or more with respect to the substrate, and 62% of the fine particles are 45 ° or more with respect to the substrate. It was observed that they were arranged at an angle of. Further, 82% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. A uniform structure was formed over a wide area. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Example 8]
Using the same shaped particle dispersion as in Example 1, a fine particle array film having a taper was produced by the following method.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。基板上に3mLのエチレングリコールを滴下し、110℃で30分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。   A 40 × 50 mm square glass substrate was immersed in a 1 mg / mL polydiallyldimethylammonium chloride solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion was dropped onto the substrate, and washed with ion-exchanged water after 10 seconds. 3 mL of ethylene glycol was dropped on the substrate and heated at 110 ° C. for 30 minutes. It was washed with ion exchange water and dried by blowing air.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 1.

得られた微粒子配列膜の微粒子のうち、85%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また68%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の95%が他の微粒子と接触していない状態で基材上に配列していた。微粒子配列膜断面の走査型電子顕微鏡像より、テーパー形状が形成されている様子が観察された。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例9]
実施例1と同様の異形微粒子分散液を用い、以下の方法によりテーパーを形成した微粒子配列膜を作製した。
Of the fine particles of the obtained fine particle array film, 85% of the fine particles are arranged at an angle of 30 ° or more with respect to the base axis of the long axis, and 68% of the fine particles are at least 45 ° with respect to the base material of the long axis. It was observed that they were arranged at an angle of. Further, 95% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. From the scanning electron microscope image of the cross section of the fine particle array film, it was observed that a tapered shape was formed. A uniform structure was formed over a wide area. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Example 9]
Using the same shaped fine particle dispersion as in Example 1, a fine particle array film having a taper was produced by the following method.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。基板上に3mLのエチレングリコールを滴下し、110℃で15分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。トリメチロールプロパンエトキシトリアクリレート(ダイセルオルネクス社製TMPEOTA)1.5部、2−ヒドロキシ−2―メチル−1−フェニル−プロパン−1−オン(BASF社製DAROCUR1173)0.075部をメタノール100部に加えた溶液を微粒子配列膜上に600rpmでスピンコートし、塗膜を80℃で2分間熱風乾燥後、基板をガラス製密閉容器に移し、容器内を窒素置換後、高圧水銀灯を用い6mW/cm2の照射強度となる条件で20分間紫外線照射を行うことで塗膜を硬化させた。   A 40 × 50 mm square glass substrate was immersed in a 1 mg / mL polydiallyldimethylammonium chloride solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion was dropped onto the substrate, and washed with ion-exchanged water after 10 seconds. 3 mL of ethylene glycol was dropped on the substrate and heated at 110 ° C. for 15 minutes. It was washed with ion exchange water and dried by blowing air. 1.5 parts of trimethylolpropane ethoxytriacrylate (TMPEOTA manufactured by Daicel Ornex), 0.075 parts of 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR1173 manufactured by BASF) and 100 parts of methanol The coating solution was spin-coated on the fine particle array film at 600 rpm, the coating film was dried with hot air at 80 ° C. for 2 minutes, the substrate was transferred to a glass sealed container, the inside of the container was replaced with nitrogen, and then 6 mW / The coating film was cured by irradiating with ultraviolet rays for 20 minutes under the condition of an irradiation intensity of cm2.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 1.

得られた微粒子配列膜の微粒子のうち、85%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また68%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の95%が他の微粒子と接触していない状態で基材上に配列していた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。微粒子配列膜断面の走査型電子顕微鏡像より、テーパー形状が形成されている様子が観察された。広い面積にわたって均一な構造が形成されていた。
[実施例10]
異形粒子分散液として実施例1で使用した溶液に0.04mol/Lの塩化ナトリウムを添加した溶液を用い、また基板上に3mLのエチレングリコールを滴下した後、110℃で15分間加熱する代わりに、110℃で30分間加熱し、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
Of the fine particles of the obtained fine particle array film, 85% of the fine particles are arranged at an angle of 30 ° or more with respect to the base axis of the long axis, and 68% of the fine particles are at least 45 ° with respect to the base material of the long axis. It was observed that they were arranged at an angle of. Further, 95% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular. From the scanning electron microscope image of the cross section of the fine particle array film, it was observed that a tapered shape was formed. A uniform structure was formed over a wide area.
[Example 10]
Instead of heating at 110 ° C. for 15 minutes after adding 3 mL of ethylene glycol dropwise onto the substrate using a solution in which 0.04 mol / L sodium chloride was added to the solution used in Example 1 as a deformed particle dispersion The fine particle array film was prepared in the same manner as in Example 1 except that the film was heated at 110 ° C. for 30 minutes.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 1.

得られた微粒子配列膜の微粒子のうち、89%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また78%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の75%が他の微粒子と接触していない状態で基材上に配列していた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。微粒子配列膜断面の走査型電子顕微鏡像より、テーパー形状が形成されている様子が観察された。広い面積にわたって均一な構造が形成されていた。この微粒子配列膜付きガラス基板の可視光領域の光の透過率を図14に、可視光領域の光の反射率を図15に、微粒子配列膜が形成されていないガラス基板の結果と共にそれぞれ示すが、微粒子配列膜が形成されていない場合と比較して可視光領域の光の反射率が低下し、透過率が向上していた。
[比較例1]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した平均粒径230nmの球状ポリスチレン粒子を含有する微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
Of the fine particles of the obtained fine particle array film, 89% of the fine particles are arranged with the major axis at an angle of 30 ° or more with respect to the substrate, and 78% of the fine particles are 45 ° or more with respect to the substrate. It was observed that they were arranged at an angle of. Further, 75% of the fine particles were arranged on the substrate in a state where they were not in contact with other fine particles. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular. From the scanning electron microscope image of the cross section of the fine particle array film, it was observed that a tapered shape was formed. A uniform structure was formed over a wide area. FIG. 14 shows the light transmittance in the visible light region of this glass substrate with the fine particle array film, and FIG. 15 shows the reflectance of light in the visible light region together with the result of the glass substrate on which the fine particle array film is not formed. As compared with the case where the fine particle array film is not formed, the reflectance of light in the visible light region is lowered and the transmittance is improved.
[Comparative Example 1]
Instead of particles having shape anisotropy in Example 10, a fine particle dispersion containing spherical polystyrene particles having an average particle size of 230 nm synthesized by the following method was used, and the other operations were performed in the same manner as in Example 10. An array film was prepared.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.83gのStを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。   0.0199 g of KBM-503 was added to 20 g of ion-exchanged water and stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.83 g of St was dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of KPS was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a fine particle concentration of 10 wt%.

