JP2017084500A - All-solid battery system - Google Patents

All-solid battery system Download PDF

Info

Publication number
JP2017084500A
JP2017084500A JP2015209138A JP2015209138A JP2017084500A JP 2017084500 A JP2017084500 A JP 2017084500A JP 2015209138 A JP2015209138 A JP 2015209138A JP 2015209138 A JP2015209138 A JP 2015209138A JP 2017084500 A JP2017084500 A JP 2017084500A
Authority
JP
Japan
Prior art keywords
electrode active
active material
negative electrode
material layer
silicon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015209138A
Other languages
Japanese (ja)
Other versions
JP6536349B2 (en
Inventor
英晃 西村
Hideaki Nishimura
英晃 西村
元 長谷川
Hajime Hasegawa
元 長谷川
光俊 大瀧
Mitsutoshi Otaki
光俊 大瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015209138A priority Critical patent/JP6536349B2/en
Publication of JP2017084500A publication Critical patent/JP2017084500A/en
Application granted granted Critical
Publication of JP6536349B2 publication Critical patent/JP6536349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid battery system which can prevent the deterioration in capacity retention rate, while suppressing the amount of heat generation during charging an all-solid battery that uses silicon particles as a negative-electrode active material.SOLUTION: An all-solid battery system according to the present invention comprises: an all-solid battery which has a positive-electrode active material layer, a solid electrolyte layer and a negative-electrode active material layer in this order; and a control unit which controls the charging amount of the all-solid battery. The negative-electrode active material layer has: a solid electrolyte; and silicon particles as a negative-electrode active material. The control unit controls the charging amount of the all-solid battery in such a manner that the maximum charging amount of the silicon particles may be within a range from 1.1 mAh/mg to 1.5 mAh/mg.SELECTED DRAWING: Figure 1

Description

本発明は、容量維持率を維持しつつ、全固体電池の充電時における負極活物質層の発熱を抑制した全固体電池システムに関する。   The present invention relates to an all solid state battery system that suppresses heat generation of a negative electrode active material layer during charging of an all solid state battery while maintaining a capacity retention rate.

現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウムイオン電池が注目を浴びている。その中でも、電解液を固体電解質に置換した全固体電池が特に注目を浴びている。これは、全固体電池が電解液を用いる二次電池と異なり、電解液を用いないことから、過充電に起因する電解液の分解等を生じることがないこと、並びに高いサイクル特性及びエネルギー密度を有していることを理由とする。   Currently, among various batteries, lithium ion batteries are attracting attention from the viewpoint of high energy density. Among them, all-solid-state batteries in which the electrolytic solution is replaced with a solid electrolyte are particularly attracting attention. This is because, unlike a secondary battery using an electrolyte solution, an all-solid battery does not use an electrolyte solution, it does not cause decomposition of the electrolyte solution due to overcharge, and has high cycle characteristics and energy density. It is because of having it.

リチウムイオン電池に一般的に使用される負極活物質としては、グラファイト、ソフトカーボン、又はハードカーボンのような炭素系負極活物質が挙げられる。近年では、炭素系負極活物質に替えて、より容量の大きい合金系負極活物質が研究されている。その中でも、特に容量が大きいことからケイ素が特に注目されている。   Examples of the negative electrode active material generally used for lithium ion batteries include carbon-based negative electrode active materials such as graphite, soft carbon, and hard carbon. In recent years, instead of a carbon-based negative electrode active material, an alloy-based negative electrode active material having a larger capacity has been studied. Among them, silicon is particularly attracting attention because of its particularly large capacity.

全固体電池を充放電した場合に、全固体電池が発熱することが知られている。そのため、全固体電池の充電時に、電池の発熱を抑制する方法が求められている。   It is known that an all solid state battery generates heat when the all solid state battery is charged and discharged. Therefore, there is a need for a method for suppressing battery heat generation when charging an all-solid battery.

また、ケイ素粒子を負極活物質として用いた電池は、炭素系負極活物質等を負極活物質として用いた電池と比較して、容量維持率が低いことが知られている。この原因としては、充放電に伴いケイ素粒子が膨張・収縮することで、ケイ素粒子が粉砕され、また、ケイ素粒子と他の負極活物質層材料との間に空隙が生じることによって、全固体電池の内部の抵抗が増大することが挙げられる。そのため、ケイ素粒子の充電量を制御することにより、容量維持率の低下を防止する技術が研究されている。   Further, it is known that a battery using silicon particles as a negative electrode active material has a lower capacity retention rate than a battery using a carbon-based negative electrode active material or the like as a negative electrode active material. The cause of this is that the silicon particles expand and contract with charge / discharge, so that the silicon particles are pulverized, and voids are generated between the silicon particles and the other negative electrode active material layer material. It is mentioned that the internal resistance increases. Therefore, a technique for preventing a decrease in capacity retention rate by controlling the charge amount of silicon particles has been studied.

例えば、特許文献1では、ケイ素粒子を負極活物質とする焼結体を負極活物質層として用いた非水系リチウムイオン電池において、充放電に伴うケイ素粒子の膨張収縮に起因して生じる容量維持率の低下を防止するために、満充電時のケイ素1gあたりの充電量を200〜800mAhとする技術を開示している。   For example, in Patent Document 1, in a non-aqueous lithium ion battery using a sintered body having silicon particles as a negative electrode active material as a negative electrode active material layer, a capacity retention rate caused by expansion and contraction of silicon particles accompanying charge / discharge In order to prevent the deterioration of the battery, a technology is disclosed in which the charge amount per gram of silicon at the time of full charge is 200 to 800 mAh.

また、特許文献2では、表面を炭素層で被覆したケイ素粒子からなる負極活物質層材料を用いたリチウムイオン電池において、容量維持率の低下を防止するために、ケイ素粒子の充電量を、1500mAh/g以下とする技術を公開している。   Further, in Patent Document 2, in a lithium ion battery using a negative electrode active material layer material made of silicon particles whose surface is coated with a carbon layer, the charge amount of silicon particles is set to 1500 mAh in order to prevent a decrease in capacity retention rate. / G or less technology is disclosed.

特開2000−173596号公報JP 2000-173596 A 特開2000−215887号公報JP 2000-215887 A

特許文献1及び2の技術では、リチウムイオン電池の容量維持率の低下を抑制するために、ケイ素の充電量を少なくしている。ケイ素粒子の充電量を少なくした場合、電池の充電量を一定の値にするために、より多くのケイ素粒子を必要とする。そのため、負極活物質層の重量が増加する。   In the techniques of Patent Documents 1 and 2, the charge amount of silicon is reduced in order to suppress a decrease in the capacity maintenance rate of the lithium ion battery. When the charge amount of the silicon particles is reduced, more silicon particles are required to make the charge amount of the battery constant. Therefore, the weight of the negative electrode active material layer increases.

本発明者は、全固体電池の充放電において、ケイ素粒子1mgあたりの充電量が0.47mAh以上である場合、負極活物質層材料1mgあたりの発熱量が一定となることを見出した。   The present inventor has found that, in charge / discharge of an all-solid battery, when the charge amount per 1 mg of silicon particles is 0.47 mAh or more, the calorific value per 1 mg of the negative electrode active material layer material becomes constant.

