JP6710949B2 - Fine particle array film and antireflection film - Google Patents

Fine particle array film and antireflection film Download PDF

Info

Publication number
JP6710949B2
JP6710949B2 JP2015237939A JP2015237939A JP6710949B2 JP 6710949 B2 JP6710949 B2 JP 6710949B2 JP 2015237939 A JP2015237939 A JP 2015237939A JP 2015237939 A JP2015237939 A JP 2015237939A JP 6710949 B2 JP6710949 B2 JP 6710949B2
Authority
JP
Japan
Prior art keywords
fine particles
fine particle
particles
fine
particle array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015237939A
Other languages
Japanese (ja)
Other versions
JP2017102408A (en
Inventor
豪士 久野
豪士 久野
孝太 坂口
孝太 坂口
早希 伊藤
早希 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015237939A priority Critical patent/JP6710949B2/en
Publication of JP2017102408A publication Critical patent/JP2017102408A/en
Application granted granted Critical
Publication of JP6710949B2 publication Critical patent/JP6710949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、形状異方性を有する微粒子を設けた微粒子配列膜及び微粒子配列膜を用いた反射防止膜に関する。 The present invention relates to a fine particle array film provided with fine particles having shape anisotropy and an antireflection film using the fine particle array film.

液晶ディスプレイなどの表示装置やカメラなどの光学装置において、外部からの光の反射光による視認性の低下を抑制するために、反射防止膜が利用されている。反射防止膜としては、気相プロセスで作成した誘電体多層膜の光学干渉又は基板上にコーティングした低屈折率材料の光学干渉により低反射率を実現したものが知られている。しかしながら、前者は蒸着等で製膜するために高コストであり、後者は反射防止性能が不十分であるという問題がある。また、波長により反射率の値が異なる為、反射光に発色を生じるという問題がある。他には、基板表面にμmオーダー程度の凹凸を設け、光の散乱により反射像をぼかすことで映り込みを防ぐ防眩フィルムも知られているが、反射そのものを低減するものではなく、高ヘーズであり、画像の鮮明性が低下するという問題がある。 2. Description of the Related Art In a display device such as a liquid crystal display or an optical device such as a camera, an antireflection film is used in order to suppress a decrease in visibility due to reflected light from the outside. As the antireflection film, there is known a film which realizes a low reflectance by optical interference of a dielectric multilayer film formed by a vapor phase process or optical interference of a low refractive index material coated on a substrate. However, the former has a high cost because it is formed by vapor deposition and the latter has a problem that the antireflection performance is insufficient. Further, since the reflectance value differs depending on the wavelength, there is a problem that the reflected light is colored. In addition, an antiglare film is known in which unevenness of the order of μm is provided on the substrate surface and the reflected image is blurred by scattering light to prevent glare, but it does not reduce the reflection itself, but does not reduce the high haze. Therefore, there is a problem that the sharpness of the image is deteriorated.

これらとは別の原理を利用した反射防止膜として、表面に蛾の目のような微細凹凸構造を形成し、反射率を低減する反射防止膜が提案されている。これは表面に設けた微細凹凸構造の空間占有率が空気界面から基材側にかけて連続的に変化し、実質的な屈折率が空気界面から基材側にかけて連続的に変化する屈折率傾斜構造が形成されていることで、反射界面が無くなり、反射が起こらなくなることを利用した反射防止膜である。この反射防止膜では、微細凹凸構造の凸部の高さが光の4分の1波長よりも十分大きく、また凸部の周期ピッチが光のおよそ2.5分の1波長よりも小さいことで、可視光領域(380〜780nm)の光に対し、光の散乱を生じずに、高い反射防止性が付与されている。 As an antireflection film that utilizes a principle different from those described above, an antireflection film that forms a fine uneven structure like a moth on the surface to reduce the reflectance has been proposed. This is because the space occupancy of the fine concavo-convex structure provided on the surface changes continuously from the air interface to the base material side, and the substantial refractive index changes continuously from the air interface to the base material side. It is an antireflection film that utilizes the fact that the reflection interface disappears and reflection does not occur when it is formed. In this antireflection film, the height of the convex portion of the fine concavo-convex structure is sufficiently larger than a quarter wavelength of light, and the periodic pitch of the convex portion is smaller than approximately one-half wavelength of light. In the visible light region (380 to 780 nm), high antireflection property is imparted without causing light scattering.

このような反射防止膜で利用された原理を用いて反射防止性を付与する方法が知られており、該方法を用いた反射防止物品が提案されている(例えば、特許文献1参照。)。特許文献1では、鋳型を利用するため、目的の構造に応じて高価な鋳型が必要であるという問題があり、生産性も低いという問題があった。また、鋳型を用いるために作製可能な微細凹凸構造の形状に制限があることに加え、大面積又は曲率を有する基材上への微細凹凸構造の形成が困難であるという問題があった。さらに、該方法では構造体の内部に周囲とは異なる成分を導入することは困難であり、複雑な屈折率傾斜構造を有する微細凹凸構造の形成が実質的に不可能であった。 A method of imparting antireflection property using the principle utilized in such an antireflection film is known, and an antireflection article using the method is proposed (for example, refer to Patent Document 1). In Patent Document 1, since a mold is used, there is a problem that an expensive mold is required according to a target structure, and there is a problem that productivity is low. Further, there is a problem in that the shape of the fine concavo-convex structure that can be produced by using the mold is limited, and it is difficult to form the fine concavo-convex structure on a substrate having a large area or a curvature. Furthermore, it is difficult to introduce a component different from the surroundings into the structure by this method, and it is substantially impossible to form a fine concavo-convex structure having a complicated gradient refractive index structure.

一方、微細凹凸構造を有する反射防止膜を低コストかつ大面積で製造する方法として、微粒子を利用した方法が提案されている(例えば、特許文献2〜7及び非特許文献1〜3参照。)。 On the other hand, as a method of manufacturing an antireflection film having a fine concavo-convex structure at a low cost and in a large area, methods using fine particles have been proposed (see, for example, Patent Documents 2 to 7 and Non-Patent Documents 1 to 3). ..

しかしながら、特許文献2では、コロイド結晶膜を形成し、アクリル樹脂の一部をプラズマエッチングにより除去することで微細凹凸構造を作製する方法が開示されているが、可視光領域内の入射光に対して特定の波長の光の反射を強めるBragg反射を生じ、干渉色に似た発色が生じるという問題があった。また、球状の微粒子を用いるために凸部高さ/凸部幅の比(凸部高さは凸部の基材面外方向の最大長さ、凸部幅は凸部の基材面内方向の最大長さをそれぞれ示す)が1以下であり、膜の透明性を損なうことなく可視光領域の光に対する十分な反射防止性能を付与することはできないという問題があった。また、特許文献3では、特許文献2と同様の手法を採用しつつ、アモルファス構造となる微細凹凸構造体を作製する方法が提案されているが、該方法ではBragg反射による発色の問題は解決されるものの、凸部高さ/凸部幅の比が1よりも大きな微細凹凸構造を作製することが実質的に不可能であり、膜の透明性を損なうことなく可視光領域の光に対する十分な反射防止性能を付与することはできないという問題があった。 However, Patent Document 2 discloses a method of forming a colloidal crystal film and removing a part of acrylic resin by plasma etching to form a fine concavo-convex structure. There is a problem that Bragg reflection that enhances the reflection of light of a specific wavelength is generated, and a color similar to an interference color is generated. In addition, since the spherical fine particles are used, the ratio of the height of the convex portion to the width of the convex portion (the height of the convex portion is the maximum length of the convex portion in the outward direction of the substrate surface, the convex width is the inward direction of the convex substrate) Each of the maximum lengths of 1) is 1 or less, and there is a problem that sufficient antireflection performance for light in the visible light region cannot be imparted without impairing the transparency of the film. Further, Patent Document 3 proposes a method of producing a fine concavo-convex structure body having an amorphous structure while adopting the same method as that of Patent Document 2, but the method solves the problem of color development due to Bragg reflection. However, it is practically impossible to fabricate a fine concavo-convex structure having a convex height/convex width ratio of more than 1, which is sufficient for light in the visible light region without impairing the transparency of the film. There is a problem that antireflection performance cannot be imparted.

特許文献4では、球状微粒子の表面電荷による基材上への粒子吸着を利用した微細凹凸構造体の形成方法が開示されているが、該方法により凹凸構造体を形成する場合も、凸部高さ/凸部幅の比が1以下となり、膜の透明性を損なうことなく、可視光領域の光に対する十分な反射防止性能を付与することはできないという問題があった。 Patent Document 4 discloses a method for forming a fine concavo-convex structure using adsorption of particles on a base material by the surface charge of spherical fine particles. However, even when the concavo-convex structure is formed by this method, the height of the convex portion is high. There is a problem in that the ratio of the height/width of the convex portion is 1 or less, and sufficient antireflection performance for light in the visible light region cannot be imparted without impairing the transparency of the film.

特許文献5では、基材上に第一の球状微粒子を付着させ、スタンパを用いて第一の球状微粒子と反対の電荷を第一の球状微粒子の上部のみに付与した後に、第ニの球状微粒子を第一の球状微粒子の表面上部のみに付着させる方法が開示されているが、該方法では、スタンパを用いる電荷付与工程が存在するために生産性が低く、また大面積のシートの製造は困難であるという問題があった。また、球状粒子の積層体であるために、積層された球状粒子間で屈折率変化の不連続部分を有し、反射防止性に有効な屈折率傾斜構造となっていないという問題があった。 In Patent Document 5, the first spherical fine particles are attached to a base material, and a charge opposite to the first spherical fine particles is applied only to the upper portion of the first spherical fine particles by using a stamper. Is disclosed only on the upper surface of the first spherical fine particles, but in this method, the productivity is low due to the existence of the charge applying step using a stamper, and it is difficult to produce a large-area sheet. There was a problem that. Further, since it is a laminated body of spherical particles, there is a problem that the laminated spherical particles have discontinuities in the change of the refractive index and the refractive index gradient structure effective for antireflection property is not formed.

非特許文献1では、形状異方性を有する微粒子(異形粒子)を用い、異形粒子を基材上に塗布することで異形粒子の長軸を基材面外方向へ配向させる方法が提案されているが、該方法では、大面積にわたって異形粒子を基材面外方向のみに配向させることは不可能であり、均一な微粒子配列膜を作製できないという問題があった。また、微粒子同士を密着させずに基材上へ配列させることはできないため、凸部高さ/凸部幅の大きな微細凹凸構造は作製できず、また微粒子が部分的にパッキングした構造の為、コロイド結晶のように反射光に発色を生じるという問題があった。さらには、該微粒子配列膜においては微粒子が基材表面に固定化されておらず、耐擦傷性に劣るという問題があった。 Non-Patent Document 1 proposes a method of using fine particles (shaped particles) having shape anisotropy and applying the shaped particles on a base material to orient the major axis of the shaped particles in the out-of-plane direction of the base material. However, this method has a problem that it is impossible to orient the irregularly shaped particles only in the out-of-plane direction of the substrate over a large area, and a uniform fine particle array film cannot be produced. Further, since it is not possible to arrange the fine particles on the substrate without making them adhere to each other, it is not possible to fabricate a fine uneven structure having a large convex height/convex width, and because the fine particles are partially packed, There is a problem that reflected light is colored like colloidal crystals. Further, in the fine particle array film, fine particles are not fixed on the surface of the base material, and there is a problem that scratch resistance is poor.

非特許文献2では、微粒子分散液に外部電場を印加することで異形粒子を配向させた微粒子配列膜の作製方法が開示されているが、該方法では外部電場を用いるうえ、2枚の基板で微粒子分散液を挟むことで生じる毛管力により微粒子を集積させているため、均質な大面積の構造体を作製することは困難であり、量産性にも劣るという問題があった。また、微粒子を単層で配列させた微粒子薄膜の作製は困難であるという問題があった。さらに、微粒子同士を密着させて基材上へ配列させるため、凸部高さ/凸部幅の比の大きな微粒子配列膜は作製できないという問題があった。 Non-Patent Document 2 discloses a method for producing a fine particle array film in which irregularly shaped particles are oriented by applying an external electric field to a fine particle dispersion liquid. In this method, an external electric field is used and two substrates are used. Since the fine particles are accumulated by the capillary force generated by sandwiching the fine particle dispersion liquid, it is difficult to manufacture a homogeneous large-area structure, and there is a problem that mass productivity is poor. Further, there is a problem that it is difficult to produce a fine particle thin film in which fine particles are arranged in a single layer. Further, since the fine particles are brought into close contact with each other and arranged on the substrate, there is a problem that a fine particle array film having a large height/height width ratio cannot be produced.

特許文献6では、異形粒子をポリマーバインダーに分散させ塗布せしめた光拡散フィルムの作製方法が開示されているが、該方法により得られる光拡散フィルムは、反射光を拡散させることが主目的であり、微細凹凸構造により光の反射自体を防ぐものではない。また、特許文献6には異形粒子を配向させる方法は示されておらず、凸部高さ/凸部幅の比の大きな微粒子配列膜の作製は実質的に不可能であった。 Patent Document 6 discloses a method for producing a light-diffusing film in which irregular-shaped particles are dispersed in a polymer binder and applied, but the light-diffusing film obtained by the method is mainly intended to diffuse reflected light. However, the fine concavo-convex structure does not prevent light reflection itself. Further, Patent Document 6 does not show a method for orienting irregularly shaped particles, and it has been practically impossible to produce a fine particle array film having a large height/height width ratio.

特許文献7では、球状粒子が会合した二次粒子を用いた低反射コーティングの方法が開示されているが、該方法は二次粒子によってコーティング内部に空隙を設けることで低屈折率のコーティング層を形成し、光学干渉によって反射を防止するものであり、微細凹凸構造による反射防止効果が主な作用ではないため、反射防止性能は不十分であった。また、特許文献7には微細凹凸構造形成に必要な二次粒子の長軸を配向させる方法については何ら記載がなく、凸部高さ/凸部幅の比が1よりも大きな微細凹凸構造を作製することが実質的に不可能であるという問題があった。 Patent Document 7 discloses a method of low-reflection coating using secondary particles in which spherical particles are associated, but this method forms a coating layer having a low refractive index by forming voids inside the coating by the secondary particles. Since it is formed to prevent reflection by optical interference, and the antireflection effect of the fine concavo-convex structure is not the main function, the antireflection performance was insufficient. Further, Patent Document 7 does not describe any method for orienting the major axis of secondary particles necessary for forming a fine concavo-convex structure, and a fine concavo-convex structure having a convex portion height/convex portion width ratio of greater than 1 is provided. There is a problem that it is practically impossible to manufacture.

一方、異形粒子を用いた膜であって、異形粒子の長軸を基材面外方向に配向させたものとして、コーン型の異形粒子を配列させた膜が開示されている(例えば、非特許文献3参照。)。しかしながら、非特許文献3には、反射防止性に関する記載はなく、反射防止性の発現に最適な微粒子の粒径や形状については何ら示されていなかった。 On the other hand, a film using irregularly shaped particles, in which the major axis of the irregularly shaped particles is oriented in the out-of-plane direction of the substrate, a film in which cone-shaped irregularly shaped particles are arranged is disclosed (for example, Non-Patent Document 1). Reference 3.). However, Non-Patent Document 3 does not describe the antireflection property, and does not show the optimum particle size or shape of the fine particles for exhibiting the antireflection property.

特許文献8では、トナー用外添加材として非球状複合粒子が開示されているが、非球状複合粒子を配向させることに関する記載がないばかりか、非球状複合粒子を用いて光学薄膜を形成することについて、何らの記載がないものであった。 Patent Document 8 discloses non-spherical composite particles as an external additive for toner. However, there is no description about orienting non-spherical composite particles, and non-spherical composite particles are used to form an optical thin film. There was no description about.

特開2008−209540号公報JP, 2008-209540, A 特許4625014号公報Japanese Patent No. 4625014 特許5187495号公報Japanese Patent No. 5187495 特許4562894号公報Japanese Patent No. 4562894 特許4263683号公報Japanese Patent No. 4263683 特許5487530号公報Japanese Patent No. 5487530 特開WO2014/119267号公報JP, WO 2014/119267 特開2014−145035号公報JP, 2014-145035, A

J. AM. CHEM. SOC., 2010, 132, 5960−5961J. AM. CHEM. SOC., 2010, 132, 5960-5961. J. AM. CHEM. SOC., 2011, 5, 6695−6700J. AM. CHEM. SOC., 2011, 5, 6695-6700 MACROMOLECULES, 2015, 48, 700−706MACROMOLECULES, 2015, 48, 700-706

本発明は上記課題に鑑みてなされたものであり、その目的は、凸部高さ/凸部幅の比が大きく、大面積にわたって均一構造を有する微粒子配列膜を提供することにある。本発明の目的はまた、該微粒子配列膜を用いることで、可視光領域の光の透過性能に優れ、可視光域の光の散乱が少なく、反射光の発色の少なく、かつ、実用的な耐擦傷性を有する反射防止膜を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a fine particle array film having a large convex portion height/convex portion width ratio and a uniform structure over a large area. The object of the present invention is also to use the fine particle arranging film, which is excellent in light transmission performance in the visible light region, less scattering of light in the visible light region, less coloration of reflected light, and practical resistance. It is to provide an antireflection film having scratch resistance.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、形状異方性を有する微粒子を基材表面上に固定化させた微粒子配列膜によって上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the above problems can be solved by a fine particle array film in which fine particles having shape anisotropy are immobilized on the surface of a substrate. Has been completed.