使用した球状微粒子の透過型電子顕微鏡像を図16に示す。また、この微粒子配列膜付きガラス基板の可視光領域の光の透過率を図14に、可視光領域の光の反射率を図15にそれぞれ示す。   A transmission electron microscope image of the used spherical fine particles is shown in FIG. FIG. 14 shows the light transmittance of the visible light region of the glass substrate with the fine particle array film, and FIG. 15 shows the light reflectance of the visible light region.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に示す。   Table 2 shows the results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

Figure 2017102408
Figure 2017102408

得られた微粒子配列膜は反射率こそ低いものの、透明性に劣るものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例2]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した平均粒径100nmの球状ポリスチレン粒子を含有する微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
The obtained fine particle array film had a low reflectance but was inferior in transparency. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Comparative Example 2]
Instead of the particles having shape anisotropy in Example 10, a fine particle dispersion containing spherical polystyrene particles having an average particle diameter of 100 nm synthesized by the following method was used, and the other operations were performed in the same manner as in Example 10. An array film was prepared.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.068gのStを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。   0.0199 g of KBM-503 was added to 20 g of ion-exchanged water and stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.068 g of St was dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of KPS was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a fine particle concentration of 10 wt%.

使用した球状微粒子の透過型電子顕微鏡像を図17に示す。また、この微粒子配列膜付きガラス基板の可視光領域の光の透過率を図14に、可視光領域の光の反射率を図15にそれぞれ示す。   A transmission electron microscope image of the used spherical fine particles is shown in FIG. FIG. 14 shows the light transmittance of the visible light region of the glass substrate with the fine particle array film, and FIG. 15 shows the light reflectance of the visible light region.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。
得られた微粒子配列膜は透明性こそ高いものの、反射防止性に劣るものであり、反射光の色調は強い黄色を呈していた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例3]
スターラーを備えたフラスコに固形分濃度40wt%のコロイダルシリカ水溶液(日産化学工業社製ST−YL)0.50g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)を加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.4gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.538gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。
The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 2.
The obtained fine particle array film had high transparency but was inferior in antireflection property, and the color tone of the reflected light was strong yellow. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Comparative Example 3]
To a flask equipped with a stirrer was added 0.50 g of an aqueous colloidal silica solution (ST-YL, manufactured by Nissan Chemical Industries, Ltd.) and 17.06 g of ion-exchanged water, and deaerated by nitrogen bubbling for 30 minutes. 0.0199 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution obtained by adding 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.4 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask, and further stirred at 300 rpm for 2 hours. Two hours later, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of potassium peroxodisulfate (KPS) was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the solution, and degassed by nitrogen bubbling for 30 minutes. 0.538 g of styrene (St) was added, and the mixture was stirred at 300 rpm for 4 hours under a nitrogen atmosphere. After 4 hours, the solution was heated to 65 ° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. The reaction was carried out for 7 hours under stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged and the supernatant was discarded, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a deformed particle concentration of 2 wt%.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド(Mw=150000)溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。エアーを吹きつけることにより乾燥させた。   A 40 × 50 mm square glass substrate was immersed in a 1 mg / mL polydiallyldimethylammonium chloride (Mw = 150,000) solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion was dropped onto the substrate, and washed with ion-exchanged water after 10 seconds. It was dried by blowing air.

得られた微粒子配列膜の走査型電子顕微鏡像を図18に示す。   A scanning electron microscope image of the obtained fine particle array film is shown in FIG.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 2.

得られた微粒子配列膜の微粒子のうち、微粒子の長軸が基材面と45°以上の角度をなしているものは13%であった。得られた微粒子配列膜は平均凸部アスペクト比が低く、透明性に劣るものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例4]
形状異方性を有する微粒子の分散液(異形粒子分散液)として以下の方法で調製した溶液を使用し、その他の操作は比較例3と同様にして微粒子配列膜を作製した。
Of the fine particles of the obtained fine particle array film, 13% had the long axis of the fine particles forming an angle of 45 ° or more with the substrate surface. The obtained fine particle array film had a low average convex aspect ratio and was inferior in transparency. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Comparative Example 4]
A solution prepared by the following method was used as a dispersion of fine particles having shape anisotropy (an irregular particle dispersion), and a fine particle array film was prepared in the same manner as in Comparative Example 3 in other operations.

スターラーを備えたフラスコに固形分濃度40wt%のコロイダルシリカ水溶液(日産化学工業社製MP−4540M)0.6g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)を加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0163gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.2gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液1.225gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.83gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。   To a flask equipped with a stirrer, 0.6 g of an aqueous colloidal silica solution (MP-4540M manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 40 wt% and 17.06 g of ion-exchanged water were added and deaerated by nitrogen bubbling for 30 minutes. 0.0199 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution obtained by adding 0.0163 g of sodium p-styrenesulfonate (NaSS) and 0.2 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask, and further stirred at 300 rpm for 2 hours. Two hours later, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of potassium peroxodisulfate (KPS) was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 1.225 g of the solution, and degassed by nitrogen bubbling for 30 minutes. 0.83 g of styrene (St) was added, and the mixture was stirred at 300 rpm for 4 hours under a nitrogen atmosphere. After 4 hours, the solution was heated to 65 ° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. The reaction was carried out for 7 hours under stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged and the supernatant was discarded, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a deformed particle concentration of 2 wt%.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 2.

