JP2017056922A - 電動機の冷却装置 - Google Patents

電動機の冷却装置 Download PDF

Info

Publication number
JP2017056922A
JP2017056922A JP2015186016A JP2015186016A JP2017056922A JP 2017056922 A JP2017056922 A JP 2017056922A JP 2015186016 A JP2015186016 A JP 2015186016A JP 2015186016 A JP2015186016 A JP 2015186016A JP 2017056922 A JP2017056922 A JP 2017056922A
Authority
JP
Japan
Prior art keywords
valve
flow path
oil pump
refrigerant
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015186016A
Other languages
English (en)
Other versions
JP6458695B2 (ja
Inventor
駒田 英明
Hideaki Komada
英明 駒田
清太郎 信安
Seitaro Nobuyasu
清太郎 信安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015186016A priority Critical patent/JP6458695B2/ja
Publication of JP2017056922A publication Critical patent/JP2017056922A/ja
Application granted granted Critical
Publication of JP6458695B2 publication Critical patent/JP6458695B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】電動機の冷却装置において逆止弁の搭載スペースを削減すること。【解決手段】ハイブリッド車両に搭載されたモータ2,3の冷却装置100において、一つの筐体内部に二つのバルブ機構111,112を有する逆止弁110を備え、逆止弁110は、冷媒が機械式オイルポンプ101側へ逆流することを規制する第一バルブ機構111と、第二吐出流路220aと接続流路220bとの接続箇所に設けられ、かつ冷媒が電動オイルポンプ102側へ逆流することを規制する第二バルブ機構112と、逆止弁110の筐体内部でオイルクーラ側の水冷前流路210bと接続流路220bとを連通させる連通流路201とを有することを特徴とする。【選択図】図2