すなわち、本発明は、形状異方性を有する微粒子を基材上に配列させることで凹凸が形成された微粒子配列膜であって、前記微粒子の長径/短径の比の平均は1.3〜5.0であり、微粒子の平均短径は50〜500nmであり、前記微粒子は基材表面に固定化されており、前記微粒子のうち、60%以上の微粒子は長軸と基材接平面とのなす角度が45°以上であり、前記微粒子の基材面内方向の配列が不規則配列であることを特徴とする微粒子配列膜に関するものである。 That is, the present invention is a fine particle array film in which irregularities are formed by arranging fine particles having shape anisotropy on a substrate, and the average ratio of the major axis/minor axis of the fine particles is 1.3 to. 5.0, the average minor axis of the fine particles is 50 to 500 nm, the fine particles are immobilized on the surface of the base material, and 60% or more of the fine particles have a major axis and a tangential plane of the base material. The present invention relates to a fine particle array film, wherein the angle formed by is 45° or more, and the array of the fine particles in the in-plane direction of the base material is irregular.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明において微粒子配列膜とは、微粒子が単粒子層又は多粒子層で基材上に配列した膜を示す。 In the present invention, the fine particle array film refers to a film in which fine particles are arranged on a substrate in a single particle layer or a multi particle layer.

本発明の微粒子配列膜は、形状異方性を有する微粒子(異形粒子)を用いることを特徴とする。本発明において、「形状異方性を有する」とは、形状が、球以外の形状かつ正多面体以外の形状であることをいう。本発明において、微粒子が形状異方性を有する粒子であることにより、凸部高さ/凸部幅の比の大きな凹凸構造が形成される。 The fine particle array film of the present invention is characterized by using fine particles having a shape anisotropy (irregular particles). In the present invention, “having shape anisotropy” means that the shape is a shape other than a sphere and a shape other than a regular polyhedron. In the present invention, since the fine particles are particles having shape anisotropy, a concavo-convex structure having a large projection height/projection width ratio is formed.

本発明において、微粒子の長径/短径の比(以後、「粒子アスペクト比」という)の平均は1.3〜5.0である。粒子アスペクト比がこの範囲にあることで、実用上必要な微粒子配列膜の強度を損なうことなく、高い反射防止性を付与することができる。粒子アスペクト比が1.3よりも小さい場合、得られる凹凸構造の平均凸部高さ/微粒子の平均短径の比(以後、「平均凸部アスペクト比」という)が小さく、十分な反射防止性能が得られない。粒子アスペクト比が5.0よりも大きな場合、微粒子配列膜の強度が低く、得られる凹凸構造は耐擦傷性に劣るものとなる。 In the present invention, the average of the major axis/minor axis ratio of fine particles (hereinafter referred to as “particle aspect ratio”) is 1.3 to 5.0. When the particle aspect ratio is within this range, high antireflection properties can be imparted without impairing the strength of the fine particle array film that is practically necessary. When the particle aspect ratio is smaller than 1.3, the ratio of average convex portion height/fine particle average minor axis of the resulting concavo-convex structure (hereinafter referred to as “average convex portion aspect ratio”) is small, and sufficient antireflection performance is obtained. Can't get When the particle aspect ratio is larger than 5.0, the strength of the fine particle array film is low and the resulting uneven structure has poor scratch resistance.

ここで本発明において、微粒子の長径とは、形状異方性を有する粒子の最大粒径を示すものをいい、長径方向の軸を長軸という。本発明において、微粒子の長径は、例えば、図1(E)における長さlである。また、本発明において、微粒子の短径とは、前記長軸に垂直な方向の最大粒径を示すものをいい、短径方向の軸を短軸という。本発明において、微粒子の短径は、例えば、図1(E)における長さsである。長径及び短径は透過型電子顕微鏡写真又は走査型電子顕微鏡写真上でこれらの長さを測定することで算出できる。 Here, in the present invention, the major axis of the fine particles means the maximum particle size of particles having shape anisotropy, and the axis in the major axis direction is called the major axis. In the present invention, the major axis of the fine particles is, for example, the length 1 in FIG. Further, in the present invention, the minor axis of the fine particles means the maximum particle size in the direction perpendicular to the major axis, and the minor axis is the minor axis. In the present invention, the minor axis of the fine particles is, for example, the length s in FIG. The major axis and the minor axis can be calculated by measuring these lengths on a transmission electron micrograph or a scanning electron micrograph.

本発明において、「平均短径」及び「平均長径」とは、無作為に選んだ50点以上の微粒子について長径及び短径を測定し、それぞれ平均して得られる長さをいう。また、本発明において、「平均粒子アスペクト比」とは、無作為に選んだ50点以上の微粒子について粒子アスペクト比を測定し、平均して得られるアスペクト比をいう。 In the present invention, the “average minor axis” and the “average major axis” mean the lengths obtained by measuring the major axis and the minor axis of 50 or more randomly selected fine particles and averaging them. Further, in the present invention, the “average particle aspect ratio” means an aspect ratio obtained by measuring the particle aspect ratios of 50 or more randomly selected fine particles and averaging them.

本発明の微粒子配列膜の作製に用いる微粒子の平均短径は50〜500nmであり、透明性に特に優れる反射防止膜を作製できることから、平均短径50〜300nmであることが好ましく、50〜200nmであることがさらに好ましく、50〜150nmであることが特に好ましい。微粒子の平均短径が50nm以上であることで、反射防止性の発現に必要な凸部高さを得ることができ、かつ、耐擦傷性の高い微粒子配列膜が得ることができる。また、微粒子の平均短径が500nm以下であることで、光の散乱が抑制された微粒子配列膜を得ることができる。 The average short diameter of the fine particles used for producing the fine particle array film of the present invention is 50 to 500 nm, and the average short diameter is preferably 50 to 300 nm, because it is possible to produce an antireflection film having particularly excellent transparency. Is more preferable, and 50 to 150 nm is particularly preferable. When the average minor axis of the fine particles is 50 nm or more, it is possible to obtain the height of the convex portions necessary for exhibiting the antireflection property, and it is possible to obtain the fine particle array film having high scratch resistance. Further, when the average minor axis of the fine particles is 500 nm or less, it is possible to obtain a fine particle array film in which light scattering is suppressed.

本発明において、微粒子は基材表面に固定化されている。本発明において、微粒子が「固定化されている」とは、基材表面と微粒子とを化学反応により結合させる手段、基材表面と微粒子とを融着させる手段、微粒子の一部を溶解及び基材表面で固化させる手段、微粒子表面に高分子薄膜を形成する手段、基材表面に粘着層を形成し前記微粒子を粘着層上に粘着させる手段、のいずれかの手段により、微粒子と基材が結び付けられていることをいう。本発明において、微粒子が基材表面上で固定化されていることにより、微粒子配列膜の強度を高めることができ、耐擦傷性に優れるものとなる。ここで、本発明において基材表面とは、ガラス、樹脂フィルム等の用いる基材そのものの表面を指し示す他、前処理として前記基材表面にハードコート層やアンカーコート層、高分子電解質層等のコート層が形成されている場合を含み、この場合の基材表面とはコート層付き基材の最表面を示す。なお、本発明では、微粒子と基材表面とは、ある一定の面積の接触部(以後、「微粒子接触部」という)を有し、該微粒子接触部において微粒子と基材表面との間に接着力が生じることで固定化が生じているものである。 In the present invention, the fine particles are immobilized on the surface of the base material. In the present invention, the term “immobilized” means that the fine particles are “fixed”, a means for bonding the surface of the base material and the fine particles by a chemical reaction, a means for fusing the surface of the base material and the fine particles, a part of the fine particles dissolved and The particles and the base material are solidified on the surface of the material, the means of forming a polymer thin film on the surface of the fine particles, and the means of forming an adhesive layer on the surface of the base material and adhering the particles onto the adhesive layer. It means that they are connected. In the present invention, since the fine particles are immobilized on the surface of the substrate, the strength of the fine particle array film can be increased and the scratch resistance is excellent. Here, in the present invention, the substrate surface refers to the surface of the substrate itself used such as glass and resin film, and as a pretreatment, a hard coat layer, an anchor coat layer, a polymer electrolyte layer or the like is formed on the substrate surface. Including the case where the coat layer is formed, the surface of the base material in this case indicates the outermost surface of the base material with the coat layer. In the present invention, the fine particles and the surface of the base material have a contact portion having a certain area (hereinafter referred to as “fine particle contact portion”), and the fine particles and the surface of the base material are bonded to each other. Immobilization occurs due to the generation of force.

本発明において、全微粒子のうち、60%以上の微粒子は長軸と基材接平面とのなす角度が45°以上である。ここで、本発明において、「基材接平面」とは、基材表面において、微粒子接触部の中心点における接平面をいう(基材表面が水平面と平行であるとき、該長軸と基材面内方向とのなす角度が長軸と基材接平面とのなす角度となる。)。本発明において、微粒子の長軸と基材接平面とのなす角度が45°以上となる微粒子の割合が60%よりも低い場合、形成される凹凸構造の平均凸部アスペクト比が低く、十分な反射防止性能が得られない。また、前記割合が60%よりも低い場合、膜の透明性を損なう原因となる。本発明において、微粒子の長軸と基材接平面とのなす角度が45°以上となる微粒子の割合が70%以上であることが好ましい。 In the present invention, 60% or more of all the fine particles form an angle of 45° or more between the major axis and the tangential plane of the substrate. Here, in the present invention, the "base material tangent plane" means a tangent plane at the center point of the fine particle contact portion on the base material surface (when the base material surface is parallel to the horizontal plane, the long axis and the base material are The angle between the in-plane direction and the long axis is the angle between the tangential plane of the substrate.) In the present invention, when the ratio of the fine particles whose angle between the long axis of the fine particles and the tangential plane of the substrate is 45° or more is lower than 60%, the average convex portion aspect ratio of the uneven structure formed is low and sufficient. Antireflection performance cannot be obtained. Moreover, when the said ratio is lower than 60%, it becomes a cause which impairs the transparency of a film|membrane. In the present invention, it is preferable that the ratio of the fine particles whose angle between the long axis of the fine particles and the tangential plane of the substrate is 45° or more is 70% or more.

本発明において、微粒子の長軸と基材接平面とのなす角度が90°に近いほど、より高い平均凸部アスペクト比を得ることができ、反射防止性に優れる微粒子配列膜となるため、微粒子の長軸と基材接平面とのなす角度が60°以上となる微粒子の割合が60%以上であることがさらに好ましく、75°以上となる微粒子の割合が60%以上であることが特に好ましい。 In the present invention, the closer the angle between the major axis of the fine particles and the tangential plane of the base material is to 90°, the higher the average aspect ratio of the convex portions can be obtained, and the fine particle array film is excellent in antireflection property. It is more preferable that the ratio of the fine particles forming an angle of 60° or more with the major axis of the substrate and the tangential plane of the substrate is 60% or more, and it is particularly preferable that the ratio of the fine particles forming 75° or more is 60% or more. ..

ここで、微粒子の長軸と基材接平面とのなす角度は、具体的には、例えば、図2(B)におけるθである。そして、本発明において、微粒子の長軸と基材接平面とのなす角度は、基材上に配列する該微粒子の長軸を含む面に対して垂直方向から微粒子配列膜断面の電子顕微鏡写真を測定し、該微粒子の長軸と基材接平面がなす角度を求めることで測定可能である。基材接平面に対し微粒子の長軸がなす角度がθ°以上の微粒子の割合は、無作為に選んだ20点以上の粒子について基材接平面に対し微粒子の長軸がなす角度を求め、その角度がθ°以上となる微粒子の割合を求めることで算出できる。 Here, the angle formed by the long axis of the fine particles and the tangential plane of the substrate is specifically, for example, θ in FIG. 2B. In the present invention, the angle formed by the long axis of the fine particles and the tangential plane of the base material is an electron micrograph of the cross section of the fine particle array film from the direction perpendicular to the plane containing the long axis of the fine particles arranged on the base material. It can be measured by measuring and determining the angle between the long axis of the fine particles and the tangential plane of the substrate. The ratio of the fine particles whose angle to the base material tangent plane is θ° or more is the angle of the fine particle long axis to the base material tangent plane for 20 or more randomly selected particles. It can be calculated by obtaining the ratio of fine particles whose angle is θ° or more.

また、微粒子の形状が後述するダルマ形状の場合には、微粒子の長軸と基材接平面とのなす角度がθ°以上の微粒子の割合を、以下の方法を用いても算出することができる。透過型電子顕微鏡像において測定した微粒子の平均長径を2A、基材表面から各微粒子頂点までの基材面外方向の高さを、微粒子配列膜断面の走査型電子顕微鏡像又は微粒子配列膜表面の原子間力顕微鏡像において測定し、その高さをHとしたとき、A×(1+sinθ°)以上のHを有する微粒子の割合を算出する。無作為に選んだ50点以上の粒子について、この割合を算出することで、微粒子の長軸と基材接平面とのなす角度がθ°以上の微粒子の割合を算出することができる。 Further, in the case where the shape of the fine particles is a Dharma shape described later, the proportion of the fine particles whose angle between the long axis of the fine particles and the tangential plane of the base material is θ° or more can be calculated by the following method. .. The average major axis of the fine particles measured in the transmission electron microscope image is 2 A, and the height of the base material from the surface of the base material to the apex of each base material in the direction out of the surface of the base material, When the height is measured in an atomic force microscope image and the height is H, the proportion of fine particles having H of A×(1+sin θ°) or more is calculated. By calculating this ratio for randomly selected particles of 50 points or more, it is possible to calculate the ratio of the fine particles whose angle between the long axis of the fine particles and the tangential plane of the substrate is θ° or more.

本発明において、微粒子の基材面内方向の配列は不規則配列である。基材面内方向の微粒子の配列に規則性を持たないことで、ブラッグ反射による光の干渉色の発現を防ぐことができ、本発明の微粒子配列膜を反射防止膜に用いた場合に、反射光に発色を生じない反射防止膜となる。微粒子の基材面内方向の配列が不規則配列であることは、微粒子配列膜表面の原子間力顕微鏡像又は走査型電子顕微鏡像を測定し、それらの像をフーリエ変換したフーリエ変換像における輝点の有無により判断することができる。フーリエ変換により、元画像の濃淡を正弦波の重ね合わせで近似した場合の、各正弦波の波数に対するパワー(輝度の絶対値の二乗)を表す二次元像に変換することができ、元画像の濃淡に規則性がある場合、各正弦波に対応する輝点がフーリエ変換像に現れる。例えば、粒子が六方格子状に規則配列している場合、その形状像の濃淡は3つの正弦波の重ね合わせで表すことができ、60°の角度で6つの輝点が現れる。粒子が六方格子状に規則配列している場合、45°の角度で4つの輝点がフーリエ変換像に現れる。フーリエ変換像において輝点が存在しない場合、微粒子の基材面内方向の配列は不規則配列である。 In the present invention, the arrangement of the fine particles in the in-plane direction of the base material is an irregular arrangement. Since there is no regularity in the arrangement of the fine particles in the in-plane direction of the substrate, it is possible to prevent the development of interference color of light due to Bragg reflection, and when the fine particle arrangement film of the present invention is used as an antireflection film, reflection It becomes an antireflection film that does not generate color in light. The irregular arrangement of the fine particles in the in-plane direction of the substrate means that the atomic force microscope image or the scanning electron microscope image of the fine particle arrangement film surface is measured, and those images are Fourier transformed to obtain a Fourier transform image. It can be judged by the presence or absence of points. By the Fourier transform, it is possible to convert into a two-dimensional image representing the power (square of the absolute value of the brightness) for the wave number of each sine wave when the grayscale of the original image is approximated by superposition of sine waves. When the lightness and shade have regularity, bright points corresponding to each sine wave appear in the Fourier transform image. For example, when the particles are regularly arranged in a hexagonal lattice, the shade of the shape image can be represented by superposition of three sine waves, and six bright points appear at an angle of 60°. When the particles are regularly arranged in a hexagonal lattice, four bright spots appear in the Fourier transform image at an angle of 45°. When there are no bright spots in the Fourier transform image, the array of the fine particles in the in-plane direction of the substrate is irregular.

本発明において、微粒子の10%以上は他の微粒子と基材面内方向に互いに接触することなく独立して存在していることが好ましく、30%以上が独立して存在していることがさらに好ましく、50%以上が特に好ましく、70%以上が最も好ましい。ここで微粒子が他の微粒子と基材面内方向に互いに接触することなく独立して存在しているとは、微粒子配列膜が多粒子層の場合、同一層内の微粒子が互いに非接触であることを示す。最表面の微粒子が独立して存在することで、凹凸構造の平均凸部アスペクト比を大きくすることができる。また、空気側を微粒子頂部、基材側を微粒子底部としたとき、同一層内の微粒子が互いに非接触であることで、微粒子頂部から微粒子底部にかけて屈折率傾斜構造を形成するのに好適となり、反射防止性能により優れた膜となる。また、一部の微粒子同士が密着した凝集体を少なくすることで、光の散乱による膜の透明性の低下を抑制することができ、好ましい。独立して存在する微粒子の割合は、基材上に配列する微粒子の表面の電子顕微鏡写真上で無作為に選んだ50点以上の粒子についてこの該非を判定することで、算出することができる。 In the present invention, it is preferable that 10% or more of the fine particles exist independently without contacting with other fine particles in the in-plane direction of the substrate, and it is further preferable that 30% or more exist independently. It is preferably 50% or more, particularly preferably 70% or more. Here, the fine particles exist independently of each other in the in-plane direction of the base material without contacting each other, and when the fine particle array film is a multi-particle layer, the fine particles in the same layer are not in contact with each other. Indicates that. Since the fine particles on the outermost surface are present independently, the average convex portion aspect ratio of the concavo-convex structure can be increased. Further, when the air side is the fine particle top part and the base material side is the fine particle bottom part, the fine particles in the same layer are not in contact with each other, which is suitable for forming a refractive index gradient structure from the fine particle top part to the fine particle bottom part, The film has excellent antireflection properties. In addition, by reducing the number of aggregates in which some of the fine particles are in close contact with each other, it is possible to suppress a decrease in transparency of the film due to light scattering, which is preferable. The ratio of independently existing fine particles can be calculated by determining the non-determination for 50 or more particles randomly selected on an electron micrograph of the surface of the fine particles arranged on the substrate.

