JP5565465B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5565465B2
JP5565465B2 JP2012529585A JP2012529585A JP5565465B2 JP 5565465 B2 JP5565465 B2 JP 5565465B2 JP 2012529585 A JP2012529585 A JP 2012529585A JP 2012529585 A JP2012529585 A JP 2012529585A JP 5565465 B2 JP5565465 B2 JP 5565465B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
secondary battery
positive electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012529585A
Other languages
Japanese (ja)
Other versions
JPWO2012023501A1 (en
Inventor
隆 高木
弥生 勝
徹 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2012529585A priority Critical patent/JP5565465B2/en
Publication of JPWO2012023501A1 publication Critical patent/JPWO2012023501A1/en
Application granted granted Critical
Publication of JP5565465B2 publication Critical patent/JP5565465B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、一般的には非水電解質二次電池に関し、特定的には、負極にリチウムチタン複合酸化物を用いた非水電解質二次電池に関する。   The present invention generally relates to non-aqueous electrolyte secondary batteries, and more particularly to a non-aqueous electrolyte secondary battery using a lithium titanium composite oxide for a negative electrode.

携帯電話、ノートパソコン、デジタルカメラ等の携帯用電子機器の市場拡大に伴い、これら電子機器のコードレス電源としてエネルギー密度が大きく長寿命の二次電池が待望されている。そして、このような要求に応えるために、リチウムイオン等のアルカリ金属イオンを荷電担体とし、その電荷授受に伴う電気化学反応を利用した二次電池が開発されている。その中でも、エネルギー密度の大きなリチウムイオン二次電池は広く普及している。   With the expansion of the market for portable electronic devices such as mobile phones, notebook computers, and digital cameras, secondary batteries with high energy density and long life are expected as cordless power sources for these electronic devices. In order to meet such demands, secondary batteries have been developed that use an alkali metal ion such as lithium ion as a charge carrier and use an electrochemical reaction associated with charge exchange. Among them, lithium ion secondary batteries having a large energy density are widely used.

上記のリチウムイオン二次電池では、正極活物質としてコバルト酸リチウム、マンガン酸リチウム等のリチウム含有遷移金属酸化物が使用されている。また、負極活物質として、リチウムイオンを吸蔵・放出可能な炭素材料が使用されている。炭素材料の中でも、天然黒鉛、人造黒鉛等の黒鉛は、放電電圧がリチウム金属に対して0.2Vと低く、黒鉛を負極活物質として用いた場合、放電電圧が3.6Vの電池が可能となる。しかしながら、炭素材料を負極に用いた場合、電池内部で短絡が発生すると、負極から正極に一気にリチウムイオンが流れ、温度が急上昇する恐れがある。   In the above lithium ion secondary battery, lithium-containing transition metal oxides such as lithium cobaltate and lithium manganate are used as the positive electrode active material. In addition, a carbon material capable of inserting and extracting lithium ions is used as the negative electrode active material. Among carbon materials, graphite such as natural graphite and artificial graphite has a discharge voltage as low as 0.2 V with respect to lithium metal, and when graphite is used as a negative electrode active material, a battery having a discharge voltage of 3.6 V is possible. Become. However, when a carbon material is used for the negative electrode, if a short circuit occurs inside the battery, lithium ions may flow from the negative electrode to the positive electrode at once, and the temperature may increase rapidly.

そこで、電池内部で短絡が生じても急激に電流が流れないチタン酸リチウム等のリチウムチタン複合酸化物が注目されている。リチウムチタン複合酸化物は、結晶格子の構造、サイズを変化させることなくリチウムイオンを吸蔵・放出できる材料であり、高信頼性の非水電解質二次電池の負極活物質として有力である。   Then, lithium titanium complex oxides, such as lithium titanate, which does not flow abruptly even if a short circuit occurs inside the battery, have attracted attention. Lithium titanium composite oxide is a material that can occlude and release lithium ions without changing the structure and size of the crystal lattice, and is a promising negative electrode active material for highly reliable non-aqueous electrolyte secondary batteries.

しかしながら、リチウムチタン複合酸化物は、リチウムイオンの挿入・脱離電位が1.5V(vs Li/Li+)と高いため、負極活物質に炭素材を用いたリチウムイオン二次電池と比較して電池電圧が低下する。その結果、エネルギー密度が低下するという問題がある。However, the lithium-titanium composite oxide has a high lithium ion insertion / desorption potential of 1.5 V (vs Li / Li + ), so it is compared with a lithium ion secondary battery using a carbon material for the negative electrode active material. Battery voltage decreases. As a result, there is a problem that the energy density is lowered.

この問題を解決するために、4.4V(vs Li/Li+)以上の領域に電位平坦部を有するスピネル型構造のリチウムマンガンニッケル複合酸化物を正極活物質として用いることが提案されている。この場合、リチウムイオンの挿入・脱離電位が1.5V(vs Li/Li+)と高いリチウムチタン複合酸化物を負極活物質として用いても、上記の高電位のスピネル型構造のリチウムマンガンニッケル複合酸化物を正極活物質として用いることによって、エネルギー密度を向上させることが可能となる。In order to solve this problem, it has been proposed to use a spinel-type lithium manganese nickel composite oxide having a potential flat portion in a region of 4.4 V (vs Li / Li + ) or higher as a positive electrode active material. In this case, even if a lithium titanium composite oxide having a lithium ion insertion / desorption potential as high as 1.5 V (vs Li / Li + ) is used as the negative electrode active material, the above-described high potential spinel structure lithium manganese nickel By using the composite oxide as the positive electrode active material, the energy density can be improved.

たとえば、特開2006‐66341号公報(以下、特許文献1という)には、リチウムイオン二次電池の正極活物質として、4.4V(vs Li/Li+)以上の領域に電位平坦部を有するスピネル型構造のリチウムマンガンニッケル複合酸化物、負極活物質として、スピネル型構造のリチウムチタン複合酸化物を用いた非水電解質二次電池が開示されている。For example, Japanese Patent Laid-Open No. 2006-66341 (hereinafter referred to as Patent Document 1) has a potential flat portion in a region of 4.4 V (vs Li / Li + ) or higher as a positive electrode active material of a lithium ion secondary battery. A non-aqueous electrolyte secondary battery using a spinel type lithium-titanium composite oxide as a spinel type lithium manganese nickel composite oxide and a negative electrode active material is disclosed.

特許文献1に記載されているように正極活物質として4.9V(vs Li/Li+)付近に電位平坦部を有するLi(Mn1.5Ni0.45Mg0.05)O4を用いた場合には、電池電圧を3.35Vにすることができる。When Li (Mn 1.5 Ni 0.45 Mg 0.05 ) O 4 having a potential flat portion in the vicinity of 4.9 V (vs Li / Li + ) is used as the positive electrode active material as described in Patent Document 1, the battery The voltage can be 3.35V.

特開2006‐66341号公報JP 2006-66341 A

ところが、正極活物質としてLi(Mn1.5Ni0.45Mg0.05)O4、負極活物質としてリチウムチタン複合酸化物を用いたリチウムイオン二次電池では、充電過程または放電過程のほぼ全領域において電圧変化の度合いが小さい、すなわち、平坦な電圧特性を示す。そのため、満充電状態ではなく、低い充電状態から約80%程度の充電状態になるように急速に充電して、リチウムイオン二次電池を使用する場合、電池の充電状態を検出することが困難になるという問題が生ずる。However, in a lithium ion secondary battery using Li (Mn 1.5 Ni 0.45 Mg 0.05 ) O 4 as the positive electrode active material and lithium titanium composite oxide as the negative electrode active material, the voltage change is almost in the entire charging or discharging process. The degree is small, that is, it shows a flat voltage characteristic. For this reason, when using a lithium ion secondary battery that is not fully charged but is rapidly charged so that the charged state is about 80% from a low charged state, it is difficult to detect the charged state of the battery. The problem arises.

そこで、本発明の目的は、負極活物質としてリチウムチタン複合酸化物を用いた非水電解質二次電池において、充電状態を容易に検出することが可能な非水電解質二次電池を提供することである。   Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that can easily detect a charged state in a non-aqueous electrolyte secondary battery using a lithium titanium composite oxide as a negative electrode active material. is there.