Description

本発明は、電動機の冷却装置に関する。
特許文献1には、内燃機関と二つの電動機とを備えるハイブリッド車両において、内燃機関によって駆動する機械式オイルポンプと電動オイルポンプとを含むポンプユニットに、オイルクーラを接続し、オイルクーラで冷却された後のオイルを二つの電動機に供給して電動機を冷却する冷却装置が記載されている。
特開2013−220771号公報
しかしながら、特許文献1の冷却装置では、機械式オイルポンプ側と電動オイルポンプ側とのそれぞれに逆止弁を設置しているため、逆止弁二つ分の搭載スペースを確保しなければならない。
本発明は、上記に鑑みてなされたものであって、一つの筐体内部に二つのバルブ機構を有する逆止弁によって搭載スペースを削減することができる電動機の冷却装置を提供することを目的とする。
本発明は、内燃機関と、第一電動機と、第二電動機とを備える車両に搭載された電動機の冷却装置において、各電動機を冷却する冷媒を貯留する冷媒源と、前記内燃機関によって駆動され、かつ前記冷媒源から吸入した冷媒を吐出口から吐出する機械式オイルポンプと、前記機械式オイルポンプの吐出口に接続され、かつ前記機械式オイルポンプが吐出した冷媒を、オイルクーラを経由させて前記第一電動機および前記第二電動機に供給する第一流路と、前記冷媒源に対して前記機械式オイルポンプと並列に接続され、かつ前記冷媒源から冷媒を吸入して吐出口から吐出する電動オイルポンプと、前記電動オイルポンプの吐出口に接続され、かつ前記第一流路と接続された第二流路と、前記第一流路と前記第二流路とに接続され、かつ前記第一電動機に冷媒を供給する第三流路と、一つの筐体内部に二つのバルブ機構を有する逆止弁とを備え、前記逆止弁は、前記第一流路で前記機械式オイルポンプと前記オイルクーラとの間に設けられ、かつ冷媒が前記機械式オイルポンプの吐出口側へ向けて流れることを規制する第一バルブ機構と、前記第二流路と前記第三流路との接続箇所に設けられ、かつ冷媒が前記第二流路から前記電動オイルポンプの吐出口側へ向けて流れることを規制する第二バルブ機構と、前記筐体内部で、前記第一流路のうち前記第一バルブ機構よりも前記オイルクーラ側の流路と、前記第三流路とを連通させている連通流路とを有することを特徴とする。
本発明では、電動機の冷却装置において、一つの筐体内部に二つのバルブ機構を有する逆止弁によって搭載スペースを削減できる。また、逆止弁として機能する二つのバルブ機構を組み付ける場合に一つの筐体を組み付ければよいため、従来のように別体の逆止弁を二つ取り付ける場合に比べて組み付け工数を削減できる。
図1は、電動機の冷却装置を搭載する車両の一例を示すスケルトン図である。 図2は、冷却装置および冷却回路の概略構成を示す模式図である。 図3は、ケースに外付けされた逆止弁の外観を示す説明図である。 図4は、逆止弁を経由するオイルの流れを説明するためのスケルトン図である。 図5は、逆止弁を二つの接続口側から見た場合を示す説明図である。 図6は、図5のA−A断面として逆止弁の内部構造を示す断面図である。 図7は、逆止弁を第一流出口および第二供給側から見た場合の分解図である。 図8は、図5のB−B断面として第一バルブ機構の内部構造を示す断面図である。
以下、図面を参照して、本発明の実施形態における電動機の冷却装置について具体的に説明する。
図1は、本実施形態における電動機の冷却装置を搭載した車両Veの一例を示すスケルトン図である。車両Veは、動力源として、エンジン1と、第一モータ(MG1)2と、第二モータ(MG2)3とを備えたハイブリッド車両である。エンジン1は、周知の内燃機関である。各モータ2,3は、モータ機能と発電機能とを有する周知のモータ・ジェネレータであって、インバータを介してバッテリ(いずれも図示せず)に電気的に接続されている。
車両Veでは、エンジン1から駆動輪4に至る動力伝達経路中に設けられた動力分割機構5によって、エンジン1が出力した動力を第一モータ2側と駆動輪4側とに分割できる。その際、第一モータ2はエンジン1が出力した動力によって発電し、その電力がバッテリに蓄電され、あるいは第二モータ3に供給される。
エンジン1のクランクシャフト1aと同一軸線上に、入力軸6と動力分割機構5と第一モータ2とが配置されている。クランクシャフト1aは、クラッチCを介して入力軸6と連結される。クラッチCが係合している場合には、エンジン1と入力軸6とが動力伝達可能に接続され、クラッチCが解放している場合には、エンジン1と入力軸6との間が動力伝達できないように遮断される。つまり、クラッチCが係合状態では、クランクシャフト1aと入力軸6が一体回転し、クラッチCが解放状態では、エンジン1は動力伝達系から切り離される。第一モータ2は、動力分割機構5に隣接し、軸線方向でエンジン1とは反対側に配置されている。第一モータ2は、コイルが巻き回されたステータ2aと、ロータ2bと、そのロータ2bが一体回転するように取り付けられた回転軸(ロータ軸)2cとを備えている。
動力分割機構5は、複数の回転要素を有する差動機構であって、図1に示す例ではシングルピニオン型の遊星歯車機構(プラネタリギヤ)によって構成されている。動力分割機構5は、三つの回転要素として、外歯歯車のサンギヤ5Sと、サンギヤ5Sに対して同心円上に配置された内歯歯車のリングギヤ5Rと、これらサンギヤ5Sとリングギヤ5Rとに噛み合っているピニオンギヤを自転可能かつ公転可能に保持しているキャリヤ5Cとを備えている。
サンギヤ5Sには、第一モータ2のロータ軸2cが一体回転するように連結されている。キャリヤ5Cには、入力軸6が一体回転するように連結されており、エンジン1が入力軸6を介してキャリヤ5Cに連結されている。リングギヤ5Rには、動力分割機構5から駆動輪4側へ向けてトルクを出力する出力ギヤ7が一体化されている。
出力ギヤ7は、リングギヤ5Rと一体回転する外歯歯車であり、カウンタギヤ機構8のカウンタドリブンギヤ8bと噛み合っている。カウンタギヤ機構8は、入力軸6と平行に配置されたカウンタシャフト8aと、カウンタドリブンギヤ8bと、デファレンシャルギヤ機構9のリングギヤ9aと噛み合っているカウンタドライブギヤ8cとを有する。カウンタシャフト8aには、カウンタドリブンギヤ8bとカウンタドライブギヤ8cとが一体回転するように取り付けられている。デファレンシャルギヤ機構9には、左右のドライブシャフト10を介して駆動輪4が連結されている。
車両Veでは、エンジン1から駆動輪4に伝達されるトルクに、第二モータ3が出力したトルクを付加できるように構成されている。第二モータ3は、コイルが巻き回されたステータ3aと、ロータ3bと、そのロータ3bが一体回転するように取り付けられた回転軸(ロータ軸)3cとを備えている。ロータ軸3cは、カウンタシャフト8aと平行に配置され、カウンタドリブンギヤ8bと噛み合っているリダクションギヤ11が一体回転するように取り付けられている。