本発明で用いる微粒子の形状は、以下の(1)形状又は(2)形状から選択される形状に1〜3個の球状突出部を設けた形状であることが好ましい。
(1)球(図1(A))
(2)球表面に該球の半径以下の高さの突起を備えた形状(図1(B))
また、本発明で用いる微粒子の形状は、平均凸部アスペクト比のより高い凹凸構造を形成することができるため、微粒子の形状が前記(1)形状又は(2)形状に1〜2個の球状突出部を設けた形状であることがさらに好ましい。
The shape of the fine particles used in the present invention is preferably a shape selected from the following (1) shape or (2) shape and provided with 1 to 3 spherical protrusions.
(1) Sphere (Fig. 1(A))
(2) A shape in which a projection having a height equal to or smaller than the radius of the sphere is provided on the surface of the sphere (FIG. 1(B))
In addition, the shape of the fine particles used in the present invention can form a concavo-convex structure having a higher average aspect ratio of the convex portions, and therefore the shape of the fine particles is 1 to 2 spherical shapes in the above (1) shape or (2) shape More preferably, it has a shape provided with a protrusion.

本発明において、前記(1)形状又は(2)形状に球状突出部を1個設けた形状を「ダルマ形状」と呼ぶ。 In the present invention, a shape in which one spherical protrusion is provided in the above (1) shape or (2) shape is referred to as a “Dharma shape”.

また、本発明において、微粒子の形状が前記(1)形状又は(2)形状に2個の球状突出部を設けた形状である場合、球状突出部の中心と前記(1)形状又は(2)形状の中心を結ぶ二直線のなす角度(図1(G)におけるφ)が90°以上となるように球状突出部を設けた形状であることが特に好ましい。 Further, in the present invention, when the shape of the fine particles is a shape in which two spherical protrusions are provided in the shape (1) or the shape (2), the center of the spherical protrusion and the shape (1) or (2) It is particularly preferable that the spherical projection is provided so that the angle formed by two straight lines connecting the centers of the shapes (φ in FIG. 1G) is 90° or more.

また、本発明で用いる微粒子の形状は、以下の(3)形状又は(4)形状から選択される形状であることが好ましい。
(3)球状突出部を有しない楕円体(図1(C))
(4)球状突出部を有しない弾丸形状(球状突出部なし)(図1(D))
また、本発明で用いる微粒子の形状は、前記(3)形状又は(4)形状から選択される形状に1個の球状突出部を設けた形状であることが好ましい。
The shape of the fine particles used in the present invention is preferably a shape selected from the following (3) shape or (4) shape.
(3) Ellipsoid without spherical protrusion (Fig. 1(C))
(4) Bullet shape without spherical protrusion (no spherical protrusion) (Fig. 1(D))
Further, the shape of the fine particles used in the present invention is preferably a shape in which one spherical protrusion is provided in the shape selected from the above (3) shape or (4) shape.

ここで球状突出部とは、図1(E)に示すように、前記(1)形状〜(4)形状に球状突出部が一点で結合した場合、球形状を指す他、図1(F)に示すように、前記(1)形状〜(4)形状が球に埋没するような形で球状突出部が存在する場合、球から前記(1)形状〜(4)形状の埋没部分を切り取った残りの部位のことを示す。また、弾丸形状とは、図1(D)に示すように、円柱又は円錐台の一端の平面に、該平面と同径の円平面を有する欠球を、前記平面同士を合わせるように結合した形状を示す。なお、前記突起と前記球状突出部とは、前者が球表面に存在するものであって、該球の半径以下の高さであるものであり、かつ、非球状の形状であるのに対し、後者が球状である点で、相違する。 Here, as shown in FIG. 1(E), the term “spherical protrusion” refers to a spherical shape when the spherical protrusions are connected to the shapes (1) to (4) at one point, and FIG. As shown in FIG. 5, when the spherical protrusions are present in such a manner that the shapes (1) to (4) are embedded in the sphere, the embedded portions of the shapes (1) to (4) are cut out from the sphere. Indicates the rest of the site. In addition, as shown in FIG. 1D, a bullet shape is formed by combining a flat surface at one end of a cylinder or a truncated cone with a sphere having a circular flat surface having the same diameter as the flat surface so that the flat surfaces are aligned with each other. The shape is shown. Incidentally, the projection and the spherical projection, the former is present on the surface of the sphere, the height is equal to or less than the radius of the sphere, and in contrast to the non-spherical shape, The difference is that the latter is spherical.

本発明において、粒子の形状が前記のように球状突出部を有する形状であることで、長軸の長さが同じ針状等の微粒子と比較して、基材と微粒子の長軸がなす角度が同じ場合に、より高い凸部高さとすることが可能であり、凹凸構造の形成にとって好ましいものとなる。 In the present invention, since the shape of the particles is a shape having a spherical protrusion as described above, the angle between the long axis of the base material and the fine particles is larger than that of fine particles such as needles having the same long axis length. When the same, the height of the convex portion can be made higher, which is preferable for forming the concave-convex structure.

本発明において、粒子の形状が球状突出部をもつ形状、球状突出部を有しない楕円体、又は球状突出部を有しない弾丸形状であるとき、(1)形状〜(4)形状と球状突出部の結合点以外の部分において、基材面内方向の微粒子の空間占有率が連続的に変化した屈折率傾斜構造がより形成され易くなるため、微粒子配列膜を反射防止膜に用いた場合に、より反射防止性に優れる膜となり、好ましいものとなる。 In the present invention, when the shape of the particles is a shape having a spherical protrusion, an ellipsoid having no spherical protrusion, or a bullet shape having no spherical protrusion, the shapes (1) to (4) and the spherical protrusion In a portion other than the bonding point of, since the refractive index gradient structure in which the space occupancy of the fine particles in the in-plane direction of the base material is continuously changed is more easily formed, when the fine particle array film is used as an antireflection film, The film is more excellent in antireflection property, which is preferable.

前記球状突出部は、図1(F)に示すように、前記(1)形状〜(4)形状と面で接触するように設けられていることが好ましい。球状突出部と各形状が面接触した形状の微粒子を用いることにより、基材面内方向の微粒子の空間占有率が空気界面から基材側にかけて連続的に変化し、実質的な屈折率が空気界面から基材側にかけて連続的に変化する屈折率傾斜構造がより形成され易くなるため、微粒子配列膜を反射防止膜に用いた場合に、より反射防止性に優れる膜となる。 As shown in FIG. 1(F), it is preferable that the spherical protrusion is provided so as to come into surface contact with the shapes (1) to (4). By using fine particles whose shape is in surface contact with the spherical protrusion, the space occupancy of fine particles in the in-plane direction of the base material changes continuously from the air interface to the base material side, and the substantial refractive index is Since the refractive index gradient structure that continuously changes from the interface to the substrate side is more easily formed, when the fine particle array film is used as the antireflection film, the film has more excellent antireflection properties.

前記球状突出部はまた、前記球状突出部の直径Dと前記(1)形状〜(4)形状のいずれかの形状の短径Rとの比D/Rが0.1〜5.0であることが好ましく、0.3〜1.0であることがさらに好ましい。D/Rが前記範囲にあることで、微粒子配列膜の平均凸部アスペクト比をより高くすることができ、より反射防止性に優れる微粒子配列膜となる。ここで、球状突出部の直径Dとは、微粒子の透過型電子顕微鏡像において測定した球状突出部の粒径(球状突出部の長径)であり、球状突出部が埋没するような形で存在する場合、球状突出部内の最大径である。また、(1)形状〜(4)形状のいずれかの形状の短径Rとは、(1)形状又は(2)形状に関しては球の直径又は球状突出部を除いた球の直径を示し、(3)又は(4)形状に関しては形状内の長軸に垂直な方向の最大径である。 The spherical protrusion has a ratio D/R of a diameter D of the spherical protrusion and a minor axis R of any one of the shapes (1) to (4) to 0.1 to 5.0. Preferably, it is more preferably 0.3 to 1.0. When D/R is in the above range, the average aspect ratio of the convex portions of the fine particle array film can be made higher, and the fine particle array film is more excellent in antireflection property. Here, the diameter D of the spherical protrusion is the particle diameter of the spherical protrusion (longest diameter of the spherical protrusion) measured in the transmission electron microscope image of the fine particles, and exists in such a manner that the spherical protrusion is buried. In this case, it is the maximum diameter within the spherical protrusion. In addition, the minor axis R of any one of the shapes (1) to (4) indicates the diameter of the sphere or the diameter of the sphere excluding the spherical protrusion with respect to the shape (1) or the shape (2), Regarding the shape (3) or (4), it is the maximum diameter in the direction perpendicular to the major axis in the shape.

本発明において、最近接する微粒子間の平均距離が、微粒子の平均長径の3倍以下の距離であることが好ましく、微粒子の平均長径の2倍以下であることがさらに好ましく、微粒子の平均長径以下であることが特に好ましい。また、最近接する微粒子間の平均距離が、微粒子の平均長径の3倍以下かつ微粒子の平均短径の1.05倍以上であることが好ましい。最近接する微粒子間の平均距離が前記範囲内にあることで、反射防止性能を向上させることができ、また可視光領域の光の散乱をより抑制することができる。ここで、微粒子間の距離とは、基材上に配列した各微粒子の頂点間の基材面内方向の距離であり、最近接する微粒子とは、任意の微粒子について前記微粒子間の距離が最小となる粒子を示す。本発明において、最近接する微粒子間の平均距離は、微粒子配列膜表面の走査型電子顕微鏡写真上で無作為に選んだ50点以上の粒子について微粒子間の距離を測定し、平均することで算出できる。 In the present invention, the average distance between the closest particles is preferably not more than 3 times the average major axis of the particles, more preferably not more than 2 times the average major axis of the particles, and not more than the average major axis of the particles. It is particularly preferable that Further, it is preferable that the average distance between the closest particles is 3 times or less of the average major axis of the particles and 1.05 times or more of the average minor axis of the particles. When the average distance between the closest particles is within the above range, antireflection performance can be improved and light scattering in the visible light region can be further suppressed. Here, the distance between the fine particles is the distance in the in-plane direction of the base material between the vertices of each fine particle arranged on the base material, and the closest particle is the minimum distance between the fine particles for any fine particle. The following particles are shown. In the present invention, the average distance between the particles closest to each other can be calculated by measuring the distances between the particles for 50 or more particles randomly selected on the scanning electron micrograph of the surface of the particle array film and averaging them. ..

本発明において、微粒子によって形成される凹凸構造の平均凸部アスペクト比(平均凸部高さ/微粒子の平均短径の比)が1.1〜5.0であることが好ましい。平均凸部アスペクト比を1.1以上とすることで、より高い反射防止性能を付与することができる。また、平均凸部アスペクト比を5.0以下とすることで、微粒子配列膜の強度をより高め、耐擦傷性を向上させることができる。本発明において、凸部高さとは、凸部と、該凸部に隣接する凹部との基材面外方向の距離を示し、例えば、図2(A)におけるab間の基材面外方向の距離dである。凸部高さは微粒子配列膜表面の原子間力顕微鏡像を測定し、隣接する凹部から凸部頂点までの基材面外方向の距離を測定することで算出可能である。また、無作為に選んだ50点以上の凸部について凸部高さを測定し、平均することで平均凸部高さが得られる。 In the present invention, the average convex aspect ratio (ratio of average convex height/average short diameter of fine particles) of the concavo-convex structure formed by the fine particles is preferably 1.1 to 5.0. By setting the average convex portion aspect ratio to 1.1 or more, higher antireflection performance can be imparted. Further, by setting the average convex portion aspect ratio to be 5.0 or less, the strength of the fine particle array film can be further increased and the scratch resistance can be improved. In the present invention, the height of the convex portion indicates the distance between the convex portion and the concave portion adjacent to the convex portion in the direction outside the substrate surface, and for example, in the direction outside the substrate surface between a and b in FIG. 2(A). The distance is d. The height of the convex portion can be calculated by measuring an atomic force microscope image of the surface of the fine particle array film and measuring the distance in the out-of-plane direction of the base material from the adjacent concave portion to the apex of the convex portion. Further, the average convex portion height is obtained by measuring the convex portion heights of 50 or more randomly selected convex portions and averaging them.

本発明において、微粒子の凝集体は光の散乱を生じる原因となり、微粒子配列膜の透明性を損なうため、前記凸部は1個の微粒子によって形成されていることが好ましい。 In the present invention, since the agglomerates of fine particles cause light scattering and impair the transparency of the fine particle array film, it is preferable that the convex portion is formed by one fine particle.

本発明において、微粒子が基材の面外方向に単粒子層で配列していることが好ましい。微粒子層が単粒子層であることにより、微粒子層を透過する際の光の散乱を最小限に抑えることができ、微粒子配列膜を反射防止膜に用いた場合に、反射防止膜の透明性を高めることができる。 In the present invention, the fine particles are preferably arranged in a single particle layer in the out-of-plane direction of the substrate. Since the fine particle layer is a single particle layer, light scattering when passing through the fine particle layer can be minimized, and the transparency of the antireflection film can be improved when the fine particle array film is used as the antireflection film. Can be increased.

本発明において、微粒子配列膜の耐擦傷性を高めるのに好適であるため、微粒子がポリマー成分により基材上に固定化されていることが好ましく、微粒子に含まれるポリマー成分の融着により基材上に固定化されていることがさらに好ましい。ポリマー成分により微粒子が基材上に固定化されていることで、実用上十分な強度を微粒子配列膜に付与することができ、得られる微粒子配列膜は耐擦傷性に優れるものとなる。また、微粒子配列膜に含まれる微粒子同士の凝集を防ぐことができる。 In the present invention, it is preferable that the fine particles are immobilized on the base material by the polymer component because it is suitable for enhancing the scratch resistance of the fine particle array film, and the base material is formed by fusing the polymer component contained in the fine particles. More preferably, it is immobilized on top. Since the fine particles are immobilized on the substrate by the polymer component, practically sufficient strength can be imparted to the fine particle array film, and the obtained fine particle array film has excellent scratch resistance. Further, it is possible to prevent aggregation of the fine particles contained in the fine particle array film.

前記の微粒子の基材上への融着のための加熱方法としては如何なる方法も利用可能であるが、例えば、熱風乾燥、遠赤外線乾燥、UV乾燥等を挙げることができる。融着温度としては微粒子の表層成分のガラス転移温度以上の温度であり、微粒子の形状を維持しつつも微粒子を基材表面に強固に融着させ、微粒子配列膜の耐擦傷性を高めるのに好適であるため、ガラス転移温度〜ガラス転移温度+100℃の範囲が好ましい。 Any method can be used as a heating method for fusing the fine particles on the substrate, and examples thereof include hot air drying, far infrared ray drying, and UV drying. The fusing temperature is a temperature equal to or higher than the glass transition temperature of the surface layer component of the fine particles, and the fine particles are firmly fused to the surface of the base material while maintaining the shape of the fine particles to enhance the scratch resistance of the fine particle array film. Since it is suitable, the range of glass transition temperature to glass transition temperature+100° C. is preferable.

本発明において、凹凸構造は、基材と微粒子間、及び、微粒子の狭隘部を埋めるようにテーパーが形成された凹凸構造となっていることが好ましい。ここで、テーパーとは、先細りになるように勾配のついた形状のことを示す。本発明において、基材面から基材面外方向へ向けて先細りになるようなテーパーが形成されていることにより、屈折率傾斜構造が反射防止性の発現により好適なものとなり好ましい。特に、凸部頂点から基材面へかけて、構造体の空間占有率が単調増加するような形状であることが好ましい。本発明において、テーパーを有する微粒子配列膜断面は、具体的には例えば、図2(C)である。 In the present invention, the concavo-convex structure is preferably a concavo-convex structure in which a taper is formed between the base material and the fine particles and so as to fill the narrow part of the fine particles. Here, the taper means a shape having a gradient so as to be tapered. In the present invention, the taper that is tapered from the surface of the base material toward the outside of the surface of the base material is preferable, so that the gradient refractive index structure is more suitable for exhibiting antireflection property, which is preferable. In particular, the shape is preferably such that the space occupancy of the structure monotonically increases from the top of the convex portion to the surface of the base material. In the present invention, the cross section of the fine particle array film having a taper is specifically, for example, FIG. 2(C).

前記テーパーの形成方法としては特に制限はない。前記テーパーの形成方法が微粒子の融解、硬化性樹脂の塗布及び硬化、樹脂の塗布又は吸着、のいずれかから選択されるとき、微粒子配列膜の量産性を損なうことなくテーパーを形成可能である。 The method for forming the taper is not particularly limited. When the taper forming method is selected from melting of fine particles, application and curing of a curable resin, application or adsorption of resin, the taper can be formed without impairing the mass productivity of the fine particle array film.

前記のテーパー形成のための微粒子の融解方法としては、例えば、熱風乾燥、遠赤外線乾燥、UV乾燥等を挙げることができる。融解温度としては、微粒子の形状を維持しつつも微粒子の一部を融解させ、テーパーを形成するのに好適であるため、微粒子の表層成分のガラス転移温度〜融点の範囲で5秒〜60分の融解時間をかけることが好ましい。 Examples of the method of melting the fine particles for forming the taper include hot air drying, far infrared ray drying, and UV drying. The melting temperature is suitable for melting a part of the fine particles and forming a taper while maintaining the shape of the fine particles. Therefore, the melting temperature is 5 seconds to 60 minutes in the range of the glass transition temperature to the melting point of the surface layer component of the fine particles. It is preferable to take a melting time of

前記のテーパー形成のための硬化性樹脂の塗布及び硬化に用いる硬化性樹脂としては、例えば、(メタ)アクリレート、トリメチロールプロパンエトキシトリアクリレート、ペンタエリスリトールエトキシテトラアクリレート、トリメチロールプロパンプロポキシトリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、エトキシ化フェニルアクリレート等の多官能(メタ)アクリレート等が挙げられる。単独で用いても、複数の種類の樹脂を組み合わせた混合物を用いても良い。必要に応じて、メトキシポリプロピレングリコールアクリレート、エトキシポリエチレングリコールアクリレート、ポリエチレングリコールアクリレート、ポリプロピレングリコールアクリレート等の単官能アクリレートを混合しても良い。また、必要に応じてその一部を光開始剤、酸化防止剤、重合禁止剤、レベリング剤、シランカップリング剤等の添加剤で置換しても良い。 Examples of the curable resin used for coating and curing the curable resin for forming the taper include (meth)acrylate, trimethylolpropane ethoxytriacrylate, pentaerythritol ethoxytetraacrylate, trimethylolpropane propoxytriacrylate and penta Examples thereof include erythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, tricyclodecane dimethanol diacrylate, and polyfunctional (meth)acrylates such as ethoxylated phenyl acrylate. They may be used alone or as a mixture of a plurality of types of resins. If necessary, a monofunctional acrylate such as methoxy polypropylene glycol acrylate, ethoxy polyethylene glycol acrylate, polyethylene glycol acrylate, polypropylene glycol acrylate may be mixed. Further, if necessary, a part thereof may be replaced with an additive such as a photoinitiator, an antioxidant, a polymerization inhibitor, a leveling agent and a silane coupling agent.