したがって、本発明は、負極活物質としてケイ素粒子を用いた全固体電池の充電時の発熱量を抑えつつ、容量維持率の低下を抑制した全固体電池システムを提供することを目的とする。   Therefore, an object of the present invention is to provide an all solid state battery system that suppresses a decrease in capacity retention rate while suppressing a calorific value during charging of an all solid state battery using silicon particles as a negative electrode active material.

本発明の全固体電池システムは、正極活物質層、固体電解質層、及び負極活物質層をこの順で有する全固体電池、並びに全固体電池の充電量を制御する制御装置を有する全固体電池システムであって、負極活物質層が、固体電解質、及び負極活物質としてのケイ素粒子を有し、かつ制御装置が、ケイ素粒子の最大充電量が1.1mAh/mg以上1.5mAh/mg以下であるようにして、全固体電池の充電量を制御する。   An all solid state battery system of the present invention includes an all solid state battery having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and an all solid state battery system having a control device for controlling the charge amount of the all solid state battery. The negative electrode active material layer has a solid electrolyte and silicon particles as the negative electrode active material, and the controller has a maximum charge amount of the silicon particles of 1.1 mAh / mg or more and 1.5 mAh / mg or less. In a manner, the charge amount of the all solid state battery is controlled.

本発明によれば、負極活物質としてケイ素粒子を用いた全固体電池の充電時の発熱量を抑えつつ、容量維持率の低下を抑制した全固体電池システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the all-solid-state battery system which suppressed the fall of the capacity | capacitance maintenance factor can be provided, suppressing the emitted-heat amount at the time of charge of the all-solid-state battery using the silicon particle as a negative electrode active material.

図1は、本発明の全固体電池システムの略図である。FIG. 1 is a schematic diagram of an all solid state battery system of the present invention. 図2は、全固体電池の充電時における、負極活物質としてのケイ素粒子1mgあたりの充電量と負極活物質層1mgあたりの発熱量との関係を表したグラフである。FIG. 2 is a graph showing the relationship between the charged amount per 1 mg of silicon particles as the negative electrode active material and the calorific value per 1 mg of the negative electrode active material layer when the all solid state battery is charged. 図3は、全固体電池の充電時における、負極活物質としてのケイ素粒子1mgあたりの充電量と負極活物質層の重量との関係を表したグラフである。FIG. 3 is a graph showing the relationship between the charge amount per 1 mg of silicon particles as the negative electrode active material and the weight of the negative electrode active material layer when the all solid state battery is charged. 図4は、全固体電池の充電時における、負極活物質としてのケイ素粒子1mgあたりの充電量と負極活物質層の発熱量との関係を表したグラフである。FIG. 4 is a graph showing the relationship between the charge amount per 1 mg of silicon particles as the negative electrode active material and the calorific value of the negative electrode active material layer when the all solid state battery is charged. 図5は、全固体電池の充電時における、負極活物質としてのケイ素粒子1mgあたりの充電量と容量維持率との関係を表したグラフである。FIG. 5 is a graph showing the relationship between the charge amount per 1 mg of silicon particles as the negative electrode active material and the capacity retention rate during charging of the all solid state battery.

以下、本発明の実施の形態について詳述する。なお、本発明は、以下の実施の形態に限定されるのではなく、発明の本旨の範囲内で種々変形して実施できる。   Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the invention.

本発明の全固体電池システムは、正極活物質層、固体電解質層、及び負極活物質層をこの順で有する全固体電池、並びに全固体電池の充電量を制御する制御装置を有する全固体電池システムであって、負極活物質層が、固体電解質、及び負極活物質としてのケイ素粒子を有し、かつ制御装置が、ケイ素粒子の最大充電量が1.1mAh/mg以上1.5mAh/mg以下であるようにして、全固体電池の充電量を制御する。   An all solid state battery system of the present invention includes an all solid state battery having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and an all solid state battery system having a control device for controlling the charge amount of the all solid state battery. The negative electrode active material layer has a solid electrolyte and silicon particles as the negative electrode active material, and the controller has a maximum charge amount of the silicon particles of 1.1 mAh / mg or more and 1.5 mAh / mg or less. In a manner, the charge amount of the all solid state battery is controlled.

図1は、本発明の全固体電池システムの一例の略図である。本発明の全固体電池値システムは、全固体電池(6)及び全固体電池(6)を制御する制御装置(100)を有する。全固体電池は、正極集電体(1)、正極活物質層(2)、固体電解質層(3)、負極活物質層(4)、及び負極集電体(5)を有している。なお、図1は本発明の全固体電池システムの構成を限定するものではない。   FIG. 1 is a schematic diagram of an example of an all solid state battery system of the present invention. The all solid state battery value system of the present invention has an all solid state battery (6) and a control device (100) for controlling the all solid state battery (6). The all solid state battery includes a positive electrode current collector (1), a positive electrode active material layer (2), a solid electrolyte layer (3), a negative electrode active material layer (4), and a negative electrode current collector (5). In addition, FIG. 1 does not limit the structure of the all-solid-state battery system of this invention.

原理によって限定されるものではないが、本発明の作用原理は以下のとおりであると考える。   Although not limited by the principle, it is considered that the operation principle of the present invention is as follows.

負極活物質としてケイ素粒子を有する全固体電池を充電すると、全固体電池の負極活物質層が発熱する。この発熱は、ケイ素粒子1mgあたりの充電量が大きいほど大きくなる。しかし、ケイ素粒子1mgあたりの充電量を0.47mAh以上にした場合、負極活物質層材料1mgあたりの発熱量は一定となる(図2参照)。   When an all solid state battery having silicon particles as a negative electrode active material is charged, the negative electrode active material layer of the all solid state battery generates heat. This heat generation increases as the charge amount per 1 mg of silicon particles increases. However, when the charge amount per 1 mg of silicon particles is 0.47 mAh or more, the calorific value per 1 mg of the negative electrode active material layer material is constant (see FIG. 2).

負極活物質層の重さは、負極活物質の総量に比例する。そのため、一定の充電量までを充電する場合、ケイ素粒子1mgあたりの充電量が大きいほど必要なケイ素粒子の総量が減少するため、必要となる負極活物質層の重さはケイ素粒子1mgあたりの充電量に反比例して減少する(図3参照)。   The weight of the negative electrode active material layer is proportional to the total amount of the negative electrode active material. Therefore, when charging up to a certain charge amount, the larger the charge amount per 1 mg of silicon particles, the smaller the total amount of necessary silicon particles, so the required weight of the negative electrode active material layer is the charge per 1 mg of silicon particles. It decreases in inverse proportion to the amount (see FIG. 3).

よって、一定の充電量まで充電する場合、ケイ素粒子1mgあたりの充電量が0.47mAh以上であれば、ケイ素粒子1mgあたりの充電量の大きさと、負極活物質層の発熱量の大きさは、反比例の関係にあるといえる。したがって、この範囲では、ケイ素粒子1mgあたりの充電量を大きくし、例えば1.1mAh/mg以上にすれば、負極活物質層の発熱量を減少できる(図4参照)。   Therefore, when charging to a certain charge amount, if the charge amount per 1 mg of silicon particles is 0.47 mAh or more, the magnitude of the charge amount per 1 mg of silicon particles and the magnitude of the calorific value of the negative electrode active material layer are: It can be said that the relationship is inversely proportional. Therefore, in this range, if the charge amount per 1 mg of silicon particles is increased, for example, 1.1 mAh / mg or more, the calorific value of the negative electrode active material layer can be reduced (see FIG. 4).