また、車両Veには、エンジン1によって駆動する機械式オイルポンプ(MOP)101が設けられている。機械式オイルポンプ101は、エンジン1のクランクシャフト1aと同一軸線上に配置され、入力軸6と一体回転するポンプロータ(図示せず)を備えている。エンジン1の動力によって車両Veが走行する際、入力軸6のトルクによって機械式オイルポンプ101のポンプロータが正方向に回転し、機械式オイルポンプ101は吐出口からオイルを吐出する。機械式オイルポンプ101から吐出されたオイルは、供給油路を介して動力分割機構5などの潤滑必要部に供給されて潤滑油として機能するとともに、各モータ2,3などの冷却必要部に供給されて冷媒として機能する。車両Veでは、機械式オイルポンプ101から吐出されたオイルを冷媒として各モータ2,3に供給し各モータ2,3を冷却するように構成されている。なお、機械式オイルポンプ101は、入力軸6と一体回転する構造および配置に限定されず、入力軸6からオフセットされた位置に設けられてもよい。この場合、機械式オイルポンプ101と入力軸6とは、ギヤ機構やベルト機構などの伝動機構を介してトルク伝達可能に接続される。
図2は、各モータ2,3の冷却装置100の概略構成を示す説明図である。また、図2には、冷却装置100が有する冷却経路200を示す。なお、図2に示すプラネタリギヤは動力分割機構5であり、ギヤはデファレンシャルギヤ機構9である。
冷却装置100は、機械式オイルポンプ101と、電動オイルポンプ(EOP)102と、水冷式オイルクーラ(以下「水冷クーラ」という)103と、逆止弁110とを備えている。冷却装置100は、ケース30の内側にわたり形成されており、機械式オイルポンプ101がケース30内部に収容され、逆止弁110と電動オイルポンプ102と水冷クーラ103がケース30外部に設けられている。つまり、冷却回路200は、ケース30の内外にわたってオイルを循環させるように構成されている。
ケース30は、二つのモータ2,3と動力分割機構5とを収容しているケース本体31と、ケース本体31に取り付けられているリヤカバー32と、ケース本体31とリヤカバー32との間に形成されたポンプボデー33と、ケース本体31の下部でデファレンシャルギヤ機構9を収容しているハウジング34とを含む。ポンプボデー33は、機械式オイルポンプ101の一部を形成し、内部にポンプロータを収容している。デファレンシャルギヤ機構9は、ハウジング34内のオイルを掻きあげることができる。その掻きあげられたオイルは、ハウジング34内からケース本体31内に移動し、第一モータ2へ供給される。
冷却回路200内を循環するオイル(冷媒)は、冷媒源としてのオイル溜まり部104内に貯留される。各オイルポンプ101,102は、ストレーナ105に対して並列に接続されている。各オイルポンプ101,102は、駆動時に、ストレーナ105を介してオイル溜まり部104内のオイルを吸入し、吐出口から吐出する。オイル溜まり部104は、ケース本体31内の底部でオイルを貯留することができる構造や、オイルパンなどにより構成される。
電動オイルポンプ102は、電動モータ(図示せず)によって駆動する。つまり、電動オイルポンプ102は、制御装置(図示せず)によって駆動制御されるように構成されている。その制御装置は、電動オイルポンプ102を制御することができる周知の電子制御装置であり、電動モータを制御することによって電動オイルポンプ102の駆動制御を実行する。
水冷クーラ103は、オイルと冷却水(エンジン冷却水やハイブリッド冷却水)との間で熱交換を行う熱交換器である。ハイブリッド冷却水は、インバータなどを冷却するものであって、エンジン冷却水の温度よりも低温である。水冷クーラ103は、エンジン冷却水を用いる構成の場合、エンジン1のウォータジャケット(図示せず)から流出したエンジン冷却水とオイルとが熱交換できるようにケース30の外部に配置されている。なお、オイルと熱交換させる際のエンジン冷却水は、ラジエータ(図示せず)で熱交換後の冷却水であってもよく、ラジエータを経由しない冷却水であってもよい。
冷却回路200において、水冷クーラ103で水冷された後のオイル(冷媒)は、ケース本体31の内部に設けられたMG冷却パイプから各モータ2,3(ステータ2a,3a)に吐出され、各モータ2,3を冷却する。MG冷却パイプは、第一モータ2を冷却するためのMG1冷却パイプと、第二モータ3を冷却するためのMG2冷却パイプとを含む。MG1冷却パイプは、第一モータ2のステータ2aへ冷媒を吐出する吐出孔を有する。MG2冷却パイプは、第二モータ3のステータ3aへ水冷後の冷媒を吐出する吐出孔を有する。冷却装置100では、MG2冷却パイプが一本である。ケース本体31内部で各モータ2,3を冷却した後のオイルは、重力によって、ケース本体31内の底部などに形成されたオイル溜まり部104に流入する。
逆止弁110は、ケース30に外付けされるものであって、取り付け部品(筐体)としては一個に形成され、その内部構造によって二つの逆止弁として機能するように構成されている。逆止弁110は、一つの筐体内部に、第一バルブ機構111と第二バルブ機構112の二つの逆止弁を備えている。第一バルブ機構111は、機械式オイルポンプ101の吐出口側へ向けてオイルが逆流することを防止するための第一逆止弁である。第二バルブ機構112は、電動オイルポンプ102の吐出口側へ向けてオイルが逆流することを防止するための第二逆止弁である。
冷却回路200は、機械式オイルポンプ101から第一バルブ機構111と水冷クーラ103を経由して各モータ2,3に至る第一経路210と、電動オイルポンプ102から第二バルブ機構112を経由して第一モータ2と動力分割機構5に冷媒を供給する第二経路220とを有する。
第一経路210は、機械式オイルポンプ101から吐出されたオイルを、水冷クーラ103で水冷させた後に、各モータ2,3へ供給する流路によって形成されている。図2に示すように、第一経路210は、機械式オイルポンプ101の吐出口に接続された第一吐出流路210aと、逆止弁110の第一供給口110aと、逆止弁110内部の第一バルブ機構111と、逆止弁110の第一流出口110bと、水冷クーラ103の供給口に接続された水冷前流路210bと、水冷クーラ103と、水冷クーラ103の排出口に接続された水冷後流路210cと、水冷後の冷媒を第一モータ2に吐出する第一供給流路210dと、水冷後の冷媒を第二モータ3に吐出する第二供給流路210eとによって構成されている。