前記の光開始剤としては、例えば、ベンゾフェノン、ベンジル、ミヒラーケトン、チオキサントン、アントラキノン等の水素引き抜きによってラジカルを発生するタイプの化合物;ベンゾイン、ジアルコキシアセトフェノン、アシルオキシムエステル、ベンジルケタール、ヒドロキシアルキルフェノン、ハロゲノケトン等の分子内***によってラジカルを発生するタイプの化合物等が挙げられる。市販品としては、IRUGACURE184、IRUGACURE651、IRUGACURE500、IRUGACURE907、DAROCUR1116、DAROCUR1173(BASF社製)等を挙げることができる。また、硬化を促進するためにメチルアミン、ジエタノールアミン、N−メチルジエタノールアミン、トリブチルアミン等の三級アミン等を併用しても良い。 Examples of the photoinitiator include benzophenone, benzyl, Michler's ketone, thioxanthone, anthraquinone, and other compounds that generate a radical by hydrogen abstraction; benzoin, dialkoxyacetophenone, acyloxime ester, benzyl ketal, hydroxyalkylphenone, halogeno. Examples thereof include compounds of the type that generate radicals by intramolecular division such as ketones. Examples of commercially available products include IRUGACURE184, IRUGACURE651, IRUGACURE500, IRUGACURE907, DAROCUR1116 and DAROCUR1173 (manufactured by BASF). Further, tertiary amines such as methylamine, diethanolamine, N-methyldiethanolamine, and tributylamine may be used in combination in order to accelerate curing.

前記のテーパー形成のための樹脂の塗布又は吸着に用いる樹脂としては、例えば、前記硬化性樹脂の重合体が挙げられる他、ポリエチレンイミンおよびその4級化物、ポリジアリルジメチルアンモニウムクロライド、ポリ(N,N’−ジメチル−3,5−ジメチレン−ピペリジニウムクロライド)ポリアリルアミンおよびその4級化物、ポリジメチルアミノエチル(メタ)アクリレートおよびその4 級化物、ポリジメチルアミノプロピル(メタ)アクリルアミドおよびその4級化物、ポリジメチル(メタ)アクリルアミドおよびその4 級化物、ポリ(メタ)アクリル酸およびそのイオン化物、ポリスチレンスルホン酸ナトリウム、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)、ポリアミック酸、ポリビニルスルホン酸カリウム等の高分子電解質が挙げられる。 Examples of the resin used for applying or adsorbing the resin for forming the taper include, for example, a polymer of the curable resin, polyethyleneimine and a quaternary product thereof, polydiallyldimethylammonium chloride, poly(N, N'-dimethyl-3,5-dimethylene-piperidinium chloride) polyallylamine and its quaternary product, polydimethylaminoethyl (meth)acrylate and its quaternary product, polydimethylaminopropyl (meth)acrylamide and its quaternary product Compound, polydimethyl(meth)acrylamide and its quaternary compound, poly(meth)acrylic acid and its ionized compound, sodium polystyrene sulfonate, poly(2-acrylamido-2-methyl-1-propanesulfonic acid), polyamic acid, Examples of the polymer electrolyte include potassium polyvinyl sulfonate.

本発明で用いる微粒子は、微粒子配列膜の耐擦傷性を高めるのに好適であるため、微粒子表面がポリマーにより被覆されたものであることが好ましく、微粒子を構成する成分が全てポリマーであってもよい。前記ポリマーの種類に特に制限はないが、基材としてポリエチレンテレフタレート、トリアセチルセルロースフィルム等を用いた場合に、微粒子と基材との屈折率差を小さくでき、屈折率傾斜構造の形成により好適であることから、芳香族ビニル系単量体単位又は極性官能基含有単量体単位を含む重合体であることが好ましく、芳香族ビニル系単量体単位を60〜98質量%含む重合体であることがさらに好ましい。 Since the fine particles used in the present invention are suitable for enhancing the scratch resistance of the fine particle array film, it is preferable that the fine particle surface is coated with a polymer, and even if all the components constituting the fine particles are a polymer. Good. The type of the polymer is not particularly limited, but when polyethylene terephthalate, triacetyl cellulose film or the like is used as the substrate, the difference in refractive index between the fine particles and the substrate can be made small, which is more suitable for forming a gradient refractive index structure. Therefore, it is preferably a polymer containing an aromatic vinyl monomer unit or a polar functional group-containing monomer unit, and a polymer containing 60 to 98% by mass of an aromatic vinyl monomer unit. Is more preferable.

前記芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、p−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、4−エチルスチレン、4−tert−ブチルスチレン、3,4−ジメチルスチレン、4−メトキシスチレン、4−エトキシスチレン、2−クロロスチレン、3−クロロスチレン、4−クロロスチレン、2,4−ジクロロスチレン、2,6−ジクロロスチレン、4−クロロ−3−メチルスチレン、ジビニルベンゼン、1−ビニルナフタレン、2−ビニルピリジン、4−ビニルピリジン、p−スチレンスルホン酸ナトリウム等を挙げることができる。前記極性官能基含有単量体としては、コア粒子を形成する(メタ)アクリレート系単量体の他、クロトン酸、ケイ皮酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル、へキサヒドロフタル酸モノ−2−(メタ)アクリロイルオキシエチル等のカルボキシル基含有不飽和単量体、及びその無水物類;N−メチロール(メタ)アクリルアミド、N,N−ジメチロール(メタ)アクリルアミド等のN−メチロール化不飽和カルボン酸アミド類;2−ジメチルアミノエチルアクリルアミド等のアミノアルキル基含有アクリルアミド類;(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N,N−エチレンビス(メタ)アクリルアミド、マレイン酸アミド、マレイミド等の不飽和カルボン酸のアミド類又はイミド類;N−メチルアクリルアミド、N,N−ジメチルアクリルアミド等のN−モノアルキル(メタ)アクリルアミド、N,N−ジアルキルアクリルアミド類;2−ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル基含有(メタ)アクリレート類;2−(ジメチルアミノエトキシ)エチル(メタ)アクリレート、等のアミノアルコキシアルキル基含有(メタ)アクリレート類;塩化ビニル、塩化ビニリデン、脂肪酸ビニルエステル等のハロゲン化ビニル化合物類;1,3−ブタジエン、2−メチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン等の共役ジエン化合物類等が挙げられる。 Examples of the aromatic vinyl-based monomer include styrene, α-methylstyrene, vinyltoluene, p-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene and 4-tert-. Butylstyrene, 3,4-dimethylstyrene, 4-methoxystyrene, 4-ethoxystyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 2,4-dichlorostyrene, 2,6-dichlorostyrene, 4 Examples thereof include -chloro-3-methylstyrene, divinylbenzene, 1-vinylnaphthalene, 2-vinylpyridine, 4-vinylpyridine and sodium p-styrenesulfonate. Examples of the polar functional group-containing monomer include (meth)acrylate-based monomers that form core particles, as well as crotonic acid, cinnamic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, and itaconic anhydride. , Monomethyl maleate, monoethyl maleate, monomethyl itaconate, monoethyl itaconate, mono-2-(meth)acryloyloxyethyl hexahydrophthalate, etc., and unsaturated monomers thereof, and their anhydrides; N -N-methylolated unsaturated carboxylic acid amides such as methylol (meth)acrylamide and N,N-dimethylol (meth)acrylamide; aminoalkyl group-containing acrylamides such as 2-dimethylaminoethyl acrylamide; (meth)acrylamide, N Amides or imides of unsaturated carboxylic acids such as -methoxymethyl (meth)acrylamide, N,N-ethylenebis(meth)acrylamide, maleic acid amide, maleimide; N-methylacrylamide, N,N-dimethylacrylamide, etc. N-monoalkyl(meth)acrylamides, N,N-dialkylacrylamides; aminoalkyl group-containing (meth)acrylates such as 2-dimethylaminoethyl(meth)acrylate; 2-(dimethylaminoethoxy)ethyl(meth)acrylate , Etc. Aminoalkoxyalkyl group-containing (meth)acrylates; Vinyl halides such as vinyl chloride, vinylidene chloride, fatty acid vinyl ester; 1,3-butadiene, 2-methyl-1,3-butadiene, 2-chloro Examples thereof include conjugated diene compounds such as -1,3-butadiene and 2,3-dimethyl-1,3-butadiene.

本発明で用いる微粒子はまた、微粒子の内部にコア粒子として、スチレン系単量体単位又はアクリレート系単量体単位若しくはメタアクリレート系単量体単位を含む重合体粒子、又はシリカ粒子を有していてもよい。コア粒子の形状と成分を選択することにより微粒子内部に屈折率傾斜構造を付与し、反射防止性の発現により好適な屈折率傾斜構造を形成可能である。コア粒子の形状としてはいかなる形状でもよいが、球状や楕円体等、コア粒子の存在により屈折率の連続変化性を損なわないものが好ましく、さらに好ましくは球状、又は微粒子の長軸方向に配向した楕円体のコア粒子である。 The fine particles used in the present invention also have, as core particles inside the fine particles, polymer particles containing styrene-based monomer units, acrylate-based monomer units, or methacrylate-based monomer units, or silica particles. May be. By selecting the shape and components of the core particles, a gradient refractive index structure can be imparted to the inside of the fine particles, and a suitable refractive index gradient structure can be formed by exhibiting antireflection properties. The shape of the core particles may be any shape, but it is preferable that they do not impair the continuous variability of the refractive index due to the presence of the core particles, such as spheres and ellipsoids, more preferably spherical or oriented in the long axis direction of the fine particles. It is an ellipsoidal core particle.

前記のスチレン系単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、p−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、4−エチルスチレン、4−tert−ブチルスチレン、3,4−ジメチルスチレン、4−メトキシスチレン、4−エトキシスチレン、2−クロロスチレン、3−クロロスチレン、4−クロロスチレン、2,4−ジクロロスチレン、2,6−ジクロロスチレン、4−クロロ−3−メチルスチレン、ジビニルベンゼン、p−スチレンスルホン酸ナトリウム等を挙げることができる。 Examples of the styrene-based monomer include styrene, α-methylstyrene, vinyltoluene, p-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene and 4-tert-butyl. Styrene, 3,4-dimethylstyrene, 4-methoxystyrene, 4-ethoxystyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 2,4-dichlorostyrene, 2,6-dichlorostyrene, 4- Examples thereof include chloro-3-methylstyrene, divinylbenzene, sodium p-styrenesulfonate and the like.

前記のアクリレート系単量体若しくはメタアクリレート系単量体としては、(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−へキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(シクロ)アルキル(メタ)アクリレート類; 2−メトキシエチル(メタ)アクリレート、p−メトキシシクロヘキシル(メタ)アクリレート等のアルコキシ(シクロ)アルキル(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート等の多価(メタ)アクレート類;酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル等のビニルエステル類;2−シアノエチル(メタ)アクリレート、2−シアノプロピル(メタ)アクリレート、3−シアノプロピル(メタ)アクリレート等のシアノアクリレート類;ヒドロキシメチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、4−ヒドロキシシクロヘキシル(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、 3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、3−アミノ−2−ヒドロキシプロピル(メタ)アクリレート等の置換ヒドロキシ(メタ)アクリレート類;グリシジル(メタ)アクリレート、メチルグリシジルメチルアクリレート、エポキシ化シクロヘキシル(メタ)アクリレートグリシジル基含有アクリレート類;トリメチロールプロパンエトキシトリアクリレート、ペンタエリスリトールエトキシテトラアクリレート、トリメチロールプロパンプロポキシトリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、エトキシ化フェニルアクリレート等の多官能(メタ)アクリレート類等の(メタ)アクリレートを単量体単位とする重合体粒子が挙げられる。また、前記アクリレートは架橋したものであってもよい。 Examples of the acrylate-based monomer or the methacrylate-based monomer include (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-hexyl (meth)acrylate, 2 -(Cyclo)alkyl (meth)acrylates such as ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate; alkoxy (cyclo)alkyl (meth) such as 2-methoxyethyl (meth)acrylate and p-methoxycyclohexyl (meth)acrylate ) Acrylates; polyvalent (meth)acrylates such as trimethylolpropane tri(meth)acrylate; vinyl esters such as vinyl acetate, vinyl propionate, vinyl versatate; 2-cyanoethyl (meth)acrylate, 2-cyanopropyl Cyanoacrylates such as (meth)acrylate and 3-cyanopropyl (meth)acrylate; hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 4-hydroxycyclohexyl (meth ) Substituted hydroxy(meth)acrylates such as acrylate, neopentyl glycol mono(meth)acrylate, 3-chloro-2-hydroxypropyl(meth)acrylate, 3-amino-2-hydroxypropyl(meth)acrylate; glycidyl (meth ) Acrylate, methylglycidylmethylacrylate, epoxidized cyclohexyl (meth)acrylate glycidyl group-containing acrylates; trimethylolpropane ethoxytriacrylate, pentaerythritol ethoxytetraacrylate, trimethylolpropane propoxytriacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate And (meth)acrylates such as polyfunctional (meth)acrylates such as dipentaerythritol hexaacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, tricyclodecane dimethanol diacrylate, and ethoxylated phenyl acrylate as monomer units. Polymer particles to be used. The acrylate may be crosslinked.

本発明で用いる微粒子は、シランカップリング剤等の無機表面改質剤を含んでいてもよい。前記シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3−ウレイドプロピルトリアルコキシシラン、3−メルカプトプロピルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン等が挙げられる。 The fine particles used in the present invention may contain an inorganic surface modifier such as a silane coupling agent. Examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, p-styryltrimethoxy. Silane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N- 2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-ureidopropyltrialkoxysilane, Examples thereof include 3-mercaptopropylmethyldimethoxysilane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatopropyltriethoxysilane.

本発明で用いる微粒子は、重合開始剤を含んでいてもよく、例えば、ペルオキソ二硫酸カリウム、過酸化水素、アゾビスイソブチロニトリル、過酸化ベンゾイル等が挙げられる。 The fine particles used in the present invention may contain a polymerization initiator, and examples thereof include potassium peroxodisulfate, hydrogen peroxide, azobisisobutyronitrile, and benzoyl peroxide.

本発明において、凹凸構造のばらつきを抑制するのにより好適であるため、微粒子配列膜の作製に用いる微粒子の粒径分布の指標である分散度(多分散指数)が10%以下であることが好ましく、8%以下がさらに好ましく、5%以下が特に好ましい。本発明において分散度は、動的光散乱法により測定し、キュムラント法により求めた多分散指数を分散度として用いる。 In the present invention, the dispersion degree (polydispersity index), which is an index of the particle size distribution of the fine particles used for producing the fine particle array film, is preferably 10% or less because it is more preferable to suppress the unevenness of the uneven structure. , 8% or less is more preferable, and 5% or less is particularly preferable. In the present invention, the dispersity is measured by the dynamic light scattering method, and the polydispersity index obtained by the cumulant method is used as the dispersity.

本発明に用いる基材としては特に制限はなく、例えば、樹脂、ガラス、セラミックス等が挙げられ、形状的にはフィルム、シート、板の他、曲面を有する形状の構造物等如何なる形状の基材であっても用いることができる。 The base material used in the present invention is not particularly limited, and examples thereof include resin, glass, and ceramics, and in terms of shape, a base material of any shape such as a film, a sheet, a plate, or a structure having a curved surface. Can also be used.

樹脂基材としては、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロース等のセルロース系樹脂;ポリエチレンテレフタレート等のポリエステル樹脂;ポリカーボネート樹脂;ポリメタクリル酸メチル等のアクリル系樹脂;ポリウレタン系樹脂;ポリエーテル樹脂;ポリスルホン樹脂;ポリエーテルサルホン;ポリエーテルケトン等が挙げられる。 Examples of the resin base material include cellulosic resins such as triacetyl cellulose, diacetyl cellulose and acetate butyrate cellulose; polyester resins such as polyethylene terephthalate; polycarbonate resins; acrylic resins such as polymethylmethacrylate; polyurethane resins; polyether resins. Polysulfone resin; polyether sulfone; polyether ketone and the like.

前記の基材の表面には耐擦傷性や密着性等を高めるため、ハードコート層やアンカーコート層、高分子電解質層等のコート層を形成してあっても良く、密着性や塗工性等を高めるため、UVオゾン洗浄、プラズマ処理、コロナ処理等の表面処理を施してあっても良い。 A coating layer such as a hard coat layer, an anchor coat layer, or a polymer electrolyte layer may be formed on the surface of the base material in order to enhance scratch resistance, adhesion, etc. In order to enhance the above, surface treatment such as UV ozone cleaning, plasma treatment, corona treatment, etc. may be performed.