もっとも、ケイ素粒子1mgあたりの充電量を大きくすると、ケイ素粒子の充放電における膨張収縮率が大きくなり、充放電においてケイ素粒子が粉砕されやすくなる。そのため、ケイ素粒子1mgの充電量が大きくなると、容量維持率が低下する(図5参照)。したがって、ケイ素粒子1mgあたりの充電量を小さく、例えば1.5mAh/mg以下にすれば、容量維持率の低下を抑制することができる。   However, when the charge amount per 1 mg of silicon particles is increased, the expansion / contraction rate in charging / discharging of the silicon particles is increased, and the silicon particles are easily pulverized in charging / discharging. Therefore, when the charge amount of 1 mg of silicon particles increases, the capacity retention rate decreases (see FIG. 5). Therefore, if the charge amount per 1 mg of silicon particles is small, for example, 1.5 mAh / mg or less, it is possible to suppress a decrease in capacity maintenance rate.

本発明では、ケイ素粒子1mgあたりの充電量を調節して、負極活物質層の充放電時の発熱を抑えつつ、容量維持率の低下を抑えた。なお、本発明の全固体電池システムにおける、ケイ素粒子の最大充電量の範囲は、実施例に記載の方法によって求めた。   In the present invention, the amount of charge per 1 mg of silicon particles is adjusted to suppress the heat generation during charging / discharging of the negative electrode active material layer, and the decrease in capacity retention rate is suppressed. In addition, the range of the maximum charge amount of the silicon particles in the all solid state battery system of the present invention was determined by the method described in the examples.

<全固体電池システム>
本発明の全固体電池システムは、正極活物質層、固体電解質層、及び負極活物質層をこの順で有する全固体電池、並びに全固体電池の充電量を制御する制御装置を有する。負極活物質層は、負極活物質としてケイ素粒子を有する。
<All-solid battery system>
The all-solid-state battery system of this invention has a control apparatus which controls the charge amount of an all-solid-state battery which has a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and an all-solid-state battery. The negative electrode active material layer has silicon particles as the negative electrode active material.

<制御装置>
本発明の全固体電電池システムは、全固体電池の充電量を制御する制御装置を有する。この制御装置は、全固体電池の充放電においてケイ素粒子の最大充電量が1.1mAh/mg以上1.5mAh/mg以下になるようにして、全固体電池の充電量を制御する。この制御装置は、全固体電池の充放電においてケイ素粒子の最大充電量を所定の範囲に制御することができる装置であれば、特に限定されない。
<Control device>
The all-solid-state battery system of this invention has a control apparatus which controls the charge amount of an all-solid-state battery. This control device controls the charge amount of the all-solid-state battery so that the maximum charge amount of the silicon particles is 1.1 mAh / mg or more and 1.5 mAh / mg or less in the charge / discharge of the all-solid-state battery. The control device is not particularly limited as long as it is a device that can control the maximum charge amount of the silicon particles within a predetermined range in charging / discharging of the all solid state battery.

ケイ素粒子の最大充電量を制御する方法としては、例えば、全固体電池が有する負極活物質としてのケイ素粒子の含有量が既知であれば、充電上限電圧を調節することによって制御することができる。したがって、この制御装置としては、例えば、全固体電池の充電時において、全固体電池の電圧が一定の電圧まで到達したかを判定し、一定の電圧まで到達した場合に充電を終了させることができるものが挙げられる。   As a method for controlling the maximum charge amount of the silicon particles, for example, if the content of silicon particles as the negative electrode active material of the all-solid battery is known, it can be controlled by adjusting the charge upper limit voltage. Therefore, for example, when the all-solid battery is charged, the control device can determine whether the voltage of the all-solid battery has reached a certain voltage, and can terminate the charging when the voltage reaches a certain voltage. Things.

なお、ケイ素粒子の充電量とは、負極活物質としてケイ素粒子を有する全固体電池を充電したときの充電量の値であり、充電によって負極活物質としてのケイ素粒子にドープされたリチウムの量に対応している。   The charged amount of silicon particles is the value of the charged amount when an all solid state battery having silicon particles as a negative electrode active material is charged, and is the amount of lithium doped into the silicon particles as the negative electrode active material by charging. It corresponds.

<全固体電池>
本発明の全固体電池は、正極活物質層、固体電解質層、及び負極活物質層をこの順で有する。
<All solid battery>
The all solid state battery of the present invention has a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.

1.正極活物質層
本発明における正極活物質層は、正極活物質、並びに随意にバインダー、導電助剤、及び固体電解質を有する。
1. Positive electrode active material layer The positive electrode active material layer in the present invention includes a positive electrode active material, and optionally, a binder, a conductive additive, and a solid electrolyte.

正極活物質としては、リチウム二次電池の正極活物質材料として用いられる材料であれば特に限定されない。例えば、コバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルトマンガン酸リチウム、マンガン酸リチウム、異種元素置換Li−Mnスピネル、チタン酸リチウム、若しくはLiMPO(MがFe、Mn、Co、Niから選ばれる一種類以上)で表される組成のリン酸金属リチウム等、又はこれらの組み合わせを挙げることができる。 The positive electrode active material is not particularly limited as long as it is a material used as a positive electrode active material for a lithium secondary battery. For example, lithium cobalt acid, lithium nickel acid, lithium nickel cobalt manganese oxide, one type lithium manganate, heterogeneous element substituted Li-Mn spinel, lithium titanate, or the LiMPO 4 (M is Fe, Mn, Co, chosen from Ni And lithium metal phosphate having a composition represented by the above), or a combination thereof.

固体電解質としては、全固体電池の固体電解質として用いられる硫化物固体電解質を用いることができる。例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−Pなどが挙げられる。 As the solid electrolyte, a sulfide solid electrolyte used as a solid electrolyte of an all-solid battery can be used. For example, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-P 2 S 5, LiI-LiPO 4 -P 2 S 5, such as li 2 S-P 2 S 5 and the like.

バインダーとしては、特に限定されないが、ポリマー樹脂、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリル−ブタジエンゴム(NBR)、スチレン−エチレン−ブチレン−スチレンブロック共重合体(SEBS)、若しくはカルボキシメチルセルロース(CMC)等、又はこれらの組み合わせを挙げることができる。   The binder is not particularly limited, but a polymer resin such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyimide (PI), polyamide (PA), polyamideimide (PAI), butadiene rubber (BR) Styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), styrene-ethylene-butylene-styrene block copolymer (SEBS), carboxymethyl cellulose (CMC), or a combination thereof.

導電助剤としては、VGCF、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ(CNT)、又はカーボンナノファイバー(CNF)等の炭素材料の他、ニッケル・アルミニウム・ステンレス鋼等の金属、又はこれらの組み合わせを上げることができる。   Conductive aids include carbon materials such as VGCF, acetylene black, ketjen black, carbon nanotube (CNT), or carbon nanofiber (CNF), metals such as nickel, aluminum, and stainless steel, or combinations thereof. Can be raised.

2.固体電解質層
固体電解質層は上記正極活物質層において記載した電解質を利用することができる。固体電解質層の厚さは、例えば、0.1μm以上300μm以下であり、特に、0.1μm以上100μm以下であってよい。
2. Solid electrolyte layer The electrolyte described in the said positive electrode active material layer can be utilized for a solid electrolyte layer. The thickness of the solid electrolyte layer is, for example, not less than 0.1 μm and not more than 300 μm, and particularly not less than 0.1 μm and not more than 100 μm.

3.負極活物質層
負極活物質層は、負極活物質、並びに随意に導電助剤、バインダー、及び固体電解質を有している。負極活物質としては、ケイ素粒子が用いられる。導電助剤、バインダー、及び固体電解質としては、上記正極活物質層において記載したものを用いることができる。
3. Negative electrode active material layer The negative electrode active material layer includes a negative electrode active material, and optionally a conductive additive, a binder, and a solid electrolyte. Silicon particles are used as the negative electrode active material. As a conductive support agent, a binder, and a solid electrolyte, what was described in the said positive electrode active material layer can be used.

4.製造方法
本発明の全固体電池システムに用いられる全固体電池は、当業者にとって公知であるいかなる方法によっても作製することができ、また当業者にとって公知でない方法によっても作製することができる。
4). Manufacturing Method The all-solid-state battery used in the all-solid-state battery system of the present invention can be manufactured by any method known to those skilled in the art, and can also be manufactured by methods not known to those skilled in the art.

作製方法を限定する趣旨ではないが、具体的な作製方法の例としては、例えば、正極集電体、正極活物質層、固体電解質層、負極活物質層、及び負極集電体を、この順番になるように積層し、プレスすることにより作製することができる。   Although not intended to limit the manufacturing method, examples of specific manufacturing methods include, for example, a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector in this order. It can be produced by laminating and pressing.

なお、正極活物質層、固体電解質層、及び負極活物質層は、例えば、上記正極活物質層、固体電解質層、負極活物質層において記載したそれぞれの材料を分散媒に分散し、これらの材料を混合したスラリーをそれぞれ金属箔上に塗工し、乾燥させることによって作製することができる。   The positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are prepared by, for example, dispersing the respective materials described in the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer in a dispersion medium. Each of the slurries mixed can be coated on a metal foil and dried.

下記の方法により、本発明の全固体電池システムにおける全固体電池の最大充電量の範囲を求めた。具体的には、ケイ素粒子1mgあたりの充電量に対する負極活物質層の発熱量の関係から、最大充電時のケイ素粒子の充電量の下限を求め(下記の例1参照)、ケイ素粒子1mgあたりの充電量に対する容量維持率の関係から、最大充電時のケイ素粒子の充電量の上限を求めた(下記の例2参照)。   The range of the maximum charge amount of the all solid state battery in the all solid state battery system of the present invention was determined by the following method. Specifically, from the relationship between the calorific value of the negative electrode active material layer with respect to the charge amount per 1 mg of silicon particles, the lower limit of the charge amount of the silicon particles at the maximum charge is obtained (see Example 1 below), From the relationship between the capacity retention rate and the charge amount, the upper limit of the charge amount of the silicon particles at the maximum charge was determined (see Example 2 below).

<<例1>>
下記の方法により全固体電池を作製し、負極活物質層の発熱量を計算した。この計算に基づき、ケイ素粒子1mgあたりの充電量に対する負極活物質層の発熱量の関係から、最大充電時のケイ素粒子の充電量の下限を求めた。
<< Example 1 >>
An all-solid battery was prepared by the following method, and the calorific value of the negative electrode active material layer was calculated. Based on this calculation, the lower limit of the charge amount of the silicon particles at the maximum charge was obtained from the relationship between the calorific value of the negative electrode active material layer and the charge amount per 1 mg of silicon particles.

<全固体電池の作製>
1.硫化物固体電解質の合成
LiS(日本化学工業製)、P(アルドリッチ製)、LiI(日宝化学製)、及びLiBr(高純度化学製)を出発原料として、LiSを0.586g、Pを0.945g、LiIを0.284g、及びLiBrを0.185g秤量し、メノウ乳鉢で5分混合した。その混合物を遊星型ボールミルの容器(45cc、ZrO製)に投入し、脱水ヘプタン(水分量30ppm以下、4g)を投入し、さらにZrOボール(φ=5mm、53g)を投入し、容器を完全に密閉した。この容器を遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数500rpmで、20時間メカニカルミリングを行った。その後、110℃で1時間乾燥することによりヘプタンを除去し、非晶質硫化物固体電解質を得た。なお、得られた非晶質硫化物固体電解質の組成はモル表記で10LiI・10LiBr・80(0.75LiS・0.25P)(mol%)であった。
<Preparation of all-solid battery>
1. Synthesis of sulfide solid electrolyte Li 2 S (manufactured by Nippon Kagaku Kogyo), P 2 S 5 (manufactured by Aldrich), LiI (manufactured by Nichibo Chemical), and LiBr (manufactured by high purity chemical) are used as starting materials, and Li 2 S is synthesized. 0.586 g, 0.945 g of P 2 S 5 , 0.284 g of LiI, and 0.185 g of LiBr were weighed and mixed in an agate mortar for 5 minutes. The mixture is put into a planetary ball mill container (45 cc, made of ZrO 2 ), dehydrated heptane (moisture content of 30 ppm or less, 4 g) is added, and ZrO 2 balls (φ = 5 mm, 53 g) are further charged. Completely sealed. This container was attached to a planetary ball mill (P7 made by Fritsch), and mechanical milling was performed for 20 hours at a base plate rotation speed of 500 rpm. Then, heptane was removed by drying at 110 ° C. for 1 hour to obtain an amorphous sulfide solid electrolyte. In addition, the composition of the obtained amorphous sulfide solid electrolyte was 10LiI · 10LiBr · 80 (0.75Li 2 S · 0.25P 2 S 5 ) (mol%) in molar notation.

次に、得られた非晶質硫化物固体電解質0.5gを石英管中に真空封入し、185℃で熱処理を行った。室温から185℃まで1℃/分で昇温し、185℃に到達後に10時間保持した後、自然冷却して、ガラスセラミックスである硫化物固体電解質を得た。   Next, 0.5 g of the obtained amorphous sulfide solid electrolyte was sealed in a quartz tube and heat-treated at 185 ° C. The temperature was raised from room temperature to 185 ° C. at a rate of 1 ° C./min. After reaching 185 ° C. and held for 10 hours, it was naturally cooled to obtain a sulfide solid electrolyte as glass ceramic.