得られた微粒子配列膜の微粒子のうち、微粒子の長軸が基材面と45°以上の角度をなしているものは12%であった。得られた微粒子配列膜は平均凸部アスペクト比が低く、可視光域の光に対し十分な反射防止性能を有していなかった。また、透明性に劣るものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例5]
先行技術(J. Park et al, “High−Yield Synthesis of Monodisperse Dumbbell−Shaped Polymer Nanoparticles”, J. AM. CHEM. SOC., 2010, 132, p.5960−5961)を参考に、以下の手順で微粒子を基材上で密着させた凹凸構造体を作製した。
Of the fine particles of the obtained fine particle array film, 12% had the long axis of the fine particles forming an angle of 45 ° or more with the substrate surface. The obtained fine particle array film had a low average convex aspect ratio and did not have sufficient antireflection performance for light in the visible light range. Moreover, it was inferior to transparency. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Comparative Example 5]
Prior art (see J. Park et al, “High-Yield Synthesis of Monodisperse Dumbell-Shaped Polymer Nanoparticulates”, J. AM. CHEM. SOC., 2010, 132, p. 59, p. 59. A concavo-convex structure having fine particles adhered on a substrate was produced.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.83gのStを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。スターラーを備えたフラスコに固形分濃度40wt%のコロイダルシリカ水溶液(日産化学工業社製ST−YL)0.50g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)を加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.4gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.538gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。
20×50mm角のガラス基板を、0.5wt%の濃度の微粒子分散液が入った8mm×4mm×60mmのガラス溶液に垂直に浸漬し、基板の位置を固定化した状態で50℃の熱風乾燥機に入れ、12時間乾燥させた。得られた微粒子配列膜の走査型電子顕微鏡像を図19及び図20に示す。一部の領域において異形粒子の長軸が基材に対し30°以上の角度をなして配列している様子が観察されたが、全ての微粒子が互いに接触していた。また、微粒子同士が密集していない領域においては、全ての微粒子の長軸が基材面に対し30°未満の角度をなしていた。また、この領域においても独立して存在する微粒子の割合は1%であり、微粒子の大半は他の微粒子と接触していた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、一部の領域において六方格子状の輝点が存在し、粒子配列は部分的に規則配列であった。
[比較例6]
異形粒子分散液として以下の方法で調製した溶液を使用し、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
0.0199 g of KBM-503 was added to 20 g of ion-exchanged water and stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.83 g of St was dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of KPS was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a fine particle concentration of 10 wt%. To a flask equipped with a stirrer was added 0.50 g of an aqueous colloidal silica solution (ST-YL, manufactured by Nissan Chemical Industries, Ltd.) and 17.06 g of ion-exchanged water, and deaerated by nitrogen bubbling for 30 minutes. 0.0199 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution obtained by adding 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.4 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask, and further stirred at 300 rpm for 2 hours. Two hours later, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of potassium peroxodisulfate (KPS) was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the solution, and degassed by nitrogen bubbling for 30 minutes. 0.538 g of styrene (St) was added, and the mixture was stirred at 300 rpm for 4 hours under a nitrogen atmosphere. After 4 hours, the solution was heated to 65 ° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. The reaction was carried out for 7 hours under stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged and the supernatant was discarded, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a deformed particle concentration of 2 wt%.
A 20 × 50 mm square glass substrate is immersed vertically in an 8 mm × 4 mm × 60 mm glass solution containing a 0.5 wt% fine particle dispersion, and the substrate position is fixed and hot air dried at 50 ° C. Placed in machine and dried for 12 hours. Scanning electron microscope images of the obtained fine particle array film are shown in FIGS. In some regions, it was observed that the major axis of deformed particles was arranged at an angle of 30 ° or more with respect to the substrate, but all the fine particles were in contact with each other. Further, in the region where the fine particles are not densely packed, the major axes of all the fine particles are at an angle of less than 30 ° with respect to the substrate surface. Also in this region, the proportion of fine particles present independently was 1%, and most of the fine particles were in contact with other fine particles. When the atomic force microscope image on the surface of the fine particle array film was Fourier-transformed, there were hexagonal lattice-like bright spots in a part of the region, and the particle array was partially ordered.
[Comparative Example 6]
A solution prepared by the following method was used as the irregularly shaped particle dispersion, and other operations were performed in the same manner as in Example 1 to prepare a fine particle array film.