本発明の微粒子配列膜は、反射防止膜として用いることができる。本発明の微粒子配列膜を反射防止膜として用いる場合、光の損失が少なく透過性能及びエネルギー効率に優れた反射防止膜を得るのにより好適であるため、可視光域の全範囲の波長において透過率が92%以上であることが好ましく、93%以上であることがさらに好ましく、94%以上であることが特に好ましい。 The fine particle array film of the present invention can be used as an antireflection film. When the fine particle array film of the present invention is used as an antireflection film, it is more suitable to obtain an antireflection film having less light loss and excellent transmission performance and energy efficiency, and thus the transmittance in the entire visible wavelength range. Is preferably 92% or more, more preferably 93% or more, and particularly preferably 94% or more.

本発明の微粒子配列膜を反射防止膜として用いる場合、透明性の高い反射防止膜を得るためにより好適であることから、次式で求められるΔHの値が1.2%以下であることが好ましく、0.6%以下であることがさらに好ましい。ここで、ΔHとは、JIS−K−7136におけるヘーズ(%)、全光線透過率(%)を用いて、ΔH(%)=(片面に微粒子配列膜を形成した基材のヘーズ(%)×片面に微粒子配列膜を形成した基材の全光線透過率(%)/100)−(基材のヘーズ(%)×基材の全光線透過率(%)/100)で定義される値である。 When the fine particle array film of the present invention is used as an antireflection film, it is more suitable for obtaining a highly transparent antireflection film, and therefore the value of ΔH obtained by the following equation is preferably 1.2% or less. , 0.6% or less is more preferable. Here, ΔH is the haze (%) and the total light transmittance (%) according to JIS-K-7136, and is ΔH (%)=(haze (%) of a substrate having a fine particle array film formed on one surface). X value defined by total light transmittance (%)/100) of base material having fine particle array film formed on one surface-(haze (%) of base material x total light transmittance (%)/100 of base material) Is.

本発明の微粒子配列膜を反射防止膜として用いる場合、視感反射率の抑制により好適であることから、波長580nmの光の反射率が2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましく、0.5%以下であることが特に好ましい。 When the fine particle array film of the present invention is used as an antireflection film, the reflectance of light having a wavelength of 580 nm is preferably 2% or less, and preferably 1.5% or less, because it is more suitable for suppressing the luminous reflectance. It is more preferable that the content is 1% or less, further preferably 1% or less, and particularly preferably 0.5% or less.

本発明の微粒子配列膜を反射防止膜として用いる場合、反射光の発色の抑制により好適であることから、波長380nmの光の反射率をR(380)(%)、波長580nmの光の反射率をR(580)(%)、波長780nmの光の反射率をR(780)(%)とし、さらにこれらの反射率の差の絶対値を、ΔR1(%)=|R(380)−R(580)|、ΔR2(%)=|R(580)−R(780)|、ΔR3(%)=|R(380)−R(780)|としたとき、ΔR1、ΔR2、ΔR3がそれぞれ1%以下であることが好ましく、0.8%以下であることがさらに好ましく、0.5%以下であることが特に好ましく、0.3%以下であることが最も好ましい。 When the fine particle array film of the present invention is used as an antireflection film, since it is more suitable for suppressing the color development of reflected light, the reflectance of light having a wavelength of 380 nm is R(380)(%), and the reflectance of light having a wavelength of 580 nm is Is R(580)(%), the reflectance of light having a wavelength of 780 nm is R(780)(%), and the absolute value of the difference between these reflectances is ΔR1(%)=|R(380)−R When (580)|, ΔR2(%)=|R(580)−R(780)|, ΔR3(%)=|R(380)−R(780)|, ΔR1, ΔR2, and ΔR3 are 1 respectively. % Or less, more preferably 0.8% or less, particularly preferably 0.5% or less, and most preferably 0.3% or less.

本発明の微粒子配列膜を用いた反射防止膜は、微粒子を配列させ形成することを特徴とすることから、高い生産性で大面積の反射防止膜を作製可能であることを特徴とする。 The antireflection film using the fine particle arranging film of the present invention is characterized by arranging and forming fine particles, and is thus characterized in that a large area antireflection film can be produced with high productivity.

本発明の微粒子配列膜を反射防止膜として用いる場合には、該反射防止膜がない場合と比較して可視光域の光の散乱を増加させないことから、ディスプレイの視認性を損なうことなく、外光の映り込みを防止することができる。また、反射を防止した分だけ透過光量を向上させることが可能であることから、太陽電池の光取り込み効率の向上、及び有機ELの光取り出し効率の向上のために用いることができる。また、凹凸による回折構造の形成、内部構造への凹凸構造の形成により、有機ELにおける内部構造での全反射を抑制し、輝度の向上のために用いることができる。 When the fine particle array film of the present invention is used as an antireflection film, since it does not increase the scattering of light in the visible light region as compared with the case where the antireflection film is not provided, it does not impair the visibility of the display and It is possible to prevent reflection of light. Further, since the amount of transmitted light can be increased by the amount of prevention of reflection, it can be used for improving the light taking-in efficiency of the solar cell and the light taking-out efficiency of the organic EL. Further, by forming a diffractive structure by unevenness and forming an uneven structure on the internal structure, it is possible to suppress the total reflection in the internal structure of the organic EL and use it for improving the brightness.

本発明の微粒子配列膜は、基材の撥水性又は親水性向上のために用いることができる。微粒子の表面成分として疎水性の成分を有する微粒子を用いることで高撥水性又は超撥水性を付与することができ、微粒子の表面成分として親水性の成分を有する微粒子を用いることで高親水性又は超親水性を付与することができる。前記疎水性成分としては例えば、ポリエチレン、ポリスチレン、パーフルオロエチレン、3−フルオロスチレン、4−フルオロスチレン、トリフルオロスチレン等が挙げられ、また前記親水性成分としてはシリカ、(メタ)アクリルポリマー等が挙げられる。 The fine particle array film of the present invention can be used for improving water repellency or hydrophilicity of a substrate. By using fine particles having a hydrophobic component as the surface component of the fine particles, high water repellency or super water repellency can be imparted, and by using fine particles having a hydrophilic component as the surface component of the fine particles, high hydrophilicity or Superhydrophilicity can be imparted. Examples of the hydrophobic component include polyethylene, polystyrene, perfluoroethylene, 3-fluorostyrene, 4-fluorostyrene and trifluorostyrene, and examples of the hydrophilic component include silica and (meth)acrylic polymer. Can be mentioned.

本発明の微粒子配列膜は、細胞培養基材として用いることができる。この場合、細胞の増殖を促すのに好適なため、微粒子の長径として500nm以上のものを用いることが好ましい。 The fine particle array membrane of the present invention can be used as a cell culture substrate. In this case, since it is suitable for promoting cell growth, it is preferable to use particles having a major axis of 500 nm or more.

本発明によれば、平均凸部アスペクト比の大きな微粒子配列膜を提供することができる。また、本発明によれば、該微粒子配列膜を用いることで、可視光領域の光の透過性能に優れ、可視光域の光の散乱が少なく、反射光の発色の少ない反射防止膜を提供することができる。 According to the present invention, a fine particle array film having a large average aspect ratio of convex portions can be provided. Further, according to the present invention, by using the fine particle array film, an antireflection film having excellent light transmission performance in the visible light region, less scattering of light in the visible light region, and less coloration of reflected light is provided. be able to.

以下、本発明を実施例及び比較例によってより具体的に説明するが、本発明はこれらに限定されるものではない。実施例及び比較例における微粒子の分散度、微粒子の形状、微粒子の長径及び短径、最近接する微粒子間の平均距離、微粒子配列膜の平均凸部高さ、基材接平面に対し45°の角度をなして配列する微粒子の割合、全光線透過率、ヘーズ値、各波長の反射率及び透過率の測定、膜の均一性及び干渉光の確認、耐擦傷性の確認は以下の方法により行った。
[微粒子の分散度測定]
微粒子の分散度は動的光散乱法(大塚電子社製ELSZ−1000ZS)により測定し、キュムラント法により多分散指数を算出した。測定には粒子濃度0.1wt%の水分散液を使用した。
[微粒子の形状、長径及び短径の測定]
微粒子の長径及び短径は透過型電子顕微鏡(日本電子社製JEM−2100F)を用い、微粒子分散液をコロジオン支持銅メッシュ上にキャスト乾燥したサンプルを測定した写真上で、微粒子の最大粒径を測定することで長径を算出し、また長径方向の軸を長軸とし、長軸に垂直な方向の最大長さを測定することで短径を算出した。また、無作為に選んだ50点の粒子の長径及び短径、粒子アスペクト比の平均を求め、平均長径、平均短径、平均粒子アスペクト比とした。
[最近接する微粒子間の距離の測定]
最近接する微粒子間の距離は、走査型電子顕微鏡(キーエンス社製VE−9800)を用いて微粒子配列膜表面を測定し、微粒子頂点間の基材面内方向の長さを測定することで求めた。また、無作為に選んだ50点の粒子について、最近接する微粒子との頂点間の基材面内方向の距離を求め平均することで、最近接する微粒子間の平均距離を算出した。
[微粒子配列膜の凸部高さの測定]
凸部高さは原子間力顕微鏡(日立ハイテクサイエンス社製AFM5100)を用い、微粒子配列膜表面像を測定し、隣接する凸部と凹部の高さの差を求めることで算出した。また、無作為に選んだ50点の粒子について凸部高さを測定し、平均することで平均凸部高さを算出した。
[長軸が基材と45°以上の角度をなして配列する微粒子の割合の算出]
基材接平面に対し長軸を45°の角度をなして配列する微粒子の割合は、ダルマ形状の場合には、原子間力顕微鏡(日立ハイテクサイエンス社製AFM5100)を用い、オリンパス社製カンチレバーOMCL−AC200TSを用いてダイナミックフォースモードで微粒子配列膜表面の形状像を測定し、隣接する凸部と凹部の高さの差を求めることで微粒子ごとに凸部高さを求め、凸部高さが微粒子の平均長径の(1+sin45°)/2以上となる粒子の割合を、無作為に選んだ50点の粒子について算出することで求めた。ただし、凸部高さが微粒子の平均長径の2倍以上のものに関しては、凝集物と判断し、割合算出の計算から除外した。また、微粒子にテーパー形状を形成させる場合、テーパー形成前の微粒子配列膜について割合を算出し、テーパー形成後の該割合もその値と同様とした。微粒子の形状がダルマ形状以外の場合には、走査型電子顕微鏡(キーエンス社製VE−9800)を用いて微粒子配列膜断面及び表面の走査型電子顕微鏡像を測定し、各微粒子の基材面外方向の高さ及び基材面内方向の長さを測定し、無作為に選んだ20点の粒子について基材面外方向の高さ/基材面内方向の長さの比がtan45°以上となる粒子の割合を求めることで算出した。
[独立して存在する微粒子の割合の算出]
独立して存在する微粒子の割合は、微粒子配列膜表面の走査型電子顕微鏡写真において、無作為に選んだ50点の粒子について、他の微粒子と非接触の微粒子の割合を求めることで算出した。
[全光線透過率、ヘーズの測定]
全光線透過率、ヘーズの測定は日本電色工業製NDH−5000を用いてJIS−K−7136に従い、基材となるガラス基板を含めて測定した。なお、用いたガラス基板の全光線透過率は92.0%、ヘーズ値は0.4%であった。求めた全光線透過率およびヘーズの値からΔHを求めた。
[反射率の測定]
反射率は分光光度計(日立ハイテクサイエンス社製U−4100)及び角度可変絶対反射付属装置を用い、入射角10°、波長380〜780nmにおける反射率を5nm間隔で測定した。反射率測定にあたっては裏面反射の影響を除くために、試料の裏面をマジックで黒く塗りつぶし、さらに裏面に黒色テープを貼り測定した。
[各波長における透過率の測定]
可視光域の各波長における透過率については、分光光度計(日立ハイテクサイエンス社製U−4100)を用い、入射角0°、波長380〜780nmにおける透過率を5nm間隔で測定した。
[膜の均一性及び干渉光の確認]
膜の均一性及び干渉光の有無は目視により確認し、以下のように評価した。
〇:膜の外観が均一であり、光干渉による発色を生じていない。
×:膜の外観が不均一である、または光干渉による発色を生じている。
[耐擦傷性の確認]
耐擦傷性は以下のように評価した。
〇:指で触れても膜が破壊されない。
×:指で触れることにより膜が破壊される。
[実施例1]
スターラーを備えたフラスコに固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)0.99g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシラン (信越化学社製KBM−503)を加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.2gのメチルメタアクリレート (MMA)を加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.27gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。
40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド(Mw=150000)溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記異形粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。基板上に3mLのエチレングリコールを滴下し、110℃で15分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Dispersion of fine particles, shape of fine particles, long diameter and short diameter of fine particles, average distance between the closest particles, average convex portion height of fine particle array film, angle of 45° with respect to tangential plane of substrate in Examples and Comparative Examples The ratio of the fine particles to be arranged, total light transmittance, haze value, measurement of reflectance and transmittance at each wavelength, confirmation of film uniformity and interference light, and confirmation of scratch resistance were performed by the following methods. ..
[Measurement of fine particle dispersity]
The dispersity of the fine particles was measured by the dynamic light scattering method (ELSZ-1000ZS manufactured by Otsuka Electronics Co., Ltd.), and the polydispersity index was calculated by the cumulant method. An aqueous dispersion having a particle concentration of 0.1 wt% was used for the measurement.
[Measurement of fine particle shape, major axis and minor axis]
The long diameter and the short diameter of the fine particles were measured by using a transmission electron microscope (JEM-2100F manufactured by JEOL Ltd.) to measure a sample obtained by casting and drying the fine particle dispersion liquid on a collodion supporting copper mesh. The major axis was calculated by measurement, and the minor axis was calculated by measuring the maximum length in the direction perpendicular to the major axis with the major axis in the major axis direction. Further, the average of the major axis, the minor axis, and the particle aspect ratio of 50 randomly selected particles was calculated and used as the average major axis, the average minor axis, and the average particle aspect ratio.
[Measurement of the distance between the closest particles]
The distance between the particles closest to each other was determined by measuring the surface of the particle array film using a scanning electron microscope (VE-9800 manufactured by Keyence Corporation) and measuring the length in the in-plane direction of the base material between the apexes of the particles. .. Further, with respect to 50 randomly selected particles, the average distance between the closest particles was calculated by obtaining and averaging the distances between the vertices of the particles closest to each other in the in-plane direction of the substrate.
[Measurement of convex portion height of fine particle array film]
The height of the convex portion was calculated by measuring the surface image of the fine particle array film using an atomic force microscope (AFM5100 manufactured by Hitachi High-Tech Science Co., Ltd.) and determining the height difference between the adjacent convex portion and concave portion. In addition, the height of the convex portions was measured for 50 particles selected at random and averaged to calculate the average height of the convex portions.
[Calculation of Ratio of Fine Particles Arranged with Long Axis Forming Angle of 45° or More with Substrate]
In the case of the Dharma shape, the ratio of the fine particles arrayed with the long axis at an angle of 45° with respect to the tangential plane of the substrate is determined by using an atomic force microscope (AFM5100 manufactured by Hitachi High-Tech Science) and a cantilever OMCL manufactured by Olympus. -The shape image of the surface of the fine particle array film is measured in the dynamic force mode using AC200TS, and the height of the convex portion is obtained for each fine particle by obtaining the difference in height between the adjacent convex portion and concave portion. The ratio of particles having an average major axis of fine particles of (1+sin 45°)/2 or more was calculated for 50 randomly selected particles. However, those in which the height of the convex portion was twice or more the average major axis of the fine particles were determined to be aggregates and were excluded from the calculation of the ratio. Further, in the case of forming a tapered shape on the fine particles, the ratio was calculated for the fine particle array film before forming the taper, and the ratio after forming the taper was also the same value. When the shape of the fine particles is other than the Dharma shape, a scanning electron microscope (VE-9800 manufactured by KEYENCE CORPORATION) is used to measure the cross-section and the scanning electron microscope image of the surface of the fine particle array film. Direction height and length in the in-plane direction of the substrate are measured, and the ratio of the height in the out-of-plane direction of the substrate/the length in the in-plane direction of the substrate is tan 45° or more for 20 randomly selected particles. It was calculated by determining the ratio of particles that
[Calculation of ratio of independently existing fine particles]
The ratio of the independently existing fine particles was calculated by obtaining the ratio of the fine particles that were not in contact with other fine particles for 50 randomly selected particles in the scanning electron micrograph of the surface of the fine particle array film.
[Measurement of total light transmittance and haze]
The total light transmittance and haze were measured using NDH-5000 manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS-K-7136, including the glass substrate serving as the base material. The glass substrate used had a total light transmittance of 92.0% and a haze value of 0.4%. ΔH was calculated from the calculated total light transmittance and haze value.
[Measurement of reflectance]
The reflectance was measured using a spectrophotometer (U-4100 manufactured by Hitachi High-Tech Science Co., Ltd.) and an angle variable absolute reflection accessory at an incident angle of 10° and a wavelength of 380 to 780 nm at 5 nm intervals. In measuring the reflectance, in order to remove the influence of the back surface reflection, the back surface of the sample was painted black with a marker, and a black tape was attached to the back surface for measurement.
[Measurement of transmittance at each wavelength]
Regarding the transmittance at each wavelength in the visible light region, a spectrophotometer (U-4100 manufactured by Hitachi High-Tech Science Co., Ltd.) was used to measure the transmittance at an incident angle of 0° and a wavelength of 380 to 780 nm at 5 nm intervals.
[Confirmation of film uniformity and interference light]
The uniformity of the film and the presence or absence of interference light were visually confirmed and evaluated as follows.
◯: The appearance of the film is uniform and no color is generated due to light interference.
X: The appearance of the film is non-uniform, or color is generated due to light interference.
[Confirmation of scratch resistance]
The scratch resistance was evaluated as follows.
◯: The film is not broken even if it is touched with a finger.
X: The film is destroyed by touching with a finger.
[Example 1]
To a flask equipped with a stirrer, 0.99 g of colloidal silica aqueous solution (ST-20L manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20 wt% and 17.06 g of ion-exchanged water were added, and deaeration was performed by nitrogen bubbling for 30 minutes. 0.0199 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution prepared by adding 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.2 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the above solution, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.27 g of styrene (St) was added, and the mixture was stirred at 300 rpm for 4 hours under a nitrogen atmosphere. After 4 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under a nitrogen atmosphere, the reaction was carried out for 7 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a deformed particle concentration of 2 wt %.
A 40×50 mm square glass substrate was immersed in a 1 mg/mL polydiallyldimethylammonium chloride (Mw=150,000) solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The irregular-shaped particle dispersion liquid was dropped on this substrate, and after 10 seconds, it was washed with ion-exchanged water. 3 mL of ethylene glycol was dropped on the substrate and heated at 110° C. for 15 minutes. It was washed with ion-exchanged water and dried by blowing air.