本発明者は、従来技術の問題点を解決するために鋭意研究を重ねた結果、負極活物質としてリチウムチタン複合酸化物を用いた非水電解質二次電池において、正極活物質として、スピネル型構造のリチウムマンガンニッケル複合酸化物にリチウムニッケルマンガンコバルト複合酸化物を加えたものを用いると、充電初期と放電末期の電圧変化を大きくできることを見出した。この知見に基づいて、本発明に従った非水電解質二次電池は、次のような特徴を備えている。   As a result of intensive studies to solve the problems of the prior art, the present inventor has obtained a spinel structure as a positive electrode active material in a non-aqueous electrolyte secondary battery using a lithium titanium composite oxide as a negative electrode active material. It was found that the voltage change between the initial stage of charging and the end stage of discharging can be increased by using the lithium manganese nickel composite oxide with lithium nickel manganese cobalt composite oxide added. Based on this knowledge, the nonaqueous electrolyte secondary battery according to the present invention has the following characteristics.

本発明に従った非水電解質二次電池は、正極と負極を有する非水電解質二次電池であって、負極がリチウムチタン複合酸化物を含み、正極がリチウムニッケルマンガンコバルト複合酸化物とスピネル型構造を有するリチウムマンガンニッケル複合酸化物とを含む。   A non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary battery having a positive electrode and a negative electrode, the negative electrode includes a lithium titanium composite oxide, and the positive electrode is a lithium nickel manganese cobalt composite oxide and a spinel type. And a lithium manganese nickel composite oxide having a structure.

本発明の非水電解質二次電池において、リチウムニッケルマンガンコバルト複合酸化物が、空間群R3mに帰属する六方晶系の層状岩塩型の結晶構造を有することが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, the lithium nickel manganese cobalt composite oxide preferably has a hexagonal layered rock salt crystal structure belonging to the space group R3m.

また、リチウムニッケルマンガンコバルト複合酸化物は、空間群R3mに帰属する六方晶系の層状岩塩型の結晶構造においてa軸の格子定数に対するc軸の格子定数の比率(c/a軸比)が4.96以下であり、かつ、一般式Li1+α[NixMnyCoz]O2(式中、αは0≦α<1.3、x、yおよびzはx+y+z=1、0<x<0.50、0<z≦0.15を満たす)で表されることが好ましい。The lithium nickel manganese cobalt composite oxide has a ratio of the c-axis lattice constant to the a-axis lattice constant (c / a axis ratio) of 4 in the hexagonal layered rock salt crystal structure belonging to the space group R3m. .96 or less, and the general formula Li 1+ α [Ni x Mn y Co z] O 2 ( wherein, alpha is 0 ≦ α <1.3, x, y and z are x + y + z = 1,0 < x <0.50, 0 <z ≦ 0.15 is satisfied).

さらに、a軸の格子定数が2.8オングストローム以上であることが好ましい。   Furthermore, the lattice constant of the a axis is preferably 2.8 angstroms or more.

さらにまた、c軸の格子定数が14オングストローム以上であることが好ましい。   Furthermore, the lattice constant of the c axis is preferably 14 angstroms or more.

本発明によれば、負極がリチウムチタン複合酸化物を含む非水電解質二次電池において、正極がリチウムニッケルマンガンコバルト複合酸化物とスピネル型構造を有するリチウムマンガンニッケル複合酸化物とを含むことにより、充電状態を容易に検出することができる。   According to the present invention, in the nonaqueous electrolyte secondary battery in which the negative electrode includes a lithium titanium composite oxide, the positive electrode includes a lithium nickel manganese cobalt composite oxide and a lithium manganese nickel composite oxide having a spinel structure. The state of charge can be easily detected.

本発明の一つの実施の形態としてのコイン型非水電解質二次電池、ならびに本発明の実施例および比較例で作製されたコイン型非水電解質二次電池を示す図である。It is a figure which shows the coin-type nonaqueous electrolyte secondary battery as one embodiment of this invention, and the coin-type nonaqueous electrolyte secondary battery produced by the Example and comparative example of this invention. 本発明の実施例1において作製されたコイン型非水電解質二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the coin-type nonaqueous electrolyte secondary battery produced in Example 1 of this invention. 本発明の実施例2において作製されたコイン型非水電解質二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the coin-type nonaqueous electrolyte secondary battery produced in Example 2 of this invention. 本発明の実施例3において作製されたコイン型非水電解質二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the coin-type nonaqueous electrolyte secondary battery produced in Example 3 of this invention. 本発明の比較例1において作製されたコイン型非水電解質二次電池の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of the coin-type nonaqueous electrolyte secondary battery produced in the comparative example 1 of this invention.

本発明の非水電解質二次電池は、正極と負極を有する非水電解質二次電池であって、負極がリチウムチタン複合酸化物を含み、正極がリチウムニッケルマンガンコバルト複合酸化物とスピネル型構造を有するリチウムマンガンニッケル複合酸化物とを含む。このように、正極として、スピネル型構造のリチウムマンガンニッケル複合酸化物にリチウムニッケルマンガンコバルト複合酸化物を加えたものを用いると、充電初期と放電末期の電圧変化を大きくできる。これにより、充電状態を容易に検出することができる。   The nonaqueous electrolyte secondary battery of the present invention is a nonaqueous electrolyte secondary battery having a positive electrode and a negative electrode, the negative electrode includes a lithium titanium composite oxide, and the positive electrode has a lithium nickel manganese cobalt composite oxide and a spinel structure. And a lithium manganese nickel composite oxide. As described above, when a positive electrode having a spinel-type lithium manganese nickel composite oxide added with a lithium nickel manganese cobalt composite oxide is used as the positive electrode, the voltage change between the initial charge stage and the final discharge stage can be increased. Thereby, the state of charge can be easily detected.

本発明の非水電解質二次電池において、正極材料の一つとして用いられるスピネル型構造を有するリチウムマンガンニッケル複合酸化物は、正極として用いられた場合の電位、たとえば、満充電状態での正極電位が金属リチウムの電位に対して4.5Vよりも貴となるものである。すなわち、上記のリチウムマンガンニッケル複合酸化物は、金属リチウムの電位に対する上限電位が4.5V(vs Li/Li+)以上である。言い換えれば、スピネル型構造を有するリチウムマンガンニッケル複合酸化物は、正極として用いられた場合、4.5V(vs Li/Li+)以上に電位平坦部を有する。In the nonaqueous electrolyte secondary battery of the present invention, a lithium manganese nickel composite oxide having a spinel structure used as one of positive electrode materials has a potential when used as a positive electrode, for example, a positive electrode potential in a fully charged state. Is nobler than 4.5 V with respect to the potential of metallic lithium. That is, the lithium manganese nickel composite oxide has an upper limit potential of 4.5 V (vs Li / Li + ) or more with respect to the potential of metallic lithium. In other words, the lithium manganese nickel composite oxide having a spinel structure has a potential flat portion at 4.5 V (vs Li / Li + ) or more when used as a positive electrode.

本発明の非水電解質二次電池において、リチウムニッケルマンガンコバルト複合酸化物が、空間群R3mに帰属する六方晶系の層状岩塩型の結晶構造を有することが好ましい。この場合、サイクル特性が良好な非水電解質二次電池を得ることができる。なお、リチウムニッケルマンガンコバルト複合酸化物が、空間群R3mに帰属する六方晶系の層状岩塩型の結晶構造以外の結晶構造、たとえば、空間群Fm3mに帰属する面心立方晶系の結晶構造、等を有していても、上述の本発明の作用効果を得ることができる。   In the nonaqueous electrolyte secondary battery of the present invention, the lithium nickel manganese cobalt composite oxide preferably has a hexagonal layered rock salt crystal structure belonging to the space group R3m. In this case, a nonaqueous electrolyte secondary battery having good cycle characteristics can be obtained. Note that the lithium nickel manganese cobalt composite oxide has a crystal structure other than the hexagonal layered rock salt type crystal structure belonging to the space group R3m, such as a face-centered cubic crystal structure belonging to the space group Fm3m, etc. Even if it has this, the effect of the above-mentioned this invention can be acquired.