第一吐出流路210aは、逆止弁110の第一供給口110aと、機械式オイルポンプ101の吐出口とを接続する。水冷前流路210bは、逆止弁110の第一流出口110bと、水冷クーラ103の供給口とを接続する。逆止弁110の内部では、第一供給口110aと第一流出口110bとの間に第一バルブ機構111が設けられている。第一バルブ機構111は、第一供給口110aから逆止弁110外部へオイルが流出して、機械式オイルポンプ101側へオイルが流れることを規制するものであって、第一供給口110aを閉じるように構成されている。また、水冷後流路210cは、上流側がケース30の外部に設けられており、その下流側がケース本体31の内部に至るように形成されている。水冷後流路210cの下流側は、ケース30内部の水冷後分岐点で、第一供給流路210dと第二供給流路210eに分岐している。その分岐点において、水冷後流路210cと各供給流路210d,210eとが連通している。第一供給流路210dは、例えばケース本体31内部に設けられたMG1冷却パイプにより形成されている。第二供給流路210eは、例えばケース本体31の内部に設けられているMG2冷却パイプにより形成されている。第一経路210において、機械式オイルポンプ101の吐出口から逆止弁110を経由して水冷クーラ103の供給口までの流路を、第一流路ということができる。
また、第一吐出流路210aには、第一吐出流路210a内の油圧を調整する二つのリリーフ弁107A,107Bが接続されている。各リリーフ弁107A,107Bはいずれも、供給口が第一吐出流路210aに接続され、かつ排出口がケース本体31内部に向けて開口している。例えば、第一リリーフ弁107Aのリリーフ圧と、第二リリーフ弁107Bのリリーフ圧とは異なる大きさに設定されている。第一吐出流路210a内の冷媒は、各リリーフ弁107A,107Bからケース本体31内部に供給されるように構成されている。
第二経路220は、電動オイルポンプ102から吐出されたオイルを、水冷クーラ103を経由させずに、第一モータ2と動力分割機構5へ供給する流路によって形成されている。図2に示すように、第二経路220は、電動オイルポンプ102の吐出口に接続された第二吐出流路220aと、逆止弁110の第二供給口110cと、逆止弁110内部の第二バルブ機構112と、逆止弁110の第二流出口110dと、ケース30内部の接続流路220bと、オリフィス106と、第一モータ2と動力分割機構5とに冷媒を吐出する第三供給流路220cとによって構成されている。
第二吐出流路220aは、逆止弁110の第二供給口110cと、電動オイルポンプ102の吐出口とを接続する。接続流路220bは、逆止弁110の第二流出口110dと、第三供給流路220cとを接続する。逆止弁110の内部では、第二供給口110cと第二流出口110dとの間に第二バルブ機構112が設けられている。第二バルブ機構112は、第二供給口110cから逆止弁110外部へオイルが流出して、電動オイルポンプ102側へオイルが流れることを規制するものであって、第二供給口110cを閉じるように構成されている。オリフィス106は、接続流路220bから第三供給流路220cに流入するオイル流量を制御する絞り弁である。第三供給流路220cは、入力軸6内部に形成された軸芯側流路を含み、ケース本体31内において第一モータ2(ロータ2b)と動力分割機構5に冷媒および潤滑油としてのオイルを吐出する。第三供給流路220c内のオイルは、入力軸6に形成された吐出孔からケース本体31内に吐出して、第三供給流路220cの油圧や回転部材による遠心力や重力によって、ケース本体31内部を回転中心側から径方向外側に向けて移動する。第二経路220は、第三供給流路220cから潤滑油を吐出する潤滑回路として機能する。第二経路220において、電動オイルポンプ102の吐出口から第二バルブ機構112までの流路を、第二流路ということができ、第二バルブ機構112から第一モータ2および動力分割機構5までの流路を第三流路ということができる。
また、逆止弁110の内部では、第一バルブ機構111の下流側流路と第二バルブ機構112の下流側流路とが、連通流路201によって連通されている。つまり、第一経路210と第二経路220とが、逆止弁110内部で連通流路201によって接続されている。冷却回路200は、第一経路210と第二経路220に加え、逆止弁110の内部で第一経路210から分岐し、かつ第二経路220に合流する経路であって、機械式オイルポンプ101から第一モータ2と動力分割機構5に冷媒を供給する第三経路230と、逆止弁110の内部で第二経路220から分岐し、かつ第一経路210に合流する経路であって、電動オイルポンプ102から水冷クーラ103を経由して各モータ2,3に至る第四経路240とを有する。なお、第二経路220と第三経路230とは、水冷クーラ103を含まない経路である。
第三経路230は、機械式オイルポンプ101から吐出されたオイルを、水冷クーラ103を経由させずに、第一モータ2と動力分割機構5へ供給する流路によって形成されている。図2に示すように、第三経路230は、第一吐出流路210aと、第一供給口110aと、第一バルブ機構111と、連通流路201と、第二流出口110dと、接続流路220bと、第三供給流路220cとによって構成されている。
連通流路201は、逆止弁110の内部で、第一バルブ機構111下流側の第一流出口110bと、第二バルブ機構112下流側の第二流出口110dとを連通させるように形成された流路である。また、第三経路230内を圧送されるオイルは、ケース30内部の機械式オイルポンプ101から吐出された後、一旦ケース30外部の逆止弁110を経由して、再びケース30内部へ戻り、軸芯側の第三供給流路220cに至る。
第四経路240は、電動オイルポンプ102から吐出されたオイルを、水冷クーラ103で水冷させた後に、各モータ2,3へ供給する流路によって形成されている。図2に示すように、第四経路240は、第二吐出流路220aと、第二供給口110cと、第二バルブ機構112と、連通流路201と、第一流出口110bと、水冷前流路210bと、水冷クーラ103と、水冷後流路210cと、第一供給流路210dと、第二供給流路210eとによって構成されている。
次に、図3〜図8を参照して、逆止弁110の構造について説明する。
図3は、ケース30に外付けされた逆止弁110の外観を示す説明図である。逆止弁110は、ボデー部材113とカバー部材114の二つの部品によって外形が形成されている。ボデー部材113とカバー部材114とは、合わせ面において接合部115によって接合された一体構造物に構成されている。すなわち、一体化されたボデー部材113とカバー部材114は、一つの筐体を構成している。
