JP2017091822A - Negative electrode active material for nonaqueous electrolyte secondary battery using chaff or rice straw carbide - Google Patents

Negative electrode active material for nonaqueous electrolyte secondary battery using chaff or rice straw carbide Download PDF

Info

Publication number
JP2017091822A
JP2017091822A JP2015220805A JP2015220805A JP2017091822A JP 2017091822 A JP2017091822 A JP 2017091822A JP 2015220805 A JP2015220805 A JP 2015220805A JP 2015220805 A JP2015220805 A JP 2015220805A JP 2017091822 A JP2017091822 A JP 2017091822A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
secondary battery
electrode active
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015220805A
Other languages
Japanese (ja)
Other versions
JP7133121B2 (en
Inventor
村山 正樹
Masaki Murayama
正樹 村山
山本 佳嗣
Yoshitsugu Yamamoto
佳嗣 山本
基芳 藤原
Motoyoshi Fujiwara
基芳 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie Prefecture
Original Assignee
Mie Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie Prefecture filed Critical Mie Prefecture
Priority to JP2015220805A priority Critical patent/JP7133121B2/en
Publication of JP2017091822A publication Critical patent/JP2017091822A/en
Application granted granted Critical
Publication of JP7133121B2 publication Critical patent/JP7133121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that the discharge capacity of graphite, i.e., a carbon-based material currently used widely as the negative electrode active material of lithium ion secondary battery, is small, and the charge discharge cycle characteristics of a silicon-based material, under development as a next generation high capacity negative electrode active material are insufficient.SOLUTION: A composite of silicon oxide and carbon is obtained by carbonizing chaff and rice straws in an inert gas of 500°C-650°C for about 2-4 hours, and utilized as a negative electrode active material for nonaqueous electrolyte secondary battery. The composite thus obtained is a battery active material combining both merits of high discharge capacity, and good charge discharge cycle characteristics. The invention has great advantage, compared with the fact that the discharge capacity of graphite, i.e., a carbon-based material currently used widely as the negative electrode active material of lithium ion secondary battery, is small.SELECTED DRAWING: Figure 1

Description

本願発明は、もみ殻または稲わらを各種不活性ガス中にて500℃〜650℃で炭化することで得られたケイ素酸化物と炭素の複合体である非水電解液二次電池用負極活物質に関する。従来技術に係るもみ殻または稲わらを利用した負極活物質は一般には、もみ殻または稲わらを約300℃から約3000℃という広範囲な炭化処理温度において炭化処理し、或いは複数の炭化処理工程を経て製造したり、又は添加物質を用いて製造している。これに対して、本願発明に係る負極活物質は、単にもみ殻または稲わらを500℃〜650℃の特定温度帯で炭化させ、ケイ素酸化物と炭素の複合体を得る単一炭化処理工程で製造し、この単一炭化処理工程で得られたケイ素酸化物と炭素の複合体を非水電解液二次電池用の負極活物質に利用するものである。他の炭化処理温度帯で得られた従来技術に係る負極活物質を利用した非水電解液二次電池と比較して、特段に大きな放電容量と、特段に優れた充放電サイクル特性を発現するという優位性を有する。すなわち本願発明は、もみ殻または稲わらの炭化処理温度における数値限定発明に関する。   The present invention relates to a negative electrode active for a non-aqueous electrolyte secondary battery, which is a composite of silicon oxide and carbon obtained by carbonizing rice husk or rice straw in various inert gases at 500 ° C. to 650 ° C. Concerning substances. In general, negative electrode active materials using rice husk or rice straw according to the prior art generally carbonize rice husk or rice straw at a wide range of carbonization temperatures of about 300 ° C. to about 3000 ° C. It is manufactured through the use of additive substances. On the other hand, the negative electrode active material according to the present invention is a single carbonization process in which rice husk or rice straw is simply carbonized at a specific temperature range of 500 ° C. to 650 ° C. to obtain a composite of silicon oxide and carbon. The silicon oxide and carbon composite produced and obtained in this single carbonization process is used as a negative electrode active material for a non-aqueous electrolyte secondary battery. Compared with the non-aqueous electrolyte secondary battery using the negative electrode active material according to the prior art obtained in other carbonization temperature zones, it exhibits a particularly large discharge capacity and particularly excellent charge / discharge cycle characteristics. Has the advantage of. That is, the present invention relates to a numerically limited invention at the carbonization temperature of rice husk or rice straw.

現在リチウムイオン二次電池の負極活物質として広く用いられているのは、黒鉛等のカーボン系材料である。しかしながらこれ等の材料では、充放電容量が小さいという問題点を有している。また他の材料としてケイ素系材料があり、次世代高容量負極活物質として開発中の段階である。しかしながらこの材料では、充放電サイクルに伴い急激に充放電容量が低下するという問題点を有する。また更に他の材料として改良型のケイ素系材料として、カーボンや硫黄との複合化、二段階焼成、多孔体金属への埋め込みなどが広く研究されている。しかしながらこれ等の材料では、工程が複雑になり高コストにつながるという問題点を有する。すなわち、1)製造工程が簡素であり、2)放電容量が大きく、3)充放電サイクル特性が優れた、穀物殻炭化物を利用した非水電解液二次電池用の負極活物質が求められている。   Currently, carbon-based materials such as graphite are widely used as negative electrode active materials for lithium ion secondary batteries. However, these materials have a problem that the charge / discharge capacity is small. Another material is a silicon-based material, which is being developed as a next-generation high-capacity negative electrode active material. However, this material has a problem that the charge / discharge capacity rapidly decreases with the charge / discharge cycle. Further, as other materials, improved silicon-based materials, such as compounding with carbon and sulfur, two-step firing, and embedding in a porous metal have been widely studied. However, these materials have the problem that the process becomes complicated and leads to high costs. That is, there is a need for a negative electrode active material for a non-aqueous electrolyte secondary battery using grain husk carbide, which has 1) a simple manufacturing process, 2) a large discharge capacity, and 3) excellent charge / discharge cycle characteristics. Yes.