得られた異形粒子の透過型電子顕微鏡像を図3に、微粒子配列膜の走査型電子顕微鏡像を図4〜図6にそれぞれ示す。 A transmission electron microscope image of the obtained irregularly shaped particles is shown in FIG. 3, and a scanning electron microscope image of the fine particle array film is shown in FIGS. 4 to 6, respectively.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

Figure 0006710949
Figure 0006710949

得られた微粒子配列膜における微粒子のアスペクト比は2.01であった。87%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また71%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の96%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例2]
微粒子合成時に0.2gのMMAを用いる代わりに、0.4gのMMAを用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The aspect ratio of the fine particles in the obtained fine particle array film was 2.01. 87% of the fine particles are arranged with their long axes at an angle of 30° or more with respect to the substrate, and 71% of the fine particles are arranged with their long axes at an angle of 45° or more with respect to the substrate. Was observed. Further, 96% of the fine particles were arranged on the base material in a state where they were not in contact with other fine particles. A uniform structure was formed over a large area. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Example 2]
Instead of using 0.2 g of MMA at the time of synthesizing the fine particles, 0.4 g of MMA was used, and other operations were performed in the same manner as in Example 1 to prepare a fine particle array film.

得られた異形粒子の透過型電子顕微鏡像を図7に、微粒子配列膜の走査型電子顕微鏡像を図8〜図10にそれぞれ示す。 A transmission electron microscope image of the obtained irregular-shaped particles is shown in FIG. 7, and a scanning electron microscope image of the fine particle array film is shown in FIGS.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜における粒子アスペクト比は1.48であった。89%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また70%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の93%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例3]
微粒子合成時に0.27gのStを用いる代わりに、0.52gのStを用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The particle aspect ratio of the obtained fine particle array film was 1.48. 89% of the fine particles are arranged with their major axis at an angle of 30° or more with respect to the base material, and 70% of the fine particles are arranged with their major axis at an angle of 45° or more with respect to the base material. Was observed. Further, 93% of the fine particles were arranged on the base material in a state where they were not in contact with other fine particles. A uniform structure was formed over a large area. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Example 3]
Instead of using 0.27 g of St at the time of synthesizing fine particles, 0.52 g of St was used, and other operations were performed in the same manner as in Example 1 to prepare a fine particle array film.

得られた異形粒子の透過型電子顕微鏡像を図11に示す。 A transmission electron microscope image of the obtained irregularly shaped particles is shown in FIG.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜における粒子アスペクト比は1.90であった。78%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また62%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の94%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例4]
微粒子合成時に固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)を用いる代わりに、以下の方法で合成したポリメチルメタアクリレート微粒子分散液を用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The particle aspect ratio of the obtained fine particle array film was 1.90. 78% of the fine particles are arranged with their major axes at an angle of 30° or more with respect to the substrate, and 62% of the fine particles are arranged with their major axes at an angle of 45° or more with respect to the substrate. Was observed. Further, 94% of the fine particles were arranged on the base material in a state of not being in contact with other fine particles. A uniform structure was formed over a large area. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Example 4]
Instead of using an aqueous colloidal silica solution having a solid content concentration of 20 wt% (ST-20L manufactured by Nissan Chemical Industries, Ltd.) at the time of synthesizing fine particles, a polymethylmethacrylate fine particle dispersion liquid synthesized by the following method was used, and other operations were performed in Example 1. A fine particle array film was prepared in the same manner as in.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.43gのMMAを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。 0.0199 g of KBM-503 was added to 20 g of ion-exchanged water, and the mixture was stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.43 g of MMA were dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of KPS in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a fine particle concentration of 10 wt %.

得られた異形粒子の透過型電子顕微鏡像を図12に示す。 A transmission electron microscope image of the obtained irregularly shaped particles is shown in FIG.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜における粒子アスペクト比は1.32であった。89%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また75%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の95%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例5]
微粒子合成時に固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)を用いる代わりに、以下の方法で合成したポリスチレン微粒子分散液を用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The particle aspect ratio of the obtained fine particle array film was 1.32. 89% of the fine particles are arranged with their major axis at an angle of 30° or more with respect to the substrate, and 75% of the fine particles are arranged with their major axis at an angle of 45° or more with respect to the substrate. Was observed. Further, 95% of the fine particles were arranged on the base material in a state where they were not in contact with other fine particles. A uniform structure was formed over a large area. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Example 5]
Instead of using a colloidal silica aqueous solution (ST-20L manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20 wt% during fine particle synthesis, a polystyrene fine particle dispersion liquid synthesized by the following method was used, and other operations were the same as in Example 1. To prepare a fine particle array film.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.43gのStを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。 0.0199 g of KBM-503 was added to 20 g of ion-exchanged water, and the mixture was stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.43 g of St were dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of KPS in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a fine particle concentration of 10 wt %.

得られた異形粒子の透過型電子顕微鏡像を図13に示す。 A transmission electron microscope image of the obtained irregularly shaped particles is shown in FIG.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜における粒子アスペクト比は1.31であった。90%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また76%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の94%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例6]
実施例1と同様の異形粒子分散液を用い、以下の方法により高分子フィルム基材上に微粒子配列膜を作製した。
The particle aspect ratio of the obtained fine particle array film was 1.31. 90% of the fine particles are arranged with their long axes at an angle of 30° or more with respect to the substrate, and 76% of the fine particles are arranged with their long axes at an angle of 45° or more with respect to the substrate. Was observed. Further, 94% of the fine particles were arranged on the base material in a state of not being in contact with other fine particles. A uniform structure was formed over a large area. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Example 6]
Using the same irregular-shaped particle dispersion as in Example 1, a fine particle array film was prepared on a polymer film substrate by the following method.

40×50mm角のポリエチレンテレフタレート(PET)フィルム(フィルム単体のヘーズ値1.6%)に、プラズマ表面処理装置(真空デバイス社製PIB−20)を用い、キャリアガスとして空気を用い、圧力20Pa、出力20mAで3分秒間プラズマ照射を行った。このフィルム基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板を上記微粒子分散液に10秒間浸漬し、イオン交換水により洗浄した。基板上に3mLのエチレングリコールを滴下し、100℃で15分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。 A 40×50 mm square polyethylene terephthalate (PET) film (haze value of the film alone of 1.6%) was used with a plasma surface treatment apparatus (PIB-20 manufactured by Vacuum Device Co.), air was used as a carrier gas, and pressure was 20 Pa. Plasma irradiation was performed for 3 minutes at an output of 20 mA. This film substrate was immersed in a 1 mg/mL polydiallyldimethylammonium chloride solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. This substrate was immersed in the above fine particle dispersion for 10 seconds and washed with ion-exchanged water. 3 mL of ethylene glycol was dropped on the substrate and heated at 100° C. for 15 minutes. It was washed with ion-exchanged water and dried by blowing air.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜の微粒子のうち、85%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また68%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の95%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例7]
実施例1と同様の異形粒子分散液を用い、以下の方法により微粒子配列膜を作製した。
Of the fine particles in the obtained fine particle array film, 85% of fine particles are arranged with their major axis at an angle of 30° or more with respect to the substrate, and 68% of fine particles have their major axis at 45° or more with respect to the substrate. It was observed that they were arranged at an angle of. Further, 95% of the fine particles were arranged on the base material in a state where they were not in contact with other fine particles. A uniform structure was formed over a large area. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Example 7]
Using the irregular-shaped particle dispersion liquid similar to that in Example 1, a fine particle array film was prepared by the following method.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。基板上に3mLのイオン交換水を滴下し、95℃で15分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。 A 40×50 mm square glass substrate was immersed in a 1 mg/mL polydiallyldimethylammonium chloride solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion liquid was dropped on this substrate, and after 10 seconds, it was washed with ion-exchanged water. 3 mL of ion-exchanged water was dropped on the substrate and heated at 95° C. for 15 minutes. It was washed with ion-exchanged water and dried by blowing air.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜の微粒子のうち、70%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また62%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の82%が他の微粒子と接触していない状態で基材上に配列していた。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例8]
実施例1と同様の異形粒子分散液を用い、以下の方法によりテーパーを形成した微粒子配列膜を作製した。
Of the fine particles of the obtained fine particle array film, 70% of fine particles are arranged with their major axis at an angle of 30° or more with respect to the substrate, and 62% of fine particles have their major axis at 45° or more with respect to the substrate. It was observed that they were arranged at an angle of. Further, 82% of the fine particles were arranged on the base material in a state where they were not in contact with other fine particles. A uniform structure was formed over a large area. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Example 8]
Using the same irregular-shaped particle dispersion liquid as in Example 1, a tapered fine particle array film was prepared by the following method.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。基板上に3mLのエチレングリコールを滴下し、110℃で30分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。 A 40×50 mm square glass substrate was immersed in a 1 mg/mL polydiallyldimethylammonium chloride solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion liquid was dropped on this substrate, and after 10 seconds, it was washed with ion-exchanged water. 3 mL of ethylene glycol was dropped on the substrate and heated at 110° C. for 30 minutes. It was washed with ion-exchanged water and dried by blowing air.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜の微粒子のうち、85%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また68%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の95%が他の微粒子と接触していない状態で基材上に配列していた。微粒子配列膜断面の走査型電子顕微鏡像より、テーパー形状が形成されている様子が観察された。広い面積にわたって均一な構造が形成されていた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[実施例9]
実施例1と同様の異形微粒子分散液を用い、以下の方法によりテーパーを形成した微粒子配列膜を作製した。
Of the fine particles in the obtained fine particle array film, 85% of fine particles are arranged with their major axis at an angle of 30° or more with respect to the substrate, and 68% of fine particles have their major axis at 45° or more with respect to the substrate. It was observed that they were arranged at an angle of. Further, 95% of the fine particles were arranged on the base material in a state where they were not in contact with other fine particles. From the scanning electron microscope image of the cross section of the fine particle array film, it was observed that the tapered shape was formed. A uniform structure was formed over a large area. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Example 9]
Using the same irregular-shaped fine particle dispersion liquid as in Example 1, a tapered fine particle array film was prepared by the following method.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。基板上に3mLのエチレングリコールを滴下し、110℃で15分間加熱した。イオン交換水により洗浄し、エアーを吹きつけることにより乾燥させた。トリメチロールプロパンエトキシトリアクリレート(ダイセルオルネクス社製TMPEOTA)1.5部、2−ヒドロキシ−2―メチル−1−フェニル−プロパン−1−オン(BASF社製DAROCUR1173)0.075部をメタノール100部に加えた溶液を微粒子配列膜上に600rpmでスピンコートし、塗膜を80℃で2分間熱風乾燥後、基板をガラス製密閉容器に移し、容器内を窒素置換後、高圧水銀灯を用い6mW/cm2の照射強度となる条件で20分間紫外線照射を行うことで塗膜を硬化させた。 A 40×50 mm square glass substrate was immersed in a 1 mg/mL polydiallyldimethylammonium chloride solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion liquid was dropped on this substrate, and after 10 seconds, it was washed with ion-exchanged water. 3 mL of ethylene glycol was dropped on the substrate and heated at 110° C. for 15 minutes. It was washed with ion-exchanged water and dried by blowing air. 1.5 parts of trimethylolpropane ethoxytriacrylate (TMPEOTA manufactured by Daicel Ornex), 0.075 parts of 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR1173 manufactured by BASF) and 100 parts of methanol The solution added to was spin-coated on the fine particle array film at 600 rpm, the coating film was dried with hot air at 80° C. for 2 minutes, the substrate was transferred to a glass closed container, the inside of the container was replaced with nitrogen, and 6 mW/high pressure mercury lamp was used. The coating film was cured by performing UV irradiation for 20 minutes under the condition that the irradiation intensity was cm2.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜の微粒子のうち、85%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また68%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の95%が他の微粒子と接触していない状態で基材上に配列していた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。微粒子配列膜断面の走査型電子顕微鏡像より、テーパー形状が形成されている様子が観察された。広い面積にわたって均一な構造が形成されていた。
[実施例10]
異形粒子分散液として実施例1で使用した溶液に0.04mol/Lの塩化ナトリウムを添加した溶液を用い、また基板上に3mLのエチレングリコールを滴下した後、110℃で15分間加熱する代わりに、110℃で30分間加熱し、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
Of the fine particles in the obtained fine particle array film, 85% of fine particles are arranged with their major axis at an angle of 30° or more with respect to the substrate, and 68% of fine particles have their major axis at 45° or more with respect to the substrate. It was observed that they were arranged at an angle of. Further, 95% of the fine particles were arranged on the base material in a state where they were not in contact with other fine particles. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular. From the scanning electron microscope image of the cross section of the fine particle array film, it was observed that the tapered shape was formed. A uniform structure was formed over a large area.
[Example 10]
As a modified particle dispersion, a solution prepared by adding 0.04 mol/L sodium chloride to the solution used in Example 1 was used, and 3 mL of ethylene glycol was added dropwise onto the substrate, and then the solution was heated at 110° C. for 15 minutes, instead of heating. , 110° C. for 30 minutes, and other operations were the same as in Example 1 to prepare a fine particle array film.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表1に合わせて示す。 Table 1 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜の微粒子のうち、89%の微粒子が長軸を基材に対し30°以上の角度をなして配列し、また78%の微粒子が長軸を基材に対し45°以上の角度をなして配列している様子が観察された。また、微粒子の75%が他の微粒子と接触していない状態で基材上に配列していた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。微粒子配列膜断面の走査型電子顕微鏡像より、テーパー形状が形成されている様子が観察された。広い面積にわたって均一な構造が形成されていた。この微粒子配列膜付きガラス基板の可視光領域の光の透過率を図14に、可視光領域の光の反射率を図15に、微粒子配列膜が形成されていないガラス基板の結果と共にそれぞれ示すが、微粒子配列膜が形成されていない場合と比較して可視光領域の光の反射率が低下し、透過率が向上していた。
[比較例1]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した平均粒径230nmの球状ポリスチレン粒子を含有する微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
Of the fine particles in the obtained fine particle array film, 89% of the fine particles are arranged with their long axes at an angle of 30° or more with respect to the substrate, and 78% of the fine particles have their long axes at 45° or more with respect to the substrate. It was observed that they were arranged at an angle of. Further, 75% of the fine particles were arranged on the base material in a state of not being in contact with other fine particles. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular. From the scanning electron microscope image of the cross section of the fine particle array film, it was observed that the tapered shape was formed. A uniform structure was formed over a large area. FIG. 14 shows the light transmittance of the glass substrate with the fine particle array film in the visible light region, and FIG. 15 shows the reflectance of the light in the visible light region with the results of the glass substrate on which the fine particle array film is not formed. The reflectance of light in the visible light region was lowered and the transmittance was improved as compared with the case where the fine particle array film was not formed.
[Comparative Example 1]
Instead of the particles having the shape anisotropy in Example 10, a fine particle dispersion liquid containing spherical polystyrene particles having an average particle diameter of 230 nm synthesized by the following method was used, and other operations were performed in the same manner as in Example 10. An array film was prepared.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.83gのStを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。 0.0199 g of KBM-503 was added to 20 g of ion-exchanged water, and the mixture was stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.83 g of St were dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of KPS in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a fine particle concentration of 10 wt %.

使用した球状微粒子の透過型電子顕微鏡像を図16に示す。また、この微粒子配列膜付きガラス基板の可視光領域の光の透過率を図14に、可視光領域の光の反射率を図15にそれぞれ示す。 A transmission electron microscope image of the spherical fine particles used is shown in FIG. Further, FIG. 14 shows the transmittance of light in the visible light region and FIG. 15 shows the reflectance of light in the visible light region of this glass substrate with a fine particle array film.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に示す。 Table 2 shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

Figure 0006710949
Figure 0006710949

得られた微粒子配列膜は反射率こそ低いものの、透明性に劣るものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例2]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した平均粒径100nmの球状ポリスチレン粒子を含有する微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
The obtained fine particle array film had a low reflectance but was inferior in transparency. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Comparative example 2]
Instead of the particles having the shape anisotropy in Example 10, a fine particle dispersion liquid containing spherical polystyrene particles having an average particle size of 100 nm synthesized by the following method was used, and other operations were performed in the same manner as in Example 10. An array film was prepared.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.068gのStを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。 0.0199 g of KBM-503 was added to 20 g of ion-exchanged water, and the mixture was stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.068 g of St were dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of KPS in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a fine particle concentration of 10 wt %.