ボデー部材113は、ケース30にボルト固定される外側部品であり、内部に二つのバルブ機構111,112を収容するための中空構造に形成されている。ボデー部材113は、中空構造のボデー本体113aと、ケース30に取り付けられる固定部分113bとを有し、ボデー本体113aと固定部分113bとが一体成形されている。また、図3の破線で囲まれた部分に示すように、ボデー本体113aには、第一バルブ機構111の第一弁体111a(図6などに示す)を収容する第一バルブ穴113cと、第二バルブ機構112の第二弁体112a(図6などに示す)を収容する第二バルブ穴113dと、各バルブ穴113c,113dを連通させる連通中空部113eとが形成されている。各バルブ穴113c,113dは、各弁体111a,112aが開閉する際に摺動する摺動面を有する案内部である。また、各バルブ穴113c,113dは、二本並んで平行に形成されており、いずれもカバー部材114との合わせ面側に開口している。連通中空部113eは、上述した連通流路201を形成するものである。連通中空部113eは、第一バルブ穴113cの摺動面の一部を切り欠くとともに、第二バルブ穴113dの摺動面の一部を切り欠くように形成されている。そして、二つのバルブ穴113c,113dを繋ぐように形成された溝部によって連通中空部113eが区画されている。例えば、各バルブ穴113c,113dを各弁体111a,112aの移動方向に延びるように切り欠かれた溝部分は、各バルブ穴113c,113dの全体に亘って延びている。
カバー部材114は、ボデー部材113のボデー本体113aに取り付けられる外側部品であり、ボデー本体113aとの合わせ面において接合されている。また、カバー部材114は、逆止弁110とチューブ(流路を形成する管状部材)との接続部材であり、チューブ結合部としての二つの接続口114a,114bが形成されている。第一接続口114aには、水冷クーラ103側の水冷前流路210bを形成するチューブが結合される。第二接続口114bには、電動オイルポンプ102側の第二吐出流路220aを形成するチューブが結合される。すなわち、第一接続口114aは第一流出口110bを形成し、第二接続口114bは第二供給口110cを形成する。
図4は、逆止弁110を経由するオイルの流れを説明するためのスケルトン図である。図5は、逆止弁110を二つの接続口114a,114b側から見た場合を示す説明図である。図6は、図5のA−A断面として逆止弁110の内部構造を示す断面図である。図7は、逆止弁110を二つの接続口114a,114b側から見た場合の分解図である。図8は、図5のB−B断面として第一バルブ機構111の内部構造を示す断面図である。
機械式オイルポンプ101から吐出されたオイルは、第一吐出流路210aからボデー部材113に形成された第一供給口110aに供給され、その吐出圧によって第一バルブ機構111が開くと、逆止弁110の内部に流入する。その流入したオイルは、第一供給口110aから連通中空部113eを流通してカバー部材114側の第一接続口114aへ流れ、その第一接続口114a(第一流出口110b)から水冷クーラ103側に向けて流出する。また、電動オイルポンプ102から吐出されたオイルは、カバー部材114側の第二接続口114b(第二供給口110c)に供給されて、その吐出圧によって第二バルブ機構112が開くと、逆止弁110の内部に流入する。その流入したオイルは、第二接続口114bから連通中空部113eを流通して、ボデー部材113のうちケース30側に形成された第二流出口110dへ流れ、その第二流出口110dからケース30内部に向けて流出する。なお、ケース30内部から電動オイルポンプ102へ向けて吸引されるオイルが、一旦ケース30外部を流通した後に、電動オイルポンプ102に吸入される。
逆止弁110の内部では、二つのバルブ機構111,112が逆向きに配置されている。第一バルブ機構111の第一弁体111aがケース30側に向けて配置され、かつ第二バルブ機構112の第二弁体112aがカバー部材114側に向けて配置されている。逆止弁110において、ボデー部材113側にケース30内部の流路と接続される流路が集約されており、カバー部材114側に水冷クーラ103などケース30外部の流路と接続される流路が集約されている。
第一バルブ機構111は、第一供給口110a側を向いた第一弁体111aと、第一弁体111aを第一供給口110a側に押す第一スプリング111bとを有する。第一弁体111aと第一スプリング111bとが、ボデー本体113aの第一バルブ穴113cの内部に収容されている。第一弁体111aは、有底円筒状に形成され、底部分の表面が第一供給口110a側を向くように配置されている。第一バルブ穴113cのうち第一供給口110a側の端部が、第一弁座111cを形成している。第一弁座111cは、第一弁体111aを受ける部分であり、第一バルブ機構111を閉じる場合に第一弁体111aと接触する。また、第一バルブ穴113cのうちカバー部材114との合わせ面側では、カバー部材114の端部が、第一スプリング111bの荷重を受ける第一規制部111dを形成している。第一規制部111dは、第一バルブ穴113cの延びる方向で第一スプリング111bの荷重(弾性力)を受ける支持部分であるとともに、第一弁体111aが開く方向にある程度以上移動することを規制する部分でもある。
第二バルブ機構112は、第二供給口110c側を向いた第二弁体112aと、第二弁体112aを第二供給口110c側に押す第二スプリング112bとを有する。第二弁体112aと第二スプリング112bとが、ボデー本体113aの第二バルブ穴113dの内部に収容されている。第二弁体112aは、有底円筒状に形成され、底部分の表面がカバー部材114に形成された第二供給口110c側を向くように配置されている。第二弁体112aを受ける第二弁座112cは、カバー部材114の開口部側の端部によって形成されている。カバー部材114のうち、第二弁体112aが往復動する方向で第二弁体112aと対向する部分が、第二バルブ機構112を閉じる場合に第二弁体112aと接触する第二弁座112cを形成している。第二スプリング112bは、ボデー部材113の第二流出口110d側を第二規制部112dとするように配置されている。第二規制部112dは、第二バルブ穴113dの延びる方向で第二スプリング112bの荷重(弾性力)を受ける支持部分であるとともに、第二弁体112aが開く方向に移動することを規制する部分でもある。
カバー部材114には、二本の貫通孔114c,114dが横並びに形成されている。第一貫通孔114cは、一方の開口部が第一接続口114a(第一流出口110b)を形成し、他方の第一開口部114eがボデー部材113の連通中空部113eと連通している。第二貫通孔114dは、一方の開口部が第二接続口114b(第二供給口110c)を形成し、他方の第二開口部114fが第二バルブ機構112の第二弁体112aによって閉じられるように構成されている。