2.正極活物質層用粉末の作製
エタノール溶媒に、等モルのLiOC及びNb(OCを溶解させて作製した組成物を、平均粒径D50=5μmのLiNi1/3Co1/3Mn1/3(日亜化学工業)の表面に、転動流動コーティング装置(SFP−01、株式会社パウレック製)を用いてスプレーコートした。その後、コーティングされたLiNi1/3Co1/3Mn1/3を、350℃、大気圧下で1時間にわたって熱処理ことにより、LiNi1/3Co1/3Mn1/3の表面にLiNbOの層を形成し、正極活物質を作製した。
2. Preparation of Powder for Positive Electrode Active Material Layer A composition prepared by dissolving equimolar LiOC 2 H 5 and Nb (OC 2 H 5 ) 5 in an ethanol solvent was used as a LiNi 1/3 Co having an average particle diameter D50 = 5 μm. Spray coating was performed on the surface of 1/3 Mn 1/3 O 2 (Nichia Corporation) using a rolling fluidized coating apparatus (SFP-01, manufactured by POWREC Co., Ltd.). Thereafter, the coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 was heat-treated at 350 ° C. under atmospheric pressure for 1 hour, so that LiNi 1/3 Co 1/3 Mn 1/3 O 2 A layer of LiNbO 3 was formed on the surface to produce a positive electrode active material.

正極活物質52g、導電助剤としてのVGCF1g、硫化物固体電解質22g、分散媒としての酪酸ブチル(昭和化学)50g、及びバインダーとしてのPVDF1.5gを秤量し、十分に混合して正極活物質層用スラリーを作製した。この正極活物質用スラリーをアルミニウム箔上に塗工し、乾燥して正極活物質層用粉末を得た。   Positive electrode active material layer 52 g, VGCF 1 g as conductive additive, sulfide solid electrolyte 22 g, butyl butyrate (Showa Chemical) 50 g as dispersion medium, and PVDF 1.5 g as binder are weighed and mixed well A slurry was prepared. This positive electrode active material slurry was coated on an aluminum foil and dried to obtain a positive electrode active material layer powder.

3.負極活物質層用粉末の作製
負極活物質としてのケイ素粒子(高純度化学)36g、導電助剤としてのVGCF1.5g、硫化物固体電解質25g、分散媒としての酪酸ブチル(昭和化学)60g、及びバインダーとしてのPVDF1gを秤量し、十分に混合して負極活物質層用スラリーを作製した。この負極活物質用スラリーをアルミニウム箔上に塗工し、乾燥して負極活物質層用粉末を得た。
3. Preparation of powder for negative electrode active material layer 36 g of silicon particles (high purity chemistry) as a negative electrode active material, 1.5 g of VGCF as a conductive additive, 25 g of sulfide solid electrolyte, 60 g of butyl butyrate (Showa Chemical) as a dispersion medium, and 1 g of PVDF as a binder was weighed and mixed well to prepare a slurry for negative electrode active material layer. This negative electrode active material slurry was coated on an aluminum foil and dried to obtain a negative electrode active material layer powder.

4.固体電解質層の作製
硫化物固体電解質25g、バインダー1g、及び分散媒としての脱水へプタン25gを十分に混合して、固体電解質用スラリーを作製した。この固体電解質用スラリーをアルミニウム箔上に塗工し、乾燥させることにより固体電解質層を得た。
4). Production of Solid Electrolyte Layer 25 g of sulfide solid electrolyte, 1 g of binder, and 25 g of dehydrated heptane as a dispersion medium were sufficiently mixed to produce a solid electrolyte slurry. This solid electrolyte slurry was applied onto an aluminum foil and dried to obtain a solid electrolyte layer.

5.電池の組立
固体電解質層をプレスし、その上に所定量秤量した正極活物質層用粉末を設置し、プレスしてペレット1を成形した。負極活物質層用粉末を所定量秤量し、プレスしてペレット2を成形した。ペレット1の固体電解質層上にペレット2を積層し、治具で拘束して全固体電池を作製した。
5. Assembling the Battery The solid electrolyte layer was pressed, a predetermined amount of powder for the positive electrode active material layer was placed thereon, and pressed to form pellets 1. A predetermined amount of the negative electrode active material layer powder was weighed and pressed to form pellets 2. The pellet 2 was laminated on the solid electrolyte layer of the pellet 1, and was restrained with a jig to produce an all-solid battery.

<負極活物質としてのケイ素粒子への充電>
作製した全固体電池について、初期充放電として、4.55Vまで充電し、2.5Vまで放電した。その後、作製した全固体電池について、所定電圧まで充電して、負極活物質としてのケイ素粒子への充電とした。このときの充電量を、負極活物質としてのケイ素粒子の重量で除算した値を、ケイ素粒子1mgあたりの充電量とした。なお、作製した複数の全固体電池について、ケイ素粒子1mgあたりの充電量が異なる全固体電池とするため、それぞれ所定電圧を変えて充電を行っている。
<Charging to silicon particles as negative electrode active material>
About the produced all-solid-state battery, it charged to 4.55V as initial stage charge / discharge, and discharged to 2.5V. Then, about the produced all-solid-state battery, it charged to the predetermined voltage and was set as the charge to the silicon particle as a negative electrode active material. A value obtained by dividing the charge amount at this time by the weight of the silicon particles as the negative electrode active material was defined as the charge amount per 1 mg of silicon particles. In addition, about the produced all-solid-state battery, in order to set it as the all-solid-state battery from which the charge amount per 1 mg of silicon particles differs, it charges by changing each predetermined voltage.

<発熱量の評価>
充電した複数の全固体電池を分解して、ペレット2を取出した。ペレット2をパンに詰め、示差走査熱量計(DSC)で発熱量を測定した。得られた発熱量をペレット2の重量で除算した値を、負極活物質層材料の単位重量あたりの発熱量とした。
<Evaluation of calorific value>
A plurality of charged all-solid-state batteries were disassembled and the pellet 2 was taken out. The pellet 2 was packed in a pan, and the calorific value was measured with a differential scanning calorimeter (DSC). A value obtained by dividing the obtained calorific value by the weight of the pellet 2 was defined as a calorific value per unit weight of the negative electrode active material layer material.

ケイ素粒子1mgあたりの充電量と負極活物質層材料1mgあたりの発熱量との関係を図2のグラフに表した。図のとおり、負極活物質層材料1mgあたりの発熱量は、ケイ素粒子1mgあたりの充電量が増加するとともに増加した。しかし、ケイ素粒子1mgあたりの充電量が0.47mAh/mg以上になると、ケイ素粒子1mgあたりの充電量の大きさによらず、負極活物質層材料1mgあたりの発熱量は一定の値(約1000mJ/mg)となった。例えば、図2において、ケイ素粒子1mgあたりの充電量が0.47mAh/mg(例1−1)、0.7mAh/mg(例1−2)、1.1mAh/mg(例1−3)、及び1.8mAh/mg(例1−4)のとき、いずれも負極活物質層材料1mgあたりの発熱量は約1000mJ/mgであった。   The relationship between the charge amount per 1 mg of silicon particles and the calorific value per 1 mg of the negative electrode active material layer material is shown in the graph of FIG. As shown in the figure, the calorific value per 1 mg of the negative electrode active material layer material increased as the charge amount per 1 mg of silicon particles increased. However, when the charge amount per 1 mg of silicon particles is 0.47 mAh / mg or more, the calorific value per 1 mg of the negative electrode active material layer material is a constant value (about 1000 mJ) regardless of the charge amount per 1 mg of silicon particles. / Mg). For example, in FIG. 2, the charge amount per 1 mg of silicon particles is 0.47 mAh / mg (Example 1-1), 0.7 mAh / mg (Example 1-2), 1.1 mAh / mg (Example 1-3), And 1.8 mAh / mg (Example 1-4), the calorific value per 1 mg of the negative electrode active material layer material was about 1000 mJ / mg.