また、リチウムニッケルマンガンコバルト複合酸化物は、空間群R3mに帰属する六方晶系の層状岩塩型の結晶構造においてa軸の格子定数に対するc軸の格子定数の比率(c/a軸比)が4.958以下であり、かつ、一般式Li1+α[NixMnyCoz]O2(式中、αは0≦α<1.3、x、yおよびzはx+y+z=1、0<x<0.50、0≦z≦0.15を満たす)で表されることが好ましい。この場合、c/a軸比が4.958以下であれば、リチウムニッケルマンガンコバルト複合酸化物を含む正極を備えた非水電解質二次電池の充放電時において、リチウムニッケルマンガンコバルト複合酸化物の格子の膨張収縮を抑制することができるので、優れたサイクル特性を示すことができる。なお、上記の一般式において、αが1.3以上になると、炭酸リチウムの残存が多くなり、充放電時に多くのガスが発生し、電池が膨張する。The lithium nickel manganese cobalt composite oxide has a ratio of the c-axis lattice constant to the a-axis lattice constant (c / a axis ratio) of 4 in the hexagonal layered rock salt crystal structure belonging to the space group R3m. .958 or less, and the general formula Li 1+ α [Ni x Mn y Co z] O 2 ( wherein, alpha is 0 ≦ α <1.3, x, y and z are x + y + z = 1,0 < x <0.50, 0 ≦ z ≦ 0.15 is preferably satisfied). In this case, if the c / a axial ratio is 4.958 or less, the lithium-nickel-manganese-cobalt composite oxide is not charged during charging / discharging of the nonaqueous electrolyte secondary battery including the positive electrode including the lithium-nickel-manganese-cobalt composite oxide. Since the expansion and contraction of the lattice can be suppressed, excellent cycle characteristics can be exhibited. In the above general formula, when α is 1.3 or more, the remaining lithium carbonate increases, a large amount of gas is generated during charging and discharging, and the battery expands.

さらに、a軸の格子定数が2.8オングストローム以上であることが好ましい。さらにまた、c軸の格子定数が14オングストローム以上であることが好ましい。   Furthermore, the lattice constant of the a axis is preferably 2.8 angstroms or more. Furthermore, the lattice constant of the c axis is preferably 14 angstroms or more.

a軸の格子定数が2.8オングストローム未満の場合、結晶の安定性が低いため、高電圧充放電下においてサイクル特性が悪くなる。また、c軸の格子定数が14オングストローム未満の場合、結晶の安定性が低いため、高電圧充放電下においてサイクル特性が悪くなる。a軸の格子定数が2.8オングストローム以上、c軸の格子定数が14オングストローム以上の場合、3bサイトのLiイオンと3aサイトのNiイオンの一部がサイト交換を起こす。このため、過充電によってLiイオンが大量に抜けても、Li層に存在するNiイオンが格子の膨張収縮を抑制する。これにより、結晶の安定性が良くなり、優れたサイクル特性を示すことができる。   When the lattice constant of the a axis is less than 2.8 angstroms, the stability of the crystal is low, so that the cycle characteristics deteriorate under high voltage charge / discharge. On the other hand, when the c-axis lattice constant is less than 14 angstroms, the stability of the crystal is low, resulting in poor cycle characteristics under high voltage charge / discharge. When the a-axis lattice constant is 2.8 angstroms or more and the c-axis lattice constant is 14 angstroms or more, some of the 3b-site Li ions and the 3a-site Ni ions cause site exchange. For this reason, even if a large amount of Li ions escape due to overcharge, Ni ions present in the Li layer suppress the expansion and contraction of the lattice. Thereby, the stability of the crystal is improved and excellent cycle characteristics can be exhibited.

なお、本発明の負極に含まれるリチウムチタン複合酸化物としては、スピネル型構造のものを用いるのが好ましく、たとえば、スピネル型構造のLi4Ti512等を挙げることができる。リチウムチタン複合酸化物がリチウム、チタンおよび酸素以外の元素を含んでいてもよい。また、リチウム、チタンおよび酸素以外の元素が、スピネル型構造のリチウムチタン複合酸化物中に置換された化合物として含まれる場合もある。The lithium-titanium composite oxide contained in the negative electrode of the present invention preferably has a spinel structure, such as Li 4 Ti 5 O 12 having a spinel structure. The lithium titanium composite oxide may contain elements other than lithium, titanium, and oxygen. In addition, an element other than lithium, titanium, and oxygen may be included as a substituted compound in the lithium titanium composite oxide having a spinel structure.

次に、本発明の非水電解質二次電池の製造方法の一例を以下で詳細に説明する。   Next, an example of the manufacturing method of the nonaqueous electrolyte secondary battery of the present invention will be described in detail below.

まず、正極を形成する。たとえば、リチウムニッケルマンガンコバルト複合酸化物とスピネル型構造を有するリチウムマンガンニッケル複合酸化物とを含む正極活物質を導電剤および結着剤とともに混合し、有機溶剤または水を加えて正極活物質スラリーとし、この正極活物質スラリーを電極集電体上に任意の塗工方法で塗工し、乾燥することにより正極を形成する。   First, a positive electrode is formed. For example, a positive electrode active material containing a lithium nickel manganese cobalt composite oxide and a lithium manganese nickel composite oxide having a spinel structure is mixed with a conductive agent and a binder, and an organic solvent or water is added to form a positive electrode active material slurry. The positive electrode active material slurry is coated on the electrode current collector by an arbitrary coating method and dried to form a positive electrode.

次に、負極を形成する。たとえば、リチウムチタン複合酸化物を含む負極活物質を導電剤および結着剤とともに混合し、有機溶剤または水を加えて負極活物質スラリーとし、この負極活物質スラリーを電極集電体上に任意の塗工方法で塗工し、乾燥することにより負極を形成する。   Next, a negative electrode is formed. For example, a negative electrode active material containing a lithium titanium composite oxide is mixed with a conductive agent and a binder, and an organic solvent or water is added to form a negative electrode active material slurry. The negative electrode is formed by coating with a coating method and drying.

本発明において結着剤は特に限定されるものではなく、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂を使用することができる。   In the present invention, the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, and carboxymethyl cellulose can be used.

また、有機溶剤についても、特に限定されるものではなく、たとえば、ジメチルスルホキシド、ジメチルホルムアミド、N‐メチルピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ‐ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒等を使用することができる。また、有機溶剤の種類、有機化合物と有機溶剤との配合比、添加剤の種類とその添加量等は、二次電池の要求特性や生産性等を考慮し、任意に設定することができる。   Further, the organic solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and γ-butyrolactone, acetonitrile, tetrahydrofuran, Nonaqueous solvents such as nitrobenzene and acetone, and protic solvents such as methanol and ethanol can be used. Moreover, the kind of organic solvent, the compounding ratio of the organic compound and the organic solvent, the kind of additive and the addition amount thereof can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.

次いで、図1に示すように、上記で得られた正極14を電解質に含浸させることにより、この正極14に電解質を染み込ませた後、正極端子を兼ねたケース11の底部中央の正極集電体上に正極14を載置する。その後、電解質を含浸させたセパレータ16を正極14上に積層し、さらに負極15と集電板17を順次積層し、内部空間に電解質を注入する。そして、集電板17上に金属製のばね部材18を載置すると共に、ガスケット13を周縁に配し、かしめ機等で負極端子を兼ねた封口板12をケース11に固着して外装封止することによってコイン型非水電解質二次電池1が作製される。   Next, as shown in FIG. 1, the positive electrode 14 obtained above is impregnated into the electrolyte, so that the positive electrode 14 is infiltrated with the electrolyte, and then the positive electrode current collector at the center of the bottom of the case 11 that also serves as the positive electrode terminal. The positive electrode 14 is placed on the top. Thereafter, the separator 16 impregnated with the electrolyte is laminated on the positive electrode 14, the negative electrode 15 and the current collector plate 17 are sequentially laminated, and the electrolyte is injected into the internal space. Then, a metal spring member 18 is placed on the current collector plate 17, and a gasket 13 is arranged on the periphery, and a sealing plate 12 that also serves as a negative electrode terminal is fixed to the case 11 with a caulking machine or the like to seal the exterior. By doing so, the coin-type non-aqueous electrolyte secondary battery 1 is manufactured.