逆止弁110の内部に形成された中空部の構造について説明する。カバー部材114には、第一貫通孔114cの第一開口部114e側に第一連通溝114gが形成されている。第一連通溝114gは、ボデー部材113との合わせ面から第二規制部112dよりも第二流出口110d側に凹んだ形状に形成されている。逆止弁110の内部では、第一連通溝114gによって、第一貫通孔114cとボデー部材113の連通中空部113eとが連通されている。また、ボデー本体113aには、第二バルブ穴113dの第二流出口110d側に第二連通溝113fが形成されている。第二連通溝113fは、第二規制部112dより第二流出口110d側に凹んだ形状に形成されている。逆止弁110の内部では、第二連通溝113fによって第二流出口110dと連通中空部113eとが連通されている。つまり、逆止弁110は、各バルブ機構111,112の開閉を問わず、第一連通溝114gと第二連通溝113fとは連通中空部113eを介して常に連通されているように構成されている。また、第一連通溝114gが第一開口部114eの一部を切り欠くように形成され、かつ第二連通溝113fが第二規制部112dの一部を切り欠くように形成されているため、各弁体111a,112aの移動方向に逆止弁110が大型化することを抑制できる。すなわち、逆止弁110では、一つの筐体内に二つのバルブ機構111,112をコンパクトに収容することができる。さらに、逆止弁110は、筐体の内部構造によって、複数の経路が接続もしくは分岐するように構成されている。
また、逆止弁110の内部において、各バルブ穴113c,113dを繋ぐ連通中空部113eと、各連通溝114g,113fとによって内部空間を区画するとともに、各バルブ機構111,112の弁体111a,112aを逆向きに配置することによって、逆止弁110の誤解放を抑制することができる。例えば、第一バルブ機構111が開き、第二バルブ機構112が閉じている場合、第一供給口110aから第一バルブ穴113cを経て連通中空部113e(連通流路201)内に流入したオイルが、第二弁体112aの後ろ側を流れるため、第一流出口110bと第二流出口110dへ向けて流れることによって第二バルブ機構112が誤って解放することを抑制できる。また、第二バルブ機構112が開き、第一バルブ機構111が閉じている場合も同様であって、第二供給口110cから第二バルブ穴113dを経て連通中空部113e(連通流路201)内に流入したオイルが、第一弁体111aの後ろ側を流れるため、第一流出口110bと第二流出口110dへ向けて流れることによって第一バルブ機構111が誤って解放することを抑制できる。
逆止弁110の取り付け構造について説明する。ボデー部材113の固定部分113bには、ボデー本体113aを挟んで両側に二つのボルト穴113gが形成されている。ボルト(図示せず)がボルト穴113gを貫通してケース30側のボルト穴30aに螺合することにより、ケース30外側にボデー部材113が固定される。これにより、一個の筐体(一体構造のボデー部材113とカバー部材114)からなる逆止弁110を組み付けることによって、二つのバルブ機構111,112を組み付けたことになる。なお、ケース30には、ケース30外部に設けられた電動オイルポンプ102にストレーナ105側から吸入されるオイルの流路が形成されている。
次に、車両Veの走行状態に応じて変化する冷却装置100の冷却状態について説明する。車両Veは、エンジン1の動力によって走行するHV走行モードと、エンジン1を停止させてモータの動力によって走行するEV走行モードとに制御することができる。
HV走行モードでは、エンジン1が駆動し、機械式オイルポンプ101が駆動する。HV走行時、機械式オイルポンプ101から吐出された冷媒は、逆止弁110の第一バルブ機構111を通過して、逆止弁110の第一流出口110bと第二流出口110dから流出する。水冷クーラ103で水冷された後に、各モータ2,3へ供給される。さらに、第一バルブ機構111が開くことによって、逆止弁110の内部で、第一経路210と第三経路230とが連通する。そのため、HV走行時に機械式オイルポンプ101から吐出された冷媒の一部は、逆止弁110の第二流出口110dから第三経路230内に流入し、水冷されることなく第一モータ2と動力分割機構5とに供給される。この場合、逆止弁110の第二バルブ機構112は閉じている。第二バルブ機構112によって、第二供給口110cから電動オイルポンプ102の吐出口側へ冷媒が逆流することを防止している。
EV走行モードでは、エンジン1が停止し、機械式オイルポンプ101は停止するので、冷却装置100が冷却性能を発揮するために電動オイルポンプ102が駆動する。EV走行時、電動オイルポンプ102から吐出された冷媒は、逆止弁110の第二バルブ機構112を通過して、逆止弁110の第一流出口110bと第二流出口110dから流出する。これにより、電動オイルポンプ102によって、水冷後の冷媒で各モータ2,3を冷却できるとともに、軸芯側から第一モータ2と動力分割機構5に潤滑油を供給できる。この場合、逆止弁110の第一バルブ機構111は閉じているため、第一バルブ機構111によって第一供給口110aから機械式オイルポンプ101の吐出口側に冷媒が逆流することを防止している。
以上説明した通り、本実施形態によれば、逆止弁110が一つの筐体内部に二つのバルブ機構111,112を有する構造に形成されているので、搭載スペースを削減することができる。一つの筐体からなる逆止弁110を組み付ければ二つのバルブ機構111,12を組み付けたことになるので、従来のように別体の逆止弁を二個取り付ける場合に比べて、組み付け工数を削減できる。さらに、一個の逆止弁110を備えればよいので、逆止弁を二個搭載する場合に比べて、コストを削減できる。また、二つのバルブ機構111,112が弁体111a,112aを逆方向に向けて配置されているので、一方のオイルポンプが駆動し、他方のオイルポンプが停止する場合に、誤って逆止弁が開くことを抑制できる。
1 エンジン
2 第一モータ(MG1)
3 第二モータ(MG2)
100 冷却装置
101 機械式オイルポンプ(MOP)
102 電動オイルポンプ(EOP)
103 水冷式オイルクーラ
104 オイル溜まり部(冷媒源)
110 逆止弁
110a 第一供給口
110b 第一流出口
110c 第二供給口
110d 第二流出口
111 第一バルブ機構
111a 第一弁体
111b 第一スプリング
111c 第一弁座
111d 第一規制部
112 第二バルブ機構
112a 第二弁体
112b 第二スプリング
112c 第二弁座
112d 第二規制部
113 ボデー部材
113a ボデー本体
113b 固定部分
113c 第一バルブ穴
113d 第二バルブ穴
113e 連通中空部
113f 第二連通溝
113g ボルト穴
114 カバー部材
114a 第一接続口
114b 第二接続口
114c 第一貫通孔
114d 第二貫通孔
114e 第一開口部
114f 第二開口部
114g 第一連通溝
115 接合部
200 冷却回路
201 連通流路
210 第一経路
210a 第一吐出流路
210b 水冷前流路
210c 水冷後流路
210d 第一供給流路
210e 第二供給流路
220 第二経路
220a 第二吐出流路
220b 接続流路
220c 第三供給流路
230 第三経路
240 第四経路

Claims (1)

  1. 内燃機関と、第一電動機と、第二電動機とを備える車両に搭載された電動機の冷却装置において、
    各電動機を冷却する冷媒を貯留する冷媒源と、
    前記内燃機関によって駆動され、かつ前記冷媒源から吸入した冷媒を吐出口から吐出する機械式オイルポンプと、
    前記機械式オイルポンプの吐出口に接続され、かつ前記機械式オイルポンプが吐出した冷媒を、オイルクーラを経由させて前記第一電動機および前記第二電動機に供給する第一流路と、
    前記冷媒源に対して前記機械式オイルポンプと並列に接続され、かつ前記冷媒源から冷媒を吸入して吐出口から吐出する電動オイルポンプと、
    前記電動オイルポンプの吐出口に接続され、かつ前記第一流路と接続された第二流路と、
    前記第一流路と前記第二流路とに接続され、かつ前記第一電動機に冷媒を供給する第三流路と、
    一つの筐体内部に二つのバルブ機構を有する逆止弁とを備え、
    前記逆止弁は、
    前記第一流路で前記機械式オイルポンプと前記オイルクーラとの間に設けられ、かつ冷媒が前記機械式オイルポンプの吐出口側へ向けて流れることを規制する第一バルブ機構と、
    前記第二流路と前記第三流路との接続箇所に設けられ、かつ冷媒が前記第二流路から前記電動オイルポンプの吐出口側へ向けて流れることを規制する第二バルブ機構と、
    前記筐体内部で、前記第一流路のうち前記第一バルブ機構よりも前記オイルクーラ側の流路と、前記第三流路とを連通させている連通流路とを有する
    ことを特徴とする電動機の冷却装置。
JP2015186016A 2015-09-18 2015-09-18 電動機の冷却装置 Active JP6458695B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186016A JP6458695B2 (ja) 2015-09-18 2015-09-18 電動機の冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186016A JP6458695B2 (ja) 2015-09-18 2015-09-18 電動機の冷却装置