n−ペンタノール60mL、ポリビニルピロリドン(PVP、MW40000)6gを加え、1500rpmで30分間撹拌した。1時間超音波照射し、イオン交換水1.68mL、エタノール6mL、180mMのクエン酸ナトリウム水溶液0.4mLを加え、1分間振とうした。28wt%のアンモニア水1.35mLを加え、1分間振とうした。脱気しながら70℃に昇温し、オルトケイ酸テトラエチル0.6mLを加え、1分間振とうした。70℃で50分間静置した後、3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)0.3mLを加え、70℃で50分間静置した後、遠心分離し、沈降物をエタノールに再分散させ、微粒子濃度10wt%に調製した。前記溶液2.4gにイオン交換水20gを加え、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−アミノプロピルトリメトキシシラン(信越化学社製KBM−903)を加え、窒素雰囲気下、1500rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.1gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間1500rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、1500rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水再分散させ、異形粒子濃度2wt%の分散液を得た。   60 mL of n-pentanol and 6 g of polyvinyl pyrrolidone (PVP, MW 40000) were added and stirred at 1500 rpm for 30 minutes. Ultrasonic irradiation was performed for 1 hour, 1.68 mL of ion-exchanged water, 6 mL of ethanol, and 0.4 mL of 180 mM sodium citrate aqueous solution were added and shaken for 1 minute. 1.35 mL of 28 wt% aqueous ammonia was added and shaken for 1 minute. The temperature was raised to 70 ° C. while deaeration, and 0.6 mL of tetraethyl orthosilicate was added and shaken for 1 minute. After leaving still at 70 ° C. for 50 minutes, 0.3 mL of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and left still at 70 ° C. for 50 minutes, followed by centrifugation, It was redispersed in ethanol and prepared to a fine particle concentration of 10 wt%. To 2.4 g of the above solution, 20 g of ion-exchanged water was added, 17.06 g of ion-exchanged water was added, and degassed by nitrogen bubbling for 30 minutes. 0.0199 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 1500 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution in which 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.1 g of methyl methacrylate (MMA) were added to 10 g of ion-exchanged water was added to the flask, and further stirred at 1500 rpm for 2 hours. Two hours later, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of potassium peroxodisulfate (KPS) was dissolved in 10 g of ion-exchanged water was added. The mixture was reacted for 3 hours at 65 ° C. and 1500 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged and the supernatant was discarded, and the sediment was redispersed with ion-exchanged water to obtain a dispersion having a deformed particle concentration of 2 wt%.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 2.

得られた異形粒子の粒子アスペクト比は10.01であった。作製した微粒子配列膜はヘーズ値が高く、透明性に乏しいものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例7]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
The obtained irregular shaped particles had a particle aspect ratio of 10.1. The produced fine particle array film had a high haze value and poor transparency. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Comparative Example 7]
Instead of the particles having shape anisotropy in Example 10, a fine particle dispersion synthesized by the following method was used, and other operations were performed in the same manner as in Example 10 to prepare a fine particle array film.

スターラーを備えたフラスコに固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)1.2g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシランを加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのNaSS及び0.8gのMMAを加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.27gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。
得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。
得られた異形粒子の粒子アスペクト比は1.25であった。作製した微粒子配列膜は反射防止性に乏しいものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例8]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
To a flask equipped with a stirrer was added 1.2 g of a colloidal silica aqueous solution (ST-20L manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20 wt% and 17.06 g of ion-exchanged water, and deaerated by nitrogen bubbling for 30 minutes. 0.0199 g of 3-methacryloxypropyltrimethoxysilane was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution obtained by adding 0.0083 g of NaSS and 0.8 g of MMA to 10 g of ion-exchanged water was added to the flask, and further stirred at 300 rpm for 2 hours. After 2 hours, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of KPS was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the solution, and degassed by nitrogen bubbling for 30 minutes. 0.27 g of styrene (St) was added, and the mixture was stirred at 300 rpm for 4 hours under a nitrogen atmosphere. After 4 hours, the solution was heated to 65 ° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. The reaction was carried out for 7 hours under stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged and the supernatant was discarded, and the sediment was redispersed in ion-exchanged water to obtain a dispersion having a deformed particle concentration of 2 wt%.
The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 2.
The obtained irregularly shaped particles had a particle aspect ratio of 1.25. The produced fine particle array film was poor in antireflection property. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Comparative Example 8]
Instead of the particles having shape anisotropy in Example 10, a fine particle dispersion synthesized by the following method was used, and other operations were performed in the same manner as in Example 10 to prepare a fine particle array film.

n−ペンタノール60mL、ポリビニルピロリドン(PVP、MW40000)4.5gを加え、1500rpmで30分間撹拌した。1時間超音波照射し、イオン交換水1.68mL、エタノール6mL、180mMのクエン酸ナトリウム水溶液0.4mLを加え、1分間振とうした。28wt%のアンモニア水1.35mLを加え、1分間振とうした。脱気しながら70℃に昇温し、オルトケイ酸テトラエチル0.5mLを加え、1分間振とうした。70℃で50分間静置した後、3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)0.2mLを加え、70℃で50分間静置した後、遠心分離し、沈降物をエタノールに再分散させ、微粒子濃度10wt%に調製した。前記溶液2.4gにイオン交換水20gを加え、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−アミノプロピルトリメトキシシラン(信越化学社製KBM−903)を加え、窒素雰囲気下、1500rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.1gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間1500rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、1500rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水再分散させ、異形粒子濃度2wt%の分散液を得た。   60 mL of n-pentanol and 4.5 g of polyvinyl pyrrolidone (PVP, MW 40000) were added and stirred at 1500 rpm for 30 minutes. Ultrasonic irradiation was performed for 1 hour, 1.68 mL of ion-exchanged water, 6 mL of ethanol, and 0.4 mL of 180 mM sodium citrate aqueous solution were added and shaken for 1 minute. 1.35 mL of 28 wt% aqueous ammonia was added and shaken for 1 minute. The temperature was raised to 70 ° C. while degassing, and 0.5 mL of tetraethyl orthosilicate was added and shaken for 1 minute. After standing at 70 ° C. for 50 minutes, 0.2 mL of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was allowed to stand at 70 ° C. for 50 minutes. It was redispersed in ethanol and prepared to a fine particle concentration of 10 wt%. To 2.4 g of the above solution, 20 g of ion-exchanged water was added, 17.06 g of ion-exchanged water was added, and degassed by nitrogen bubbling for 30 minutes. 0.0199 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 1500 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution in which 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.1 g of methyl methacrylate (MMA) were added to 10 g of ion-exchanged water was added to the flask, and further stirred at 1500 rpm for 2 hours. Two hours later, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of potassium peroxodisulfate (KPS) was dissolved in 10 g of ion-exchanged water was added. The mixture was reacted for 3 hours at 65 ° C. and 1500 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged and the supernatant was discarded, and the sediment was redispersed with ion-exchanged water to obtain a dispersion having a deformed particle concentration of 2 wt%.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 2.

得られた異形粒子の粒子アスペクト比は5.52であった。作製した微粒子配列膜はヘーズ値が高かった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例9]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
スターラーを備えたフラスコに固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)1.2g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシランを加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのNaSS及び0.08gのMMAを加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.22gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して固形物を除き、上澄みを回収し、窒素フローにより溶液を濃縮し、異形粒子濃度2wt%の分散液を得た。
The obtained irregular shaped particles had a particle aspect ratio of 5.52. The produced fine particle array film had a high haze value. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Comparative Example 9]
Instead of the particles having shape anisotropy in Example 10, a fine particle dispersion synthesized by the following method was used, and other operations were performed in the same manner as in Example 10 to prepare a fine particle array film.
To a flask equipped with a stirrer was added 1.2 g of a colloidal silica aqueous solution (ST-20L manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20 wt% and 17.06 g of ion-exchanged water, and deaerated by nitrogen bubbling for 30 minutes. 0.0199 g of 3-methacryloxypropyltrimethoxysilane was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution obtained by adding 0.0083 g of NaSS and 0.08 g of MMA to 10 g of ion-exchanged water was added to the flask, and further stirred at 300 rpm for 2 hours. After 2 hours, the temperature of the solution was raised to 65 ° C., and a solution in which 0.0216 g of KPS was dissolved in 10 g of ion-exchanged water was added. The reaction was carried out for 3 hours with stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to discard the supernatant, and the sediment was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the solution, and degassed by nitrogen bubbling for 30 minutes. 0.22 g of styrene (St) was added, and the mixture was stirred at 300 rpm for 4 hours under a nitrogen atmosphere. After 4 hours, the solution was heated to 65 ° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. The reaction was carried out for 7 hours under stirring at 65 ° C. and 300 rpm in a nitrogen atmosphere. After the reaction, the mixture was centrifuged to remove solids, the supernatant was collected, and the solution was concentrated by a nitrogen flow to obtain a dispersion having a deformed particle concentration of 2 wt%.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 2.

得られた異形粒子の粒子アスペクト比は1.28であった。作製した微粒子配列膜は反射防止性に乏しいものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例10]
比較例4で使用した異形粒子分散液を用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The obtained irregular shaped particles had a particle aspect ratio of 1.28. The produced fine particle array film was poor in antireflection property. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Comparative Example 10]
A microparticle array film was produced in the same manner as in Example 1 except that the deformed particle dispersion used in Comparative Example 4 was used.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 2.

作製した微粒子配列膜はヘーズ値が高かった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例11]
実施例10で使用した異形粒子分散液を用い、以下の方法で微粒子配列膜を作製した。
The produced fine particle array film had a high haze value. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.
[Comparative Example 11]
Using the irregularly shaped particle dispersion used in Example 10, a fine particle array film was prepared by the following method.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド(Mw=150000)溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。エアーを吹きつけることにより乾燥させた。この基板上に3mLのエチレングリコールを滴下し、110℃で15分間加熱した。   A 40 × 50 mm square glass substrate was immersed in a 1 mg / mL polydiallyldimethylammonium chloride (Mw = 150,000) solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion was dropped onto the substrate, and washed with ion-exchanged water after 10 seconds. It was dried by blowing air. 3 mL of ethylene glycol was dropped onto the substrate and heated at 110 ° C. for 15 minutes.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。   The results of the fine particles and the uneven structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film are shown in Table 2.

作製した微粒子配列膜はヘーズ値が高く、また反射率が高かった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。   The produced fine particle array film had a high haze value and a high reflectance. When the atomic force microscope image on the surface of the fine particle array film was Fourier transformed, there was no bright spot and the particle array was irregular.

本発明によれば、平均凸部アスペクト比の大きな微粒子配列膜を提供することができる。本発明はまた、該微粒子配列膜を用いることで、可視光領域の光の透過性能に優れ、可視光域の光の散乱が少なく、反射光の発色の少ない反射防止膜を提供することができ、視認性の高いディスプレイ、光取り込み効率の高い太陽電池、光取り出し効率の高い有機EL等に応用可能である。本発明の微粒子配列膜はまた、撥水性及び親水性基材、細胞培養基材に応用可能である。   According to the present invention, it is possible to provide a fine particle array film having a large average convex portion aspect ratio. The present invention can also provide an antireflection film having excellent light transmission performance in the visible light region, less light scattering in the visible light region, and less reflected light coloring by using the fine particle array film. It can be applied to a display with high visibility, a solar cell with high light capture efficiency, an organic EL with high light extraction efficiency, and the like. The fine particle array film of the present invention can also be applied to water-repellent and hydrophilic substrates and cell culture substrates.

形状異方性を有する微粒子に関する模式図 (A)球 (B)球表面に該球の半径以下の突起を備えた形状 (C)楕円体 (D)弾丸形状 (E)球に1個の球状突出部を設けた形状(接触型) (F)球に1個の球状突出部を設けた形状(埋没型) (G)球に2個の球状突出部を設けた形状Schematic diagram of fine particles having shape anisotropy (A) Sphere (B) Shape with protrusions on the sphere surface less than the radius of the sphere (C) Ellipsoid (D) Bullet shape (E) One sphere per sphere Shape with protrusions (contact type) (F) Shape with one spherical protrusion on the sphere (embedded type) (G) Shape with two spherical protrusions on the sphere 本発明の微粒子配列膜の断面の概略図 (A)微粒子配列膜断面の模式図 (B)微粒子の長軸が基材接平面となす角度を示す模式図 (C)テーパーを有する微粒子配列膜断面の模式図Schematic of cross section of fine particle array film of the present invention (A) Schematic diagram of cross section of fine particle array film (B) Schematic diagram showing angle formed by long axis of fine particles and substrate tangent plane (C) Cross section of fine particle array film having taper Schematic diagram of 実施例1の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregularly shaped particles of Example 1 実施例1の微粒子配列膜表面の走査型電子顕微鏡写真(広域、垂直方向)Scanning electron micrograph of the surface of the fine particle array film of Example 1 (wide area, vertical direction) 実施例1の微粒子配列膜表面の走査型電子顕微鏡写真(狭域、垂直方向)Scanning electron micrograph (narrow region, vertical direction) of the surface of the fine particle array film of Example 1 実施例1の微粒子配列膜表面の走査型電子顕微鏡写真(45°方向)Scanning electron micrograph of the surface of the fine particle array film of Example 1 (45 ° direction) 実施例2の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregularly shaped particles of Example 2 実施例2の微粒子配列膜表面の走査型電子顕微鏡写真(広域、垂直方向)Scanning electron micrograph of the surface of the fine particle array film of Example 2 (wide area, vertical direction) 実施例2の微粒子配列膜表面の走査型電子顕微鏡写真(狭域、垂直方向)Scanning electron micrograph of the surface of the fine particle array film of Example 2 (narrow region, vertical direction) 実施例2の微粒子配列膜表面の走査型電子顕微鏡写真(45°方向)Scanning electron micrograph (45 ° direction) of the surface of the fine particle array film of Example 2 実施例3の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregular shaped particles of Example 3 実施例4の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregularly shaped particles of Example 4 実施例5の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregular shaped particles of Example 5 実施例10、比較例1、比較例2の微粒子配列膜付きガラス基板の可視光域の光の透過率を示すグラフ(透過率は5nm間隔で測定)The graph which shows the transmittance | permeability of the light of the visible region of the glass substrate with a fine particle arrangement film of Example 10, Comparative Example 1, and Comparative Example 2 (the transmittance is measured at intervals of 5 nm) 実施例10、比較例1、比較例2の微粒子配列膜付きガラス基板の可視光域の光の反射率を示すグラフ(反射率は5nm間隔で測定)The graph which shows the reflectance of the light of the visible region of the glass substrate with a fine particle arrangement film of Example 10, Comparative Example 1, and Comparative Example 2 (the reflectance is measured at intervals of 5 nm) 比較例1の球状微粒子の透過型電子顕微鏡写真Transmission electron micrograph of spherical fine particles of Comparative Example 1 比較例2の球状微粒子の透過型電子顕微鏡写真Transmission electron micrograph of spherical fine particles of Comparative Example 2 比較例3の微粒子配列膜表面の走査型電子顕微鏡写真(垂直方向)Scanning electron micrograph (vertical direction) of the surface of the fine particle array film of Comparative Example 3 比較例5の微粒子配列膜表面の走査型電子顕微鏡写真(広域、垂直方向)Scanning electron micrograph (wide area, vertical direction) of the surface of the fine particle array film of Comparative Example 5 比較例5の微粒子配列膜表面の走査型電子顕微鏡写真(狭域、垂直方向)Scanning electron micrograph of the surface of the fine particle array film of Comparative Example 5 (narrow region, vertical direction)

1 微粒子
2 基材
3 テーパー
a 微粒子頂点
b 隣接する凹部
d 凸部高さ
θ 微粒子の長軸が基材接平面となす角度
l 微粒子の長径
s 微粒子の短径
φ 球状突出部と球形状の中心を結ぶ2直線のなす角度
DESCRIPTION OF SYMBOLS 1 Fine particle 2 Base material 3 Taper a Fine particle vertex b Adjacent recessed part d Convex part height (theta) The angle which the long axis of a fine particle makes a base-material tangent plane l The long diameter of a fine particle s The short diameter of a fine particle Angle formed by two straight lines connecting

Claims (14)