なお、電解質は、正極14と対向電極である負極15との間に介在して両電極間の荷電担体輸送を行う。このような電解質としては、室温で10-5〜10-1S/cmのイオン伝導度を有するものを使用することができる。たとえば、電解質塩を有機溶剤に溶解させた電解液を使用することができる。ここで、電解質塩としては、たとえば、LiPF6、LiClO4、LiBF4、LiCF3SO3、Li(CF3SO22N、Li(C25SO22N、Li(CF3SO23C、Li(C25SO23C等を使用することができる。The electrolyte is interposed between the positive electrode 14 and the negative electrode 15 which is a counter electrode, and transports charge carriers between the two electrodes. As such an electrolyte, an electrolyte having an ionic conductivity of 10 −5 to 10 −1 S / cm at room temperature can be used. For example, an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used. Examples of the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or the like can be used.

上記の有機溶剤としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ‐ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N‐メチル‐2‐ピロリドン等を使用することができる。   As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, etc. are used. be able to.

また、電解質には、固体電解質を使用してもよい。固体電解質に用いられる高分子化合物としては、たとえば、ポリフッ化ビニリデン、フッ化ビニリデン‐ヘキサフルオロプロピレン共重合体、フッ化ビニリデン‐エチレン共重合体、フッ化ビニリデン‐モノフルオロエチレン共重合体、フッ化ビニリデン‐トリフルオロエチレン共重合体、フッ化ビニリデン‐テトラフルオロエチレン共重合体、フッ化ビニリデン‐ヘキサフルオロプロピレン‐テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリル‐メチルメタクリレート共重合体、アクリロニトリル‐メチルアクリレート共重合体、アクリロニトリル‐エチルメタクリレート共重合体、アクリロニトリル‐エチルアクリレート共重合体、アクリロニトリル‐メタクリル酸共重合体、アクリロニトリル‐アクリル酸共重合体、アクリロニトリル‐ビニルアセテート共重合体等のアクリロニトリル系重合体、さらにはポリエチレンオキサイド、エチレンオキサイド‐プロピレンオキサイド共重合体、およびこれらのアクリレート体、メタクリレート体の重合体等を挙げることができる。また、これらの高分子化合物に電解液を含ませてゲル状にしたものを電解質として使用してもよい。あるいは電解質塩を含有させた高分子化合物のみをそのまま電解質に使用してもよい。なお、電解質として、Li2S‐P25系、Li2S‐B23系、Li2S‐SiS2系に代表される硫化物ガラス等の無機固体電解質を用いてもよい。Moreover, you may use a solid electrolyte for electrolyte. Examples of the polymer compound used in the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride. Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-a Examples include acrylonitrile polymers such as rilic acid copolymers and acrylonitrile-vinyl acetate copolymers, and also polyethylene oxide, ethylene oxide-propylene oxide copolymers, and polymers of these acrylates and methacrylates. it can. Moreover, you may use what made these polymer compounds contain electrolyte solution and made it gelatinous as electrolyte. Alternatively, only a polymer compound containing an electrolyte salt may be used as an electrolyte as it is. Incidentally, as an electrolyte, Li 2 S-P 2 S 5 based, Li 2 S-B 2 S 3 type, may be used an inorganic solid electrolyte such as sulfide glass represented by Li 2 S-SiS 2 system.

上記の実施の形態では、コイン型二次電池について説明したが、電池形状は特に限定されるものでないのはいうまでもなく、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケースや、モールド樹脂、アルミニウムラミネートフィルム等を使用してもよい。   In the above embodiment, the coin-type secondary battery has been described. However, the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like. Also, the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.

次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。   Next, examples of the present invention will be specifically described. In addition, the Example shown below is an example and this invention is not limited to the following Example.

以下、コイン型非水電解質二次電池の実施例1〜5と比較例1〜3について説明する。   Hereinafter, Examples 1 to 5 and Comparative Examples 1 to 3 of the coin-type nonaqueous electrolyte secondary battery will be described.

(実施例1)   Example 1

(リチウムマンガンニッケル複合酸化物の作製)   (Preparation of lithium manganese nickel composite oxide)

スピネル型構造のリチウムマンガンニッケル複合酸化物であるLi(Mn1.5Ni0.5)O2の作製は以下のようにして行った。ニッケル含有原料として平均粒径が0.5μmのニッケル金属粉、マンガン含有原料として四三酸化マンガン(Mn34)、リチウム含有原料として炭酸リチウム(Li2CO3)を準備した。これらの原料を、モル比で、Li/(Mn+Ni)=0.50、Mn:Ni=3.0:1.0となるように秤量した。秤量した原料を、溶媒に水を用いてボールミルにより混合してスラリーを作製した。得られたスラリーを噴霧乾燥し、乾燥粉を得た。得られた乾燥粉を、アルミナを主成分とするサヤに入れ、酸素ガス雰囲気中で950℃の温度にて20時間焼成することにより、上記のリチウムマンガンニッケル複合酸化物を作製した。The production of Li (Mn 1.5 Ni 0.5 ) O 2 , which is a lithium manganese nickel composite oxide having a spinel structure, was performed as follows. Nickel metal powder having an average particle size of 0.5 μm as a nickel-containing raw material, trimanganese tetraoxide (Mn 3 O 4 ) as a manganese-containing raw material, and lithium carbonate (Li 2 CO 3 ) as a lithium-containing raw material were prepared. These raw materials were weighed so that the molar ratio was Li / (Mn + Ni) = 0.50 and Mn: Ni = 3.0: 1.0. The weighed raw materials were mixed by a ball mill using water as a solvent to prepare a slurry. The obtained slurry was spray-dried to obtain a dry powder. The obtained dry powder was put in a sheath containing alumina as a main component, and fired at a temperature of 950 ° C. for 20 hours in an oxygen gas atmosphere, thereby producing the above lithium manganese nickel composite oxide.

(リチウムニッケルマンガンコバルト複合酸化物の作製)   (Preparation of lithium nickel manganese cobalt composite oxide)

次に、層状結晶構造のリチウムニッケルマンガンコバルト複合酸化物であるLi(Ni0.45Mn0.45Co0.10)O2の作製は以下のようにして行った。ニッケル含有原料として平均粒径が0.5μmのニッケル金属粉、マンガン含有原料として四三酸化マンガン(Mn34)、コバルト含有原料として四三酸化コバルト(Co34)、リチウム含有原料として炭酸リチウム(Li2CO3)を準備した。これらの原料を、モル比で、Li/(Ni+Mn+Co)=1.15、Ni:Mn:Co=0.45:0.45:0.10となるように秤量した。秤量した原料を、溶媒に水を用いてボールミルにより混合してスラリーを作製した。得られたスラリーを噴霧乾燥し、乾燥粉を得た。得られた乾燥粉を、アルミナを主成分とするサヤに入れ、酸素ガス雰囲気中で950℃の温度にて20時間焼成することにより、上記のリチウムニッケルマンガンコバルト酸複合酸化物を作製した。Next, Li (Ni 0.45 Mn 0.45 Co 0.10 ) O 2 , which is a lithium nickel manganese cobalt composite oxide having a layered crystal structure, was produced as follows. Nickel metal powder having an average particle size of 0.5 μm as a nickel-containing raw material, manganese trioxide (Mn 3 O 4 ) as a manganese-containing raw material, cobalt trioxide (Co 3 O 4 ) as a cobalt-containing raw material, and a lithium-containing raw material Lithium carbonate (Li 2 CO 3 ) was prepared. These raw materials were weighed so that the molar ratios were Li / (Ni + Mn + Co) = 1.15 and Ni: Mn: Co = 0.45: 0.45: 0.10. The weighed raw materials were mixed by a ball mill using water as a solvent to prepare a slurry. The obtained slurry was spray-dried to obtain a dry powder. The obtained dry powder was put in a sheath containing alumina as a main component, and baked at a temperature of 950 ° C. for 20 hours in an oxygen gas atmosphere, whereby the lithium nickel manganese cobalt acid composite oxide was produced.