Publications (2)

Publication Number Publication Date
JP2017056922A true JP2017056922A (ja) 2017-03-23
JP6458695B2 JP6458695B2 (ja) 2019-01-30

Family

ID=58391067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186016A Active JP6458695B2 (ja) 2015-09-18 2015-09-18 電動機の冷却装置

Country Status (1)

Country Link
JP (1) JP6458695B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106776A (ja) * 2017-12-12 2019-06-27 株式会社マーレ フィルターシステムズ モータ内蔵型駆動装置
US20220001740A1 (en) * 2020-07-01 2022-01-06 Mazda Motor Corporation Vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114396472A (zh) 2021-10-12 2022-04-26 华为数字能源技术有限公司 一种动力总成及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276035A (ja) * 2009-05-26 2010-12-09 Nissan Motor Co Ltd 電動オイルポンプの設置構造
US20100320019A1 (en) * 2009-06-22 2010-12-23 Ford Global Technologies, Llc System and method to provide lubrication for a plug-in hybrid
JP2013220771A (ja) * 2012-04-18 2013-10-28 Toyota Motor Corp 車両制御システム
JP2014126081A (ja) * 2012-12-25 2014-07-07 Aisin Aw Co Ltd 車両用伝動装置
JP2015055297A (ja) * 2013-09-12 2015-03-23 トヨタ自動車株式会社 油圧回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276035A (ja) * 2009-05-26 2010-12-09 Nissan Motor Co Ltd 電動オイルポンプの設置構造
US20100320019A1 (en) * 2009-06-22 2010-12-23 Ford Global Technologies, Llc System and method to provide lubrication for a plug-in hybrid
JP2013220771A (ja) * 2012-04-18 2013-10-28 Toyota Motor Corp 車両制御システム
JP2014126081A (ja) * 2012-12-25 2014-07-07 Aisin Aw Co Ltd 車両用伝動装置
JP2015055297A (ja) * 2013-09-12 2015-03-23 トヨタ自動車株式会社 油圧回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106776A (ja) * 2017-12-12 2019-06-27 株式会社マーレ フィルターシステムズ モータ内蔵型駆動装置
US20220001740A1 (en) * 2020-07-01 2022-01-06 Mazda Motor Corporation Vehicle
US11577599B2 (en) * 2020-07-01 2023-02-14 Mazda Motor Corporation Vehicle

Also Published As

Publication number Publication date
JP6458695B2 (ja) 2019-01-30

Similar Documents

Publication Publication Date Title
US9266423B2 (en) Vehicle driving device
US11192444B2 (en) Drive unit for a hybrid vehicle
US20090107769A1 (en) Oil lubricating structure
US9695742B2 (en) Vehicle drive device
JP5707656B2 (ja) 車両用駆動装置
JP5139475B2 (ja) 車両用動力伝達装置の油圧制御回路
WO2011062264A1 (ja) 車両用駆動装置
EP3543562A1 (en) Lubrication device
JP2013095389A (ja) 車両用駆動装置
JP2003169448A (ja) ハイブリッド車両の駆動装置
JP6458695B2 (ja) 電動機の冷却装置
JP2016055709A (ja) 車両の油圧制御装置
JP5647946B2 (ja) 車両用駆動装置
CN112106281A (zh) 马达单元
CN112088262A (zh) 马达单元和车辆驱动装置
JP2017061226A (ja) 電動機の冷却装置
JP2012111366A (ja) ハイブリッド車両用駆動装置
WO2020032026A1 (ja) モータユニット
CN112020817A (zh) 马达单元和马达单元的控制方法
JP6413993B2 (ja) 電動機の冷却装置
JP5310783B2 (ja) 動力伝達装置
US20190063598A1 (en) Hydraulic control device
JP5771663B2 (ja) 車両用駆動装置
JP6413995B2 (ja) 電動機の冷却装置
JP2012171371A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R151 Written notification of patent or utility model registration

Ref document number: 6458695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151