形状異方性を有する微粒子を基材上に配列させることで凹凸が形成された微粒子配列膜であって、前記微粒子の長径/短径の比の平均は1.3〜5.0であり、前記微粒子の平均短径は50〜500nmであり、前記微粒子は基材表面に固定化されており、前記微粒子のうち、60%以上の微粒子は長軸と基材接平面とのなす角度が45°以上であり、前記微粒子の基材面内方向の配列が不規則配列であることを特徴とする微粒子配列膜。 A fine particle array film in which irregularities are formed by arranging fine particles having shape anisotropy on a substrate, and the average of the ratio of the major axis / minor axis of the fine particles is 1.3 to 5.0, The fine particles have an average minor axis of 50 to 500 nm, and the fine particles are immobilized on the surface of the substrate. Among the fine particles, 60% or more of the fine particles have an angle formed by the major axis and the substrate tangent plane is 45. The fine particle arrangement film, wherein the fine particle arrangement film is irregular and the arrangement of the fine particles in the substrate surface direction is irregular. 微粒子の10%以上は基材面内方向に互いに接触することなく独立して存在していることを特徴とする請求項1に記載の微粒子配列膜。 The fine particle array film according to claim 1, wherein 10% or more of the fine particles exist independently without contacting each other in the in-plane direction of the base material. 微粒子の形状が、以下の(1)形状又は(2)形状から選択される形状に1〜3個の球状突出部を設けた形状であることを特徴とする請求項1又は請求項2に記載の微粒子配列膜。
(1)球
(2)球表面に該球の半径以下の高さの突起を備えた形状
The shape of the fine particles is a shape in which 1 to 3 spherical protrusions are provided in a shape selected from the following (1) shape or (2) shape. Fine particle array film.
(1) Sphere (2) Shape provided with protrusions having a height less than the radius of the sphere on the sphere surface
微粒子の形状が、以下の(3)形状又は(4)形状から選択される形状であることを特徴とする請求項1又は請求項2に記載の微粒子配列膜。
(3)球状突出部を有しない楕円体
(4)球状突出部を有しない弾丸形状
The fine particle array film according to claim 1 or 2, wherein the shape of the fine particles is a shape selected from the following (3) shape or (4) shape.
(3) Ellipsoid without spherical protrusion (4) Bullet shape without spherical protrusion
微粒子の形状が、以下の(3)形状又は(4)形状から選択される形状に1個の球状突出部を設けた形状であることを特徴とする請求項1又は請求項2に記載の微粒子配列膜。
(3)球状突出部を有しない楕円体
(4)球状突出を有しない弾丸形状
3. The fine particle according to claim 1, wherein the shape of the fine particle is a shape in which one spherical protrusion is provided in a shape selected from the following (3) shape or (4) shape: Array film.
(3) Ellipsoid without spherical protrusion (4) Bullet shape without spherical protrusion
前記の球状突出部の直径Dと前記(1)形状〜(4)形状のいずれかの形状の短径Rとの比D/Rが0.1〜5.0であることを特徴とする請求項3又は請求項5に記載の微粒子配列膜。 The ratio D / R between the diameter D of the spherical protrusion and the minor axis R of any one of the shapes (1) to (4) is 0.1 to 5.0. Item 6. The fine particle array film according to Item 3 or Item 5. 最近接する微粒子間の平均距離が、微粒子の平均長径の3倍以下の距離であることを特徴とする請求項1〜請求項6のいずれかに記載の微粒子配列膜。 The fine particle array film according to any one of claims 1 to 6, wherein the average distance between the closest fine particles is a distance not more than three times the average major axis of the fine particles. 微粒子が単粒子層を形成していることを特徴とする請求項1〜請求項7のいずれかに記載の微粒子配列膜。 The fine particle array film according to any one of claims 1 to 7, wherein the fine particles form a single particle layer. 微粒子が該微粒子と基材との融着により基材上に固定化されていることを特徴とする請求項1〜請求項8のいずれかに記載の微粒子配列膜。 The fine particle array film according to any one of claims 1 to 8, wherein the fine particles are fixed on the base material by fusion of the fine particles and the base material. 基材上に配列した微粒子の、基材と微粒子間、及び微粒子の狭隘部を埋めるようにテーパーが形成されていることを特徴とする請求項1〜請求項9のいずれかに記載の微粒子配列膜。 The fine particle arrangement according to any one of claims 1 to 9, wherein the fine particles arranged on the base material are tapered so as to fill a gap between the base material and the fine particles and a narrow portion of the fine particles. film. 熱による微粒子の変形、硬化性樹脂の塗布及び硬化、又は樹脂の塗布若しくは吸着、のいずれかから選択される方法によりテーパーが形成されていることを特徴とする請求項10に記載の微粒子配列膜。 11. The fine particle array film according to claim 10, wherein the taper is formed by a method selected from deformation of fine particles by heat, application and curing of a curable resin, or application or adsorption of a resin. . 微粒子表面全体がポリマーにより被覆されていることを特徴とする請求項1〜請求項11のいずれかに記載の微粒子配列膜。 The fine particle array film according to any one of claims 1 to 11, wherein the entire surface of the fine particles is coated with a polymer. 微粒子が内部にコア粒子として、スチレン系単量体単位、アクリレート系単量体単位若しくはメタアクリレート系単量体単位を含む重合体粒子、又はシリカ粒子を有することを特徴とする請求項1〜請求項12のいずれかに記載の微粒子配列膜。 The fine particles have, as core particles, polymer particles containing styrene monomer units, acrylate monomer units, or methacrylate monomer units, or silica particles as core particles. Item 13. The fine particle array film according to any one of Items 12. 請求項1〜請求項13のいずれかに記載の微粒子配列膜を用いた反射防止膜。 An antireflection film using the fine particle array film according to any one of claims 1 to 13.
JP2015237939A 2015-12-04 2015-12-04 Fine particle array film and antireflection film Active JP6710949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015237939A JP6710949B2 (en) 2015-12-04 2015-12-04 Fine particle array film and antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237939A JP6710949B2 (en) 2015-12-04 2015-12-04 Fine particle array film and antireflection film

Publications (2)

Publication Number Publication Date
JP2017102408A true JP2017102408A (en) 2017-06-08
JP6710949B2 JP6710949B2 (en) 2020-06-17

Family

ID=59016838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237939A Active JP6710949B2 (en) 2015-12-04 2015-12-04 Fine particle array film and antireflection film

Country Status (1)