(リチウムチタン複合酸化物の作製)   (Preparation of lithium titanium composite oxide)

スピネル型構造のリチウムチタン複合酸化物であるLi4Ti512の作製は以下のようにして行った。リチウム含有原料として炭酸リチウム(Li2CO3)、チタン含有原料として酸化チタン(TiO2)を準備した。これらの原料を、LiとTiのモル比がLi:Ti=4:5となるように秤量した。秤量した原料を、溶媒に水を用いて湿式混合してスラリーを作製した。得られたスラリーを噴霧乾燥し、乾燥粉を得た。得られた乾燥粉を、大気中で850℃の温度で1時間焼成することにより、上記のリチウムチタン複合酸化物を作製した。The production of Li 4 Ti 5 O 12 , which is a lithium-titanium composite oxide having a spinel structure, was performed as follows. Lithium carbonate (Li 2 CO 3 ) was prepared as a lithium-containing raw material, and titanium oxide (TiO 2 ) was prepared as a titanium-containing raw material. These raw materials were weighed so that the molar ratio of Li to Ti was Li: Ti = 4: 5. The weighed raw materials were wet mixed using water as a solvent to prepare a slurry. The obtained slurry was spray-dried to obtain a dry powder. The obtained dry powder was fired in the atmosphere at a temperature of 850 ° C. for 1 hour to produce the lithium titanium composite oxide.

(正極の作製)   (Preparation of positive electrode)

上記で作製されたスピネル型構造のリチウムマンガンニッケル複合酸化物と層状結晶構造のリチウムニッケルマンガンコバルト複合酸化物と、導電剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、重量比で51:34:7.5:7.5となるように秤量し、混合して正極合材を作製した。この正極合材を、溶媒としてのN‐メチル‐2‐ピロリドン中に分散させて正極スラリーを作製した。この正極スラリーを、厚みが20μmのアルミニウム箔の表面上に均一に塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスすることにより、正極シートを作製した。ここで、乾燥後のアルミニウム箔を除いた正極合材の重量が11.5mg/cm2となるように正極スラリーの塗布量を調整した。A spinel type lithium manganese nickel composite oxide and a layered crystal structure lithium nickel manganese cobalt composite oxide prepared above, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are 51 in weight ratio. : 34: 7.5: 7.5 was weighed and mixed to prepare a positive electrode mixture. This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to prepare a positive electrode slurry. This positive electrode slurry was uniformly applied onto the surface of an aluminum foil having a thickness of 20 μm, dried at a temperature of 140 ° C., and then pressed at a pressure of 1 ton / cm 2 to prepare a positive electrode sheet. Here, the coating amount of the positive electrode slurry was adjusted so that the weight of the positive electrode mixture excluding the dried aluminum foil was 11.5 mg / cm 2 .

(負極の作製)   (Preparation of negative electrode)

次に、上記で作製されたスピネル型構造のリチウムチタン複合酸化物と、導電剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、重量比で85:7.5:7.5となるように秤量し、混合して負極合材を作製した。この負極合材を、溶媒としてのN‐メチル‐2‐ピロリドン中に分散させて負極スラリーを作製した。この負極スラリーを、厚みが20μmのアルミニウム箔の表面上に均一に塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスすることにより、負極シートを作製した。ここで、乾燥後のアルミニウム箔を除いた負極合材の重量が10.8mg/cm2となるように負極スラリーの塗布量を調整した。Next, the spinel-type lithium-titanium composite oxide produced above, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are in a weight ratio of 85: 7.5: 7.5. Thus, the negative electrode mixture was prepared by weighing and mixing. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to prepare a negative electrode slurry. The negative electrode slurry was uniformly applied onto the surface of an aluminum foil having a thickness of 20 μm, dried at a temperature of 140 ° C., and then pressed at a pressure of 1 ton / cm 2 to prepare a negative electrode sheet. Here, the coating amount of the negative electrode slurry was adjusted so that the weight of the negative electrode mixture excluding the dried aluminum foil was 10.8 mg / cm 2 .

(電池の作製と評価)   (Production and evaluation of batteries)

上記で作製された正極シートと負極シートを、それぞれ、直径が12mmの円板と直径が14mmの円板に打ち抜くことにより、図1に示すような正極14と負極15を作製した。負極15に集電板17を張り合わせた。セパレータ16には、直径が16mmの円板状のポリエチレン多孔膜を用いた。電解液としては、エチレンカーボネートとジエチルカーボネートを体積比3:7で混合した溶媒に、溶媒1リットル当たり1モルの六フッ化リン酸リチウム(LiPF6)を溶解した有機電解液を用いた。このようにして、直径が20mm、厚みが3.2mmのコイン型非水電解質二次電池1を作製した。The positive electrode sheet and the negative electrode sheet prepared as above were punched into a disk having a diameter of 12 mm and a disk having a diameter of 14 mm, respectively, so that a positive electrode 14 and a negative electrode 15 as shown in FIG. 1 were prepared. A current collecting plate 17 was bonded to the negative electrode 15. As the separator 16, a disk-like polyethylene porous film having a diameter of 16 mm was used. As the electrolytic solution, an organic electrolytic solution in which 1 mol of lithium hexafluorophosphate (LiPF 6 ) was dissolved in 1 liter of the solvent in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 was used. In this way, a coin-type non-aqueous electrolyte secondary battery 1 having a diameter of 20 mm and a thickness of 3.2 mm was produced.

以上のようにして作製されたコイン型非水電解質二次電池1を用いて充放電特性を評価した。25℃の恒温槽内にて、200μAの電流値、1.5〜4.0Vの電圧範囲で10サイクル充放電させた。   The charge / discharge characteristics were evaluated using the coin-type nonaqueous electrolyte secondary battery 1 produced as described above. The battery was charged and discharged for 10 cycles in a constant temperature bath of 25 ° C. with a current value of 200 μA and a voltage range of 1.5 to 4.0 V.

(実施例2)   (Example 2)

正極の作製において、上記で作製されたスピネル型構造のリチウムマンガンニッケル複合酸化物と、層状結晶構造のリチウムニッケルマンガンコバルト複合酸化物と、導電剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、重量比で76.5:8.5:7.5:7.5となるように秤量し、混合して正極合材を作製したことと、乾燥後のアルミニウム箔を除いた正極合材の重量が13.3mg/cm2となるように正極スラリーの塗布量を調整したこと以外は、実施例1と同様にしてコイン型非水電解質二次電池1を作製して評価した。In the production of the positive electrode, the spinel-type lithium manganese nickel composite oxide produced above, the lithium nickel manganese cobalt composite oxide having a layered crystal structure, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder Were weighed to a weight ratio of 76.5: 8.5: 7.5: 7.5 and mixed to produce a positive electrode mixture, and the positive electrode mixture excluding the dried aluminum foil A coin-type non-aqueous electrolyte secondary battery 1 was prepared and evaluated in the same manner as in Example 1 except that the coating amount of the positive electrode slurry was adjusted so that the weight of the battery was 13.3 mg / cm 2 .

(実施例3)   (Example 3)

正極の作製において、上記で作製されたスピネル型構造のリチウムマンガンニッケル複合酸化物と、層状結晶構造のリチウムニッケルマンガンコバルト複合酸化物と、導電剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、重量比で80.8:4.2:7.5:7.5となるように秤量し、混合して正極合材を作製したことと、乾燥後のアルミニウム箔を除いた正極合材の重量が13.7mg/cm2となるように正極スラリーの塗布量を調整したこと以外は、実施例1と同様にしてコイン型非水電解質二次電池1を作製して評価した。In the production of the positive electrode, the spinel-type lithium manganese nickel composite oxide produced above, the lithium nickel manganese cobalt composite oxide having a layered crystal structure, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder Were weighed to a weight ratio of 80.8: 4.2: 7.5: 7.5 and mixed to produce a positive electrode mixture, and the positive electrode mixture excluding the dried aluminum foil A coin-type non-aqueous electrolyte secondary battery 1 was prepared and evaluated in the same manner as in Example 1 except that the coating amount of the positive electrode slurry was adjusted so that the weight of the battery was 13.7 mg / cm 2 .