使用した球状微粒子の透過型電子顕微鏡像を図17に示す。また、この微粒子配列膜付きガラス基板の可視光領域の光の透過率を図14に、可視光領域の光の反射率を図15にそれぞれ示す。 A transmission electron microscope image of the spherical fine particles used is shown in FIG. Further, FIG. 14 shows the transmittance of light in the visible light region and FIG. 15 shows the reflectance of light in the visible light region of this glass substrate with a fine particle array film.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。
得られた微粒子配列膜は透明性こそ高いものの、反射防止性に劣るものであり、反射光の色調は強い黄色を呈していた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例3]
スターラーを備えたフラスコに固形分濃度40wt%のコロイダルシリカ水溶液(日産化学工業社製ST−YL)0.50g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)を加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.4gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.538gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。
Table 2 also shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film and the physical properties of the obtained fine particle array film.
The obtained fine particle array film had high transparency, but was inferior in antireflection property, and the color tone of reflected light exhibited a strong yellow color. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Comparative Example 3]
0.50 g of colloidal silica aqueous solution (ST-YL manufactured by Nissan Chemical Industries, Ltd.) having a solid content of 40 wt% and 17.06 g of ion-exchanged water were added to a flask equipped with a stirrer, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.0199 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution prepared by adding 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.4 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the above solution, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.538 g of styrene (St) was added, and the mixture was stirred under a nitrogen atmosphere at 300 rpm for 4 hours. After 4 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under a nitrogen atmosphere, the reaction was carried out for 7 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a deformed particle concentration of 2 wt %.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド(Mw=150000)溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。エアーを吹きつけることにより乾燥させた。 A 40×50 mm square glass substrate was immersed in a 1 mg/mL polydiallyldimethylammonium chloride (Mw=150,000) solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion liquid was dropped on this substrate, and after 10 seconds, it was washed with ion-exchanged water. It was dried by blowing air.

得られた微粒子配列膜の走査型電子顕微鏡像を図18に示す。 A scanning electron microscope image of the obtained fine particle array film is shown in FIG.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。 Table 2 also shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜の微粒子のうち、微粒子の長軸が基材面と45°以上の角度をなしているものは13%であった。得られた微粒子配列膜は平均凸部アスペクト比が低く、透明性に劣るものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例4]
形状異方性を有する微粒子の分散液(異形粒子分散液)として以下の方法で調製した溶液を使用し、その他の操作は比較例3と同様にして微粒子配列膜を作製した。
Of the fine particles of the obtained fine particle array film, 13% had fine particles whose major axis made an angle of 45° or more with the substrate surface. The obtained fine particle array film had a low average aspect ratio of convex portions and was inferior in transparency. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Comparative Example 4]
A solution prepared by the following method was used as a dispersion liquid of fine particles having shape anisotropy (dispersion of irregularly shaped particles), and other operations were performed in the same manner as in Comparative Example 3 to prepare a fine particle array film.

スターラーを備えたフラスコに固形分濃度40wt%のコロイダルシリカ水溶液(日産化学工業社製MP−4540M)0.6g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)を加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0163gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.2gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液1.225gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.83gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。 0.6 g of an aqueous colloidal silica solution (MP-4540M manufactured by Nissan Chemical Industries, Ltd.) having a solid content of 40 wt% and 17.06 g of ion-exchanged water were added to a flask equipped with a stirrer, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.0199 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution prepared by adding 0.0163 g of sodium p-styrenesulfonate (NaSS) and 0.2 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in 10 g of ion-exchanged water. Ion-exchanged water (20 g) was added to the solution (1.225 g), and the mixture was deaerated by nitrogen bubbling for 30 minutes. 0.83 g of styrene (St) was added, and the mixture was stirred at 300 rpm under a nitrogen atmosphere for 4 hours. After 4 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under a nitrogen atmosphere, the reaction was carried out for 7 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a deformed particle concentration of 2 wt %.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。 Table 2 also shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた微粒子配列膜の微粒子のうち、微粒子の長軸が基材面と45°以上の角度をなしているものは12%であった。得られた微粒子配列膜は平均凸部アスペクト比が低く、可視光域の光に対し十分な反射防止性能を有していなかった。また、透明性に劣るものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例5]
先行技術(J. Park et al, “High−Yield Synthesis of Monodisperse Dumbbell−Shaped Polymer Nanoparticles”, J. AM. CHEM. SOC., 2010, 132, p.5960−5961)を参考に、以下の手順で微粒子を基材上で密着させた凹凸構造体を作製した。
Of the fine particles of the obtained fine particle array film, 12% had fine particles whose major axis made an angle of 45° or more with the substrate surface. The obtained fine particle array film had a low average convex aspect ratio and did not have sufficient antireflection performance for light in the visible light region. Moreover, it was inferior in transparency. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Comparative Example 5]
Prior art (J. Park et al, "High-Yield Synthesis of Monodisperse Dumbbell-Shaped Polymer Nanoparticles", J. AM. CHEM. SOC., 2010, 59, p. 59, p. 59, p. A concavo-convex structure in which the fine particles were adhered on the substrate was produced.

0.0199gのKBM−503を20gのイオン交換水に加え、30分撹拌した。イオン交換水10gに0.0083gのNaSS及び0.83gのStを分散させた溶液を加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、微粒子濃度10wt%の分散液を得た。スターラーを備えたフラスコに固形分濃度40wt%のコロイダルシリカ水溶液(日産化学工業社製ST−YL)0.50g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)を加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.4gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.538gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。
20×50mm角のガラス基板を、0.5wt%の濃度の微粒子分散液が入った8mm×4mm×60mmのガラス溶液に垂直に浸漬し、基板の位置を固定化した状態で50℃の熱風乾燥機に入れ、12時間乾燥させた。得られた微粒子配列膜の走査型電子顕微鏡像を図19及び図20に示す。一部の領域において異形粒子の長軸が基材に対し30°以上の角度をなして配列している様子が観察されたが、全ての微粒子が互いに接触していた。また、微粒子同士が密集していない領域においては、全ての微粒子の長軸が基材面に対し30°未満の角度をなしていた。また、この領域においても独立して存在する微粒子の割合は1%であり、微粒子の大半は他の微粒子と接触していた。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、一部の領域において六方格子状の輝点が存在し、粒子配列は部分的に規則配列であった。
[比較例6]
異形粒子分散液として以下の方法で調製した溶液を使用し、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
0.0199 g of KBM-503 was added to 20 g of ion-exchanged water, and the mixture was stirred for 30 minutes. A solution in which 0.0083 g of NaSS and 0.83 g of St were dispersed in 10 g of ion-exchanged water was added, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of KPS in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a fine particle concentration of 10 wt %. 0.50 g of colloidal silica aqueous solution (ST-YL manufactured by Nissan Chemical Industries, Ltd.) having a solid content of 40 wt% and 17.06 g of ion-exchanged water were added to a flask equipped with a stirrer, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.0199 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 300 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution prepared by adding 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.4 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the above solution, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.538 g of styrene (St) was added, and the mixture was stirred under a nitrogen atmosphere at 300 rpm for 4 hours. After 4 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under a nitrogen atmosphere, the reaction was carried out for 7 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a deformed particle concentration of 2 wt %.
A 20×50 mm square glass substrate is vertically immersed in a 8 mm×4 mm×60 mm glass solution containing a 0.5 wt% concentration of a fine particle dispersion liquid, and hot air drying at 50° C. is performed with the substrate position fixed. It was put in a machine and dried for 12 hours. Scanning electron microscope images of the obtained fine particle array film are shown in FIGS. 19 and 20. It was observed that the major axes of the irregularly shaped particles were arranged at an angle of 30° or more with respect to the substrate in some regions, but all the particles were in contact with each other. Further, in the region where the fine particles were not densely packed, the long axis of all the fine particles formed an angle of less than 30° with respect to the substrate surface. Also in this region, the proportion of the fine particles independently present was 1%, and most of the fine particles were in contact with other fine particles. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that hexagonal lattice-like bright spots were present in a part of the area and the particle array was partially ordered.
[Comparative Example 6]
A solution prepared by the following method was used as the odd-shaped particle dispersion liquid, and other operations were performed in the same manner as in Example 1 to prepare a fine particle array film.

n−ペンタノール60mL、ポリビニルピロリドン(PVP、MW40000)6gを加え、1500rpmで30分間撹拌した。1時間超音波照射し、イオン交換水1.68mL、エタノール6mL、180mMのクエン酸ナトリウム水溶液0.4mLを加え、1分間振とうした。28wt%のアンモニア水1.35mLを加え、1分間振とうした。脱気しながら70℃に昇温し、オルトケイ酸テトラエチル0.6mLを加え、1分間振とうした。70℃で50分間静置した後、3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)0.3mLを加え、70℃で50分間静置した後、遠心分離し、沈降物をエタノールに再分散させ、微粒子濃度10wt%に調製した。前記溶液2.4gにイオン交換水20gを加え、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−アミノプロピルトリメトキシシラン(信越化学社製KBM−903)を加え、窒素雰囲気下、1500rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.1gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間1500rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、1500rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水再分散させ、異形粒子濃度2wt%の分散液を得た。 60 mL of n-pentanol and 6 g of polyvinylpyrrolidone (PVP, MW40000) were added, and the mixture was stirred at 1500 rpm for 30 minutes. Ultrasonic irradiation was performed for 1 hour, 1.68 mL of ion-exchanged water, 6 mL of ethanol, and 0.4 mL of a 180 mM sodium citrate aqueous solution were added, and the mixture was shaken for 1 minute. 1.35 mL of 28 wt% ammonia water was added and shaken for 1 minute. While degassing, the temperature was raised to 70° C., 0.6 mL of tetraethyl orthosilicate was added, and the mixture was shaken for 1 minute. After standing at 70° C. for 50 minutes, 0.3 mL of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and after standing at 70° C. for 50 minutes, centrifugation was performed to precipitate. It was redispersed in ethanol to prepare a fine particle concentration of 10 wt %. Ion-exchanged water (20 g) was added to the solution (2.4 g), ion-exchanged water (17.06 g) was added, and the mixture was degassed by nitrogen bubbling for 30 minutes. 0.0199 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 1500 rpm for 30 minutes under a nitrogen atmosphere. After 30 minutes, an aqueous solution prepared by adding 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.1 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask and further stirred at 1500 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 1500 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a concentration of irregular-shaped particles of 2 wt %.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。 Table 2 also shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた異形粒子の粒子アスペクト比は10.01であった。作製した微粒子配列膜はヘーズ値が高く、透明性に乏しいものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例7]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
The particle aspect ratio of the obtained irregularly shaped particles was 10.01. The prepared fine particle array film had a high haze value and poor transparency. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Comparative Example 7]
Instead of the particles having shape anisotropy in Example 10, a fine particle dispersion liquid synthesized by the following method was used, and other operations were performed in the same manner as in Example 10 to prepare a fine particle array film.

スターラーを備えたフラスコに固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)1.2g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシランを加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのNaSS及び0.8gのMMAを加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.27gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水に再分散させ、異形粒子濃度2wt%の分散液を得た。
得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。
得られた異形粒子の粒子アスペクト比は1.25であった。作製した微粒子配列膜は反射防止性に乏しいものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例8]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
To a flask equipped with a stirrer, 1.2 g of colloidal silica aqueous solution (ST-20L manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20 wt% and 17.06 g of ion-exchanged water were added, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.0199 g of 3-methacryloxypropyltrimethoxysilane was added, and the mixture was stirred under a nitrogen atmosphere at 300 rpm for 30 minutes. After 30 minutes, an aqueous solution prepared by adding 0.0083 g of NaSS and 0.8 g of MMA to 10 g of ion-exchanged water was added to the flask, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of KPS in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the above solution, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.27 g of styrene (St) was added, and the mixture was stirred at 300 rpm for 4 hours under a nitrogen atmosphere. After 4 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under a nitrogen atmosphere, the reaction was carried out for 7 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a deformed particle concentration of 2 wt %.
Table 2 also shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film and the physical properties of the obtained fine particle array film.
The obtained irregularly shaped particles had a particle aspect ratio of 1.25. The prepared fine particle array film had poor antireflection properties. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Comparative Example 8]
Instead of the particles having shape anisotropy in Example 10, a fine particle dispersion liquid synthesized by the following method was used, and other operations were performed in the same manner as in Example 10 to prepare a fine particle array film.

n−ペンタノール60mL、ポリビニルピロリドン(PVP、MW40000)4.5gを加え、1500rpmで30分間撹拌した。1時間超音波照射し、イオン交換水1.68mL、エタノール6mL、180mMのクエン酸ナトリウム水溶液0.4mLを加え、1分間振とうした。28wt%のアンモニア水1.35mLを加え、1分間振とうした。脱気しながら70℃に昇温し、オルトケイ酸テトラエチル0.5mLを加え、1分間振とうした。70℃で50分間静置した後、3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM−503)0.2mLを加え、70℃で50分間静置した後、遠心分離し、沈降物をエタノールに再分散させ、微粒子濃度10wt%に調製した。前記溶液2.4gにイオン交換水20gを加え、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−アミノプロピルトリメトキシシラン(信越化学社製KBM−903)を加え、窒素雰囲気下、1500rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのp−スチレンスルホン酸ナトリウム(NaSS)及び0.1gのメタクリル酸メチル(MMA)を加えた水溶液をフラスコに加え、さらに2時間1500rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、1500rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水再分散させ、異形粒子濃度2wt%の分散液を得た。 60 mL of n-pentanol and 4.5 g of polyvinylpyrrolidone (PVP, MW40000) were added, and the mixture was stirred at 1500 rpm for 30 minutes. Ultrasonic irradiation was performed for 1 hour, 1.68 mL of ion-exchanged water, 6 mL of ethanol, and 0.4 mL of a 180 mM sodium citrate aqueous solution were added, and the mixture was shaken for 1 minute. 1.35 mL of 28 wt% ammonia water was added and shaken for 1 minute. The temperature was raised to 70° C. while degassing, 0.5 mL of tetraethyl orthosilicate was added, and the mixture was shaken for 1 minute. After standing still at 70° C. for 50 minutes, 0.2 mL of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and after standing at 70° C. for 50 minutes, it was centrifuged to precipitate. It was redispersed in ethanol to prepare a fine particle concentration of 10 wt %. Ion-exchanged water (20 g) was added to the solution (2.4 g), ion-exchanged water (17.06 g) was added, and the mixture was degassed by nitrogen bubbling for 30 minutes. 0.0199 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at 1500 rpm for 30 minutes in a nitrogen atmosphere. After 30 minutes, an aqueous solution prepared by adding 0.0083 g of sodium p-styrenesulfonate (NaSS) and 0.1 g of methyl methacrylate (MMA) to 10 g of ion-exchanged water was added to the flask, and the mixture was further stirred at 1500 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the mixture was reacted for 3 hours while stirring at 65° C. and 1500 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in ion-exchanged water to obtain a dispersion liquid having a concentration of irregular-shaped particles of 2 wt %.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。 Table 2 also shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた異形粒子の粒子アスペクト比は5.52であった。作製した微粒子配列膜はヘーズ値が高かった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例9]
実施例10における形状異方性を有する粒子の代わりに、以下の方法で合成した微粒子分散液を用い、その他の操作は実施例10と同様にして微粒子配列膜を作製した。
スターラーを備えたフラスコに固形分濃度20wt%のコロイダルシリカ水溶液(日産化学工業社製ST−20L)1.2g、イオン交換水17.06gを加え、窒素バブリングにより30分間脱気した。0.0199gの3−メタクリロキシプロピルトリメトキシシランを加え、窒素雰囲気下、300rpmで30分間撹拌した。30分後、イオン交換水10gに0.0083gのNaSS及び0.08gのMMAを加えた水溶液をフラスコに加え、さらに2時間300rpmで撹拌した。2時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのKPSを溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら3時間反応させた。反応後、遠心分離して上澄みを捨て、沈降物をイオン交換水10gに再分散させた。前記溶液4.9gにイオン交換水20gを加え、窒素バブリングにより30分間脱気した。0.22gのスチレン(St)を加え、窒素雰囲気下、300rpmで4時間撹拌した。4時間後、溶液を65℃に昇温し、10gのイオン交換水に0.0216gのペルオキソ二硫酸カリウム(KPS)を溶解させた溶液を加えた。窒素雰囲気下、65℃、300rpmで撹拌しながら7時間反応させた。反応後、遠心分離して固形物を除き、上澄みを回収し、窒素フローにより溶液を濃縮し、異形粒子濃度2wt%の分散液を得た。
The particle aspect ratio of the obtained irregularly shaped particles was 5.52. The prepared fine particle array film had a high haze value. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Comparative Example 9]
Instead of the particles having shape anisotropy in Example 10, a fine particle dispersion liquid synthesized by the following method was used, and other operations were performed in the same manner as in Example 10 to prepare a fine particle array film.
To a flask equipped with a stirrer, 1.2 g of colloidal silica aqueous solution (ST-20L manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20 wt% and 17.06 g of ion-exchanged water were added, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.0199 g of 3-methacryloxypropyltrimethoxysilane was added, and the mixture was stirred under a nitrogen atmosphere at 300 rpm for 30 minutes. After 30 minutes, an aqueous solution prepared by adding 0.0083 g of NaSS and 0.08 g of MMA to 10 g of ion-exchanged water was added to the flask, and the mixture was further stirred at 300 rpm for 2 hours. After 2 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of KPS in 10 g of ion-exchanged water was added. Under nitrogen atmosphere, the reaction was carried out for 3 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged, the supernatant was discarded, and the precipitate was redispersed in 10 g of ion-exchanged water. 20 g of ion-exchanged water was added to 4.9 g of the above solution, and deaeration was performed for 30 minutes by nitrogen bubbling. 0.22 g of styrene (St) was added, and the mixture was stirred under a nitrogen atmosphere at 300 rpm for 4 hours. After 4 hours, the solution was heated to 65° C., and a solution prepared by dissolving 0.0216 g of potassium peroxodisulfate (KPS) in 10 g of ion-exchanged water was added. Under a nitrogen atmosphere, the reaction was carried out for 7 hours while stirring at 65° C. and 300 rpm. After the reaction, the mixture was centrifuged to remove solids, the supernatant was recovered, and the solution was concentrated by a nitrogen flow to obtain a dispersion liquid having a concentration of irregular-shaped particles of 2 wt %.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。 Table 2 also shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

得られた異形粒子の粒子アスペクト比は1.28であった。作製した微粒子配列膜は反射防止性に乏しいものであった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例10]
比較例4で使用した異形粒子分散液を用い、その他の操作は実施例1と同様にして微粒子配列膜を作製した。
The particle aspect ratio of the obtained irregularly shaped particles was 1.28. The prepared fine particle array film had poor antireflection properties. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Comparative Example 10]
Using the irregular-shaped particle dispersion liquid used in Comparative Example 4, other operations were performed in the same manner as in Example 1 to prepare a fine particle array film.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。 Table 2 also shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

作製した微粒子配列膜はヘーズ値が高かった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。
[比較例11]
実施例10で使用した異形粒子分散液を用い、以下の方法で微粒子配列膜を作製した。
The prepared fine particle array film had a high haze value. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.
[Comparative Example 11]
Using the irregular-shaped particle dispersion liquid used in Example 10, a fine particle array film was prepared by the following method.