Country Link
JP (1) JP6710949B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054132A (en) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd Reflection screen
JP2005218889A (en) * 2004-02-03 2005-08-18 Dainippon Ink & Chem Inc Cured film manufacturing method
JP2005288214A (en) * 2004-03-31 2005-10-20 Dainippon Ink & Chem Inc Method of producing hardened film
JP2007298634A (en) * 2006-04-28 2007-11-15 Teijin Dupont Films Japan Ltd Reflection type polarizing plate
JP2008520444A (en) * 2004-11-09 2008-06-19 コミサリヤ・ア・レネルジ・アトミク Particle networks and methods for realizing such networks
US20100265434A1 (en) * 2007-05-09 2010-10-21 Yongsu Kim Optical film, backlight unit including the same and liquid crystal display device having the same
US20120100364A1 (en) * 2009-04-09 2012-04-26 Industry-University Cooperation Foundation Sogang University Method for arranging fine particles on substrate by physical pressure
JP2012123086A (en) * 2010-12-07 2012-06-28 Sony Corp Conductive optical element, and information input device and display device
JP2012163794A (en) * 2011-02-08 2012-08-30 Murata Mfg Co Ltd Reflection suppressing film and manufacturing method therefor
JP2012181504A (en) * 2011-02-08 2012-09-20 Gunze Ltd Light diffusion film and manufacturing method therefor
JP2012208257A (en) * 2011-03-29 2012-10-25 Kuraray Co Ltd Anti-reflection structure and optical member
JP2013231780A (en) * 2012-04-27 2013-11-14 Kuraray Co Ltd Anti-reflection structure and optical member
JP2014110263A (en) * 2012-11-30 2014-06-12 Mitsui Mining & Smelting Co Ltd Conductive film and electronic component package
JP2014207223A (en) * 2013-03-19 2014-10-30 積水化学工業株式会社 Conductive film and connection structure
JP2014235318A (en) * 2013-06-03 2014-12-15 富士フイルム株式会社 Optical member including antireflection film
JP2015013411A (en) * 2013-07-04 2015-01-22 パナソニック株式会社 Optical member, lighting apparatus and method of producing optical member

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054132A (en) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd Reflection screen
JP2005218889A (en) * 2004-02-03 2005-08-18 Dainippon Ink & Chem Inc Cured film manufacturing method
JP2005288214A (en) * 2004-03-31 2005-10-20 Dainippon Ink & Chem Inc Method of producing hardened film
JP2008520444A (en) * 2004-11-09 2008-06-19 コミサリヤ・ア・レネルジ・アトミク Particle networks and methods for realizing such networks
JP2007298634A (en) * 2006-04-28 2007-11-15 Teijin Dupont Films Japan Ltd Reflection type polarizing plate
US20100265434A1 (en) * 2007-05-09 2010-10-21 Yongsu Kim Optical film, backlight unit including the same and liquid crystal display device having the same
JP2012523311A (en) * 2009-04-09 2012-10-04 インダストリー−ユニバーシティ コオペレーション ファウンデーション ソギャン ユニバーシティ Method for arranging fine particles on a substrate by physical pressure
US20120100364A1 (en) * 2009-04-09 2012-04-26 Industry-University Cooperation Foundation Sogang University Method for arranging fine particles on substrate by physical pressure
JP2012123086A (en) * 2010-12-07 2012-06-28 Sony Corp Conductive optical element, and information input device and display device
JP2012163794A (en) * 2011-02-08 2012-08-30 Murata Mfg Co Ltd Reflection suppressing film and manufacturing method therefor
JP2012181504A (en) * 2011-02-08 2012-09-20 Gunze Ltd Light diffusion film and manufacturing method therefor
JP2012208257A (en) * 2011-03-29 2012-10-25 Kuraray Co Ltd Anti-reflection structure and optical member
JP2013231780A (en) * 2012-04-27 2013-11-14 Kuraray Co Ltd Anti-reflection structure and optical member
JP2014110263A (en) * 2012-11-30 2014-06-12 Mitsui Mining & Smelting Co Ltd Conductive film and electronic component package
JP2014207223A (en) * 2013-03-19 2014-10-30 積水化学工業株式会社 Conductive film and connection structure
JP2014235318A (en) * 2013-06-03 2014-12-15 富士フイルム株式会社 Optical member including antireflection film
JP2015013411A (en) * 2013-07-04 2015-01-22 パナソニック株式会社 Optical member, lighting apparatus and method of producing optical member

Also Published As

Publication number Publication date
JP6710949B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP4562894B2 (en) Antireflection film and manufacturing method thereof
Guo et al. Light diffusing films fabricated by strawberry-like PMMA/SiO2 composite microspheres for LED application
TWI630410B (en) Antireflection film and display device
TWI534002B (en) Optical laminate and method for manufacturing optical laminate
TWI588020B (en) Anti-glare film, anti-glare film manufacturing method, polarizing film and image display device
JP4544952B2 (en) Anti-reflection laminate
JP2006208726A (en) Optical functional sheet
JP5103825B2 (en) OPTICAL LAMINATE, ITS MANUFACTURING METHOD, POLARIZING PLATE, AND IMAGE DISPLAY DEVICE
WO2008020612A1 (en) Method for manufacturing optical laminate, manufacturing equipment, optical laminate, polarizing plate, and image display apparatus
TWI480572B (en) A transparent conductive element, an input device, and a display device
JP4867938B2 (en) Display material
JP2013007831A (en) Low-refractive index film, manufacturing method thereof, antireflection film, manufacturing method thereof, and coating liquid set for low-refractive index film
JP2009138034A (en) Particles and method for manufacturing the same
JP2007086774A (en) Sheet-like optical member and manufacturing method thereof
TWI516363B (en) Method for preparing compound eye film and its application of biomimetic complex eye image capture system
Mizoshita et al. Versatile antireflection coating for plastics: partial embedding of mesoporous silica nanoparticles onto substrate surface
Shih et al. Broadband omnidirectional antireflection coatings inspired by embroidered ball-like structures on leafhoppers
JP3718031B2 (en) Antireflection film and image display device using the same
JP2017181693A (en) Antireflection film
JP6710949B2 (en) Fine particle array film and antireflection film
JP2005060654A (en) Method for producing 3-dimensional particle-conformed material of spherical fine particle, the 3-dimensional particle-conformed material, and method for producing 3-dimensional particle-conformed material-coated film
WO2014046021A1 (en) Anti-reflection film, method for producing same and display device
JP4475555B2 (en) Transparent material and manufacturing method thereof
JP2005195820A (en) Glareproof film
JP2017102409A (en) Method for manufacturing fine particle arrangement film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R151 Written notification of patent or utility model registration

Ref document number: 6710949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151