<負極活物質層重量の算定>
正極活物質層の容量を0.1Ahと想定して、これをケイ素粒子単位重量当たりの充電容量で除することにより、必要なケイ素粒子の重量を求めた。そして、必要なケイ素粒子の重量を負極活物質層中のケイ素粒子の重量比率で除することにより、必要な負極活物質層の重量を求めた。
<Calculation of negative electrode active material layer weight>
The capacity of the positive electrode active material layer was assumed to be 0.1 Ah, and this was divided by the charge capacity per unit weight of the silicon particles, thereby obtaining the necessary weight of the silicon particles. And the weight of the required negative electrode active material layer was calculated | required by remove | dividing the weight of the required silicon particle by the weight ratio of the silicon particle in a negative electrode active material layer.

ケイ素粒子1mgあたりの充電量が0.47mAh/mg以上の場合について、ケイ素粒子1mgあたりの充電量と負極活物質層の重量との関係を図3のグラフに表した。図のとおり、ケイ素粒子1mgあたりの充電量が多いほど、負極活物質層の重量は減少した。   In the case where the charge amount per 1 mg of silicon particles is 0.47 mAh / mg or more, the relationship between the charge amount per 1 mg of silicon particles and the weight of the negative electrode active material layer is shown in the graph of FIG. As shown in the figure, the weight of the negative electrode active material layer decreased as the charge amount per 1 mg of silicon particles increased.

<負極活物質層発熱量の算定>
負極活物質層材料1mgあたりの発熱量に負極活物質層の重量を乗算し、負極活物質層の発熱量を求めた。また、ケイ素粒子1mgあたりの充電量と負極活物質層の発熱量との関係を図4のグラフに示した。図のとおり、ケイ素粒子1mgあたりの充電量が0.47mAh/mg以上の場合には、ケイ素粒子1mgあたりの充電量が増加するほど負極活物質層の発熱量は低下した。図から、ケイ素粒子1mgあたりの充電量が1.1mAh/mg(例1−3)より小さい場合には、負極活物質層の発熱量が大きくなりすぎるといえる。
<Calculation of calorific value of negative electrode active material layer>
The calorific value per 1 mg of the negative electrode active material layer material was multiplied by the weight of the negative electrode active material layer to obtain the calorific value of the negative electrode active material layer. Moreover, the relationship between the charge amount per 1 mg of silicon particles and the calorific value of the negative electrode active material layer is shown in the graph of FIG. As shown in the figure, when the charge amount per 1 mg of silicon particles was 0.47 mAh / mg or more, the calorific value of the negative electrode active material layer decreased as the charge amount per 1 mg of silicon particles increased. From the figure, it can be said that when the charge amount per 1 mg of silicon particles is smaller than 1.1 mAh / mg (Example 1-3), the calorific value of the negative electrode active material layer becomes too large.

以上から、最大充電時のケイ素粒子の充電量の下限を1.1mAh/mgとした。   From the above, the lower limit of the charged amount of silicon particles during maximum charging was set to 1.1 mAh / mg.

<<例2>>
下記の方法により、例2−1、例2−2、及び例2−3の全固体電池を作製し、その容量維持率を評価した。この評価に基づき、ケイ素粒子1mgあたりの充電量に対する容量維持率の関係から、最大充電時のケイ素粒子の充電量の上限を求めた。
<< Example 2 >>
By the following method, the all-solid-state batteries of Example 2-1, Example 2-2, and Example 2-3 were produced, and the capacity retention rate was evaluated. Based on this evaluation, the upper limit of the charge amount of the silicon particles at the maximum charge was determined from the relationship of the capacity retention rate with respect to the charge amount per 1 mg of silicon particles.

<例2―1>
1.全固体電池の作製
(1)硫化物固体電解質の合成
LiS(日本化学工業製)、P(アルドリッチ製)、LiI(日宝化学製)、及びLiBr(高純度化学製)を出発原料として、LiSを0.586g、Pを0.945g、LiIを0.284g、及びLiBrを0.185g秤量し、メノウ乳鉢で5分混合した。その混合物を遊星型ボールミルの容器(45cc、ZrO製)に投入し、脱水ヘプタン(水分量30ppm以下、4g)を投入し、さらにZrOボール(φ=5mm、53g)を投入し、容器を完全に密閉した。この容器を遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数500rpmで、20時間メカニカルミリングを行った。その後、110℃で1時間乾燥することによりヘプタンを除去し、非晶質硫化物固体電解質を得た。なお、得られた非晶質硫化物固体電解質の組成はモル表記で10LiI・10LiBr・80(0.75LiS・0.25P)(mol%)であった。
<Example 2-1>
1. Production of all-solid-state battery (1) Synthesis of sulfide solid electrolyte Li 2 S (manufactured by Nippon Chemical Industry Co., Ltd.), P 2 S 5 (manufactured by Aldrich), LiI (manufactured by Nichiho Chemical), and LiBr (manufactured by High Purity Chemical) As starting materials, 0.586 g of Li 2 S, 0.945 g of P 2 S 5 , 0.284 g of LiI, and 0.185 g of LiBr were weighed and mixed in an agate mortar for 5 minutes. The mixture is put into a planetary ball mill container (45 cc, made of ZrO 2 ), dehydrated heptane (moisture content of 30 ppm or less, 4 g) is added, and ZrO 2 balls (φ = 5 mm, 53 g) are further charged. Completely sealed. This container was attached to a planetary ball mill (P7 made by Fritsch), and mechanical milling was performed for 20 hours at a base plate rotation speed of 500 rpm. Then, heptane was removed by drying at 110 ° C. for 1 hour to obtain an amorphous sulfide solid electrolyte. In addition, the composition of the obtained amorphous sulfide solid electrolyte was 10LiI · 10LiBr · 80 (0.75Li 2 S · 0.25P 2 S 5 ) (mol%) in molar notation.

次に、得られた非晶質硫化物固体電解質0.5gを石英管中に真空封入し、185℃で熱処理を行った。室温から185℃まで1℃/分で昇温し、185℃に到達後に10時間保持した後、自然冷却して、ガラスセラミックスである硫化物固体電解質を得た。   Next, 0.5 g of the obtained amorphous sulfide solid electrolyte was sealed in a quartz tube and heat-treated at 185 ° C. The temperature was raised from room temperature to 185 ° C. at a rate of 1 ° C./min. After reaching 185 ° C. and held for 10 hours, it was naturally cooled to obtain a sulfide solid electrolyte as glass ceramic.