40×50mm角のガラス基板を1mg/mLのポリジアリルジメチルアンモニウムクロライド(Mw=150000)溶液に10秒間浸漬し、イオン交換水により洗浄、エアーを吹きつけることにより乾燥させた。この基板上に上記微粒子分散液を滴下し、10秒後、イオン交換水により洗浄した。エアーを吹きつけることにより乾燥させた。この基板上に3mLのエチレングリコールを滴下し、110℃で15分間加熱した。 A 40×50 mm square glass substrate was immersed in a 1 mg/mL polydiallyldimethylammonium chloride (Mw=150,000) solution for 10 seconds, washed with ion-exchanged water, and dried by blowing air. The fine particle dispersion liquid was dropped on this substrate, and after 10 seconds, it was washed with ion-exchanged water. It was dried by blowing air. 3 mL of ethylene glycol was dropped on this substrate and heated at 110° C. for 15 minutes.

得られた微粒子配列膜における微粒子及び凹凸構造の結果、並びに得られた微粒子配列膜の物性を表2に合わせて示す。 Table 2 also shows the results of the fine particles and the concavo-convex structure in the obtained fine particle array film, and the physical properties of the obtained fine particle array film.

作製した微粒子配列膜はヘーズ値が高く、また反射率が高かった。微粒子配列膜表面の原子間力顕微鏡像をフーリエ変換したところ、輝点は存在せず、粒子配列は不規則配列であった。 The prepared fine particle array film had a high haze value and a high reflectance. Fourier transform of the atomic force microscope image of the surface of the fine particle array film revealed that no bright spots existed and the particle array was irregular.

本発明によれば、平均凸部アスペクト比の大きな微粒子配列膜を提供することができる。本発明はまた、該微粒子配列膜を用いることで、可視光領域の光の透過性能に優れ、可視光域の光の散乱が少なく、反射光の発色の少ない反射防止膜を提供することができ、視認性の高いディスプレイ、光取り込み効率の高い太陽電池、光取り出し効率の高い有機EL等に応用可能である。本発明の微粒子配列膜はまた、撥水性及び親水性基材、細胞培養基材に応用可能である。 According to the present invention, a fine particle array film having a large average aspect ratio of convex portions can be provided. The present invention can also provide an antireflection film having excellent light transmission performance in the visible light region, less scattering of light in the visible light region, and less coloring of reflected light by using the fine particle array film. It can be applied to a display with high visibility, a solar cell with high light extraction efficiency, an organic EL with high light extraction efficiency, and the like. The fine particle array membrane of the present invention can also be applied to water-repellent and hydrophilic substrates and cell culture substrates.

形状異方性を有する微粒子に関する模式図 (A)球 (B)球表面に該球の半径以下の突起を備えた形状 (C)楕円体 (D)弾丸形状 (E)球に1個の球状突出部を設けた形状(接触型) (F)球に1個の球状突出部を設けた形状(埋没型) (G)球に2個の球状突出部を設けた形状Schematic diagram of fine particles having shape anisotropy (A) Sphere (B) Shape with protrusions on the surface of the sphere having a radius smaller than or equal to the sphere (C) Ellipsoid (D) Bullet shape (E) One sphere Shape with protrusions (contact type) (F) Shape with one spherical protrusion on a sphere (buried type) (G) Shape with two spherical protrusions on a sphere 本発明の微粒子配列膜の断面の概略図 (A)微粒子配列膜断面の模式図 (B)微粒子の長軸が基材接平面となす角度を示す模式図 (C)テーパーを有する微粒子配列膜断面の模式図(A) Schematic view of cross section of fine particle array film (B) Schematic view showing angle formed by long axis of fine particles with tangential plane of substrate (C) Cross section of fine particle array film having taper Schematic diagram of 実施例1の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregularly shaped particles of Example 1 実施例1の微粒子配列膜表面の走査型電子顕微鏡写真(広域、垂直方向)Scanning electron microscope photograph (wide area, vertical direction) of the surface of the fine particle array film of Example 1. 実施例1の微粒子配列膜表面の走査型電子顕微鏡写真(狭域、垂直方向)Scanning electron micrograph of the surface of the fine particle array film of Example 1 (narrow area, vertical direction) 実施例1の微粒子配列膜表面の走査型電子顕微鏡写真(45°方向)Scanning electron micrograph (45° direction) of the surface of the fine particle array film of Example 1. 実施例2の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregularly shaped particles of Example 2 実施例2の微粒子配列膜表面の走査型電子顕微鏡写真(広域、垂直方向)Scanning electron microscope photograph (wide area, vertical direction) of the surface of the fine particle array film of Example 2. 実施例2の微粒子配列膜表面の走査型電子顕微鏡写真(狭域、垂直方向)Scanning electron microscope photograph of the surface of the fine particle array film of Example 2 (narrow region, vertical direction) 実施例2の微粒子配列膜表面の走査型電子顕微鏡写真(45°方向)Scanning electron micrograph (45° direction) of the surface of the fine particle array film of Example 2. 実施例3の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregularly shaped particles of Example 3 実施例4の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregularly shaped particles of Example 4 実施例5の異形粒子の透過型電子顕微鏡写真Transmission electron micrograph of irregularly shaped particles of Example 5 実施例10、比較例1、比較例2の微粒子配列膜付きガラス基板の可視光域の光の透過率を示すグラフ(透過率は5nm間隔で測定)A graph showing the transmittance of light in the visible light region of the glass substrate with a fine particle array film of Example 10, Comparative Example 1, and Comparative Example 2 (transmittance measured at 5 nm intervals). 実施例10、比較例1、比較例2の微粒子配列膜付きガラス基板の可視光域の光の反射率を示すグラフ(反射率は5nm間隔で測定)A graph showing the reflectance of light in the visible light region of the glass substrate with a fine particle array film of Example 10, Comparative Example 1 and Comparative Example 2 (the reflectance is measured at 5 nm intervals). 比較例1の球状微粒子の透過型電子顕微鏡写真Transmission electron micrograph of spherical fine particles of Comparative Example 1 比較例2の球状微粒子の透過型電子顕微鏡写真Transmission electron micrograph of spherical fine particles of Comparative Example 2 比較例3の微粒子配列膜表面の走査型電子顕微鏡写真(垂直方向)Scanning electron micrograph (vertical direction) of the surface of the fine particle array film of Comparative Example 3. 比較例5の微粒子配列膜表面の走査型電子顕微鏡写真(広域、垂直方向)Scanning electron microscope photograph (wide area, vertical direction) of the surface of the fine particle array film of Comparative Example 5. 比較例5の微粒子配列膜表面の走査型電子顕微鏡写真(狭域、垂直方向)Scanning electron microscope photograph (narrow area, vertical direction) of the surface of the fine particle array film of Comparative Example 5.

1 微粒子
2 基材
3 テーパー
a 微粒子頂点
b 隣接する凹部
d 凸部高さ
θ 微粒子の長軸が基材接平面となす角度
l 微粒子の長径
s 微粒子の短径
φ 球状突出部と球形状の中心を結ぶ2直線のなす角度
1 fine particle 2 base material 3 taper a fine particle apex b adjacent concave portion d convex portion height θ angle formed by the long axis of fine particles with the tangent plane of the base material 1 long diameter of fine particle s short diameter of fine particle φ spherical protrusion and spherical center Angle between two straight lines connecting

Claims (13)

形状異方性を有する微粒子を基材上に配列させることで凹凸が形成された微粒子配列膜であって、前記微粒子の長径/短径の比の平均は1.3〜5.0であり、前記微粒子の平均短径は50〜500nmであり、前記微粒子は基材表面に固定化されており、前記微粒子のうち、60%以上の微粒子は長軸と基材接平面とのなす角度が45°以上であり、前記微粒子の基材面内方向の配列が不規則配列であり、前記微粒子が単粒子層を形成していることを特徴とする微粒子配列膜。 A fine particle arranging film having irregularities formed by arranging fine particles having shape anisotropy on a substrate, wherein the average of the major axis/minor axis ratio of the fine particles is 1.3 to 5.0, The average short diameter of the fine particles is 50 to 500 nm, the fine particles are fixed on the surface of the base material, and 60% or more of the fine particles have an angle between the long axis and the tangential plane of the base material of 45. ° or more, sequence irregular arrangement der substrate side in the direction of the fine particles is, fine particle arrangement layer in which the fine particles are characterized that you have to form a single particle layer. 微粒子の10%以上は基材面内方向に互いに接触することなく独立して存在していることを特徴とする請求項1に記載の微粒子配列膜。 The fine particle array film according to claim 1, wherein 10% or more of the fine particles are independently present in the in-plane direction of the substrate without contacting each other. 微粒子の形状が、以下の(1)形状又は(2)形状から選択される形状に1〜3個の球状突出部を設けた形状であることを特徴とする請求項1又は請求項2に記載の微粒子配列膜。
(1)球
(2)球表面に該球の半径以下の高さの突起を備えた形状
The shape of the fine particles is a shape in which 1 to 3 spherical protrusions are provided in a shape selected from the following (1) shape or (2) shape. Fine particle array film.
(1) Sphere (2) A shape with a protrusion having a height equal to or smaller than the radius of the sphere on the sphere surface
微粒子の形状が、以下の(3)形状又は(4)形状から選択される形状であることを特徴とする請求項1又は請求項2に記載の微粒子配列膜。
(3)球状突出部を有しない楕円体
(4)球状突出部を有しない弾丸形状
The fine particle array film according to claim 1 or 2, wherein the shape of the fine particles is a shape selected from the following (3) shape or (4) shape.
(3) Ellipsoid without spherical protrusion (4) Bullet shape without spherical protrusion
微粒子の形状が、以下の(3)形状又は(4)形状から選択される形状に1個の球状突出部を設けた形状であることを特徴とする請求項1又は請求項2に記載の微粒子配列膜。
(3)球状突出部を有しない楕円体
(4)球状突出を有しない弾丸形状
The fine particles according to claim 1 or 2, wherein the fine particles have a shape selected from the following (3) shape or (4) shape and provided with one spherical protrusion. Array membrane.
(3) Ellipsoid without spherical protrusion (4) Bullet shape without spherical protrusion
前記の球状突出部の直径Dと前記(1)形状〜(4)形状のいずれかの形状の短径Rとの比D/Rが0.1〜5.0であることを特徴とする請求項3又は請求項5に記載の微粒子配列膜。 The ratio D/R of the diameter D of the spherical projection and the minor axis R of any one of the shapes (1) to (4) is 0.1 to 5.0. The fine particle array film according to claim 3 or 5. 最近接する微粒子間の平均距離が、微粒子の平均長径の3倍以下の距離であることを特徴とする請求項1〜請求項6のいずれかに記載の微粒子配列膜。 7. The fine particle array film according to claim 1, wherein the average distance between the closest particles is 3 times or less the average major axis of the particles. 微粒子がポリマー成分により基材上に固定化されていることを特徴とする請求項1〜請求項のいずれかに記載の微粒子配列膜。 The fine particle array film according to any one of claims 1 to 7 , wherein the fine particles are immobilized on a substrate by a polymer component . 基材上に配列した微粒子の、基材と微粒子間、及び微粒子の狭隘部を埋めるようにテーパーが形成されていることを特徴とする請求項1〜請求項のいずれかに記載の微粒子配列膜。 Of fine particles arranged on the substrate, between the substrate and the fine particles, and fine particle arrangement according to any of claims 1 to 8, characterized in that tapered so as to fill the narrow portion of the fine particles is formed film. テーパーが硬化性樹脂を含むことを特徴とする請求項に記載の微粒子配列膜。 The fine particle array film according to claim 9 , wherein the taper contains a curable resin . 微粒子表面全体がポリマーにより被覆されていることを特徴とする請求項1〜請求項1のいずれかに記載の微粒子配列膜。 Fine particle arrangement layer according to any one of claims 1 to 1 0, characterized in that the entire particle surface is coated with a polymer. 微粒子が内部にコア粒子として、スチレン系単量体単位、アクリレート系単量体単位若しくはメタアクリレート系単量体単位を含む重合体粒子、又はシリカ粒子を有することを特徴とする請求項1〜請求項1のいずれかに記載の微粒子配列膜。 The fine particles internally have, as core particles, polymer particles containing styrene-based monomer units, acrylate-based monomer units or methacrylate-based monomer units, or silica particles. Item 11. The fine particle array film according to any one of items 11. 請求項1〜請求項1のいずれかに記載の微粒子配列膜を用いた反射防止膜。 Antireflection film using a fine particle arrangement layer according to any one of claims 1 to 1 2.
JP2015237939A 2015-12-04 2015-12-04 Fine particle array film and antireflection film Active JP6710949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015237939A JP6710949B2 (en) 2015-12-04 2015-12-04 Fine particle array film and antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237939A JP6710949B2 (en) 2015-12-04 2015-12-04 Fine particle array film and antireflection film

Publications (2)

Publication Number Publication Date
JP2017102408A JP2017102408A (en) 2017-06-08
JP6710949B2 true JP6710949B2 (en) 2020-06-17

Family

ID=59016838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237939A Active JP6710949B2 (en) 2015-12-04 2015-12-04 Fine particle array film and antireflection film

Country Status (1)

Country Link
JP (1) JP6710949B2 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054132A (en) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd Reflection screen
JP2005218889A (en) * 2004-02-03 2005-08-18 Dainippon Ink & Chem Inc Cured film manufacturing method
JP2005288214A (en) * 2004-03-31 2005-10-20 Dainippon Ink & Chem Inc Method of producing hardened film
FR2877662B1 (en) * 2004-11-09 2007-03-02 Commissariat Energie Atomique PARTICLE NETWORK AND METHOD FOR MAKING SUCH A NETWORK
JP4746475B2 (en) * 2006-04-28 2011-08-10 帝人デュポンフィルム株式会社 Reflective polarizing plate
KR100862554B1 (en) * 2007-05-09 2008-10-09 엘지전자 주식회사 Optical film having a plurality of structures, backlight unit and liquid crystal display device including the same
WO2010117102A1 (en) * 2009-04-09 2010-10-14 서강대학교 산학협력단 Method for aligning colloidal crystals as single crystals
JP6077194B2 (en) * 2010-12-07 2017-02-08 ソニー株式会社 Conductive optical element, information input device and display device
JP2012181504A (en) * 2011-02-08 2012-09-20 Gunze Ltd Light diffusion film and manufacturing method therefor
JP2012163794A (en) * 2011-02-08 2012-08-30 Murata Mfg Co Ltd Reflection suppressing film and manufacturing method therefor
JP2012208257A (en) * 2011-03-29 2012-10-25 Kuraray Co Ltd Anti-reflection structure and optical member
JP2013231780A (en) * 2012-04-27 2013-11-14 Kuraray Co Ltd Anti-reflection structure and optical member
JP6025532B2 (en) * 2012-11-30 2016-11-16 三井金属鉱業株式会社 Conductive film and electronic component package
JP6483958B2 (en) * 2013-03-19 2019-03-13 積水化学工業株式会社 Conductive film and connection structure
JP6396003B2 (en) * 2013-06-03 2018-09-26 富士フイルム株式会社 Optical member provided with antireflection film
JP6168291B2 (en) * 2013-07-04 2017-07-26 パナソニックIpマネジメント株式会社 Optical member, lighting device, and method of manufacturing optical member

Also Published As

Publication number Publication date
JP2017102408A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP4562894B2 (en) Antireflection film and manufacturing method thereof
TWI630410B (en) Antireflection film and display device
JP5103825B2 (en) OPTICAL LAMINATE, ITS MANUFACTURING METHOD, POLARIZING PLATE, AND IMAGE DISPLAY DEVICE
TWI588020B (en) Anti-glare film, anti-glare film manufacturing method, polarizing film and image display device
Guo et al. Light diffusing films fabricated by strawberry-like PMMA/SiO2 composite microspheres for LED application
TWI534002B (en) Optical laminate and method for manufacturing optical laminate
JP2006208726A (en) Optical functional sheet
KR20080053462A (en) Glare-proofing optical laminate
JP5231004B2 (en) Particle and method for producing particle
WO2014054508A1 (en) Multilayer film, optical multilayer film, and display device
JP6710949B2 (en) Fine particle array film and antireflection film
JP2012086475A (en) Thin-film transfer material, method for manufacturing the same, molding with thin film, and method for manufacturing the same
JP6365946B2 (en) Antireflection member, transfer member, and method of manufacturing antireflection member
JP2005060654A (en) Method for producing 3-dimensional particle-conformed material of spherical fine particle, the 3-dimensional particle-conformed material, and method for producing 3-dimensional particle-conformed material-coated film
JP2008291175A (en) Coating material for forming transparent coating film and substrate with transparent film
JP2017181693A (en) Antireflection film
WO2014046021A1 (en) Anti-reflection film, method for producing same and display device
JP2005195820A (en) Glareproof film
JP6528408B2 (en) Antireflection film and method of manufacturing the same
TWI362502B (en) Optical laminate
JP2011098445A (en) Optical laminate and method for manufacturing the same, and polarizing plate and display device using the same
TWI491931B (en) Anti-glare film, anti-glare film manufacturing method, polarizing film and image display device
JP2017181694A (en) Antireflection film and coating liquid for antireflection film formation
JP2017102409A (en) Method for manufacturing fine particle arrangement film
JP2010053173A (en) Method of producing dispersion of resin-coated metal oxide particles, coating liquid for forming transparent coating film containing the resin-coated metal oxide particles, and base material coated with transparent coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R151 Written notification of patent or utility model registration

Ref document number: 6710949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151