(実施例4)   Example 4

層状結晶構造のリチウムニッケルマンガンコバルト複合酸化物として、Li(Ni0.40Mn0.40Co0.20)O2を作製して用いたこと以外は、実施例1と同様にしてコイン型非水電解質二次電池1を作製して評価した。A coin-type non-aqueous electrolyte secondary battery 1 was prepared in the same manner as in Example 1, except that Li (Ni 0.40 Mn 0.40 Co 0.20 ) O 2 was used as a lithium nickel manganese cobalt composite oxide having a layered crystal structure. Were fabricated and evaluated.

(実施例5)   (Example 5)

層状結晶構造のリチウムニッケルマンガンコバルト複合酸化物として、Li(Ni0.35Mn0.35Co0.30)O2を作製して用いたこと以外は、実施例1と同様にしてコイン型非水電解質二次電池1を作製して評価した。A coin-type non-aqueous electrolyte secondary battery 1 was prepared in the same manner as in Example 1 except that Li (Ni 0.35 Mn 0.35 Co 0.30 ) O 2 was prepared and used as the lithium nickel manganese cobalt composite oxide having a layered crystal structure. Were fabricated and evaluated.

(比較例1)   (Comparative Example 1)

(正極の作製)   (Preparation of positive electrode)

上記で作製されたスピネル型構造のリチウムマンガンニッケル複合酸化物と、導電剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、重量比で85:7.5:7.5となるように秤量し、混合して正極合材を作製した。この正極合材を、溶媒としてのN‐メチル‐2‐ピロリドン中に分散させて正極スラリーを作製した。この正極スラリーを、厚みが20μmのアルミニウム箔の表面上に均一に塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスすることにより、正極シートを作製した。ここで、乾燥後のアルミニウム箔を除いた正極合材の重量が14.0mg/cm2となるように正極スラリーの塗布量を調整した。Spinel-type lithium manganese nickel composite oxide produced above, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder so that the weight ratio is 85: 7.5: 7.5 A positive electrode mixture was prepared by weighing and mixing. This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to prepare a positive electrode slurry. This positive electrode slurry was uniformly applied onto the surface of an aluminum foil having a thickness of 20 μm, dried at a temperature of 140 ° C., and then pressed at a pressure of 1 ton / cm 2 to prepare a positive electrode sheet. Here, the coating amount of the positive electrode slurry was adjusted so that the weight of the positive electrode mixture excluding the dried aluminum foil was 14.0 mg / cm 2 .

(負極の作製)   (Preparation of negative electrode)

次に、上記で作製されたスピネル型構造のリチウムチタン複合酸化物と、導電剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、重量比で85:7.5:7.5となるように秤量し、混合して負極合材を作製した。この負極合材を、溶媒としてのN‐メチル‐2‐ピロリドン中に分散させて負極スラリーを作製した。この負極スラリーを、厚みが20μmのアルミニウム箔の表面上に均一に塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスすることにより、負極シートを作製した。ここで、乾燥後のアルミニウム箔を除いた負極合材の重量が10.8mg/cm2となるように負極スラリーの塗布量を調整した。Next, the spinel-type lithium-titanium composite oxide produced above, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are in a weight ratio of 85: 7.5: 7.5. Thus, the negative electrode mixture was prepared by weighing and mixing. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to prepare a negative electrode slurry. The negative electrode slurry was uniformly applied onto the surface of an aluminum foil having a thickness of 20 μm, dried at a temperature of 140 ° C., and then pressed at a pressure of 1 ton / cm 2 to prepare a negative electrode sheet. Here, the coating amount of the negative electrode slurry was adjusted so that the weight of the negative electrode mixture excluding the dried aluminum foil was 10.8 mg / cm 2 .

上記で作製された正極シートと負極シートを用いて、実施例1と同様にしてコイン型非水電解質二次電池1を作製して評価した。   Using the positive electrode sheet and the negative electrode sheet prepared above, a coin-type non-aqueous electrolyte secondary battery 1 was prepared and evaluated in the same manner as in Example 1.

(比較例2)   (Comparative Example 2)

(正極の作製)   (Preparation of positive electrode)

上記で作製された層状結晶構造のリチウムニッケルマンガンコバルト複合酸化物と、導電剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、重量比で85:7.5:7.5となるように秤量し、混合して正極合材を作製した。この正極合材を、溶媒としてのN‐メチル‐2‐ピロリドン中に分散させて正極スラリーを作製した。この正極スラリーを、厚みが20μmのアルミニウム箔の表面上に均一に塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスすることにより、正極シートを作製した。ここで、乾燥後のアルミニウム箔を除いた正極合材の重量が10.3mg/cm2となるように正極スラリーの塗布量を調整した。The lithium nickel manganese cobalt composite oxide having a layered crystal structure produced above, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder so that the weight ratio is 85: 7.5: 7.5. Were weighed and mixed to prepare a positive electrode mixture. This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to prepare a positive electrode slurry. This positive electrode slurry was uniformly applied onto the surface of an aluminum foil having a thickness of 20 μm, dried at a temperature of 140 ° C., and then pressed at a pressure of 1 ton / cm 2 to prepare a positive electrode sheet. Here, the coating amount of the positive electrode slurry was adjusted so that the weight of the positive electrode mixture excluding the dried aluminum foil was 10.3 mg / cm 2 .

(負極の作製)   (Preparation of negative electrode)

次に、上記で作製されたスピネル型構造のリチウムチタン複合酸化物と、導電剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、重量比で85:7.5:7.5となるように秤量し、混合して負極合材を作製した。この負極合材を、溶媒としてのN‐メチル‐2‐ピロリドン中に分散させて負極スラリーを作製した。この負極スラリーを、厚みが20μmのアルミニウム箔の表面上に均一に塗布して140℃の温度で乾燥させた後、1トン/cm2の圧力でプレスすることにより、負極シートを作製した。ここで、乾燥後のアルミニウム箔を除いた負極合材の重量が10.5mg/cm2となるように負極スラリーの塗布量を調整した。Next, the spinel-type lithium-titanium composite oxide produced above, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are in a weight ratio of 85: 7.5: 7.5. Thus, the negative electrode mixture was prepared by weighing and mixing. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to prepare a negative electrode slurry. The negative electrode slurry was uniformly applied onto the surface of an aluminum foil having a thickness of 20 μm, dried at a temperature of 140 ° C., and then pressed at a pressure of 1 ton / cm 2 to prepare a negative electrode sheet. Here, the coating amount of the negative electrode slurry was adjusted so that the weight of the negative electrode mixture excluding the aluminum foil after drying was 10.5 mg / cm 2 .

上記で作製された正極シートと負極シートを用いて、実施例1と同様にしてコイン型非水電解質二次電池1を作製した。コイン型非水電解質二次電池1の充放電特性は、25℃の恒温槽内にて、200μmの電流値、1.5〜3.5Vの電圧範囲で10サイクル充放電させることにより、評価した。   A coin-type non-aqueous electrolyte secondary battery 1 was produced in the same manner as in Example 1 using the positive electrode sheet and negative electrode sheet produced above. The charge / discharge characteristics of the coin-type non-aqueous electrolyte secondary battery 1 were evaluated by charging and discharging 10 cycles in a constant temperature bath at 25 ° C. with a current value of 200 μm and a voltage range of 1.5 to 3.5V. .

(比較例3)   (Comparative Example 3)

(正極の作製)   (Preparation of positive electrode)

実施例3と同様にして正極シートを作製した。   A positive electrode sheet was produced in the same manner as in Example 3.