(2)正極活物質層の作製
エタノール溶媒に、等モルのLiOC及びNb(OCを溶解させて作製した組成物を、平均粒径D50=5μmのLiNi1/3Co1/3Mn1/3(日亜化学工業)の表面に、転動流動コーティング装置(SFP−01、株式会社パウレック製)を用いてスプレーコートした。その後、コーティングされたLiNi1/3Co1/3Mn1/3を、350℃、大気圧下で1時間にわたって熱処理ことにより、LiNi1/3Co1/3Mn1/3の表面にLiNbOの層を形成し、正極活物質を作製した。
(2) Preparation of positive electrode active material layer A composition prepared by dissolving equimolar amounts of LiOC 2 H 5 and Nb (OC 2 H 5 ) 5 in an ethanol solvent was LiNi 1/3 having an average particle diameter D50 = 5 μm. The surface of Co 1/3 Mn 1/3 O 2 (Nichia Corporation) was spray coated using a tumbling fluidized coating apparatus (SFP-01, manufactured by POWREC Co., Ltd.). Thereafter, the coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 was heat-treated at 350 ° C. under atmospheric pressure for 1 hour, so that LiNi 1/3 Co 1/3 Mn 1/3 O 2 A layer of LiNbO 3 was formed on the surface to produce a positive electrode active material.

正極活物質52g、導電助剤としてのVGCF1g、硫化物固体電解質22g、分散媒としての酪酸ブチル(昭和化学)50g、及びバインダーとしてのPVDF1.5gを秤量し、十分に混合して正極活物質層用スラリーを作製した。この正極活物質用スラリーを正極集電体としてのアルミニウム箔上に塗工し、乾燥させることにより正極活物質層を得た。   Positive electrode active material layer 52 g, VGCF 1 g as conductive additive, sulfide solid electrolyte 22 g, butyl butyrate (Showa Chemical) 50 g as dispersion medium, and PVDF 1.5 g as binder are weighed and mixed well A slurry was prepared. This positive electrode active material slurry was coated on an aluminum foil as a positive electrode current collector and dried to obtain a positive electrode active material layer.

(3)負極活物質層の作製
負極活物質としてのケイ素粒子(高純度化学)36g、導電助剤としてのVGCF1.5g、硫化物固体電解質25g、分散媒としての酪酸ブチル(昭和化学)60g、及びバインダーとしてのPVDF1gを秤量し、十分に混合して負極活物質層用スラリーを作製した。この負極活物質用スラリーを負極集電体としての銅箔上に塗工し、乾燥させることにより負極活物質層を得た。
(3) Production of negative electrode active material layer 36 g of silicon particles (high-purity chemistry) as a negative electrode active material, 1.5 g of VGCF as a conductive additive, 25 g of sulfide solid electrolyte, 60 g of butyl butyrate (Showa Chemical) as a dispersion medium, And 1 g of PVDF as a binder was weighed and mixed well to prepare a slurry for negative electrode active material layer. This negative electrode active material slurry was applied onto a copper foil as a negative electrode current collector and dried to obtain a negative electrode active material layer.

(4)固体電解質層の作製
硫化物固体電解質25g、バインダー1g、及び分散媒としての脱水へプタン25gを十分に混合して、固体電解質用スラリーを作製した。この固体電解質用スラリーをアルミニウム箔上に塗工し、乾燥させることにより固体電解質層を得た。
(4) Production of Solid Electrolyte Layer 25 g of sulfide solid electrolyte, 1 g of binder, and 25 g of dehydrated heptane as a dispersion medium were sufficiently mixed to produce a solid electrolyte slurry. This solid electrolyte slurry was applied onto an aluminum foil and dried to obtain a solid electrolyte layer.

(5)電池組立
負極活物質層上に固体電解質層を積層し、固体電解質層上のアルミニウム箔を剥離した。その後、固体電解質層上に正極活物質層を積層した。積層した負極活物質層、固体電解質層、及び正極活物質層をプレスして、積層体を作製した。
(5) Battery assembly The solid electrolyte layer was laminated | stacked on the negative electrode active material layer, and the aluminum foil on a solid electrolyte layer was peeled. Thereafter, a positive electrode active material layer was laminated on the solid electrolyte layer. The laminated negative electrode active material layer, solid electrolyte layer, and positive electrode active material layer were pressed to produce a laminate.

集電タブをセル端子と接触させ、作製した積層体と共にアルミニウムラミネートで真空封入することで、全固体電池を完成させた。   The current collecting tab was brought into contact with the cell terminal, and was vacuum-sealed with an aluminum laminate together with the produced laminate, thereby completing an all-solid battery.

2.電池の評価
上記方法により作製した全固体電池に対して、初期充放電として、全固体電池を4.55Vまで充電し、2.5Vまで放電した(CCCV充放電、終止電流0.02mAh)。その後、全固体電池を4.4Vまで充電し、3Vまで放電した。この時の放電容量を測定し、耐久試験前の放電容量とした。
2. Evaluation of Battery The all solid state battery manufactured by the above method was charged to 4.55V and discharged to 2.5V as the initial charge / discharge (CCCV charge / discharge, final current 0.02 mAh). Thereafter, the all solid state battery was charged to 4.4V and discharged to 3V. The discharge capacity at this time was measured and used as the discharge capacity before the durability test.

その後、耐久試験として、電池を60℃の環境下で、4.17Vまで充電して3.137Vまで放電する充放電サイクルを、300サイクル繰り返した。その後、電池を4.4Vまで充電し、3Vまで放電した。この時の放電容量を測定し、耐久試験後の放電容量とした。   Thereafter, as a durability test, a charge / discharge cycle in which the battery was charged to 4.17 V and discharged to 3.137 V in an environment of 60 ° C. was repeated 300 cycles. Thereafter, the battery was charged to 4.4V and discharged to 3V. The discharge capacity at this time was measured and used as the discharge capacity after the durability test.

耐久試験後の放電容量を耐久試験前の放電容量で除し、100を乗算した値を、容量維持率とした。   A value obtained by dividing the discharge capacity after the endurance test by the discharge capacity before the endurance test and multiplying by 100 was taken as the capacity retention rate.

<例2―2及び例2−3>
負極活物質層の作製において、負極集電体としての銅箔上に塗工する負極活物質層用スラリーの量を変えたことを除いて、例2―1と同様にして全固体電池を作製し、その容量維持率を評価した。
<Example 2-2 and Example 2-3>
In the production of the negative electrode active material layer, an all solid state battery was produced in the same manner as in Example 2-1, except that the amount of the slurry for the negative electrode active material layer applied on the copper foil as the negative electrode current collector was changed. The capacity maintenance rate was evaluated.

<結果> <Result>

Figure 2017084500
Figure 2017084500

1.表の説明
表において、「Si1mgあたりの容量」とは、初期充放電後耐久試験前に全固体電池を4.4Vまで充電したときの充電量を、負極活物質としてのケイ素粒子の重量で割った値である。
1. Explanation of Table In the table, “capacity per 1 mg of Si” is obtained by dividing the amount of charge when the all-solid-state battery is charged to 4.4 V before the endurance test after the initial charge / discharge by the weight of the silicon particles as the negative electrode active material. Value.