一方、現在十分に活用されていない穀物殻の有効利用の観点から、穀物殻を炭化することで負極活物質を得ようとする技術が広く開発されている。例えば以下のような従来技術が存在する。   On the other hand, from the viewpoint of effective utilization of grain husks that are not fully utilized at present, techniques for obtaining a negative electrode active material by carbonizing grain husks have been widely developed. For example, the following conventional techniques exist.

すなわち引例1として特許4985410/特開2008−124034には、高い充放電容量、充放電効率を実現する非水電解液二次電池用負極材料の製造方法が開示されている。具体的な製造方法は、珈琲豆、茶葉、サトウキビ類、トウモロコシ類、果実類、藁類、籾殻類から選択される少なくとも一種を焼成し、炭素質化することで製造可能であるとする。そしてこの負極材料は、リチウム複合酸化物からなる正極と、負極活物質としてリチウムイオンをドープ・脱ドープ可能な炭素質負極材料からなる負極とを備えた非水電解液二次電池において、炭素質負極材料として使用される。しかしながらこの製造法では、製造工程が複雑であり、また穀物殻の炭化処理工程において特定の焼成温度帯で炭化して得られた負極活物質が、特段の高放電容量を発現する点について十分には開示されていないという欠点を有している。   That is, as reference 1, Japanese Patent No. 4985410 / Japanese Patent Application Laid-Open No. 2008-124034 discloses a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery that realizes high charge / discharge capacity and charge / discharge efficiency. As a specific production method, it can be produced by firing and carbonizing at least one selected from coconut beans, tea leaves, sugar cane, corns, fruits, cocoons, and rice husks. The negative electrode material is a non-aqueous electrolyte secondary battery comprising a positive electrode made of a lithium composite oxide and a negative electrode made of a carbonaceous negative electrode material capable of doping and dedoping lithium ions as a negative electrode active material. Used as negative electrode material. However, in this production method, the production process is complicated, and the negative electrode active material obtained by carbonization at a specific firing temperature zone in the carbonization process of the grain husk is sufficiently sufficient to express a particularly high discharge capacity. Has the disadvantage of not being disclosed.

引例2として特許第5467264/特開2011−170991には、植物性廃棄物を炭素源とし、正極材料でも使用できるほど高電位、高容量であり、優れたサイクル特性を有する電極材料の製造方法およびその電極材料が開示されている。具体的な製造方法は、植物性廃棄物と硫黄単体とを混合して混合物とする混合工程と、混合物を密閉容器に入れ250℃〜600℃で加熱する加熱工程とで構成されている。しかしながらこの製造法では、穀物殻以外に硫黄が必要となり資源の有効利用という観点から不十分であるいう欠点を有している。   As Reference 2, Japanese Patent No. 5467264 / Japanese Patent Application Laid-Open No. 2011-170991 discloses a method for producing an electrode material having a high potential and a high capacity that can be used as a positive electrode material using plant waste as a carbon source and having excellent cycle characteristics, and The electrode material is disclosed. A specific manufacturing method includes a mixing step of mixing plant waste and sulfur alone to form a mixture, and a heating step of heating the mixture at 250 ° C. to 600 ° C. in a sealed container. However, this production method has a drawback that it requires sulfur in addition to grain husks and is insufficient from the viewpoint of effective use of resources.

引例3として特開2013−165161には、カーボンの材料として、一部が利用されているとはいえ、その大部分を廃棄、焼却を必要とする穀物殻を有効利用して、従来から資源が問題であり、活性化も複雑な工程で得られる各種活性炭を用いた場合と同等かそれ以上の静電容量値、高出力特性、耐久性等のキャパシタ特性を得ることができるキャパシタが開示されている。具体的にはこのキャパシタは、穀物の殻から得られたシリカ成分を含有するカーボン粉末を耐酸化性を有する三次元網状構造を有する金属多孔体に充填して得られる電極を有し、電解液として、リチウム塩又はナトリウム塩を含む非水電解液を有することを特徴とする。しかしながらこのキャパシタでは、金属多孔体に充填する工程を必要とするため工程が複雑であるという欠点を有している。   As reference 3, in JP 2013-165161, although a part of carbon is used as a material for carbon, resources are conventionally utilized by making effective use of grain husks that require disposal and incineration. Capacitors capable of obtaining capacitor characteristics such as capacitance values, high output characteristics, durability, etc. that are equal to or higher than those using various activated carbons that are problematic and activated by complicated processes are disclosed. Yes. Specifically, this capacitor has an electrode obtained by filling a metal porous body having a three-dimensional network structure having oxidation resistance with a carbon powder containing a silica component obtained from a grain shell, and an electrolytic solution. As a non-aqueous electrolyte containing a lithium salt or a sodium salt. However, this capacitor has a drawback that the process is complicated because it requires a process of filling the porous metal body.