(負極の作製)   (Preparation of negative electrode)

次に、負極活物質としてグラファイトと、導電剤としてアセチレンブラックと、結着材としてポリフッ化ビニリデンとを、重量比で90:5:5となるように秤量し、混合して負極合材を作製した。この負極合材を、溶媒としてのN‐メチル‐2‐ピロリドン中に分散させて負極スラリーを作製した。この負極スラリーを、厚みが8μmの銅箔の表面上に均一に塗布して120℃の温度で乾燥させた後、1トン/cm2の圧力でプレスすることにより、負極シートを作製した。ここで、乾燥後の銅箔を除いた負極合材の重量が6.1mg/cm2となるように負極スラリーの塗布量を調整した。Next, graphite as a negative electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are weighed in a weight ratio of 90: 5: 5 and mixed to prepare a negative electrode mixture. did. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to prepare a negative electrode slurry. This negative electrode slurry was uniformly applied onto the surface of a copper foil having a thickness of 8 μm, dried at a temperature of 120 ° C., and then pressed at a pressure of 1 ton / cm 2 to prepare a negative electrode sheet. Here, the coating amount of the negative electrode slurry was adjusted such that the weight of the negative electrode mixture excluding the dried copper foil was 6.1 mg / cm 2 .

上記で作製された正極シートと負極シートを用いて、実施例1と同様にしてコイン型非水電解質二次電池1を作製した。コイン型非水電解質二次電池1の充放電特性は、25℃の恒温槽内にて、200μAの電流値、3.0〜4.7Vの電圧範囲で10サイクル充放電させることにより、評価した。   A coin-type non-aqueous electrolyte secondary battery 1 was produced in the same manner as in Example 1 using the positive electrode sheet and negative electrode sheet produced above. The charge / discharge characteristics of the coin-type nonaqueous electrolyte secondary battery 1 were evaluated by charging and discharging 10 cycles in a constant temperature bath at 25 ° C. with a current value of 200 μA and a voltage range of 3.0 to 4.7 V. .

なお、比較例3のコイン型非水電解質二次電池1は、負極として炭素材料を用いているため、スピネル型構造のリチウムチタン複合酸化物を負極に用いた実施例1〜3と比較例1〜2のコイン型非水電解質二次電池1と比較すると、短絡しやすい電池である。   Since the coin-type non-aqueous electrolyte secondary battery 1 of Comparative Example 3 uses a carbon material as the negative electrode, Examples 1 to 3 and Comparative Example 1 using a spinel-type lithium-titanium composite oxide as the negative electrode. Compared with the coin-type non-aqueous electrolyte secondary battery 1 to 2, it is a battery that is easily short-circuited.

上記の実施例1〜3と比較例1で作製されたコイン型非水電解質二次電池1の充放電曲線を、それぞれ、図2〜図5に示す。   The charge / discharge curves of the coin-type nonaqueous electrolyte secondary battery 1 produced in Examples 1 to 3 and Comparative Example 1 are shown in FIGS.

また、上記の実施例1〜5、比較例2〜3で作製された層状結晶構造のリチウムニッケルマンガンコバルト複合酸化物の焼成粉末について、X線回折装置(RINT2500)を用いて、50kV、250mA、走査スピード10°/min、0.02°ステップの条件で粉末X線回折測定を行った。粉末X線回折測定の結果から求めたc/a軸比、a軸長(Å:オングストローム)、および、c軸長(Å:オングストローム)を表1に示す。   Moreover, about the baking powder of lithium nickel manganese cobalt complex oxide of the layered crystal structure produced in said Examples 1-5 and Comparative Examples 2-3, 50 kV, 250 mA, using an X-ray-diffraction apparatus (RINT2500), Powder X-ray diffraction measurement was performed under the conditions of a scanning speed of 10 ° / min and a 0.02 ° step. Table 1 shows the c / a axial ratio, the a-axis length (Å: angstrom), and the c-axis length (オ ン: angstrom) determined from the results of powder X-ray diffraction measurement.

さらに、上記の実施例1〜5と比較例1〜3で作製されたコイン型非水電解質二次電池1の電池特性の評価結果として「初回の放電容量」と「10サイクル後の容量維持率」を表1に示す。表1において、実施例1〜3と比較例1〜2の「初回の放電容量」は負極活物質の単位重量当たりの1サイクル目の放電容量であり、比較例3の「初回の放電容量」は正極活物質の単位重量当たりの1サイクル目の放電容量である。   Furthermore, as an evaluation result of the battery characteristics of the coin-type nonaqueous electrolyte secondary battery 1 produced in the above Examples 1 to 5 and Comparative Examples 1 to 3, “initial discharge capacity” and “capacity maintenance ratio after 10 cycles” Is shown in Table 1. In Table 1, “First-time discharge capacity” in Examples 1 to 3 and Comparative Examples 1 and 2 is the discharge capacity at the first cycle per unit weight of the negative electrode active material, and “First-time discharge capacity” in Comparative Example 3 Is the discharge capacity of the first cycle per unit weight of the positive electrode active material.

なお、表1に示す電池特性の評価結果において「10サイクル後の容量維持率」を以下の式で算出した。   In the battery characteristic evaluation results shown in Table 1, “capacity maintenance ratio after 10 cycles” was calculated by the following formula.

(10サイクル後の容量維持率)[%]={(10サイクル目の放電容量)/(1サイクル目の放電容量)}×100   (Capacity maintenance ratio after 10 cycles) [%] = {(Discharge capacity at 10th cycle) / (Discharge capacity at 1st cycle)} × 100

Figure 0005565465
Figure 0005565465

図2〜図4に示すように、実施例1〜3のコイン型非水電解質二次電池1では、充電初期と放電末期の電圧変化を大きくできるため、充電状態または充電度合いを容易に検出することができる。これに対して、図5に示すように、比較例1のコイン型非水電解質二次電池1では、充電初期の電位変化が平坦であるため、充電状態または充電度合いを検出することが困難である。   As shown in FIGS. 2 to 4, in the coin-type nonaqueous electrolyte secondary battery 1 of Examples 1 to 3, the voltage change between the initial stage of charging and the end stage of discharging can be increased, so that the state of charge or the degree of charge is easily detected. be able to. On the other hand, as shown in FIG. 5, in the coin-type nonaqueous electrolyte secondary battery 1 of Comparative Example 1, since the potential change at the initial stage of charging is flat, it is difficult to detect the state of charge or the degree of charge. is there.

表1に示す結果から、実施例1〜3のコイン型非水電解質二次電池1では、c/a軸比が4.958以下であるため、10サイクル後の放電容量維持率が高く、良好なサイクル特性を得ることができる。これに対して、実施例4〜5のコイン型非水電解質二次電池1では、c/a軸比が4.958を超えるため、実施例1〜3と比べて、10サイクル後の放電容量維持率が低く、充放電サイクルに伴う容量低下が大きい。なお、比較例2〜3のコイン型非水電解質二次電池1では、実施例1〜3と比べて、10サイクル後の放電容量維持率が低く、充放電サイクルに伴う容量低下が大きい。   From the results shown in Table 1, in the coin-type nonaqueous electrolyte secondary batteries 1 of Examples 1 to 3, the c / a axial ratio is 4.958 or less, so the discharge capacity maintenance rate after 10 cycles is high and good. Cycle characteristics can be obtained. On the other hand, in the coin-type nonaqueous electrolyte secondary batteries 1 of Examples 4 to 5, the c / a axial ratio exceeds 4.958. Therefore, compared to Examples 1 to 3, the discharge capacity after 10 cycles The maintenance rate is low, and the capacity reduction accompanying the charge / discharge cycle is large. In addition, in the coin-type non-aqueous electrolyte secondary battery 1 of Comparative Examples 2-3, compared with Examples 1-3, the discharge capacity maintenance rate after 10 cycles is low, and the capacity | capacitance fall accompanying a charging / discharging cycle is large.

今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。   It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.

本発明の非水電解質二次電池は、充電状態または充電度合いを容易に検出することができるので、携帯電話、ノートパソコン、デジタルカメラ等の携帯用電子機器の電源に有用である。   Since the nonaqueous electrolyte secondary battery of the present invention can easily detect the state of charge or the degree of charge, it is useful as a power source for portable electronic devices such as mobile phones, laptop computers, and digital cameras.