2.考察
表1のとおり、例2―1、例2―2、及び例2―3において作製した全固体電池の、初期充放電後耐久試験前に全固体電池を4.4Vまで充電したときの充電量は、それぞれ1.5mAh/mg、0.8mAh/mg、及び0.5mAh/mgであった。
2. Discussion As shown in Table 1, charging of all solid state batteries produced in Examples 2-1 and 2-2 and Example 2-3 when the all solid state batteries are charged to 4.4 V before the endurance test after the initial charge / discharge. The amounts were 1.5 mAh / mg, 0.8 mAh / mg, and 0.5 mAh / mg, respectively.

図5は、例2―1、例2―2、例2―3の全固体電池の「Si1mgあたりの容量」に対する容量維持率のグラフである。図のとおり、「Si1mgあたりの容量」が1.5mAh/mgより小さい場合には、容量維持率は約97%であり、「Si1mgあたりの容量」が1.5mAh/mgになると、容量維持率は約93%に低下している。「Si1mgあたりの容量」の値がさらに大きくなると、容量維持率はさらに低下すると考えられる。   FIG. 5 is a graph of the capacity retention ratio with respect to “capacity per 1 mg of Si” of the all-solid-state batteries of Examples 2-1 and 2-2 and 2-3. As shown in the figure, when the “capacity per 1 mg of Si” is smaller than 1.5 mAh / mg, the capacity maintenance rate is about 97%, and when the “capacity per 1 mg of Si” becomes 1.5 mAh / mg, the capacity maintenance rate Has dropped to about 93%. As the value of “capacity per 1 mg of Si” further increases, the capacity retention rate is considered to further decrease.

以上から、本発明の全固体電池システムにおける、最大充電時のケイ素粒子の充電量の上限を1.5mAh/mgとした。   From the above, in the all solid state battery system of the present invention, the upper limit of the charge amount of the silicon particles at the maximum charge was set to 1.5 mAh / mg.

1 正極集電体
2 正極活物質層
3 固体電解質層
4 負極活物質層
5 負極集電体
6 全固体電池
10 制御装置
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode active material layer 3 Solid electrolyte layer 4 Negative electrode active material layer 5 Negative electrode collector 6 All-solid-state battery 10 Control apparatus

Claims (1)

正極活物質層、固体電解質層、及び負極活物質層をこの順で有する全固体電池、並びに前記全固体電池の充電量を制御する制御装置を有する全固体電池システムであって、
前記負極活物質層が、固体電解質、及び負極活物質としてのケイ素粒子を有し、かつ
前記制御装置が、前記ケイ素粒子の最大充電量が1.1mAh/mg以上1.5mAh/mg以下であるようにして、前記全固体電池の充電量を制御する、
全固体電池システム。
An all solid state battery system having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a control device for controlling the charge amount of the all solid state battery,
The negative electrode active material layer has a solid electrolyte and silicon particles as a negative electrode active material, and the control device has a maximum charge amount of the silicon particles of 1.1 mAh / mg or more and 1.5 mAh / mg or less. In this way, the charge amount of the all solid state battery is controlled,
All solid state battery system.
JP2015209138A 2015-10-23 2015-10-23 All solid battery system Active JP6536349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015209138A JP6536349B2 (en) 2015-10-23 2015-10-23 All solid battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015209138A JP6536349B2 (en) 2015-10-23 2015-10-23 All solid battery system

Publications (2)

Publication Number Publication Date
JP2017084500A true JP2017084500A (en) 2017-05-18
JP6536349B2 JP6536349B2 (en) 2019-07-03

Family

ID=58714202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209138A Active JP6536349B2 (en) 2015-10-23 2015-10-23 All solid battery system

Country Status (1)

Country Link
JP (1) JP6536349B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125481A (en) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 Negative electrode mixture for all-solid lithium ion secondary battery and manufacturing method thereof
CN112602209A (en) * 2018-09-28 2021-04-02 富士胶片株式会社 Composition for negative electrode, negative electrode sheet for all-solid-state secondary battery, and method for producing negative electrode sheet for all-solid-state secondary battery or method for producing all-solid-state secondary battery
WO2023002758A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance, anode material and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105701A (en) * 2011-11-16 2013-05-30 Idemitsu Kosan Co Ltd Lithium ion battery charging method, lithium ion battery charging/discharging control system, and lithium ion battery charging/discharging control circuit
JP2013222530A (en) * 2012-04-13 2013-10-28 Idemitsu Kosan Co Ltd All solid state battery and method for charging/discharging all solid state battery
JP2014041783A (en) * 2012-08-23 2014-03-06 Toyota Motor Corp Method for manufacturing solid state battery
US8801810B1 (en) * 2009-11-11 2014-08-12 Amprius, Inc. Conducting formation cycles
WO2015025402A1 (en) * 2013-08-22 2015-02-26 株式会社日立製作所 Charge/discharge control method and charge/discharge control apparatus for lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801810B1 (en) * 2009-11-11 2014-08-12 Amprius, Inc. Conducting formation cycles
JP2013105701A (en) * 2011-11-16 2013-05-30 Idemitsu Kosan Co Ltd Lithium ion battery charging method, lithium ion battery charging/discharging control system, and lithium ion battery charging/discharging control circuit
JP2013222530A (en) * 2012-04-13 2013-10-28 Idemitsu Kosan Co Ltd All solid state battery and method for charging/discharging all solid state battery
JP2014041783A (en) * 2012-08-23 2014-03-06 Toyota Motor Corp Method for manufacturing solid state battery
WO2015025402A1 (en) * 2013-08-22 2015-02-26 株式会社日立製作所 Charge/discharge control method and charge/discharge control apparatus for lithium ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125481A (en) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 Negative electrode mixture for all-solid lithium ion secondary battery and manufacturing method thereof
CN112602209A (en) * 2018-09-28 2021-04-02 富士胶片株式会社 Composition for negative electrode, negative electrode sheet for all-solid-state secondary battery, and method for producing negative electrode sheet for all-solid-state secondary battery or method for producing all-solid-state secondary battery
WO2023002758A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance, anode material and battery

Also Published As

Publication number Publication date
JP6536349B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
US10026956B2 (en) Anode including spherical natural graphite and lithium secondary battery including the anode
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP5565465B2 (en) Nonaqueous electrolyte secondary battery
WO2013014830A1 (en) Lithium-ion secondary cell
JP2010097761A (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7269571B2 (en) Method for manufacturing all-solid-state battery
US10615449B2 (en) Electrode material for secondary battery and secondary battery
JP2017520892A (en) Positive electrode for lithium battery
CN109346710B (en) Lithium titanate nitride-aluminum oxide nitride composite material and preparation method and application thereof
US9954218B2 (en) Anode for secondary battery, and lithium secondary battery manufactured therefrom
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2016018654A (en) Lithium ion secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP5884039B2 (en) Nonaqueous electrolyte secondary battery
JP6536349B2 (en) All solid battery system
JPWO2012002364A1 (en) Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery equipped with the same
JP6219303B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
KR101497824B1 (en) Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery
WO2016047326A1 (en) Cathode for lithium ion secondary battery and lithium ion secondary battery using same
JP4267885B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode using the negative electrode material, and lithium ion secondary battery
KR101790398B1 (en) Anode active material and lithium secondary battery comprising the same
JP2013026187A (en) Negative electrode material for power storage device, and method for manufacturing the same
JP5861437B2 (en) Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same
JP5685817B2 (en) Electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151