引例4として特許第5733890/特開2010−161057、引例5として2010−11337、および引例6として2010−161338には、体積固有抵抗率の制御を容易にし、かつ植物焼成物単体の炭素系材料で製造可能な導電性組成物を製造するために、大豆皮、菜種粕、米糠、籾殻などの穀物残渣を含む植物を、900℃で3時間程度焼成して植物焼成物を得て、次にその植物焼成物を、エチレン・プロピレンジエンゴムなどの母材に対して100phr以上配合する工程を経て導電性組成物について開示されている。しかしながらこの技術は、籾殻などの穀物残渣を焼成処理するとはいえ、本願発明の目的である非水電解液二次電池用負極材料の製造とは技術分野を異にする。   Patent No. 5733890 / JP2010-161057 as Reference 4 and 2010-11337 as Reference 5 and 2010-161338 as Reference 6 make it easy to control the volume resistivity and use a carbon-based material of a burned plant alone. In order to produce a conductive composition that can be produced, a plant containing grain residues such as soybean hulls, rapeseed meal, rice bran, rice husk, etc. is baked at 900 ° C. for about 3 hours to obtain a baked plant product. The conductive composition has been disclosed through a step of blending a burned plant with 100 phr or more of a base material such as ethylene / propylene diene rubber. However, this technique is different from the technical field of producing a negative electrode material for a non-aqueous electrolyte secondary battery, which is the object of the present invention, although it is a cereal residue such as rice husk.

引例7として特開2012−160456には、窒素BET法による比表面積の値が10m2/グラム以上、BJH法及びMP法による細孔の容積が0.1cm3/グラム以上である多孔質炭素材料から成る二次電池用電極材料の製造方法であって、 植物由来の材料、例えば穀物殻を800゜C乃至1400゜Cにて炭素化した後、酸又はアルカリで処理し、以て炭素化後の植物由来の材料中のケイ素成分を除去する二次電池用電極材料の製造方法が開示されている。しかしながらこの技術でも、炭素化した後に更に酸又はアルカリで処理してケイ素成分を除去する工程を必要とし、工程が複雑である欠点を有する。 As a reference 7, JP 2012-160456 A discloses a porous carbon material having a specific surface area value of 10 m 2 / gram or more by nitrogen BET method and a pore volume of 0.1 cm 3 / gram or more by BJH method and MP method. A method for producing an electrode material for a secondary battery comprising: plant-derived material, for example, cereal husk is carbonized at 800 ° C to 1400 ° C, treated with acid or alkali, and then carbonized A method for producing an electrode material for a secondary battery that removes a silicon component in plant-derived materials is disclosed. However, even in this technique, after carbonization, a process of removing the silicon component by further treatment with an acid or an alkali is required, and the process is complicated.

更に引例8として特開2014−165435には、もみ殻に特定の糖類を添加して炭化処理し、さらに賦活して得られる活性炭を電気化学キャパシタの電極として用いる技術が開示されているが、この技術でももみ殻以外に特定の糖類を添加して炭化処理する必要があり、工程が複雑である欠点を有する。   Further, as reference 8, JP 2014-165435 discloses a technique in which activated carbon obtained by adding a specific saccharide to rice husk and carbonizing and activating it is used as an electrode of an electrochemical capacitor. Even in the technology, it is necessary to add a specific saccharide other than rice husk to perform carbonization treatment, which has a drawback that the process is complicated.

特許第4985410号公報/特開2008−124034号公報Japanese Patent No. 4985410 / Japanese Patent Laid-Open No. 2008-124034 特許第5467264号公報/特開2011−170991号公報Japanese Patent No. 5467264 / Japanese Patent Laid-Open No. 2011-170991 特開2013−165161号公報JP 2013-165161 A 特許第5733890号公報/特開2010−161057号公報Japanese Patent No. 5733890 / JP 2010-161057 A 特開2010−11337号公報JP 2010-11337 A 特開2010−161338号公報JP 2010-161338 A 特開2012−160456号公報JP 2012-160456 A 特開2014−165435号公報JP 2014-165435 A

解決しようとする問題点は、資源の有効利用のため最も多量かつ容易に入手可能なもみ殻または稲わらに注目し、これ等のもみ殻または稲わらを炭化処理することで得られる負極活物質であって、1)製造工程が簡素であり、2)放電容量が大きく、3)充放電サイクル特性が優れた、非水電解液二次電池用の負極活物質が存在しない点にある。   The problem to be solved is a negative electrode active material obtained by carbonizing these rice husks or rice straw, focusing on the most easily available rice husks or rice straw for effective use of resources. However, 1) the manufacturing process is simple, 2) the discharge capacity is large, and 3) the charge / discharge cycle characteristics are excellent, and there is no negative electrode active material for a non-aqueous electrolyte secondary battery.

そのため本願発明では、もみ殻または稲わらを、500℃〜650℃の不活性ガス中で約2時間〜約4時間にわたり炭化させたケイ素酸化物と炭素の複合体で構成されたことを特徴とする非水電解液二次電池用負極活物質およびその製造方法を開示する。すなわち本願発明に係る非水電解液二次電池用の負極活物質は、単に500℃〜650℃の不活性ガス中で約2時間〜約4時間にわたる炭化工程だけで製造可能であり、従来技術と異なり複雑な複数工程を必要とせず、また炭化工程前に添加物を付加する必要も無い。   Therefore, the present invention is characterized by comprising a composite of silicon oxide and carbon obtained by carbonizing rice husk or rice straw in an inert gas at 500 ° C. to 650 ° C. for about 2 hours to about 4 hours. Disclosed are a negative electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same. That is, the negative electrode active material for a non-aqueous electrolyte secondary battery according to the present invention can be produced simply by a carbonization process in an inert gas at 500 ° C. to 650 ° C. for about 2 hours to about 4 hours. In contrast, it does not require complicated multiple steps, and it is not necessary to add an additive before the carbonization step.

本発明の電池用活物質およびその製造方法は、本発明は、ケイ素含有量の多いイネ由来の原料を炭化するという単一工程で容易にケイ素酸化物−炭素複合体を得るものである。この得られた複合体は放電容量が高く、かつ充放電サイクル特性も優れているという両者の利点を併せ持つ電池用活物質となるという利点がある。   In the active material for battery and the method for producing the same of the present invention, the present invention easily obtains a silicon oxide-carbon composite in a single step of carbonizing a rice-derived raw material having a high silicon content. The obtained composite has the advantage of becoming a battery active material having both the advantages of high discharge capacity and excellent charge / discharge cycle characteristics.

図1は、各温度で炭化された複合体を用いた二次電池の2サイクル目における放電特性をプロット表示したプロット図である。FIG. 1 is a plot diagram in which discharge characteristics in a second cycle of a secondary battery using a composite carbonized at each temperature are plotted. 図2は、600℃で炭化された複合体を用いた1つの二次電池についての初回放電、2サイクル目放電、20サイクル目放電時の放電容量−電圧グラフである。FIG. 2 is a discharge capacity-voltage graph at the time of initial discharge, second cycle discharge, and 20th cycle discharge for one secondary battery using a composite carbonized at 600 ° C. 図3は、800℃で炭化された複合体を用いた二次電池の放電容量−電圧グラフである。FIG. 3 is a discharge capacity-voltage graph of a secondary battery using a composite carbonized at 800 ° C. 図4は、結晶性SiOを負極活物質として用いた二次電池の放電容量−電圧グラフである。FIG. 4 is a discharge capacity-voltage graph of a secondary battery using crystalline SiO 2 as a negative electrode active material. 図5は、アモルファスSiOを負極活物質として用いた二次電池の放電容量−電圧グラフである。FIG. 5 is a discharge capacity-voltage graph of a secondary battery using amorphous SiO 2 as a negative electrode active material. 図6は、本願発明に係る二次電池について1サイクル目から20サイクル目の各サイクル毎の放電容量を示すグラフである。FIG. 6 is a graph showing the discharge capacity for each cycle from the first cycle to the 20th cycle of the secondary battery according to the present invention. 図7は、もみ殻または稲わらの各炭化処理温度毎の重量収率を示すプロット図である。FIG. 7 is a plot showing the weight yield at each carbonization temperature of rice husk or rice straw.

(実験1)
原料として洗浄し乾燥したもみ殻または稲わらを用いた試料を、200℃〜900℃帯の200℃、300℃、400℃、500℃、600℃、650℃、700℃、800℃、900℃の各温度で、アルゴンまたは窒素ガス雰囲気中で約2時間〜約4時間にわたり炭化させた。すなわち本願発明では従来技術と異なり単一の炭化工程のみによりもみ殻または稲わらを炭化させ、かつ添加物は使用しない点に特徴がある。この単一の炭化工程で、上記各温度においてケイ素酸化物−炭素の複合体を得た。この得られた複合体を、例えば導電助剤としてアセチレンブラック、バインダーとしてポリイミドと、75:10:15の重量比になるように混合したものを銅箔上に塗布乾燥することで、リチウムイオン二次電池の負極試料を得た。そして各温度で得られたこの負極試料と、対極(金属リチウム)、電解液に1mol/LのLiPF6-EC:DEC(1:1容積比)溶液を用いた二次電池を製作し放電特性を測定した。図1は、横軸に炭化温度(℃)、縦軸に2サイクル目の放電容量(mAh/g)をとり、この各温度で炭化された複合体を用いた二次電池の2サイクル目における放電特性をプロット表示した図である。すなわち二次電池について、各炭化温度毎に2サイクル目の放電容量を測定し、その測定値がプロットされている。なお図中では各炭化温度毎に必ずしも同一のデータ数が計測されている訳ではない。
(Experiment 1)
Samples using rice husk or rice straw washed and dried as raw materials are 200 ° C to 300 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C, 600 ° C, 650 ° C, 700 ° C, 800 ° C, 900 ° C. The carbonization was performed for about 2 hours to about 4 hours in an argon or nitrogen gas atmosphere. That is, the present invention is characterized in that rice husk or rice straw is carbonized only by a single carbonization step and no additive is used, unlike the prior art. In this single carbonization step, a silicon oxide-carbon composite was obtained at each of the above temperatures. The obtained composite was mixed with, for example, acetylene black as a conductive additive and polyimide as a binder in a weight ratio of 75:10:15, applied onto a copper foil, and dried to obtain a lithium ion secondary material. A negative electrode sample of a secondary battery was obtained. We fabricated a secondary battery using this negative electrode sample obtained at each temperature, a counter electrode (metallic lithium), and a 1 mol / L LiPF 6 -EC: DEC (1: 1 volume ratio) solution as the electrolyte. Was measured. FIG. 1 shows the carbonization temperature (° C.) on the horizontal axis and the discharge capacity (mAh / g) on the second cycle on the vertical axis, in the second cycle of the secondary battery using the composite carbonized at each temperature. It is the figure which displayed the discharge characteristic by the plot. That is, for the secondary battery, the discharge capacity at the second cycle is measured for each carbonization temperature, and the measured values are plotted. In the figure, the same number of data is not necessarily measured for each carbonization temperature.

このプロット図で理解できるように、炭化温度200℃と300℃での各複合体試料を使用した二次電池の2サイクル目の放電容量は約100mAh/g前後であり、400℃では200〜250 mAh/g、700℃では250〜350 mAh/g、更に800℃の放電容量は約100mAh/gを示している。これに対して炭化温度500℃で炭化処理された複合体試料を使用した二次電池では約450〜550mAh/g、炭化温度600℃では550〜650 mAh/g、炭化温度650℃では400〜450 mAh/g、という大きな放電容量が突出して計測されている。これは黒鉛を用いた二次電池の理論放電容量が最大372 mAh/gであることと対比しても大きな放電容量と考えられる。なお炭化温度900℃の複合体試料の2サイクル目の放電容量は約400mAh/g前後を示しているが、これは炭化工程上の何らかのエラーであり、誤データと考えられる。この結果から、本願発明により得られたもみ殻または稲わらを炭化させるという単純な工程で得られたケイ素酸化物−炭素の複合体のうち、炭化温度500℃〜650℃で処理したもののみが、突出して大きな放電容量を有すると判断することが出来る。   As can be seen from this plot, the discharge capacity in the second cycle of the secondary battery using each composite sample at carbonization temperatures of 200 ° C. and 300 ° C. is about 100 mAh / g, and at 400 ° C., it is 200 to 250 mAh / g, 250 to 350 mAh / g at 700 ° C., and discharge capacity at 800 ° C. is about 100 mAh / g. On the other hand, about 450 to 550 mAh / g in the secondary battery using the composite sample carbonized at the carbonization temperature of 500 ° C., 550 to 650 mAh / g at the carbonization temperature of 600 ° C., and 400 to 450 at the carbonization temperature of 650 ° C. A large discharge capacity of mAh / g is prominently measured. This is considered to be a large discharge capacity even in contrast to the theoretical discharge capacity of the secondary battery using graphite being 372 mAh / g at the maximum. The discharge capacity in the second cycle of the composite sample with a carbonization temperature of 900 ° C. is about 400 mAh / g, which is an error in the carbonization process and is considered erroneous data. From this result, among the silicon oxide-carbon composites obtained by a simple process of carbonizing the rice husk or rice straw obtained by the present invention, only those treated at a carbonization temperature of 500 ° C. to 650 ° C. It can be determined that the battery has a large discharge capacity.

この様に炭化温度500℃〜650℃で処理したもののみが上述のような大きな放電容量を得ることが出来る理論的な理由は十分には解明されていないが、もみ殻または稲わらを上記温度帯で炭化することで、この様な特性が確実に再現されること自体は判明している。   Although the theoretical reason that only such a carbonized temperature of 500 ° C. to 650 ° C. can obtain a large discharge capacity as described above has not been fully elucidated, It has been found that such characteristics can be reliably reproduced by carbonizing the belt.

(実験2)
次に図2は、上記数値限定された600℃で炭化された複合体を用いた1つの二次電池について、その充放電サイクル特性を得るため、初回放電、2サイクル目放電、20サイクル目放電時の放電容量−電圧グラフである。すなわち図中で、初回放電容量を1X、2サイクル目放電容量を2X, 20サイクル目放電容量を20Xで示している。電圧値1.5V時に、各グラフの放電容量は、各々約750mAh/g、650mAh/g、550mAh/gを示している。これは図3に示す800℃で炭化された複合体を用いた二次電池の放電容量−電圧グラフ、図4に示す結晶性SiOを負極活物質として用いた二次電池の放電容量−電圧グラフ、そして図5に示すアモルファスSiOを負極活物質として用いた二次電池の放電容量−電圧グラフと、夫々比較しても大きな放電容量を有していると理解することが出来る。すなわち本願発明の600℃に於ける放電特性は、他の放電特性と比較して全体的に図中では右方向にシフトした高放電特性が示されている。
(Experiment 2)
Next, FIG. 2 shows the first discharge, the second cycle discharge, and the 20th cycle discharge in order to obtain the charge / discharge cycle characteristics of one secondary battery using the composite carbonized at 600 ° C., which is limited to the above numerical values. It is a discharge capacity-voltage graph at the time. That is, in the figure, the initial discharge capacity is 1X, the second cycle discharge capacity is 2X, and the 20th cycle discharge capacity is 20X. When the voltage value is 1.5 V, the discharge capacities of the graphs are about 750 mAh / g, 650 mAh / g, and 550 mAh / g, respectively. This is a discharge capacity-voltage graph of a secondary battery using a composite carbonized at 800 ° C. shown in FIG. 3, and a discharge capacity-voltage of a secondary battery using crystalline SiO 2 shown in FIG. 4 as a negative electrode active material. It can be understood that the discharge capacity-voltage graph of the secondary battery using amorphous SiO 2 as the negative electrode active material shown in the graph and FIG. In other words, the discharge characteristic at 600 ° C. of the present invention shows a high discharge characteristic that is shifted in the right direction as a whole in comparison with other discharge characteristics.

(実験3)
更に図6は、本願発明に係るもみ殻または稲わらを600℃で炭化された複合体を用いた4つの二次電池について1サイクル目から20サイクル目の各サイクル毎に放電容量mAh/gを測定したグラフである。すなわち各サイクル数に於ける4つのプロットは、安定して約750mAh/g〜少なくとも450mAh/gという大きな放電容量を有することを示している。
(Experiment 3)
Further, FIG. 6 shows the discharge capacity mAh / g for each cycle from the first cycle to the 20th cycle for four secondary batteries using a composite obtained by carbonizing rice husk or rice straw according to the present invention at 600 ° C. It is the measured graph. That is, the four plots at each cycle number show that it has a stable discharge capacity of about 750 mAh / g to at least 450 mAh / g.

この様に本願発明に係る炭化温度帯500℃〜650℃のうち600℃で炭化された複合体は、C(炭素)分だけでは説明できない高サイクル容量を持ち、かつSiO2でもこの様な大きな放電容量を有することは十分には説明できない。すなわちSiO2は結晶でも非結晶でも大きな放電容量は殆ど得られない。そのため本願発明の炭化温度では、イネが水溶態でシリカを取り込み、SiO(ただし0《x〈2)となり、この大きな放電容量が得られることに寄与しているものと推測されるが、現状では理論的に十分には解明されていない。ただし本願発明では、Siを多く含有するイネを500℃〜650℃で炭化することで得られるSiOに注目・特化して負極活物質が構成されている。 Thus, the composite carbonized at 600 ° C. in the carbonization temperature range of 500 ° C. to 650 ° C. according to the present invention has a high cycle capacity that cannot be explained only by the C (carbon) content, and even SiO 2 has such a large size. Having a discharge capacity cannot be fully explained. That is, a large discharge capacity is hardly obtained even if SiO 2 is crystalline or non-crystalline. Therefore, at the carbonization temperature of the present invention, it is assumed that rice takes up silica in a water-soluble state and becomes SiO x (where 0 << x <2), which contributes to obtaining this large discharge capacity. However, it is not fully understood theoretically. However, in the present invention, the negative electrode active material is configured by paying attention and specializing to SiO x obtained by carbonizing rice containing a large amount of Si at 500 ° C. to 650 ° C.

(実験4)
更に図7には、もみ殻または稲わらを各炭化処理温度毎の重量収率を示すプロット図である。比較的低温である500℃〜650℃の温度帯でも重量収率0.3〜0.5の範囲で安定してケイ素酸化物−炭素の複合体を得ることを示している。
(Experiment 4)
Further, FIG. 7 is a plot showing the weight yield at each carbonization temperature of rice husk or rice straw. It shows that a silicon oxide-carbon composite is stably obtained in a weight yield of 0.3 to 0.5 even in a relatively low temperature range of 500 ° C. to 650 ° C.

本願発明は、ケイ素含有量の多いイネ由来の原料を比較的低温である500℃〜650℃で炭化することで容易にケイ素酸化物−炭素複合体を得るものである。得られた複合体は高放電容量で、かつ充放電サイクル特性も良いという両者の利点を併せ持つ電池活物質となる。現在リチウムイオン二次電池の負極活物質として広く用いられているカーボン系材料である黒鉛の放電容量が小さいことと比較して、本願発明は大きな優位性を有する。   In the present invention, a silicon oxide-carbon composite is easily obtained by carbonizing a rice-derived raw material having a high silicon content at a relatively low temperature of 500 ° C. to 650 ° C. The obtained composite becomes a battery active material having both advantages of high discharge capacity and good charge / discharge cycle characteristics. Compared with the small discharge capacity of graphite, which is a carbon-based material widely used as a negative electrode active material for lithium ion secondary batteries, the present invention has a great advantage.

また次世代高容量負極活物質として開発中のケイ素系材料では充放電サイクルに伴い急激に容量が低下するが、本願発明はサイクル特性の面で優位性を有する。更にカーボンや硫黄との複合化、二段階焼成、多孔体金属への埋め込みなど改良型ケイ素系材料が研究されているが、工程が複雑になり高コストにつながり、本願発明は工程面で優位性を有する。   Moreover, although the capacity of a silicon-based material under development as a next-generation high-capacity negative electrode active material is suddenly reduced with a charge / discharge cycle, the present invention has an advantage in terms of cycle characteristics. In addition, improved silicon-based materials such as compounding with carbon and sulfur, two-step firing, and embedding in porous metal have been studied. However, the process is complicated and leads to high costs, and the present invention is superior in terms of process. Have

また炭化温度帯が500℃〜650℃で安定的に重量収率0.3〜0.5の範囲で籾殻炭化物を得ることが可能であり、製造コストの面でも優位性を有する。   Moreover, it is possible to obtain rice husk carbide in a carbonization temperature range of 500 ° C. to 650 ° C. in a stable weight yield range of 0.3 to 0.5, which is advantageous in terms of production cost.

更にまた本願発明は、もみ殻または稲わらという最も多量かつ容易に入手可能な天然資源を有効的に活用して、放電容量が大きな非水電解液二次電池を製造することが可能となり広い応用範囲を有する。
Furthermore, the present invention makes it possible to produce a non-aqueous electrolyte secondary battery having a large discharge capacity by effectively utilizing the most abundant and readily available natural resources such as rice husk or rice straw. Have a range.

Claims (7)

もみ殻または稲わらを、500℃〜650℃の不活性ガス中で約2時間〜約4時間にわたり炭化させたケイ素酸化物と炭素の複合体で構成されたことを特徴とする非水電解液二次電池用負極活物質。   A non-aqueous electrolyte comprising a composite of silicon oxide and carbon obtained by carbonizing rice husk or rice straw in an inert gas at 500 ° C. to 650 ° C. for about 2 hours to about 4 hours Negative electrode active material for secondary battery. 前記ケイ素酸化物と炭素の複合体が、非水電解液二次電池用負極活物質として使用された場合に、該非水電解液二次電池が約20回の充放電サイクル後においても、放電容量として少なくとも400mAh/g以上を維持可能であるように構成されたことを特徴とする請求項1記載の非水電解液二次電池用負極活物質。   When the composite of silicon oxide and carbon is used as a negative electrode active material for a non-aqueous electrolyte secondary battery, the discharge capacity is reduced even after the non-aqueous electrolyte secondary battery has about 20 charge / discharge cycles. The negative electrode active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is configured to maintain at least 400 mAh / g or more. 前記もみ殻または稲わらが、コシヒカリ、キヌヒカリ、みえのゆめ、あきたこまち、みえのえみ、ヒノヒカリ、ナツヒカリ、どんとこい、三重23号、ヤマヒカリ、うこん錦、黄金晴、ミルキークイーン、イクヒカリ、きぬむすめ、ヒカリ新世紀、ひとめぼれ、みつひかり、夢ごこち、恵糯、あゆみもち、喜寿糯、伊勢錦、神の穂、五百万石、山田錦、弓形穂のいずれか由来であることを特徴とする請求項1または2に記載の非水電解液二次電池用負極活物質。   The rice husk or rice straw is Koshihikari, Kinuhikari, Mie no Yume, Akitakomachi, Mieno Emi, Hinohikari, Natsuhikari, Dontokoi, Mie No. 23, Yamahikari, Ukon Nishiki, Golden Hare, Milky Queen, Ikuhikari, Kinusume, Hikari New Century, Hitomebore, Mitsuhikari, Yumegokochi, Megumi, Ayumimochi, Kijusu, Ise Nishiki, Kami no Ho, Hyakumangoku, Yamada Nishiki, Yumigata Ho The negative electrode active material for non-aqueous electrolyte secondary batteries according to 1 or 2. 炭化後の複合体の重量収率が、0.3〜0.5の範囲となることを特徴とする請求項1〜3のいずれかに記載の非水電解液二次電池用負極活物質。   The negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the weight yield of the composite after carbonization is in the range of 0.3 to 0.5. 前記非水電解液二次電池用負極活物質が、リチウムイオン二次電池の負極活物質として使用できることを特徴とする請求項1〜3のいずれかに記載の非水電解液二次電池用負極活物質。   The negative electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the negative electrode active material for a nonaqueous electrolyte secondary battery can be used as a negative electrode active material of a lithium ion secondary battery. Active material. もみ殻または稲わらを、500℃〜650℃の不活性ガス中で約2時間〜約4時間にわたり炭化させケイ素酸化物と炭素の複合体である非水電解液二次電池用負極活物質を製造する製造方法。   A negative electrode active material for a non-aqueous electrolyte secondary battery, which is a composite of silicon oxide and carbon obtained by carbonizing rice husk or rice straw in an inert gas at 500 ° C. to 650 ° C. for about 2 hours to about 4 hours. Manufacturing method to manufacture. 前記非水電解液二次電池用負極活物質がリチウムイオン二次電池の負極活物質として使用できることを特徴とする請求項6の非水電解液二次電池用負極活物質を製造する製造方法。
The method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery according to claim 6, wherein the negative electrode active material for a nonaqueous electrolyte secondary battery can be used as a negative electrode active material for a lithium ion secondary battery.
JP2015220805A 2015-11-10 2015-11-10 Negative electrode active material for non-aqueous electrolyte secondary battery using rice husk or rice straw carbide Active JP7133121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220805A JP7133121B2 (en) 2015-11-10 2015-11-10 Negative electrode active material for non-aqueous electrolyte secondary battery using rice husk or rice straw carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220805A JP7133121B2 (en) 2015-11-10 2015-11-10 Negative electrode active material for non-aqueous electrolyte secondary battery using rice husk or rice straw carbide

Publications (2)

Publication Number Publication Date
JP2017091822A true JP2017091822A (en) 2017-05-25
JP7133121B2 JP7133121B2 (en) 2022-09-08

Family

ID=58770907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220805A Active JP7133121B2 (en) 2015-11-10 2015-11-10 Negative electrode active material for non-aqueous electrolyte secondary battery using rice husk or rice straw carbide

Country Status (1)

Country Link
JP (1) JP7133121B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768249A (en) * 2019-01-04 2019-05-17 蜂巢能源科技有限公司 Negative electrode material of lithium ion battery and preparation method thereof and lithium ion battery
CN110429264A (en) * 2019-08-13 2019-11-08 吉林大学 A method of preparing rice husk base negative electrode material
CN110867567A (en) * 2019-10-25 2020-03-06 湖北万润新能源科技发展有限公司 High-safety SiO synthesized by biomass siliconxPreparation method and application of @ C material
CN113795463A (en) * 2019-05-10 2021-12-14 株式会社久保田 Silica-carbon composite material and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027911A1 (en) * 1995-03-06 1996-09-12 Sony Corporation Negative electrode material for secondary cell for nonaqueous electrolytic solution, process for the production thereof, and secondary cell for nonaqueous electrolytic solution using it
JP2008273816A (en) * 2007-04-04 2008-11-13 Sony Corp Porous carbon material, its manufacturing process and adsorbent, mask, adsorption sheet, and supporting member
JP2010208872A (en) * 2009-03-06 2010-09-24 Yokohama National Univ Porous aluminosilicate-carbon composite material and production method of the same
JP2011093774A (en) * 2009-11-02 2011-05-12 Jx Nippon Oil & Energy Corp Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system
JP2013189362A (en) * 2012-03-15 2013-09-26 Yokohama National Univ Silicide manufacturing method
JP2014181144A (en) * 2013-03-18 2014-09-29 Gaia Institute Of Environmental Technology Inc Rice husk coal or rice straw coal including abundance of amorphous silica, method for manufacturing rice husk coal or rice straw coal including abundance of amorphous silica, and food, agricultural fertilizer, and fodder each including abundance of amorphous silica
JP2015000850A (en) * 2013-06-13 2015-01-05 国立大学法人横浜国立大学 Method of producing organic alkoxysilane
JP2016160154A (en) * 2015-03-04 2016-09-05 勝義 近藤 Method for producing fine silica powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027911A1 (en) * 1995-03-06 1996-09-12 Sony Corporation Negative electrode material for secondary cell for nonaqueous electrolytic solution, process for the production thereof, and secondary cell for nonaqueous electrolytic solution using it
JP2008273816A (en) * 2007-04-04 2008-11-13 Sony Corp Porous carbon material, its manufacturing process and adsorbent, mask, adsorption sheet, and supporting member
JP2010208872A (en) * 2009-03-06 2010-09-24 Yokohama National Univ Porous aluminosilicate-carbon composite material and production method of the same
JP2011093774A (en) * 2009-11-02 2011-05-12 Jx Nippon Oil & Energy Corp Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system
JP2013189362A (en) * 2012-03-15 2013-09-26 Yokohama National Univ Silicide manufacturing method
JP2014181144A (en) * 2013-03-18 2014-09-29 Gaia Institute Of Environmental Technology Inc Rice husk coal or rice straw coal including abundance of amorphous silica, method for manufacturing rice husk coal or rice straw coal including abundance of amorphous silica, and food, agricultural fertilizer, and fodder each including abundance of amorphous silica
JP2015000850A (en) * 2013-06-13 2015-01-05 国立大学法人横浜国立大学 Method of producing organic alkoxysilane
JP2016160154A (en) * 2015-03-04 2016-09-05 勝義 近藤 Method for producing fine silica powder

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATEL M ET AL.: "Effect of thermal and chemical treatments on carbon and silica contents in rice husk", JOURNAL OF MATERIALS SCIENCE, vol. 22, no. 7, JPN6019032064, July 1987 (1987-07-01), GB, pages 2457 - 2464, XP055875711, ISSN: 0004099412, DOI: 10.1007/BF01082130 *
PENG XIANG ET AL.: "Rice Husk-Derived Activated Carbon for Li Ion Battery Anode", NANOSCIENCE AND NANOTECHNOLOGY LETTERS, vol. 6, no. 1, JPN6019032061, January 2014 (2014-01-01), US, pages 68 - 71, ISSN: 0004432125 *
村山正樹、他: "リチウムイオン二次電池の高容量負極へのもみ殻の有効利用可能性試験", 平成27年度三重県工業研究所研究報告, JPN6019032063, December 2016 (2016-12-01), JP, pages 8 - 15, ISSN: 0004099411 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768249A (en) * 2019-01-04 2019-05-17 蜂巢能源科技有限公司 Negative electrode material of lithium ion battery and preparation method thereof and lithium ion battery
CN109768249B (en) * 2019-01-04 2021-05-25 蜂巢能源科技有限公司 Negative electrode material of lithium ion battery, preparation method of negative electrode material and lithium ion battery
CN113795463A (en) * 2019-05-10 2021-12-14 株式会社久保田 Silica-carbon composite material and method for producing same
CN110429264A (en) * 2019-08-13 2019-11-08 吉林大学 A method of preparing rice husk base negative electrode material
CN110429264B (en) * 2019-08-13 2022-03-08 吉林大学 Method for preparing rice hull-based negative electrode material
CN110867567A (en) * 2019-10-25 2020-03-06 湖北万润新能源科技发展有限公司 High-safety SiO synthesized by biomass siliconxPreparation method and application of @ C material

Also Published As

Publication number Publication date
JP7133121B2 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
RU2643194C2 (en) Electrode material, method for manufacturing electrode material and battery
KR101552089B1 (en) Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries and method for producing same
JP5572634B2 (en) Activated carbon material for high energy density ultracapacitor
KR101545116B1 (en) Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
Parsimehr et al. Corn‐based Electrochemical Energy Storage Devices
JP7133121B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery using rice husk or rice straw carbide
KR102022891B1 (en) Manufacturing method of negative material for rechargeable battery, negative material for rechargeable battery made by the same, and rechargeable battery including the same
JP2016500638A (en) Amorphous activated carbon material and method for producing the same
KR101882975B1 (en) Method for menufacturing a cathode of lithium primary battery
JP2008021966A (en) Phosphorus compound combined active carbon for electric double layer capacitor, and its manufacturing method
Wang et al. N-doped porous carbon derived from walnut shells with enhanced electrochemical performance for supercapacitor
KR102138957B1 (en) Electrode material, and secondary battery
JP6867574B2 (en) Negative electrode active material for lithium-ion batteries and lithium-ion capacitors
KR20140108609A (en) Cathod active material for lithium sulfur battery, lithium sulfur battery including the same, and manufacturing method of the same
KR101783435B1 (en) Manufacturing method of sodium hybrid capacitor electrode, and sodium hybrid capacitor made by the same
WO2017104630A1 (en) Positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for manufacturing same
JP2016076673A (en) Carbon material for hybrid capacitor
KR20170110369A (en) Manufacturing method of sodium hybrid capacitor electrode, and sodium hybrid capacitor made by the same
JPH10241690A (en) Lithium secondary battery negative electrode
JP6310413B2 (en) Lithium air secondary battery, method for producing catalyst for air electrode, and method for producing lithium air secondary battery
KR102086589B1 (en) Electrode materials, electrochemical device comprising the same and method for manufacturing the same
JP6597754B2 (en) Method for producing activated carbon
Lavate et al. Oryza sativa Husk as a sustainable source of silicon: A review
KR101751607B1 (en) Method for manufacturing material used in electrode of capacitor, material used in electrode manufactured by the same and capacitor comprising the same
JP2022040599A (en) Negative-electrode active material for lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200629

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200804

C12 Written invitation by the commissioner to file intermediate amendments

Free format text: JAPANESE INTERMEDIATE CODE: C12

Effective date: 20200804

C27A Decision to dismiss

Free format text: JAPANESE INTERMEDIATE CODE: C2711

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201124

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201127

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210129

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210204

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210422

C27C Written answer of applicant after an oral proceeding

Free format text: JAPANESE INTERMEDIATE CODE: C2721

Effective date: 20220125

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220222

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20220308

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220314

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220518

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220524

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220624

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220715

R150 Certificate of patent or registration of utility model

Ref document number: 7133121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150