1:コイン型非水電解質二次電池、11:ケース、12:封口板、13:ガスケット、14:正極、15:負極、16:セパレータ、17:集電板、18:ばね部材。   1: Coin-type non-aqueous electrolyte secondary battery, 11: case, 12: sealing plate, 13: gasket, 14: positive electrode, 15: negative electrode, 16: separator, 17: current collector plate, 18: spring member.

Claims (4)

正極と負極を有する非水電解質二次電池であって、
前記負極がリチウムチタン複合酸化物を含み、
前記正極がリチウムニッケルマンガンコバルト複合酸化物とスピネル型構造を有するリチウムマンガンニッケル複合酸化物とを含み、
前記正極が、スピネル型構造を有するリチウムマンガンニッケル複合酸化物を主活物質として含み、
前記リチウムニッケルマンガンコバルト複合酸化物が、空間群R3mに帰属する六方晶系の層状岩塩型の結晶構造を有する、非水電解質二次電池。
A non-aqueous electrolyte secondary battery having a positive electrode and a negative electrode,
The negative electrode includes a lithium titanium composite oxide,
The positive electrode is observed contains a lithium-manganese-nickel composite oxide having lithium nickel manganese cobalt composite oxide and spinel structure,
The positive electrode includes a lithium manganese nickel composite oxide having a spinel structure as a main active material,
The non-aqueous electrolyte secondary battery in which the lithium nickel manganese cobalt composite oxide has a hexagonal layered rock salt crystal structure belonging to the space group R3m .
前記リチウムニッケルマンガンコバルト複合酸化物は、空間群R3mに帰属する六方晶系の層状岩塩型の結晶構造においてa軸の格子定数に対するc軸の格子定数の比率(c/a軸比)が4.96以下であり、かつ、一般式Li1+α[NiMnCo]O(式中、αは0≦α<1.3、x、yおよびzはx+y+z=1、0<x<0.50、0<z≦0.15を満たす)で表される、請求項に記載の非水電解質二次電池。 In the lithium nickel manganese cobalt composite oxide, the ratio of the c-axis lattice constant to the a-axis lattice constant (c / a axis ratio) in the hexagonal layered rock salt type crystal structure belonging to the space group R3m is 4. 96 or less and the general formula Li 1 + α [Ni x Mn y Co z ] O 2 (where α is 0 ≦ α <1.3, x, y and z are x + y + z = 1, 0 <x <0). The non-aqueous electrolyte secondary battery according to claim 1 , wherein: .50, 0 <z ≦ 0.15 is satisfied. 前記a軸の格子定数が2.8オングストローム以上である、請求項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 2 , wherein the a-axis lattice constant is 2.8 angstroms or more. 前記c軸の格子定数が14オングストローム以上である、請求項またはに記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 2 or 3 , wherein the c-axis lattice constant is 14 angstroms or more.
JP2012529585A 2010-08-20 2011-08-12 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5565465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012529585A JP5565465B2 (en) 2010-08-20 2011-08-12 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010185016 2010-08-20
JP2010185016 2010-08-20
JP2012529585A JP5565465B2 (en) 2010-08-20 2011-08-12 Nonaqueous electrolyte secondary battery
PCT/JP2011/068413 WO2012023501A1 (en) 2010-08-20 2011-08-12 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPWO2012023501A1 JPWO2012023501A1 (en) 2013-10-28
JP5565465B2 true JP5565465B2 (en) 2014-08-06

Family

ID=45605155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012529585A Expired - Fee Related JP5565465B2 (en) 2010-08-20 2011-08-12 Nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP5565465B2 (en)
WO (1) WO2012023501A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128676A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
JP5637316B2 (en) * 2012-02-29 2014-12-10 新神戸電機株式会社 Lithium ion battery
JP5621933B2 (en) * 2012-02-29 2014-11-12 新神戸電機株式会社 Lithium ion battery
EP3096388B1 (en) * 2014-01-16 2019-03-20 Kaneka Corporation Nonaqueous electrolyte secondary battery and battery pack of same
EP3131151B1 (en) * 2014-04-11 2019-01-23 Nissan Motor Co., Ltd Lithium ion secondary battery
WO2015199101A1 (en) * 2014-06-24 2015-12-30 株式会社カネカ Non-aqueous electrolyte secondary battery, and battery pack obtained by connecting plurality of non-aqueous electrolyte secondary batteries
US10103367B2 (en) 2014-09-26 2018-10-16 Johnson Controls Technology Company Lithium ion battery module with free floating prismatic battery cells
CN107112584B (en) 2015-02-12 2019-12-17 株式会社钟化 Nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP6873035B2 (en) * 2015-04-28 2021-05-19 株式会社カネカ Packaged items
JP6878447B2 (en) * 2016-09-29 2021-05-26 株式会社東芝 Non-aqueous electrolyte batteries and battery packs
CN109565046B (en) * 2016-12-02 2022-07-12 松下知识产权经营株式会社 Positive electrode active material and battery using same
JP7030738B2 (en) 2019-03-18 2022-03-07 株式会社東芝 Electrodes, non-aqueous electrolyte batteries, battery packs and vehicles
JP7467162B2 (en) 2020-02-28 2024-04-15 株式会社東芝 Nonaqueous electrolyte battery and battery pack
WO2024063152A1 (en) * 2022-09-22 2024-03-28 株式会社プロテリアル Method for manufacturing precursor of positive-electrode active material for lithium-ion secondary battery, precursor obtained thereby, and method for manufacturing positive-electrode active material for lithium-ion secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270043A (en) * 1997-03-26 1998-10-09 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacture
JPH11283624A (en) * 1998-03-31 1999-10-15 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture thereof
JP2006253119A (en) * 2005-02-08 2006-09-21 Mitsubishi Chemicals Corp Lithium-nickel-manganese-cobalt-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2007250299A (en) * 2006-03-15 2007-09-27 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte solution secondary battery
JP2008519399A (en) * 2004-10-29 2008-06-05 メドトロニック・インコーポレーテッド Lithium-ion battery and medical device
JP2010153258A (en) * 2008-12-25 2010-07-08 Toshiba Corp Nonaqueous electrolyte battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270043A (en) * 1997-03-26 1998-10-09 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacture
JPH11283624A (en) * 1998-03-31 1999-10-15 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture thereof
JP2008519399A (en) * 2004-10-29 2008-06-05 メドトロニック・インコーポレーテッド Lithium-ion battery and medical device
JP2006253119A (en) * 2005-02-08 2006-09-21 Mitsubishi Chemicals Corp Lithium-nickel-manganese-cobalt-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2007250299A (en) * 2006-03-15 2007-09-27 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte solution secondary battery
JP2010153258A (en) * 2008-12-25 2010-07-08 Toshiba Corp Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
WO2012023501A1 (en) 2012-02-23
JPWO2012023501A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5565465B2 (en) Nonaqueous electrolyte secondary battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP2006344509A (en) Lithium secondary battery
JP2013004234A (en) Method for manufacturing nonaqueous electrolyte secondary battery
KR100922685B1 (en) Cathode active material for lithium secondary battery
WO2012002365A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
JP5644083B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method for producing negative electrode active material for lithium secondary battery
WO2012002364A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
JP6624631B2 (en) Lithium transition metal composite oxide and method for producing the same
CN109983601B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2014167873A (en) Negative electrode active material for lithium ion secondary battery, process of manufacturing the same, and lithium ion secondary battery
KR101553389B1 (en) Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
JP5440225B2 (en) Electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6468025B2 (en) Non-aqueous lithium secondary battery
KR101609244B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
WO2011135953A1 (en) Electrode active material and non-aqueous electrolyte secondary battery provided with same
WO2012127919A1 (en) Secondary battery electrode active material and secondary battery provided with same
JP4697504B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP5553110B2 (en) Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery equipped with the same
JP5685817B2 (en) Electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2012127920A1 (en) Secondary battery electrode active material, method for producing same, and secondary battery provided with same
WO2011024353A1 (en) Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same
JP2012059387A (en) Electrode active material and method of manufacturing the same, and nonaqueous electrolyte secondary battery with the same
JP2018018581A (en) Lithium ion battery
JP2001196060A (en) Electrode for lithium secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5565465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees