JP2017044413A - Composite heat source machine - Google Patents

Composite heat source machine Download PDF

Info

Publication number
JP2017044413A
JP2017044413A JP2015167565A JP2015167565A JP2017044413A JP 2017044413 A JP2017044413 A JP 2017044413A JP 2015167565 A JP2015167565 A JP 2015167565A JP 2015167565 A JP2015167565 A JP 2015167565A JP 2017044413 A JP2017044413 A JP 2017044413A
Authority
JP
Japan
Prior art keywords
heating
flow rate
temperature
hot water
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015167565A
Other languages
Japanese (ja)
Other versions
JP6540378B2 (en
Inventor
晴喜 井上
Haruki Inoue
晴喜 井上
豊 吉▲高▼
Yutaka Yoshitaka
豊 吉▲高▼
晃平 山下
Kohei Yamashita
晃平 山下
幸寛 茶谷
Yukihiro Chatani
幸寛 茶谷
修司 川崎
Shuji Kawasaki
修司 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2015167565A priority Critical patent/JP6540378B2/en
Publication of JP2017044413A publication Critical patent/JP2017044413A/en
Application granted granted Critical
Publication of JP6540378B2 publication Critical patent/JP6540378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite heat source machine capable of accurately and positively detecting a circulating flow rate in an additional boiling circulation passage where an indirect heating is performed through a liquid-liquid heat exchanging without using any flow rate sensor and the like.SOLUTION: Additional boiling is carried out with heating medium (S3, S4). A heating circulation pump is stopped while continuing an action of an additional boiling circulation pump, an outgoing temperature after passing through a heat exchanger is monitored and detection processing is started. A return temperature is added to a temperature value in which a temperature difference having the return temperature decreased from the outgoing temperature at the time of starting is multiplied by a percentage to set a set temperature value and then a depression time value required for the outgoing temperature to drop down to a set temperature value is measured (S6 to S8). A value of the circulation flow rate corresponding to the depression time value is searched in reference to a predetermined relation table (S9). When a control operation to cause the heat medium temperature to generate sudden change is carried out at a hot water supplying side/heating side just before starting the detection processing, starting of the detection processing is waited only for a set time.SELECTED DRAWING: Figure 3

Description

本発明は、例えば追焚循環路に循環される浴槽水が、温水暖房用の循環路において循環供給される熱媒を熱源として液−液熱交換により間接加熱される複合熱源機に関し、特に、流量センサ等の流量を直接に検出する検出手段を用いずに、前記追焚循環路内に循環される浴槽水の循環流量を制御上の処理により検出し得る制御技術に係る。   The present invention relates to a composite heat source machine in which, for example, bathtub water circulated in a recirculation circuit is indirectly heated by liquid-liquid heat exchange using a heat medium circulated and supplied in a circulation path for hot water heating as a heat source, The present invention relates to a control technique that can detect the circulation flow rate of bath water circulated in the recirculation circulation path by a control process without using a detection unit that directly detects a flow rate such as a flow rate sensor.

流量センサを用いずに流体の循環流量を検出するために、本願の出願人は下記の特許文献1で制御上の処理により検出し得る技術を提案した。これは、追い焚き循環路に循環される浴槽内の湯水が缶体内の熱交換器を通過する間に燃焼バーナにより直接加熱されるという1缶2水路式の給湯器付き風呂釜において、追い焚き循環路に循環される前記湯水の循環流量を検出し得るようにしたものである。具体的には、浴槽内の湯水を、燃焼バーナにより加熱される追い焚き用熱交換器との間に循環させ、追い焚き用熱交換器での追い焚き加熱により昇温した湯水を浴槽に供給させるという追い焚き循環加熱を行った後に、循環流量の検出のため処理を開始させる。すなわち、前記の燃焼バーナによる追い焚き加熱を停止するものの、追い焚き循環路内の循環自体は中断させずに継続させる。そして、追い焚き加熱停止後に追い焚き熱交換器を通過して浴槽に供給される湯水の温度が所定の設定温度差だけ降下するのに要した降下時間値を検出し、所定の関係テーブルからその降下時間値に対応する循環流量値を割り出すというものである。このような関係テーブルは、前記の降下時間と、循環流量との間の関係を予め試験等により求めて予め表や関係式として設定しておいたものである。   In order to detect the circulating flow rate of a fluid without using a flow sensor, the applicant of the present application has proposed a technique that can be detected by control processing in Patent Document 1 below. This is because in a 1-can 2-water-type hot water bath with hot water heater, hot water in the bathtub circulated in the recirculation circuit is directly heated by the combustion burner while passing through the heat exchanger in the can body. The circulating flow rate of the hot water circulated through the circulation path can be detected. Specifically, hot water in the bathtub is circulated between the reheating heat exchanger heated by the combustion burner, and hot water heated by reheating in the reheating heat exchanger is supplied to the bathtub. After the recirculation heating that is performed, the processing is started to detect the circulation flow rate. That is, although the reheating heating by the combustion burner is stopped, the circulation itself in the reheating circulation path is continued without being interrupted. Then, after the reheating heating is stopped, the descent time value required for the temperature of the hot water supplied to the bathtub to pass through the reheating heat exchanger to decrease by a predetermined set temperature difference is detected, and the value is detected from a predetermined relationship table. The circulation flow value corresponding to the descent time value is calculated. Such a relationship table is a table or a relational expression that is obtained in advance by a test or the like to obtain a relationship between the descent time and the circulation flow rate.

特許第5326650号公報Japanese Patent No. 5326650

ところで、給湯機能や追い焚き機能に加えて温水循環式の暖房機能を備えた複合型に構成された複合熱源機が知られている。このような複合熱源機では、給湯用熱交換器と暖房用熱交換器とを燃焼バーナで加熱するようにし、暖房用熱交換器で加熱された熱媒を外部の暖房用端末に対し熱源として循環供給すると同時に、追い焚き加熱のための液−液熱交換式の追い焚き用熱交換器に対し熱源として循環供給するように2缶3水路式に構成されている。つまり、追い焚き用熱交換器が、燃焼バーナにより直接に加熱されるのではなくて、その燃焼バーナにより加熱されて循環供給される暖房用循環熱媒を熱源として間接加熱されるという構成となっている。   By the way, there is known a composite heat source machine configured in a composite type having a hot water circulation type heating function in addition to a hot water supply function and a reheating function. In such a composite heat source machine, the hot water supply heat exchanger and the heating heat exchanger are heated by the combustion burner, and the heat medium heated by the heating heat exchanger is used as a heat source for the external heating terminal. At the same time as the circulation supply, it is configured in a two-can three-channel system so as to circulate and supply as a heat source to a liquid-liquid heat exchange type heat exchanger for reheating. In other words, the reheating heat exchanger is not directly heated by the combustion burner, but indirectly heated by using a heating circulating heat medium heated by the combustion burner and circulated as a heat source. ing.

このような2缶3水路式に構成された複合熱源機を対象にして、追い焚き用熱交換器を通る浴槽内の循環湯水の循環流量を検出するために、前記特許文献1で提案した技術を適用しようとしても、迅速かつ正確な循環流量を検出することができないという不都合が生じる。その理由は、燃焼バーナによる直接的な追い焚き加熱であれば、その燃焼バーナの燃焼作動を停止させれば追い焚き加熱は即座に停止し、追い焚き用熱交換器内を通過する循環湯水の温度は例えば図8に示すように急激に降下することになる。前記の特許文献1で提案の技術は、このような昇温から降下に急変する急激な温度降下を利用して、所定の温度差ΔT分だけ降下するために要した降下時間値(例えばΔτ1又はΔτ2)を検出することで循環流量の値を迅速かつ正確に得るようにしたものである。しかしながら、前記の2缶3水路式の場合の追い焚き用熱交換器は、暖房用熱源として循環供給される熱媒を熱源とした液−液熱交換による間接加熱であるため、その暖房用熱源を加熱するための燃焼バーナを燃焼停止にしたとしても、既に加熱された熱媒が配管を通して追い焚き用熱交換器に循環供給されるため、追い焚き用熱交換器に対する熱供給は停止されず、又、その供給される熱入力も暖房側の循環流量に依存するため、未知のものとなる。さらに、追い焚き用熱交換器に対する熱媒の循環供給をたとえ遮断することができたとしても、その遮断時点からしばらくは、追い焚き用熱交換器内は熱源である熱媒が充満した状態に維持され、その熱媒から循環湯水への熱伝達が継続されることになる。このため、前記の1缶2水路式の如き昇温から降下への変換点自体も明確には表れず、又、急激な温度降下も生じず、前記特許文献1で提案の技術をそのまま適用しても循環流量の迅速かつ正確な検出を得ることはできない。   In order to detect the circulating flow rate of the circulating hot water in the bathtub passing through the heat exchanger for reheating, targeting the composite heat source machine configured in such a two-can three-water channel type, the technique proposed in Patent Document 1 above Even if it is going to apply, the inconvenience that a rapid and accurate circulating flow rate cannot be detected arises. The reason for this is that if direct combustion heating is performed by a combustion burner, if the combustion operation of the combustion burner is stopped, the reheating heating stops immediately, and the circulating hot water passing through the reheating heat exchanger is stopped. For example, the temperature drops rapidly as shown in FIG. The technique proposed in the above-mentioned Patent Document 1 uses such a rapid temperature drop that suddenly changes from a temperature rise to a drop, and uses a fall time value (for example, Δτ1 or the like) required to drop by a predetermined temperature difference ΔT. By detecting Δτ2), the value of the circulation flow rate is obtained quickly and accurately. However, since the reheating heat exchanger in the case of the two-can three-water channel type is indirect heating by liquid-liquid heat exchange using a heat medium circulated as a heat source for heating as a heat source, the heat source for heating Even if the combustion burner for heating is stopped, the heated heating medium is circulated and supplied to the reheating heat exchanger through the pipe, so the heat supply to the reheating heat exchanger is not stopped. Moreover, since the supplied heat input also depends on the circulating flow rate on the heating side, it is unknown. Furthermore, even if the circulating supply of the heat medium to the reheating heat exchanger can be shut off, the reheating heat exchanger will be filled with the heat medium as the heat source for a while after the interruption. The heat transfer from the heat medium to the circulating hot water is continued. For this reason, the conversion point from the temperature rise to the temperature drop as in the one-can / two-water channel system does not appear clearly, and a rapid temperature drop does not occur, and the technique proposed in Patent Document 1 is applied as it is. However, a rapid and accurate detection of the circulation flow rate cannot be obtained.

なお、前記の浴槽内の湯水を追い焚き加熱するための追い焚き循環路において、例えば通常の水車式の流量センサ等の循環流量を直接に検出し得る機器を設置するのではなくて、制御により把握・検出しようとしているのは、単なるコスト上の事情ではなくて、次のような背景事情があるからである。すなわち、追い焚き循環路に循環される流体は浴槽湯水であり、その浴槽湯水には毛髪等の混入が予想されるため、このような毛髪等による詰まり発生のおそれにより、流量センサを設置して循環流量を直接に検出することは現実にはできない。又、追い焚き循環回路に設置されている循環ポンプの定格の吐出流量が既知であったとしても、開放水面をもつ浴槽と、熱交換器とを結ぶ追い焚き循環回路における循環流量は循環ポンプの吐出流量とは合致せず、循環ポンプの吐出流量によって循環流量を把握することもできない。さらに、追い焚き循環路の循環流量を把握する意義としては、特に浴槽内に残り湯がある場合にはその残り湯量の把握処理のために時間を要し、その結果、自動湯張り完了までの時間が長くなってしまうという問題があり、この問題解決のためにも、追い焚き循環回路の循環流量の迅速かつ正確な検出(把握)が特に重要な課題となっている、という事情がある。   In the recirculation circuit for reheating and heating the hot water in the bathtub, for example, a device capable of directly detecting the circulation flow rate such as a normal water wheel type flow rate sensor is not installed, but by control. We are trying to grasp and detect this because it is not just a cost situation but the following background situation. In other words, the fluid circulated in the recirculation circuit is bathtub hot water, and hair is expected to be mixed in the bathtub hot water. It is not possible to detect the circulating flow rate directly. Even if the rated discharge flow rate of the circulation pump installed in the recirculation circuit is known, the recirculation flow rate in the recirculation circuit connecting the bathtub with the open water surface and the heat exchanger is It does not match the discharge flow rate, and the circulation flow rate cannot be grasped by the discharge flow rate of the circulation pump. Furthermore, the significance of grasping the circulation flow rate in the recirculation circuit is that, especially when there is remaining hot water in the bathtub, it takes time to grasp the amount of remaining hot water. In order to solve this problem, there is a situation in which quick and accurate detection (grasping) of the circulating flow rate in the recirculation circuit is a particularly important issue.

又、追い焚き運転のための運転制御と、暖房運転のための運転制御とは、互いに別個の要求やロジックに基づいて実行されるため、追い焚き用熱交換器に対し追い焚き用の熱源として循環供給される暖房用熱源の熱媒の温度が、暖房側の独自の変更制御により急変することがある。この場合、追い焚き用熱交換器において、暖房側の熱媒により液−液熱交換される追い焚き側の浴槽水も、その急変の影響を受けて不安定化することが考えられる。さらに、暖房側の熱媒を加熱するための燃焼部が他の制御系の影響を受けて意図しない変動を生じる場合には、前記の不安定化をより増大させることも考えられる。   In addition, since the operation control for the reheating operation and the operation control for the heating operation are executed based on different requirements and logics, the reheating heat exchanger is used as a reheating heat source. The temperature of the heat medium of the heating heat source that is circulated may change suddenly due to the original change control on the heating side. In this case, in the reheating heat exchanger, it is conceivable that the reheating-side bath water that is liquid-liquid heat exchanged by the heating-side heat medium is also destabilized due to the sudden change. Furthermore, when the combustion part for heating the heating-side heat medium is influenced unintentionally by other control systems, the above destabilization may be further increased.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、循環流体に対する加熱が間接加熱によるものであっても、循環路における循環流量の検出を、流量センサ等の直接的な検出手段を用いずに行うことができ、しかも、その循環流量の検出を正確かつ確実に行うことができる複合熱源機を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is to detect the circulation flow rate in the circulation path even if the heating of the circulating fluid is based on indirect heating. It is an object of the present invention to provide a composite heat source apparatus that can be performed without using the direct detection means and that can accurately and reliably detect the circulating flow rate.

前記目的を達成するために、第1の発明では、給湯用に水を燃焼加熱するための給湯用燃焼バーナと、温水暖房用の熱源として暖房循環路に循環供給される熱媒を加熱するための暖房用燃焼バーナと、熱源として前記暖房用燃焼バーナにより加熱された熱媒の循環供給を受ける一方、追い焚き循環路を通して浴槽からの湯水の循環供給を受けて液−液熱交換により前記湯水を追い焚き加熱するための追い焚き用熱交換器と、この追い焚き用熱交換器を通して前記追い焚き循環路に循環される湯水の循環流量を制御上の処理により検出するための循環流量検出処理部とを備え、前記給湯用燃焼バーナと前記暖房用燃焼バーナとは共通の燃料調整弁を介して燃焼供給を受けるように構成され、前記循環流量検出処理部は、前記追い焚き循環路内を湯水が循環している状態に維持しつつ前記暖房循環路を通しての前記追い焚き用熱交換器に対する熱源の循環供給を遮断させた状態で、前記追い焚き用熱交換器を通過して浴槽に向かう前記湯水の往き温度の降下状況に基づいて前記循環流量を検出するように構成されている複合熱源機を対象にして次の技術的手段を講じた。   In order to achieve the above object, in the first aspect of the invention, a hot water combustion burner for burning and heating water for hot water supply and a heating medium circulated and supplied to a heating circuit as a heat source for hot water heating are heated. The heating combustion burner and the heating medium heated by the heating combustion burner as a heat source are circulated and supplied, while the hot and cold water is supplied from the bathtub through the recirculation circulation path, and the hot water is exchanged by liquid-liquid heat exchange. Reheating heat exchanger for reheating and recirculating flow rate detection processing for detecting the circulating flow rate of hot water circulated to the recirculation circulation path through this reheating heat exchanger by control processing The hot water supply combustion burner and the heating combustion burner are configured to receive combustion supply via a common fuel adjustment valve, and the circulating flow rate detection processing unit is disposed in the recirculation circulation path. While maintaining the state in which water is circulating, the circulation of the heat source to the reheating heat exchanger through the heating circuit is interrupted, and the heat recirculation heat exchanger is passed to the bathtub. The following technical means were taken for the composite heat source machine configured to detect the circulating flow rate based on the temperature drop of the hot water.

すなわち、前記循環流量検出処理部として、前記給湯用燃焼バーナ及び暖房用燃焼バーナの内の少なくとも1つの制御状況について監視し、前記循環流量の検出処理を開始する際に、前記追い焚き用熱交換器に循環供給される熱媒温度に急変動をもたらす制御が実行されたときには、前記往き温度が安定するのに要するものとして予め設定された時間だけ待機した上で、前記循環流量の検出処理を開始する構成とした(請求項1)。   That is, as the circulating flow rate detection processing unit, at least one control state of the hot water supply combustion burner and the heating combustion burner is monitored, and when starting the circulating flow rate detection processing, the reheating heat exchange is performed. When control for causing a sudden change in the temperature of the heat medium circulated and supplied to the vessel is executed, the circulation flow rate detection process is performed after waiting for a time set in advance as necessary to stabilize the forward temperature. It was set as the structure which starts (Claim 1).

この第1の発明の場合、循環流量の検出処理の開始の際に、もしも、給湯用燃焼バーナ及び暖房用燃焼バーナの内の少なくとも1つの制御状況において、追い焚き用熱交換器に循環供給される熱媒温度に急変動をもたらす制御が実行されたときには、設定時間だけ待機した上で、循環流量の検出処理を開始するようにしているため、たとえ、熱媒温度が急変動して追い焚き循環路内の往き温度が不安定化したとしても、設定時間だけ待機している間に安定化させることが可能となり、その後に開始される循環流量の検出処理を正確にかつ確実に行うことが可能となる。   In the case of the first aspect of the invention, at the start of the circulation flow rate detection process, if the control state is at least one of the hot water combustion burner and the heating combustion burner, the recirculation heat exchanger is circulated and supplied. When the control that causes a sudden change in the heating medium temperature is executed, the detection of the circulating flow rate is started after waiting for the set time. Even if the return temperature in the circulation path becomes unstable, it can be stabilized while waiting for a set time, and the detection process of the circulation flow rate that is started thereafter can be performed accurately and reliably. It becomes possible.

第1の発明の複合熱源機において、循環流量検出処理部として、給湯用燃焼バーナが暖房用燃焼バーナと同時燃焼状態になった場合における給湯用燃焼バーナの燃焼開始、燃焼能力の切換、又は、燃焼停止のいずれかを含む制御が実行されたとき、熱媒温度に急変動をもたらす制御が実行されたものとして、循環流量の検出処理の開始前に設定時間だけ待機する構成とすることができる(請求項2)。もしも、給湯用の燃焼バーナが同時に燃焼作動されてその燃焼開始、燃焼能力切換又は燃焼停止という制御が給湯側で実行されると、その給湯側制御の実行に伴い燃焼調整弁に対する制御も変更される結果、暖房用燃焼バーナの燃焼状態も変動することになる。このため、追い焚き用熱交換器に循環供給される熱媒の温度に急変動がもたらされて、追い焚き用熱交換器を通過する湯水の往き温度も不安定化することになる。そこで、このような制御が実行されれば、循環流量の検出処理の開始を設定時間だけ待機させることにより、請求項1の作用をより具体的かつ確実に得られるようになる。   In the composite heat source machine of the first invention, as the circulation flow rate detection processing unit, when the hot water supply combustion burner is in a state of simultaneous combustion with the heating combustion burner, combustion start of the hot water supply combustion burner, switching of the combustion capacity, or When the control including any one of the combustion stop is executed, it is assumed that the control for causing the rapid change in the temperature of the heat medium is executed, and it is possible to wait for a set time before starting the circulating flow rate detection process. (Claim 2). If the hot water combustion burner is simultaneously operated and the combustion start, combustion capacity switching, or combustion stop control is executed on the hot water supply side, the control for the combustion adjustment valve is also changed as the hot water supply side control is executed. As a result, the combustion state of the heating combustion burner also varies. For this reason, the temperature of the heat medium circulated and supplied to the reheating heat exchanger is suddenly changed, and the temperature of the hot water passing through the reheating heat exchanger is also destabilized. Therefore, if such control is executed, the operation of claim 1 can be obtained more specifically and reliably by waiting for the start of the circulation flow rate detection process for a set time.

又、第1の発明の複合熱源機において、循環流量検出処理部として、追い焚き用熱交換器に熱媒が循環供給されている途中で暖房用燃焼バーナについて燃焼能力を切換える制御が実行されたとき、熱媒温度に急変動をもたらす制御が実行されたものとして、循環流量の検出処理の開始前に設定時間だけ待機する構成とすることができる(請求項3)。この場合も、暖房用燃焼バーナの燃焼能力を切換える制御が実行されると、この暖房用燃焼バーナにより加熱される熱媒の温度にも急変動がもたらされて、追い焚き用熱交換器を通過する湯水の往き温度も不安定化することになる。そこで、このような制御が実行されれば、循環流量の検出処理の開始を設定時間だけ待機させることにより、請求項1又は請求項2の作用をより具体的かつ確実に得られるようになる。   Further, in the composite heat source apparatus of the first invention, control for switching the combustion capacity of the heating combustion burner is performed while the heat medium is being circulated and supplied to the reheating heat exchanger as the circulation flow rate detection processing unit. At this time, it is possible to adopt a configuration in which control for causing a sudden change in the temperature of the heat medium is performed, and the system waits for a set time before the start of the circulating flow rate detection process. Also in this case, when the control for switching the combustion capacity of the heating combustion burner is executed, the temperature of the heat medium heated by the heating combustion burner is also suddenly changed, and the reheating heat exchanger is changed. The temperature of the passing hot water will also become unstable. Therefore, if such control is executed, the operation of claim 1 or claim 2 can be obtained more specifically and reliably by waiting for the start of the circulation flow rate detection process for a set time.

第2の発明では、温水暖房用の熱源として暖房循環路に循環供給される熱媒を加熱するための暖房用燃焼バーナと、熱源として前記暖房用燃焼バーナにより加熱された熱媒の循環供給を受ける一方、追い焚き循環路を通して浴槽からの湯水の循環供給を受けて液−液熱交換により前記湯水を追い焚き加熱するための追い焚き用熱交換器と、この追い焚き用熱交換器を通して前記追い焚き循環路に循環される湯水の循環流量を制御上の処理により検出するための循環流量検出処理部とを備え、前記循環流量検出処理部は、前記追い焚き循環路内を湯水が循環している状態に維持しつつ前記暖房循環路を通しての前記追い焚き用熱交換器に対する熱源の循環供給を遮断させた状態で、前記追い焚き用熱交換器を通過して浴槽に向かう前記湯水の往き温度の降下状況に基づいて前記循環流量を検出するように構成されている複合熱源機を対象にして次の技術的手段を講じた。すなわち、前記循環流量検出処理部として、前記暖房用燃焼バーナの制御状況について監視し、前記循環流量の検出処理を開始する際に、前記追い焚き用熱交換器に循環供給される熱媒温度に急変動をもたらす制御が実行されたときには、前記往き温度が安定するのに要するものとして予め設定された時間だけ待機した上で、前記循環流量の検出処理を開始する構成とした(請求項4)。   In the second invention, a heating combustion burner for heating the heating medium circulated and supplied to the heating circuit as a heat source for hot water heating, and a circulation supply of the heating medium heated by the heating combustion burner as a heat source are provided. On the other hand, through the recirculation circuit, the recirculation supply of hot water from the bathtub is received, and the reheating heat exchanger for reheating and heating the hot water by liquid-liquid heat exchange, and the reheating heat exchanger A circulating flow rate detection processing unit for detecting a circulating flow rate of hot water circulated through the recirculation circulation path by control processing, and the circulation flow rate detection processing unit circulates hot water in the recirculation circulation path. In the state where the circulation of the heat source to the reheating heat exchanger through the heating circuit is cut off while maintaining the state of being heated, the flow of the hot water toward the bathtub through the reheating heat exchanger It provides the following technical means directed to a composite heat source machine that is configured to detect the circulating flow rate based on the drop status of the temperature. That is, as the circulating flow rate detection processing section, the control status of the heating combustion burner is monitored, and when the circulating flow rate detection processing is started, the temperature of the heating medium circulated and supplied to the reheating heat exchanger is set. When control that causes sudden fluctuation is executed, the circulation flow rate detection process is started after waiting for a time set in advance as required for the going-out temperature to stabilize (Claim 4). .

この第2の発明の場合、循環流量の検出処理の開始の際に、もしも、暖房用燃焼バーナの制御状況において、追い焚き用熱交換器に循環供給される熱媒温度に急変動をもたらす制御が実行されたときには、設定時間だけ待機した上で、循環流量の検出処理を開始するようにしているため、たとえ、熱媒温度が急変動して追い焚き循環路内の往き温度が不安定化したとしても、設定時間だけ待機している間に安定化させることが可能となり、その後に開始される循環流量の検出処理を正確にかつ確実に行うことが可能となる。つまり、第1の発明の場合と異なり、給湯回路を備えず、暖房回路と、暖房用熱源である熱媒が追い焚き用熱源として循環供給される追い焚き回路とで構成された複合熱源機における循環流量の検出処理についても、この第2の発明により、正確にかつ確実に行うことが可能となる。   In the case of this second aspect of the invention, at the start of the circulation flow rate detection process, if the control status of the heating combustion burner, control that causes a sudden change in the temperature of the heat medium circulated and supplied to the reheating heat exchanger Since the process of detecting the circulation flow rate is started after waiting for the set time, even if the heating medium temperature fluctuates suddenly, the return temperature in the recirculation circuit becomes unstable. Even if it does, it becomes possible to stabilize while waiting for setting time, and it becomes possible to perform the detection process of the circulating flow rate started after that correctly and reliably. In other words, unlike the case of the first invention, in a composite heat source machine that is not provided with a hot water supply circuit, and that includes a heating circuit and a reheating circuit in which a heating medium as a heating heat source is circulated and supplied as a reheating heat source. The circulation flow rate detection process can also be accurately and reliably performed according to the second invention.

そして、第2の発明の複合熱源機においても、循環流量検出処理部として、追い焚き用熱交換器に前記熱媒が循環供給されている途中で暖房用燃焼バーナについて燃焼能力を切換える制御が実行されたとき、熱媒温度に急変動をもたらす制御が実行されたものとして、循環流量の検出処理の開始前に設定時間だけ待機する構成とすることができる(請求項5)。このようにすることにより、暖房用燃焼バーナの燃焼能力を切換える制御が実行されると、この暖房用燃焼バーナにより加熱される熱媒の温度にも急変動がもたらされて、追い焚き用熱交換器を通過する湯水の往き温度も不安定化することになる。そこで、このような制御が実行されれば、循環流量の検出処理の開始を設定時間だけ待機させることにより、請求項4の作用をより具体的かつ確実に得られるようになる。   In the composite heat source machine of the second invention as well, the control for switching the combustion capacity of the heating combustion burner while the heat medium is being circulated and supplied to the reheating heat exchanger is executed as the circulating flow rate detection processing unit. When the control is performed, it is assumed that the control that causes a sudden change in the temperature of the heat medium has been executed, and the system can wait for a set time before the start of the circulation flow rate detection process. In this way, when the control for switching the combustion capacity of the heating combustion burner is executed, the temperature of the heat medium heated by the heating combustion burner is also suddenly changed, and the reheating heat is increased. The temperature of hot water passing through the exchanger will also become unstable. Therefore, if such control is executed, the operation of the fourth aspect can be obtained more specifically and reliably by waiting for the start of the circulation flow rate detection process for a set time.

以上、説明したように、第1の発明の複合熱源機によれば、循環流量の検出処理の開始の際に、もしも、給湯用燃焼バーナ及び暖房用燃焼バーナの内の少なくとも1つの制御状況において、追い焚き用熱交換器に循環供給される熱媒温度に急変動をもたらす制御が実行されたとき、設定時間だけ待機した上で、循環流量の検出処理を開始するようにしているため、たとえ、熱媒温度が急変動して追い焚き循環路内の往き温度が不安定化したとしても、設定時間だけ待機している間に安定化させることができ、その後に開始される循環流量の検出処理を正確にかつ確実に行うことができるようになる。   As described above, according to the composite heat source machine of the first invention, at the start of the circulating flow rate detection process, if at least one of the hot water combustion burner and the heating combustion burner is in the control state When the control that causes a sudden change in the temperature of the heat medium circulated and supplied to the reheating heat exchanger is executed, the detection of the circulating flow rate is started after waiting for the set time. Even if the heat medium temperature fluctuates suddenly and the return temperature in the recirculation circuit becomes unstable, it can be stabilized while waiting for the set time, and the circulation flow rate that is started thereafter is detected. Processing can be performed accurately and reliably.

特に、請求項2の複合熱源機によれば、循環流量検出処理部として、給湯用燃焼バーナが暖房用燃焼バーナと同時燃焼状態になった場合における給湯用燃焼バーナの燃焼開始、燃焼能力の切換、又は、燃焼停止のいずれかを含む制御が実行されたとき、熱媒温度に急変動をもたらす制御が実行されたものとして、循環流量の検出処理の開始前に設定時間だけ待機する構成とすることにより、次の効果を得ることができる。すなわち、給湯用の燃焼バーナが同時に燃焼作動されてその燃焼開始、燃焼能力切換又は燃焼停止という制御が給湯側で実行されると、その給湯側制御の実行に伴い燃焼調整弁に対する制御も変更される結果、暖房用燃焼バーナの燃焼状態も変動することになる。このため、追い焚き用熱交換器に循環供給される熱媒の温度に急変動がもたらされて、追い焚き用熱交換器を通過する湯水の往き温度も不安定化することになる。そこで、請求項2の如く、このような制御が実行されれば、循環流量の検出処理の開始を設定時間だけ待機させることにより、請求項1の効果をより具体的かつ確実に得ることができるようになる。   In particular, according to the composite heat source apparatus of claim 2, as the circulation flow rate detection processing unit, when the hot water supply combustion burner is in a combustion state simultaneously with the heating combustion burner, the combustion start of the hot water supply combustion burner and switching of the combustion capacity When the control including any one of the combustion stop is executed, it is assumed that the control causing the rapid change in the heat medium temperature is executed, and the system waits for the set time before the start of the circulation flow rate detection process. As a result, the following effects can be obtained. That is, if the combustion burner for hot water supply is simultaneously burned and the control for starting combustion, switching the combustion capacity or stopping combustion is executed on the hot water supply side, the control for the combustion adjustment valve is also changed as the hot water supply side control is executed. As a result, the combustion state of the heating combustion burner also varies. For this reason, the temperature of the heat medium circulated and supplied to the reheating heat exchanger is suddenly changed, and the temperature of the hot water passing through the reheating heat exchanger is also destabilized. Therefore, if such control is executed as in claim 2, the effect of claim 1 can be obtained more specifically and reliably by waiting for the start of the circulation flow rate detection process for a set time. It becomes like this.

又、請求項3の発明の複合熱源機によれば、循環流量検出処理部として、追い焚き用熱交換器に熱媒が循環供給されている途中で暖房用燃焼バーナについて燃焼能力を切換える制御が実行されたとき、熱媒温度に急変動をもたらす制御が実行されたとものとして、循環流量の検出処理の開始前に設定時間だけ待機する構成とすることにより、次の効果を得ることができる。すなわち、暖房用燃焼バーナの燃焼能力を切換える制御が実行されると、この暖房用燃焼バーナにより加熱される熱媒の温度にも急変動がもたらされて、追い焚き用熱交換器を通過する湯水の往き温度も不安定化することになる。そこで、請求項3の如く、このような制御が実行されれば、循環流量の検出処理の開始を設定時間だけ待機させることにより、請求項1の発明による効果をより具体的かつ確実に得ることができるようになる。   Further, according to the composite heat source apparatus of the invention of claim 3, as the circulating flow rate detection processing unit, the control for switching the combustion capacity of the heating combustion burner while the heat medium is being circulated and supplied to the reheating heat exchanger is performed. When executed, it is assumed that control that causes a sudden change in the temperature of the heat medium has been executed, and the following effect can be obtained by waiting for a set time before starting the circulating flow rate detection process. That is, when the control for switching the combustion capacity of the heating combustion burner is executed, the temperature of the heat medium heated by the heating combustion burner is also suddenly changed and passes through the reheating heat exchanger. The going-out temperature of hot water will also become unstable. Therefore, if such control is performed as in claim 3, the effect of the invention of claim 1 can be obtained more specifically and reliably by waiting for the start of the circulation flow rate detection process for a set time. Will be able to.

第2の発明の複合熱源機によれば、循環流量の検出処理の開始の際に、もしも、暖房用燃焼バーナの制御状況において、追い焚き用熱交換器に循環供給される熱媒温度に急変動をもたらす制御が実行されたときには、設定時間だけ待機した上で、循環流量の検出処理を開始するようにしているため、たとえ、熱媒温度が急変動して追い焚き循環路内の往き温度が不安定化したとしても、設定時間だけ待機している間に安定化させることができ、その後に開始される循環流量の検出処理を正確にかつ確実に行うことができるようになる。つまり、第1の発明の場合と異なり、給湯回路を備えず、暖房回路と、暖房用熱源である熱媒が追い焚き用熱源として循環供給される追い焚き回路とで構成された複合熱源機における循環流量の検出処理についても、この第2の発明により、正確にかつ確実に行うことができるようになる。   According to the composite heat source apparatus of the second aspect of the invention, at the start of the circulation flow rate detection process, if the heating combustion burner is being controlled, the temperature of the heat medium circulated and supplied to the reheating heat exchanger is rapidly increased. When control that causes fluctuations is executed, the process for detecting the circulation flow rate is started after waiting for the set time, so even if the temperature of the heating medium suddenly fluctuates, Even if it becomes unstable, it can be stabilized while waiting for the set time, and the detection process of the circulating flow rate started thereafter can be performed accurately and reliably. In other words, unlike the case of the first invention, in a composite heat source machine that is not provided with a hot water supply circuit, and that includes a heating circuit and a reheating circuit in which a heating medium as a heating heat source is circulated and supplied as a reheating heat source. The circulation flow rate detection process can also be accurately and reliably performed by the second invention.

そして、請求項5の複合熱源機によれば、循環流量検出処理部として、追い焚き用熱交換器に前記熱媒が循環供給されている途中で暖房用燃焼バーナについて燃焼能力を切換える制御が実行されたとき、熱媒温度に急変動をもたらす制御が実行されたものとして、循環流量の検出処理の開始前に設定時間だけ待機する構成とすることにより、次の効果を得ることができる。すなわち、暖房用燃焼バーナの燃焼能力を切換える制御が実行されると、この暖房用燃焼バーナにより加熱される熱媒の温度にも急変動がもたらされて、追い焚き用熱交換器を通過する湯水の往き温度も不安定化することになる。そこで、請求項5の如く、このような制御が実行されれば、循環流量の検出処理の開始を設定時間だけ待機させることにより、請求項4の発明による効果をより具体的かつ確実に得ることができるようになる。   According to the composite heat source apparatus of claim 5, as the circulation flow rate detection processing unit, control is performed for switching the combustion capacity of the heating combustion burner while the heat medium is being circulated and supplied to the reheating heat exchanger. Then, assuming that control that causes a sudden change in the temperature of the heat medium has been executed, the following effects can be obtained by adopting a configuration that waits for a set time before the start of the circulating flow rate detection process. That is, when the control for switching the combustion capacity of the heating combustion burner is executed, the temperature of the heat medium heated by the heating combustion burner is also suddenly changed and passes through the reheating heat exchanger. The going-out temperature of hot water will also become unstable. Therefore, if such control is performed as in claim 5, the effect of the invention of claim 4 can be obtained more specifically and reliably by waiting for the start of the circulation flow rate detection process for a set time. Will be able to.

本発明の実施形態が適用される複合熱源機として2缶3水路式給湯器付き風呂釜を示す模式図である。It is a mimetic diagram showing a 2 can 3 water channel type hot water heater with a water heater as a compound heat source machine to which an embodiment of the present invention is applied. 本複合熱源機の湯張り制御及び湯水の循環流量検出処理に係る制御構成のブロック図である。It is a block diagram of a control configuration related to hot water filling control and hot water circulation flow rate detection processing of the present composite heat source machine. 主として循環流量検出処理の手順を示すフローチャートの前半部である。It is the first half part of the flowchart which mainly shows the procedure of a circulating flow rate detection process. 主として循環流量検出処理の手順を示すフローチャートの後半部である。It is the latter half part of the flowchart which mainly shows the procedure of a circulating flow rate detection process. 循環流量が大の場合と小の場合とにおける、暖房循環路から追い焚き用熱交換器に対する熱媒循環供給を停止した後の往き温度の変化特性を示す温度と時間との関係図である。FIG. 6 is a relationship diagram of temperature and time showing a change characteristic of a going-out temperature after stopping supply of the heat medium circulation from the heating circuit to the reheating heat exchanger when the circulation flow rate is large and when the circulation flow rate is small. 種々の循環流量でかつ種々の温度条件での組み合わせでの湯水の追い焚き循環流を対象にして、その追い焚き循環を継続させつつ、暖房循環路から追い焚き用熱交換器に対する熱媒循環供給を停止した後における往き温度の変化と時間との関係を計測し、往き温度の経時変化を所定の比率λで表して、その比率λと経過時間との関係を示す実験データに基づく関係図である。Heat medium circulation supply from the heating circuit to the reheating heat exchanger while continuing the recirculation circulation for the recirculation flow of hot and cold water in various circulation flow rates and combinations at various temperature conditions Is a relationship diagram based on experimental data showing the relationship between the change in the going temperature and the elapsed time after the operation is stopped, and the change in the going temperature over time is expressed by a predetermined ratio λ. is there. 図5の関係図からλ=0.5の場合について、循環流量と降下時間との関係を表した関係図である。FIG. 6 is a relationship diagram showing the relationship between the circulation flow rate and the descent time in the case of λ = 0.5 from the relationship diagram of FIG. 5. 特許文献1で提案の技術の前提となる関係図であって、循環流量が大の場合と小の場合とにおける、燃焼バーナによる燃焼加熱停止後の往き温度の変化特性を示す温度と時間との関係図である。FIG. 4 is a relationship diagram that is a premise of the technique proposed in Patent Document 1 and shows a change in temperature and time indicating a change characteristic of the forward temperature after combustion heating is stopped by a combustion burner when the circulating flow rate is large and when the circulating flow rate is small. It is a relationship diagram.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る複合熱源機の模式図である。この複合熱源機は、給湯機能、温水循環式の温水暖房機能、ふろの追い焚き機能、注湯機能の各機能を併有する複合型に構成されたものであり、構造的に特に2缶3水路式に構成されたものである。すなわち、給湯回路2と、追い焚き循環回路3と、注湯回路4と、温水式の暖房循環回路5とを備え、追い焚き循環回路3として、液−液熱交換式に構成された追い焚き用熱交換器31により浴槽B内の湯水を追い焚き加熱し、この追い焚き用熱交換器31に対し追い焚き加熱用の熱源として暖房循環回路5から暖房端末61に供給するための高温水(熱媒)が循環供給されるようになっている。なお、図1に例示の複合熱源機は、燃焼加熱部において顕熱に加え燃焼排ガスから潜熱回収を行うことにより高効率化を図る潜熱回収型のものを例示しているが、本発明は、潜熱回収機能を付加した高効率型ではないものでも、実施することができ、本発明による作用効果を得ることができる。又、以下の説明では、暖房循環回路5として、低温用・高温用の複数種類の暖房端末に低温水や高温水を循環供給するもの、等の具体構成を備えた例を示すが、一方の循環路(例えば追い焚き循環回路)に循環される流体(例えば浴槽湯水)に対する加熱が、他方の循環路(例えば暖房循環回路)から循環供給される熱媒(例えば高温水)を熱源として液−液熱交換式の間接加熱により行われるものであれば、これら以外の構成を備えたものでもよく、本発明の適用上、限定されるものではない。   FIG. 1 is a schematic diagram of a composite heat source apparatus according to an embodiment of the present invention. This combined heat source machine is constructed in a combined type having both a hot water supply function, a hot water circulation type hot water heating function, a bath replenishment function, and a pouring function. It is constructed in an equation. In other words, a reheating circuit provided with a hot water supply circuit 2, a recirculation circuit 3, a pouring circuit 4, and a hot water heating recirculation circuit 5 and configured as a recirculation circuit 3 as a liquid-liquid heat exchange type. The hot water in the bathtub B is reheated and heated by the heat exchanger 31 and is supplied to the heating terminal 61 from the heating circuit 5 as a heat source for reheating the reheating heat exchanger 31 ( The heat medium is circulated and supplied. In addition, the composite heat source machine illustrated in FIG. 1 exemplifies a latent heat recovery type that achieves high efficiency by performing latent heat recovery from combustion exhaust gas in addition to sensible heat in the combustion heating unit. Even a non-high efficiency type to which a latent heat recovery function is added can be implemented, and the effects of the present invention can be obtained. In the following description, the heating circulation circuit 5 is shown as an example having a specific configuration such as one that circulates and supplies low-temperature water and high-temperature water to a plurality of types of low-temperature and high-temperature heating terminals. Heating a fluid (for example, bathtub hot water) circulated through a circulation path (for example, a recirculation circuit) is performed by using a heat medium (for example, high-temperature water) circulated and supplied from the other circulation path (for example, a heating circulation circuit) as a heat source. As long as it is performed by liquid heat exchange type indirect heating, a configuration other than these may be provided, and is not limited in the application of the present invention.

給湯回路2は、給湯用熱源機21と、この給湯用熱源機21に対し水道水等の給水を入水させる入水路22と、給湯用熱源機21で熱交換加熱された湯が出湯される出湯路23とを備えている。給湯用熱源機21は燃焼バーナ24の燃焼に伴う顕熱により主加熱する一次熱交換器25と、燃焼排ガスから潜熱を回収して予熱する二次熱交換器26とを備え、入水をまず二次熱交換器26に通して予熱した上で、一次熱交換器25に通すようになっている。出湯路23の途中には入水路22から分岐された混水用のバイパス路27が合流されており、一次熱交換器25からの出湯に対し混水弁27aの開度調整により入水路22からの水を所定量混水して設定給湯温度に温調した上で給湯栓28等に給湯されるようになっている。入水路22には入水流量を検出する入水流量センサ22aと、入水温度を検出する入水温度センサ22bとが設けられ、バイパス路27の合流点よりも下流側位置の出湯路23には給湯栓28への給湯流量を調整する流量調整弁23aと、出湯温度を検出する出湯温度センサ23bとが設けられている。そして、出湯路23から注湯回路4の注湯路41の上流端が分岐され、下流端が前記追い焚き循環回路3の戻り流路32aに対し合流点Mで接続され、出湯路23の湯が注湯路41及び戻り流路32aを通して浴槽Bに注湯可能とされている。   The hot water supply circuit 2 includes a hot water supply heat source device 21, a water inlet 22 through which water supply such as tap water is introduced into the hot water supply heat source device 21, and a hot water discharged from the hot water heat-exchanged and heated by the hot water supply heat source device 21. Road 23 is provided. The hot water supply heat source unit 21 includes a primary heat exchanger 25 that mainly heats by sensible heat accompanying combustion of the combustion burner 24, and a secondary heat exchanger 26 that recovers latent heat from the combustion exhaust gas and preheats it. It preheats through the secondary heat exchanger 26 and then passes through the primary heat exchanger 25. A mixed water bypass passage 27 branched from the incoming water passage 22 is joined in the middle of the outgoing water passage 23, and from the incoming water passage 22 by adjusting the opening of the mixed water valve 27a with respect to the outgoing hot water from the primary heat exchanger 25. A predetermined amount of water is mixed to adjust the temperature to the set hot water supply temperature, and then hot water is supplied to the hot water tap 28 and the like. The water inlet 22 is provided with an incoming water flow sensor 22a for detecting the incoming water flow rate and an incoming water temperature sensor 22b for detecting the incoming water temperature. The hot water tap 28 is provided in the outlet hot water 23 at a position downstream of the junction of the bypass 27. A flow rate adjustment valve 23a for adjusting the hot water supply flow rate and a hot water temperature sensor 23b for detecting the hot water temperature are provided. Then, the upstream end of the pouring path 41 of the pouring circuit 4 is branched from the pouring path 23, and the downstream end is connected to the return flow path 32 a of the recirculation circuit 3 at the junction M. However, the hot water can be poured into the bathtub B through the pouring channel 41 and the return channel 32a.

追い焚き循環回路3は、液−液熱交換式の追い焚き用熱交換器31が追い焚き循環路32に介装されたものである。この追い焚き循環路32は、戻り流路32a及び往き流路32bにより構成されたものである。そして、追い焚き用の循環ポンプ33の作動により浴槽Bからふろ戻り流路32aを通して取り出された浴槽B内の湯水が追い焚き用熱交換器31に流入され、この追い焚き用熱交換器31内において後述の熱源との液−液熱交換により追い焚き加熱され、追い焚き加熱後の湯水が往き流路32bを通して浴槽Bに送られるというように循環されるようになっている。戻り流路32aには循環ポンプ33の他に浴槽B内の水位を検出する圧力式の水位検出センサ30と、循環流の通過によりフラップが開いて循環判定のON指令を出力する水流スイッチ34と、浴槽Bからの湯水の温度(浴槽B内の湯水温度と同等;戻り温度)を検出する戻り温度センサ35とが設けられ、往き流路32bには追い焚き用熱交換器31の下流側位置に追い焚き加熱後の湯水の温度(往き温度)を検出する往き温度センサ36が設けられている。追い焚き用熱交換器31には熱源を循環供給するための熱源循環路37が接続され、この熱源循環路37に介装されたふろ熱動弁38を開閉切換することで、熱源を循環供給させたりその循環供給を停止させたりというように切換して、追い焚き加熱のON・OFF切換が行われるようになっている。熱源循環路37やふろ熱動弁38は、後述の暖房循環回路5の温水循環路55の一部を構成している。   The recirculation circuit 3 includes a recuperation heat exchanger 31 of a liquid-liquid heat exchange type interposed in a recirculation circuit 32. This recirculation circulation path 32 is constituted by a return flow path 32a and a forward flow path 32b. Then, the hot water in the bathtub B taken out from the bathtub B through the bath return flow path 32 a by the operation of the circulation pump 33 for reheating flows into the reheating heat exchanger 31, and in the reheating heat exchanger 31. In this case, the water is reheated by liquid-liquid heat exchange with a heat source, which will be described later, and the hot water after reheating is circulated so as to be sent to the bathtub B through the forward flow path 32b. In addition to the circulation pump 33, the return flow path 32a includes a pressure-type water level detection sensor 30 that detects the water level in the bathtub B, a water flow switch 34 that opens a flap when the circulation flow passes, and outputs an ON command for circulation determination. And a return temperature sensor 35 for detecting the temperature of hot water from the bathtub B (equivalent to the hot water temperature in the bathtub B; return temperature), and a downstream position of the reheating heat exchanger 31 in the forward flow path 32b. A forward temperature sensor 36 is provided for detecting the temperature (forward temperature) of the hot and cold water after reheating. A heat source circulation path 37 for circulating and supplying the heat source is connected to the reheating heat exchanger 31, and the heat source is circulated and supplied by switching the opening and closing valve 38 interposed in the heat source circulation path 37. The reheating is switched on and off, and the on / off switching of the reheating heating is performed. The heat source circulation path 37 and the bath heat valve 38 constitute a part of a hot water circulation path 55 of the heating circulation circuit 5 described later.

注湯回路4は、前記の注湯路41と、この注湯路41に介装された注湯弁42とを備えたものである。注湯路41には、注湯弁42の他に、注湯流量を検出する注湯流量センサ43や、一対の逆止弁44等が介装されている。前記注湯弁42がコントローラ7により開閉制御され、注湯の実行により出湯路23の湯が注湯路41,追い焚き循環路32(戻り路32a)を経て浴槽Bに注湯されて所定量の湯張りが行われるようになっている。   The pouring circuit 4 includes the pouring passage 41 and the pouring valve 42 interposed in the pouring passage 41. In addition to the pouring valve 42, a pouring flow rate sensor 43 that detects the pouring flow rate, a pair of check valves 44, and the like are interposed in the pouring passage 41. The pouring valve 42 is controlled to be opened and closed by the controller 7, and by pouring, the hot water in the tapping channel 23 is poured into the bathtub B through the pouring channel 41 and the recirculation circuit 32 (return channel 32a), and a predetermined amount. The hot water filling is performed.

暖房循環回路5の暖房用熱源機51は、給湯用熱源機21と同様に、燃焼バーナ52の燃焼に伴う顕熱により主加熱する一次熱交換器53と、燃焼排ガスから潜熱を回収して予熱する二次熱交換器54とを備えている。そして、暖房循環回路5は、暖房循環路を構成する温水循環路55と、暖房用循環ポンプ56とを備え、暖房用熱源の熱媒として低温水と高温水との2種類の温度の温水を低温用・高温用の複数種類の暖房端末61,63に対し熱源として循環供給するようになっている。   The heating heat source unit 51 of the heating circulation circuit 5 is preheated by recovering latent heat from the combustion exhaust gas, and a primary heat exchanger 53 that mainly heats by sensible heat accompanying the combustion of the combustion burner 52, similarly to the hot water source heat source unit 21. The secondary heat exchanger 54 is provided. The heating circulation circuit 5 includes a hot water circulation path 55 that constitutes a heating circulation path and a heating circulation pump 56, and uses hot water having two types of temperatures, low-temperature water and high-temperature water, as a heat medium for the heating heat source. A plurality of types of heating terminals 61 and 63 for low temperature and high temperature are circulated and supplied as a heat source.

すなわち、前記の温水循環路55は、膨張タンク57に戻されて貯留される低温水を暖房用循環ポンプ56の作動により一次熱交換器53に送り、ここで燃焼バーナ52により加熱した後の高温水を熱源循環路37を通して追い焚き用熱交換器31に熱源として供給したり、高温水供給路59及び高温往きヘッダー60を介して例えば浴室乾燥機等の高温用暖房端末61に供給したりされるようになっている。又、循環ポンプ56の作動により、膨張タンク57内の低温水を低温往きヘッダー62を介して例えば床暖房機等の低温用暖房端末63に供給し、全ての暖房端末61,63から放熱により低温になった低温水を戻りヘッダー64及び低温水供給路65を介して潜熱回収用の二次熱交換器54に通し、予熱した上で膨張タンク57に戻すというように、循環させるようになっている。以上の作動制御が、例えば暖房リモコンの暖房スイッチのON操作により、後述の暖房制御部72の暖房運転制御によって実行される。   That is, the hot water circulation path 55 sends the low temperature water returned to the expansion tank 57 and stored to the primary heat exchanger 53 by the operation of the heating circulation pump 56, where it is heated by the combustion burner 52. Water is supplied as a heat source to the reheating heat exchanger 31 through the heat source circulation path 37, or is supplied to a high-temperature heating terminal 61 such as a bathroom dryer through the high-temperature water supply path 59 and the high-temperature forward header 60. It has become so. Also, by the operation of the circulation pump 56, the low-temperature water in the expansion tank 57 is supplied to the low-temperature heating terminal 63 such as a floor heater via the low-temperature forward header 62, and the low-temperature water is radiated from all the heating terminals 61 and 63 by heat radiation. The low-temperature water thus obtained is circulated through the return header 64 and the low-temperature water supply passage 65 through the secondary heat exchanger 54 for recovering latent heat, preheated and then returned to the expansion tank 57. Yes. The above operation control is performed by heating operation control of the heating control part 72 mentioned later by ON operation of the heating switch of a heating remote control, for example.

なお、図示を省略するが、二次熱交換器26,54において燃焼排ガスが潜熱回収のための熱交換により冷やされて凝縮することにより生じたドレン水を導出し、導出したドレン水を中和処理等した上で排水等させるために、ドレン水処理回路も付設されている。   In addition, although illustration is abbreviate | omitted, in the secondary heat exchangers 26 and 54, the drain water produced | generated when the combustion exhaust gas was cooled and condensed by heat exchange for latent heat recovery is derived, and the derived drain water is neutralized A drain water treatment circuit is also provided for drainage after treatment.

ここで、前記2種類の燃焼バーナ24,52は、元ガス弁66や燃料調整弁であるガス比例弁67を介装した燃料供給系からの燃料ガスの供給と、送風ファン68からの燃焼用空気の供給とを受けて燃焼作動するようになっている。ガス比例弁67は、コントローラ7により開度が変更制御され、これにより、前記2つの燃焼バーナ24,52の双方に対する燃料ガスのガス圧を変更調整し得るようになっている。つまり、2つの燃焼バーナ24,52はいずれもガス比例弁67により制御された燃料ガスにより燃焼されるようになっている。又、図例の各燃焼バーナ24,52は、複数の能力切換弁241〜243,521,522のコントローラ7による開閉切換制御により、燃焼能力が複数段階に切換可能となっている。   Here, the two types of combustion burners 24 and 52 are for supplying fuel gas from a fuel supply system including a gas proportional valve 67 which is an original gas valve 66 and a fuel adjustment valve, and for combustion from a blower fan 68. Combustion operation is performed in response to the supply of air. The opening degree of the gas proportional valve 67 is controlled by the controller 7, whereby the gas pressure of the fuel gas with respect to both the two combustion burners 24 and 52 can be changed and adjusted. That is, the two combustion burners 24 and 52 are both burned by the fuel gas controlled by the gas proportional valve 67. Also, the combustion burners 24 and 52 in the figure can be switched in a plurality of stages by the opening / closing switching control by the controller 7 of the plurality of capacity switching valves 241 to 243, 521 and 522.

すなわち、給湯用の燃焼バーナ24は、多数(例えば10本)の燃焼管から構成され、燃料ガスの供給が所定本数毎に区画されている。例えば、能力切換弁241の開閉切換により2本の燃焼管への燃料ガスの供給切換が行われ、能力切換弁242の開閉切換により3本の燃焼管への燃料ガスの供給切換が行われ、能力切換弁243の開閉切換により5本の燃焼管への燃料ガスの供給切換が行われるようになっている。同様に暖房用の燃焼バーナ52も、例えば、4本の燃焼管から構成され、能力切換弁521開閉切換により2本の燃焼管への燃料ガスの供給切換が行われ、能力切換弁522の開閉切換により他の2本の燃焼管への燃料ガスの供給切換が行われるようになっている。そして、給湯用の燃焼バーナ24では、能力切換弁241〜243を単独で又は組み合わせて開閉制御することにより5段階に燃焼能力が切換可能となり、又、暖房用の燃焼バーナ52では、能力切換弁521,522の開閉制御により2段階に燃焼能力が切換可能となっている。能力切換の例としては、能力切換弁241だけ開切換すると2本の燃焼管が燃焼作動され(1段)、能力切換弁242だけ開切換すると3本の燃焼管が燃焼作動され(2段)、能力切換弁243だけ開切換すると5本の燃焼管が燃焼作動され(3段)、能力切換弁241,243を共に開切換すると7本の燃焼管が燃焼作動され(4段)、能力切換弁241〜243を共に開切換すると10本の燃焼管が燃焼作動される(5段)。又、暖房用の燃焼バーナ52では、能力切換弁521だけ開切換すると2本の燃焼管が燃焼作動され(1段)、能力切換弁521,522を共に開切換すると4本の燃焼管が燃焼作動される(2段)。加えて、給湯用の燃焼バーナ24では、1〜5段の各燃焼段において、ガス比例弁の開度変更により小能力から大能力までの所定範囲の燃焼能力を発揮し、又、暖房用の燃焼バーナ52も1〜2段の各燃焼段において同様に所定範囲の燃焼能力を発揮する。これにより、ある下位の燃焼段においてガス比例弁67の調整により小能力から大能力に増大させ、次に、上位の燃焼段に切換えると同時にガス比例弁67を小能力に変更し、ついで、その燃焼段でガス比例弁を大能力側に増大していく、というように、燃焼段の切換とガス比例弁の変更調整とによって、燃焼能力を最小から最大まで増大させ得るようになっている。   That is, the hot water supply combustion burner 24 is composed of a large number (for example, 10) of combustion pipes, and the supply of fuel gas is divided every predetermined number. For example, the supply switching of the fuel gas to the two combustion pipes is performed by switching the opening / closing of the capacity switching valve 241, and the supply switching of the fuel gas to the three combustion pipes is performed by switching the opening / closing of the capacity switching valve 242. The supply switching of the fuel gas to the five combustion pipes is performed by opening / closing switching of the capacity switching valve 243. Similarly, the combustion burner 52 for heating is composed of, for example, four combustion pipes, and the supply switching of the fuel gas to the two combustion pipes is performed by the opening / closing switching of the capacity switching valve 521, thereby opening / closing the capacity switching valve 522. By switching, the supply of fuel gas to the other two combustion pipes is switched. In the combustion burner 24 for hot water supply, the ability switching valves 241 to 243 are individually or in combination, and the combustion ability can be switched in five stages by controlling the opening and closing. In the combustion burner 52 for heating, the ability switching valve The combustion capacity can be switched in two stages by opening / closing control of 521, 522. As an example of capacity switching, when only the capacity switching valve 241 is opened, the two combustion pipes are operated for combustion (1 stage), and when only capacity switching valve 242 is opened, the three combustion pipes are operated for combustion (2 stages). When only the capacity switching valve 243 is opened, the five combustion pipes are operated for combustion (three stages), and when both the capacity switching valves 241 and 243 are opened, the seven combustion pipes are operated for combustion (four stages). When the valves 241 to 243 are both switched to open, 10 combustion pipes are combusted (5 stages). Further, in the combustion burner 52 for heating, when the capacity switching valve 521 is opened and switched, the two combustion pipes are combusted (first stage), and when both the capacity switching valves 521 and 522 are switched together, the four combustion pipes are combusted. Actuated (stage 2). In addition, in the combustion burner 24 for hot water supply, in each of the 1st to 5th combustion stages, by changing the opening of the gas proportional valve, a combustion capacity in a predetermined range from a small capacity to a large capacity is exhibited, and for the heating The combustion burner 52 also exhibits a predetermined range of combustion capacity in each of the one or two combustion stages. As a result, the gas proportional valve 67 is adjusted from a small capacity to a large capacity by adjusting the gas proportional valve 67 in a certain lower combustion stage, and then the gas proportional valve 67 is changed to a small capacity simultaneously with switching to the upper combustion stage. The combustion capacity can be increased from the minimum to the maximum by switching the combustion stage and changing and adjusting the gas proportional valve, such as increasing the gas proportional valve to the large capacity side in the combustion stage.

前記の複合熱源機は、コントローラ7によって、給湯運転、注湯・注水による湯張り運転、追い焚き運転及び暖房運転等の各種の運転制御がリモコン8からの出力及び前記の各種センサからの出力等に基づいて行われる他、後述の如く追い焚き循環回路3の循環流量の検出を流量センサ等の直接的な検出手段を用いることなく制御上の処理によって行うようになっている。前記コントローラ7は、給湯回路2により給湯栓28に対する給湯運転を行う給湯制御部71(図2参照)と、暖房循環回路5により暖房端末61,63に熱媒(高温水・低温水)を循環供給して暖房運転を行う暖房制御部72と、注湯路41を通して浴槽Bに注湯・注水して湯張り運転を行う湯張り制御部73と、追い焚き循環回路3により浴槽B内の湯水を所定温度まで焚き上げる追い焚き運転を行う追い焚き制御部74と、循環流量を検出するための制御手段を構成する循環流量検出処理部75とを含む各種制御部を備えている。かかるコントローラ7は、CPUや書き換え可能メモリを備えるマイコンによって主構成されており、メモリに記憶されたプログラム及び各種データに基づいて前記の各種運転制御などを行うようになっている。   In the composite heat source machine, the controller 7 controls various operations such as hot water supply operation, pouring operation by pouring / water injection, reheating operation, and heating operation from the remote controller 8 and from the various sensors. As described later, the circulating flow rate of the recirculation circuit 3 is detected by a control process without using a direct detection means such as a flow rate sensor. The controller 7 circulates a heating medium (high temperature water / low temperature water) to the heating terminals 61 and 63 by the hot water supply control unit 71 (see FIG. 2) for performing the hot water supply operation to the hot water tap 28 by the hot water supply circuit 2 and the heating circulation circuit 5. A heating control unit 72 that supplies and performs heating operation, a hot water control unit 73 that performs hot water filling operation by pouring and pouring water into the bathtub B through the pouring channel 41, and hot water in the bathtub B by the recirculation circuit 3. There are provided various control units including a reheating control unit 74 that performs reheating operation to raise the temperature to a predetermined temperature and a circulating flow rate detection processing unit 75 that constitutes a control means for detecting the circulating flow rate. The controller 7 is mainly configured by a microcomputer including a CPU and a rewritable memory, and performs the above-described various operation controls based on programs and various data stored in the memory.

給湯制御部71による給湯運転制御の概略を説明すると、給湯要求(例えばユーザーによる給湯栓28の開操作)により入水路22への入水流量が最低作動流量(MOQ;例えば3リットル/分)以上になったことが入水流量センサ22aにより検出されれば、燃焼バーナ24等の燃焼系を作動制御することにより、出湯路23に出湯される出湯温度が所定温度になるように所定の燃焼量で燃焼バーナ24を燃焼させるようになっている。そして、出湯路23に出湯させた湯と、バイパス路27を通して出湯路23に分岐入水させた水とを混合させて温調させることにより、給湯栓28等に給湯される湯の温度がリモコン8に設定された設定給湯温度(設定注湯温度)になるように作動制御するようになっている。この設定給湯温度の給湯を実現させるために、燃焼バーナ24が所定の要求号数の燃焼能力を発揮するように、能力切換弁241〜243の開閉切換制御やガス比例弁67の開度制御が実行される。   The outline of the hot water supply operation control by the hot water supply control unit 71 will be described. The incoming water flow rate into the water inlet channel 22 exceeds the minimum operating flow rate (MOQ; for example, 3 liters / minute) due to the hot water supply request (for example, the user opening the hot water tap 28). If it is detected by the incoming water flow rate sensor 22a, the combustion system such as the combustion burner 24 is controlled so that the hot water discharged into the hot water passage 23 is combusted at a predetermined combustion amount so that the hot water temperature becomes a predetermined temperature. The burner 24 is burned. Then, the temperature of the hot water supplied to the hot-water tap 28 and the like is controlled by mixing and adjusting the temperature of the hot water discharged from the hot water outlet 23 and the water branched into the hot water outlet 23 through the bypass 27. The operation is controlled so as to reach the set hot water supply temperature (set pouring temperature). In order to realize the hot water supply at the set hot water supply temperature, the opening / closing switching control of the capacity switching valves 241 to 243 and the opening degree control of the gas proportional valve 67 are performed so that the combustion burner 24 exhibits the combustion capacity of a predetermined required number. Executed.

又、リモコン8のふろ自動スイッチがON操作されると、湯張り制御部73による注湯制御及び注湯後の追い焚き運転制御部74による追い焚き制御が自動処理により実行され、又は、リモコン8の注湯スイッチがON操作されると、注湯運転制御が実行されることになる。注湯制御は、熱動弁38がそれ以前に閉作動されていればそのまま、熱動弁38が開状態であれば熱動弁38を閉作動させた後に、注湯弁42を開作動させることで開始される。この開作動により機外からの給水圧を受けて入水路22に対し入水され、入水路22への入水流量が最低作動流量(MOQ)以上になったことが入水流量センサ22aにより検出されれば燃焼バーナ24が燃焼作動され、出湯路23から設定注湯温度の湯が注湯路41に供給された後、戻り流路32aの合流点Mに供給されることになる。そして、合流点Mから戻り流路32aを通して浴槽Bに所定量が注湯されて、浴槽Bが湯張りされることになる。   When the automatic bath switch of the remote controller 8 is turned ON, the pouring control by the hot water filling control unit 73 and the chasing control by the chasing operation control unit 74 after pouring are executed by automatic processing, or the remote control 8 When the pouring switch is turned on, pouring operation control is executed. In the pouring control, if the thermal valve 38 is closed before that, the hot valve 38 is opened, and if the thermal valve 38 is open, the thermal valve 38 is closed and then the hot valve 42 is opened. It starts with that. If the inlet water flow pressure sensor 22a detects that the water supply pressure from the outside of the machine is received by this opening operation and water enters the water inlet 22 and the water flow into the water inlet 22 exceeds the minimum operating flow rate (MOQ). After the combustion burner 24 is combusted and hot water having a set pouring temperature is supplied from the hot water supply passage 23 to the pouring passage 41, it is supplied to the junction M of the return flow passage 32a. Then, a predetermined amount of hot water is poured into the bathtub B through the return flow path 32a from the junction M, and the bathtub B is filled.

前記追い焚き制御部74による追い焚き制御は次のようにして行われる。すなわち、リモコン8の追い焚きスイッチをユーザがON操作するか、あるいは、前段階にふろ自動スイッチをユーザがON操作して注湯制御により浴槽B内に所定水位までの湯張りが終了すると追い焚き指令が出力され、この追い焚き指令を受けて循環ポンプ33を作動させる。この作動開始により水流スイッチ34がONすると、前記暖房用熱源機51の燃焼作動制御が開始されて燃焼バーナ52が燃焼作動される。この燃焼作動は戻り温度センサ35により検出される戻り温度が設定ふろ温度を維持するように行われる。つまり、戻り温度センサ35の検出戻り温度が設定ふろ温度よりも低ければ燃焼作動され、設定ふろ温度以上であれば燃焼作動が停止される。   The chasing control by the chasing control unit 74 is performed as follows. That is, when the user turns on the reheating switch of the remote controller 8 or when the user turns on the automatic automatic switch in the previous stage and the filling of the water up to the predetermined water level in the bathtub B is finished by the pouring control, the reheating is finished. A command is output, and the circulation pump 33 is operated in response to the refill command. When the water flow switch 34 is turned on by the start of the operation, the combustion operation control of the heating heat source unit 51 is started and the combustion burner 52 is operated. This combustion operation is performed so that the return temperature detected by the return temperature sensor 35 maintains the set bath temperature. That is, if the return temperature detected by the return temperature sensor 35 is lower than the set bath temperature, the combustion operation is performed, and if it is equal to or higher than the set bath temperature, the combustion operation is stopped.

前記湯張り制御部71は、まず、循環判定により浴槽B内の残り湯(残り水を含め「残り湯」と表記する)が有るか否かを判定し、残り湯無しと判定されれば例えば所定の段階に分けて注湯回路4により所定水位まで注湯し、残り湯有りと判定されれば、その残り湯を用いて循環流量検出処理を行った上で残り湯量を演算し、演算結果に基づき前記の所定水位まで湯張りするのに不足分を注湯回路4により注湯する。循環判定は、図3に示すように追い焚き用の循環ポンプ33を作動させ(ステップS1)、水流スイッチ34がONするか否かを判定し(ステップS2)、水流スイッチ3がONしなければ残り湯無し(又は所定量未満)と判定して注湯する一方(ステップS2でNO)、水流スイッチ3がONすれば残り湯有りと判定する(ステップS2でYES)。なお、注湯は、注湯弁42を開変換させて給湯用の燃焼バーナ24の燃焼作動により所定温度の湯を注湯路41及び追い焚き循環路32を通して浴槽Bに落とし込む。   The hot water filling control unit 71 first determines whether or not there is remaining hot water in the bathtub B (represented as “remaining hot water” including the remaining water) by circulation determination, and if it is determined that there is no remaining hot water, for example, In a predetermined stage, the pouring circuit 4 pours water up to a predetermined water level, and if it is determined that there is remaining hot water, the remaining hot water is used to perform a circulating flow rate detection process, and then the remaining hot water amount is calculated. On the basis of the above, the hot water is poured by the pouring circuit 4 to fill the hot water to the predetermined water level. In the circulation determination, as shown in FIG. 3, the recirculation circulation pump 33 is operated (step S1), it is determined whether or not the water flow switch 34 is turned on (step S2), and the water flow switch 3 is not turned on. While determining that there is no remaining hot water (or less than a predetermined amount) and pouring (NO in step S2), if the water flow switch 3 is turned on, it is determined that there is remaining hot water (YES in step S2). Note that the pouring is performed by opening and converting the pouring valve 42 and dropping hot water of a predetermined temperature into the bathtub B through the pouring channel 41 and the recirculation circuit 32 by the combustion operation of the combustion burner 24 for hot water supply.

残り湯有りと判定された場合(ステップS2でYES)には、原則として、その残り湯を利用して循環流量検出処理部75による追い焚き循環回路3の循環流量の検出を行う。循環流量検出処理部75は、タイマ手段751、テーブル記憶部752及び熱源変動監視部753を含み、後述の如く、熱源変動監視部753により熱源(暖房循環回路5から循環供給される高温水)の状況に急変動が生じたか否かについて監視し、熱源側の急変動に伴う検出往き温度への影響を排除して安定した状態で循環流量の検出処理を行うようになっている。このような熱源変動監視部753による監視は、コントローラ7の給湯制御部71や暖房制御部72による後述の如き燃焼バーナ24,52及びガス比例弁67に対する制御状況を対象にして行うようになっている。なお、図3は循環流量検出処理を中心にした湯張り制御に係るフローチャートである。又、前記のステップS1では、循環ポンプ33の作動を一定時間継続して浴槽B内の残り湯を撹拌し、均一温度にしておくことが望ましい。   When it is determined that there is remaining hot water (YES in step S2), in principle, the circulating flow rate of the recirculation circuit 3 is detected by the circulating flow rate detection processing unit 75 using the remaining hot water. The circulating flow rate detection processing unit 75 includes a timer means 751, a table storage unit 752, and a heat source fluctuation monitoring unit 753. As will be described later, the heat source fluctuation monitoring unit 753 generates a heat source (hot water circulated and supplied from the heating circulation circuit 5). Whether or not a sudden change has occurred in the situation is monitored, and the influence of the detection source temperature due to the sudden change on the heat source side is eliminated, and the circulating flow rate detection process is performed in a stable state. Such monitoring by the heat source fluctuation monitoring unit 753 is performed on the control status of the combustion burners 24 and 52 and the gas proportional valve 67 as described later by the hot water supply control unit 71 and the heating control unit 72 of the controller 7. Yes. FIG. 3 is a flowchart relating to the hot water filling control centering on the circulating flow rate detection process. In Step S1, it is desirable that the operation of the circulation pump 33 is continued for a certain period of time to stir the remaining hot water in the bathtub B so as to have a uniform temperature.

循環流量の検出処理のために、まず追い焚き処理を行う(ステップS3)。すなわち、追い焚き用の循環ポンプ33の作動をそのまま維持する一方、熱動弁38の開切換,暖房用の循環ポンプ56の作動及び暖房用の燃焼バーナ52の燃焼開始により、暖房用の一次熱交換器53で加熱した高温水を熱源として追い焚き用熱交換器31に循環供給させる。これにより、追い焚き循環路32の戻り流路32aを通して追い焚き用熱交換器31に送られた浴槽Bの湯水が、追い焚き用熱交換器31で前記高温水との液−液熱交換により加熱され、加熱後の湯水が往き流路32bを通して浴槽Bに送られることになる。つまり、浴槽B内の湯水の追い焚きが行われる。なお、このときに暖房回路5による暖房運転が行われている場合には、高温水が循環しているので、ステップS3の追い焚き処理としては熱動弁38の開切換のみを行う。そして、この追い焚きの間に、戻り温度センサ35により検出される戻り温度と、往き温度センサ36により検出される往き温度とを記録する。ここで、追い焚き期間中に戻り温度及び往き温度の両者を検出して記録するのは後の残り湯量の演算(ステップ10)で利用するためである。   In order to detect the circulating flow rate, first, a chasing process is performed (step S3). That is, while the operation of the recirculation circulation pump 33 is maintained as it is, the primary heat for heating is maintained by switching the opening of the thermal valve 38, the operation of the circulation pump 56 for heating, and the combustion start of the combustion burner 52 for heating. The high-temperature water heated by the exchanger 53 is circulated and supplied to the reheating heat exchanger 31 as a heat source. Thereby, the hot water in the bathtub B sent to the reheating heat exchanger 31 through the return flow path 32a of the recirculation circulation path 32 is subjected to liquid-liquid heat exchange with the high-temperature water in the reheating heat exchanger 31. Heated and heated hot water is sent to the bathtub B through the outward flow path 32b. That is, the hot water in the bathtub B is replenished. In addition, when the heating operation by the heating circuit 5 is performed at this time, since the high-temperature water is circulating, only the open switching of the thermal valve 38 is performed as the reheating process in step S3. During this reheating, the return temperature detected by the return temperature sensor 35 and the forward temperature detected by the forward temperature sensor 36 are recorded. Here, the reason why both the return temperature and the return temperature are detected and recorded during the reheating period is to use in the subsequent calculation of the remaining hot water amount (step 10).

検出戻り温度により得られる浴槽B内の湯水温度が所定の目標温度まで上昇したら(ステップS4でYES)、原則として循環流量の検出処理を行う。但し、循環流量の検出処理に移る前に、前記の追い焚き制御と並行して熱源に急変動が生じていたか否かについて監視している熱源変動監視部753からの出力状況に基づいて、追い焚き用熱交換器31に循環供給されている熱源としての高温水に急激な温度変動が有るか否か、つまり、直前に熱源側に急変が有ったか否かの確認を行い(ステップS5)、熱源側に急変が無かったことを確認した上で(ステップS5でNO)、循環流量を検出するための処理(ステップS6)に移行する。   When the hot / cold water temperature in the bathtub B obtained from the detected return temperature rises to a predetermined target temperature (YES in step S4), a circulation flow rate detection process is performed in principle. However, based on the output status from the heat source fluctuation monitoring unit 753 that monitors whether or not a sudden fluctuation has occurred in the heat source in parallel with the reheating control before moving on to the circulation flow rate detection process. It is confirmed whether or not there is a sudden temperature change in the high-temperature water as the heat source circulated and supplied to the soaking heat exchanger 31, that is, whether or not there is a sudden change on the heat source side immediately before (step S5). After confirming that there was no sudden change on the heat source side (NO in step S5), the process proceeds to processing for detecting the circulation flow rate (step S6).

すなわち、熱源側に急変が無ければ(ステップS5でNO)、少なくとも暖房用循環ポンプ56の作動を停止する一方、追い焚き循環ポンプ33の作動は継続させる(ステップS6)。この際、暖房用循環ポンプ56の作動停止に伴い、暖房用燃焼バーナ52の燃焼を停止させてもよい。又、追い焚き用熱交換器31に対する熱源供給(高温水の供給)を遮断するために、熱動弁38の閉切換ではなくて暖房用循環ポンプ56の作動停止を行うようにしているのは、即応性を担保するためである。つまり、熱動弁38はその開閉切換に一定の時間を要するため、熱動弁38の閉切換に代えて暖房用循環ポンプ56の作動停止により追い焚き用熱交換器31に対する熱源供給を即時に遮断するようにしている。加えて、前記の暖房用循環ポンプ56の作動停止(追い焚き用熱交換器31に対する熱源供給の遮断)と同時に、この熱源供給遮断時点(t=0)に検出された戻り温度(Tl(0);括弧内は経過時間t=0を表す)、及び、往き温度(Th(0);括弧内は経過時間t=0を表す)を記録すると共に、タイマ手段751をスタートさせる(ステップS6)。併せて、前記の熱源供給遮断時点(t=0)の戻り温度Tl(0)及び往き温度Th(0)に基づいて、降下時間値Δτgを計測する設定温度値T(g)の設定を行う(ステップS6)。   That is, if there is no sudden change on the heat source side (NO in step S5), at least the operation of the heating circulation pump 56 is stopped, while the operation of the recirculation circulation pump 33 is continued (step S6). At this time, the combustion of the heating combustion burner 52 may be stopped along with the operation stop of the heating circulation pump 56. In addition, in order to cut off the heat source supply (supply of high-temperature water) to the reheating heat exchanger 31, the operation of the heating circulation pump 56 is not stopped, but the operation of the circulation pump 56 for heating is stopped. This is to ensure responsiveness. That is, since the thermal valve 38 requires a certain time for switching the opening and closing thereof, the heat source supply to the reheating heat exchanger 31 is immediately performed by stopping the operation of the heating circulation pump 56 instead of switching the thermal valve 38 closed. I try to block it. In addition, at the same time as the operation of the heating circulation pump 56 is stopped (the heat source supply to the reheating heat exchanger 31 is interrupted), the return temperature (Tl (0 ); Elapsed time t = 0 is shown in parentheses) and forward temperature (Th (0); Elapsed time t = 0 is shown in parentheses), and timer means 751 is started (step S6). . At the same time, the set temperature value T (g) for measuring the descent time value Δτg is set based on the return temperature Tl (0) and the forward temperature Th (0) at the time when the heat source supply is cut off (t = 0). (Step S6).

設定温度値T(g)の設定は、次のようにして行う。すなわち、戻り温度Tl(0)に対し、往き温度Th(0)から戻り温度Tl(0)を減じた往き・戻り温度差に対し所定の比率λ(0<λ<1.0)を乗じて得た値を加えたものを設定温度値T(g)として設定する。これを演算式により表すと次のようになる。
T(g)=Tl(0)+λ・[Th(0)−Tl(0)] …(1)
式(1)をλについて変形すると、式(2)となる。
λ=[T(g)−Tl(0)]/[Th(0)−Tl(0)] …(2)
比率λとしては、後述の降下時間値に基づく循環流量の検出をより正確に行うという見地から定めることができ、例えば、往き・戻り温度差の1/2(λ=0.5)又は2/3(λ=0.67)を採用することができる。本実施形態においては、比率λ(0<λ<1.0)の値として、いわゆる半減期に相当する0.5を採用している。
The set temperature value T (g) is set as follows. That is, the return temperature Tl (0) is multiplied by a predetermined ratio λ (0 <λ <1.0) to the difference between the return temperature Tl (0) and the return temperature Tl (0) minus the return temperature Tl (0). A value obtained by adding the obtained value is set as a set temperature value T (g). This can be expressed by an arithmetic expression as follows.
T (g) = Tl (0) + λ · [Th (0) −Tl (0)] (1)
When equation (1) is transformed with respect to λ, equation (2) is obtained.
λ = [T (g) −Tl (0)] / [Th (0) −Tl (0)] (2)
The ratio λ can be determined from the viewpoint of more accurately detecting the circulation flow rate based on the descent time value described later. For example, the ratio λ is ½ (λ = 0.5) or 2 / 3 (λ = 0.67) can be adopted. In the present embodiment, 0.5 corresponding to a so-called half-life is employed as the value of the ratio λ (0 <λ <1.0).

比率λの設定についてさらに詳細に説明する。図5に、追い焚き用熱交換器31に対する熱源供給を遮断する一方、追い焚き循環路32の循環作動は継続させた場合の、往き温度Th(t)の変化と、経過時間tとの関係を特性図として示す。熱源供給が遮断されても追い焚き用熱交換器31内にはそれまでに供給された高温水が充満しているため、往き温度Th(t)は熱源供給停止時点(t=0)から即座に降下はせずに一定時間はTh(0)を維持した後に緩やかに降下し始める。その際、循環流量が大であるほど温度降下は早期に始まりその降下度合も急になり、循環流量が小であるほど温度降下は遅れて始まりその降下度合いも緩やかになる。そして、往き温度Th(t)は降下を続けて、終局的には、熱源供給停止時点の戻り温度Tl(0)に収束していく。ここで、λ=0.5を設定した場合の設定温度差に対応する温度値まで降下するのに要する降下時間値は、循環流量が大の場合はΔτ2、循環流量が小の場合はΔτ1ということになる。ここで、λの値を大きくしていけば、循環流量が大の場合と小の場合との降下時間値の差が小さくなり、λの値を小さくしていけば、前記の降下時間値の差が大になる。つまり、λの値を余りに大きく設定してしまうと、計測した降下時間値から求める循環流量の値についての正確性が損なわれるおそれがある一方、逆に、λの値を余りに小さく設定してしまうと、降下時間値の計測にかなりの経過時間を要することになりかねず、迅速性に欠けるおそれが生じることになる。   The setting of the ratio λ will be described in more detail. FIG. 5 shows the relationship between the change in the forward temperature Th (t) and the elapsed time t when the heat source supply to the reheating heat exchanger 31 is interrupted while the recirculation operation of the recirculation circuit 32 is continued. Is shown as a characteristic diagram. Even if the heat source supply is interrupted, the reheating heat exchanger 31 is filled with the high-temperature water supplied so far, so the going-out temperature Th (t) is immediately determined from the time when the heat source supply is stopped (t = 0). Without descending, after maintaining Th (0) for a certain time, it begins to descend slowly. At that time, the larger the circulating flow rate, the earlier the temperature drop starts and the more rapid the drop, and the smaller the circulating flow rate, the later the temperature drop starts and the degree of the drop becomes milder. Then, the going-out temperature Th (t) continues to fall and eventually converges to the return temperature Tl (0) at the time when the heat source supply is stopped. Here, the drop time value required to drop to the temperature value corresponding to the set temperature difference when λ = 0.5 is set is Δτ2 when the circulating flow rate is large, and Δτ1 when the circulating flow rate is small. It will be. Here, if the value of λ is increased, the difference in the fall time value between the case where the circulating flow rate is large and the case where the flow rate is small is reduced, and if the value of λ is reduced, the above drop time value is reduced. The difference becomes large. That is, if the value of λ is set too large, the accuracy of the circulating flow rate value obtained from the measured descent time value may be impaired, while conversely, the value of λ is set too small. In such a case, the measurement of the descent time value may require a considerable amount of elapsed time, which may result in lack of quickness.

さらに、図6を参照しつつ詳細に説明する。図6には、各種の循環流量で追い焚き循環路32に流れる各種戻り温度・往き温度の組み合わせの循環流を対象にして、前記の熱源供給遮断時点からの検出往き温度の変化について計測し、計測結果を前記の比率λに換算した値と、経過時間との関係を実験により求めたものを示している。前記循環流としては、循環流量として4L/min,6L/min,8L/min,10L/minに設定し、又、浴槽B内の湯水温度(戻り温度)が33℃,40℃,48℃の3種類の湯水をそれぞれ準備し、これら各種温度の湯水について前記の4種類の循環流量により循環させた。そして、経過時間t毎に計測した往き温度Th(t)の変化を前記の式(2)に相当する次の式(3)に基づいて比率λに換算し、この比率λと経過時間との関係を示したものが図6である。なお、実験に際し、実際の循環流量値については電磁流量計を用いて確認した。
λ=[T(t)−Tl(0)]/[Th(0)−Tl(0)] …(3)
図6によると、まず、戻り温度が33℃,40℃,48℃というように互いに異なる温度条件であったとしても、比率λと経過時間との関係は4種類の循環流量値の違いのみによって一義的に定まることが分かる。この点について、図7に、図6の試験データを用いて浴槽B内の湯水温度が33℃,40℃,48℃の3種類の循環流について循環流量と経過時間との関係を示した。この図7によると、いずれの温度条件(33℃,40℃,48℃の3種類)の循環流であっても、循環流量と経過時間との関係はほぼ同じとみなし得る程度に互いに同じであることが分かる。要するに、湯水温度33℃,40℃,48℃の違い、つまり追い焚き用熱交換器31による加熱度合の違いがあっても、循環流量と降下時間値との関係はほぼ一定の関係曲線により表すことが可能であり、ある温度値まで降下するのに要した降下時間値と循環流量との関係はほぼ一定の関係を示すことが分かる。このため、降下時間値と循環流量との関係テーブル(関係曲線又は数値表)を予め試験により求め、この関係テーブルを循環流量検出処理部75のテーブル記憶部752に記憶させておけば、前記の降下時間値に相当するタイマ値(図4のステップS8参照)を計測することにより、前記関係テーブルから循環流量の値を割り出して検出することができることになる。
Furthermore, it demonstrates in detail, referring FIG. In FIG. 6, the change in the detected forward temperature from the time when the heat source supply is cut off is measured for the circulation flow of various combinations of return temperature and forward temperature flowing in the recirculation circuit 32 at various circulation flow rates. The relationship between the value obtained by converting the measurement result into the ratio λ and the elapsed time is obtained by experiment. As the circulation flow, the circulation flow rate is set to 4 L / min, 6 L / min, 8 L / min, 10 L / min, and the hot water temperature (return temperature) in the bathtub B is 33 ° C., 40 ° C., 48 ° C. Three types of hot water and water were prepared, and the hot water and water at various temperatures were circulated at the above four types of circulating flow rates. Then, the change in the forward temperature Th (t) measured at every elapsed time t is converted into the ratio λ based on the following formula (3) corresponding to the formula (2), and the ratio λ and the elapsed time are calculated. FIG. 6 shows the relationship. In the experiment, the actual circulation flow value was confirmed using an electromagnetic flow meter.
λ = [T (t) −Tl (0)] / [Th (0) −Tl (0)] (3)
According to FIG. 6, even if the return temperatures are 33 ° C., 40 ° C., 48 ° C., and so on, the relationship between the ratio λ and the elapsed time is only due to the difference in the four types of circulating flow values. It can be seen that it is uniquely determined. In this regard, FIG. 7 shows the relationship between the circulation flow rate and the elapsed time for three types of circulation flows in which the hot water temperature in the bathtub B is 33 ° C., 40 ° C., and 48 ° C., using the test data of FIG. According to FIG. 7, the relationship between the circulation flow rate and the elapsed time is the same so that the circulation flow can be regarded as almost the same regardless of the temperature flow (three types of 33 ° C., 40 ° C., and 48 ° C.). I understand that there is. In short, the relationship between the circulating flow rate and the descent time value is represented by a substantially constant relationship curve even when there are differences in hot water temperature of 33 ° C., 40 ° C., and 48 ° C., that is, the degree of heating by the reheating heat exchanger 31. It can be seen that the relationship between the descent time value required to drop to a certain temperature value and the circulation flow rate shows a substantially constant relationship. For this reason, if a relationship table (relation curve or numerical table) between the descent time value and the circulation flow rate is obtained in advance by testing, and this relationship table is stored in the table storage unit 752 of the circulation flow rate detection processing unit 75, By measuring a timer value corresponding to the descent time value (see step S8 in FIG. 4), the circulating flow rate value can be determined from the relation table and detected.

図6に戻り、4種類の循環流量においてλ=0.9における各経過時間(ラインL1と変化曲線との各交点における経過時間)は近接しているのに対し、λ=0.3における各経過時間(ラインL4と変化曲線との各交点における経過時間)は互いに大きく離れかつ各経過時間値も長期化している。これに対し、λ=0.5やλ=0.67における各経過時間(ラインL3,L2と変化曲線との各交点における経過時間)は適度な間隔を有しかつ全てが僅か5秒以内という極めて短時間の範囲となっている、つまり極めて短時間で循環流量の値の検出が可能であることが分かる。   Returning to FIG. 6, each elapsed time at λ = 0.9 (the elapsed time at each intersection of the line L1 and the change curve) is close to each other at λ = 0.3 in the four types of circulating flow rates. The elapsed time (elapsed time at each intersection of the line L4 and the change curve) is greatly different from each other, and each elapsed time value is also prolonged. On the other hand, each elapsed time at λ = 0.5 or λ = 0.67 (the elapsed time at each intersection of the lines L3, L2 and the change curve) has an appropriate interval and all are within 5 seconds. It can be seen that the range is extremely short, that is, the value of the circulating flow rate can be detected in a very short time.

以上より、往き温度が熱源供給遮断時点から所定の温度値まで降下するのに要した時間(降下時間値)と、循環流量との間には相関関係があり、かつ、熱源供給遮断時点の循環流(浴槽B内の湯水温度)の温度条件の如何に拘わらず、その降下時間値の検出だけで循環流量の値が一義的に得られることになる。このため、降下時間値と循環流量との間の関係テーブルを予め実験により定めておけば、前記の降下時間値を計測するだけで容易に、迅速かつ正確に循環流量の値を割り出すことができるようになる。これにより、浴槽内の湯水の循環流が液−液熱交換式の追い焚き用熱交換器31で間接加熱を受けるものであっても、その循環流量の値を検出し得るようになる。   From the above, there is a correlation between the time required for the forward temperature to drop from the heat source supply cutoff time to a predetermined temperature value (fall time value) and the circulation flow rate, and the circulation at the time of heat source supply cutoff. Regardless of the temperature condition of the flow (temperature of hot water in the bathtub B), the value of the circulation flow rate is uniquely obtained only by detecting the descent time value. For this reason, if a relationship table between the descent time value and the circulation flow rate is determined in advance by experiments, the value of the circulation flow rate can be easily and quickly determined simply by measuring the descent time value. It becomes like this. Thereby, even if the circulating flow of the hot water in the bathtub is indirectly heated by the liquid-liquid heat exchange type reheating heat exchanger 31, the value of the circulating flow rate can be detected.

図4のフローチャートに戻り、熱源供給遮断時点からの往き温度センサ36による往き温度T(t)の変化を監視する(ステップS7)。そして、検出された往き温度T(t)が設定温度値T(g)まで温度降下すれば(ステップS7でYES)、その時のタイマ手段751のタイマー値(降下時間値)を出力する(ステップS8)。つまり、追い焚き用熱交換器31を通過した後に検出される往き温度が、熱源供給遮断時点に検出される往き温度T(0)から設定温度値T(g)まで温度降下するのに要する時間値(降下時間値)を得る。出力された降下時間値に基づき、テーブル記憶部752に予め記憶された関係テーブルから対応する循環流量の値を割り出し、追い焚き循環路32における循環流量値としてこの割り出された循環流量値を設定する(ステップS9)。ここで、前記の関係テーブルとは、降下時間値と循環流量値との関係を実験等により予め定めて、テーブル記憶部752に記憶設定したものである。   Returning to the flowchart of FIG. 4, the change in the forward temperature T (t) by the forward temperature sensor 36 from the time when the heat source supply is cut off is monitored (step S7). If the detected forward temperature T (t) drops to the set temperature value T (g) (YES in step S7), the timer value (fall time value) of the timer means 751 at that time is output (step S8). ). That is, the time required for the forward temperature detected after passing through the reheating heat exchanger 31 to drop from the forward temperature T (0) detected at the time of heat source supply cutoff to the set temperature value T (g). Get the value (fall time value). Based on the output descent time value, the corresponding circulation flow value is calculated from the relational table stored in advance in the table storage unit 752, and the calculated circulation flow value is set as the circulation flow value in the recirculation circuit 32. (Step S9). Here, the relationship table is a table in which the relationship between the descent time value and the circulation flow rate value is determined in advance by experiments and stored in the table storage unit 752.

このような関係テーブルとして、熱源供給遮断時点の循環流の温度(浴槽B内の湯水の温度;戻り温度)の高低如何によって異なる複数種類の関係テーブルを設定することができる。すなわち、循環流の温度として互いに異なる複数の温度毎に、その温度の循環流に適用する関係テーブルを設定し、これら複数種類の関係テーブルをテーブル記憶部752に記憶させておくことができる。そして、循環流量の検出処理の際に、戻り温度センサ35により検出される戻り温度に基づいてこの戻り温度に対応する関係テーブルを呼び出し、この関係テーブルから循環流量の値を割り出すようにする。なお、循環流の温度として、戻り温度の代わりに、リモコン8に設定された浴槽Bの沸き上がり設定温度を用いるようにしてもよい。要するに、ヒートマスの影響を無視して循環流量値の検出処理を行うようにしてもよいが、さらに、追い焚き用熱交換器31が有するヒートマス(熱容量)による影響を加味してより高精度な循環流量値の検出処理を図るために、前記ヒートマスを熱源供給遮断時点の循環流の温度により簡易に把握し、この熱源供給遮断時点の循環流の温度に基づき補正するようにすることができる。 As such a relational table, a plurality of kinds of relational tables can be set depending on the level of the circulating flow temperature (temperature of hot water in the bathtub B; return temperature) when the heat source supply is cut off. That is, for each of a plurality of different temperatures as the temperature of the circulating flow, a relationship table to be applied to the circulating flow at that temperature can be set, and the plurality of types of relationship tables can be stored in the table storage unit 752. Then, during the circulation flow rate detection process, a relation table corresponding to the return temperature is called based on the return temperature detected by the return temperature sensor 35, and the value of the circulation flow rate is calculated from the relation table. In addition, you may make it use the boiling preset temperature of the bathtub B set to the remote control 8 instead of return temperature as temperature of a circulating flow. In short, the influence of the heat mass may be ignored and the circulation flow rate value detection process may be performed. However, more accurate circulation is performed by taking into account the influence of the heat mass (heat capacity) of the reheating heat exchanger 31. In order to perform the flow rate value detection process, the heat mass can be easily grasped from the temperature of the circulating flow at the time when the heat source supply is cut off, and can be corrected based on the temperature of the circulating flow at the time of cutting off the heat source supply.

又、テーブル記憶部752に、互いに異なる複数の外気温に対し適用するものとして予め設定した複数種類の関係テーブルを記憶させておき、複合熱源機に設けた外気温センサ(例えばF点サーミスタ;図示省略)により検出される外気温の高低の如何によって適用する関係テーブルを変更設定するようにすることができる。又、このような外気温に基づく補正を、前記の互いに異なる複数の循環流の温度毎にその温度の循環流に適用する関係テーブルに対し上乗せするようにすることもできる。   The table storage unit 752 stores a plurality of types of relation tables set in advance to be applied to a plurality of different outside temperatures, and an outside temperature sensor (for example, an F point thermistor; The relationship table to be applied can be changed and set depending on whether the outside air temperature detected by (omitted) is high or low. Further, such correction based on the outside air temperature can be added to the relational table applied to the circulating flow at each temperature of the plurality of different circulating flows.

テーブル記憶部752に対する記憶設定は、工場出荷前に記憶させても、あるいは、使用現場に複合熱源機を設置した後にテーブル記憶部752に対し記憶させるようにしても、いずれでもよい。又、使用後に、その関係テーブルを新たなものに更新・記憶させるようにしてもよい。   The storage setting for the table storage unit 752 may be stored before shipment from the factory, or may be stored in the table storage unit 752 after the composite heat source machine is installed at the site of use. Further, after use, the relationship table may be updated and stored in a new one.

以上で循環流量値の検出処理が終了し、流量センサ等の循環流量を直接的に計測する検出手段を用いることなく、循環流量値を検出(取得)することができるようになる。しかも、循環流量検出処理を開始してから僅か数秒間というように極めて迅速に循環流量値の検出処理を終了することができることになる。又、検出される降下時間値について、タイマ値の始期が暖房用循環ポンプ56の作動停止時点であるため、その始期を正確に把握することができる一方、タイマ値の終期も検出往き温度が設定温度値T(g)を検出した時点であるため、その終期をも正確に把握することができる。この結果、関係テーブルと照合すべき降下時間値として、制御上のタイムラグもなく、極めて正確な値を計測することができ、かかる正確な降下時間値に基づいて対応する循環流量値を導いているため、正確な循環流量値を得ることができることになる。   Thus, the circulating flow value detection process is completed, and the circulating flow value can be detected (acquired) without using a detection unit that directly measures the circulating flow, such as a flow sensor. In addition, the circulation flow rate detection process can be completed very quickly, such as only a few seconds after the circulation flow rate detection process is started. Moreover, since the start time of the timer value is the time when the circulation pump 56 for heating is stopped for the detected descent time value, the start time can be accurately grasped, and the detected forward temperature is set at the end of the timer value. Since this is the time when the temperature value T (g) is detected, the end of the temperature value can be accurately grasped. As a result, as the descent time value to be collated with the relational table, a very accurate value can be measured without a control time lag, and the corresponding circulating flow value is derived based on the accurate descent time value. Therefore, an accurate circulating flow rate value can be obtained.

そして、ステップS9で循環流量値の割り出し・検出が完了すれば、この循環流量値を用いて残り湯量の演算を湯張り制御部73により実行する(ステップ10)。この残り湯量の演算は、前記の追い焚き期間中(ステップS3)に記録した検出戻り温度、検出往き温度、及び、前記の循環流量値を用いて熱量演算により行う。すなわち、検出往き温度から検出戻り温度を差し引いた温度上昇幅に循環流量値を乗じ経過時間に従って積分することにより、追い焚き加熱により付与された積算熱量を得る。そして、この積算熱量と、同じ経過時間の間における戻り温度(浴槽湯水の温度)の温度上昇分とから残り湯量を演算すればよい。   When the circulation flow value is determined and detected in step S9, the remaining hot water amount is calculated by the hot water filling control unit 73 using the circulation flow value (step 10). The remaining hot water amount is calculated by calculating the amount of heat using the detected return temperature, detected forward temperature, and the circulating flow rate value recorded during the reheating period (step S3). That is, the integrated heat quantity given by the reheating is obtained by multiplying the temperature rise width obtained by subtracting the detected return temperature from the detected forward temperature by the circulating flow value and integrating according to the elapsed time. And what is necessary is just to calculate the amount of remaining hot water from this integrated calorie | heat amount and the temperature rise of the return temperature (bath hot water temperature) in the same elapsed time.

ステップS10の演算で残り湯量が把握できれば、浴槽Bに対する湯張りの設定水位までに足すべき湯量(又は水量)を把握することができるため、この湯量に相当する量の注湯(又は注水)を湯張り制御部73により行って湯張りを終了させる(ステップS11)。   If the amount of remaining hot water can be ascertained in the calculation of step S10, the amount of hot water (or amount of water) to be added up to the set water level of the hot water filling for bathtub B can be ascertained. The hot water filling control unit 73 performs the hot water filling operation (step S11).

一方、ステップS5の判定・確認において、熱源変動監視部753から直前に熱源側に急変が生じたとの判定結果が出力された場合には(ステップS5でYES)、往き温度が安定すると考えられる時間であって予め設定された時間tw(例えば20〜30秒)だけ一時的に待機してから、前記のステップS6以降の循環流量の検出処理を開始する(ステップS12,S6)。これにより、所定の設定温度値T(g)までの温度降下を所定通りのものにして正確な降下時間値の計測が可能になり、循環流量の検出処理を正確かつ確実に行うことができるようになる。   On the other hand, in the determination / confirmation in step S5, when the determination result that a sudden change has occurred on the heat source side is output immediately before from the heat source fluctuation monitoring unit 753 (YES in step S5), the time when the going temperature is considered to be stable Then, after temporarily waiting for a preset time tw (for example, 20 to 30 seconds), the processing for detecting the circulating flow after Step S6 is started (Steps S12 and S6). As a result, the temperature drop up to the predetermined set temperature value T (g) can be made as predetermined, and the accurate fall time value can be measured, so that the circulating flow rate detection process can be performed accurately and reliably. become.

高温水の温度に急変動を生じさせる熱源側の要因としては、給湯回路2による給湯使用に伴う制御の実行、又は、暖房回路5での暖房能力の変更に伴う制御の実行がある。給湯回路2での制御上の要因としては給湯使用に伴う給湯用燃焼バーナ24の点火(燃焼開始),燃焼能力の切換(能力切換),消火(燃焼停止)があり、暖房回路5での要因としては燃焼バーナ52の燃焼能力の切換(能力切換)がある。給湯使用が生じて暖房運転との同時使用になると、コントローラ7では給湯制御部71による給湯制御が優先(給湯優先)されることになり、燃焼バーナ24に対する要求燃焼能力に応じた開度にガス比例弁67は制御されることになる。つまり、それまで暖房用燃焼バーナ52に対する要求燃焼能力に応じて制御されていたガス比例弁67の開度が、給湯側の要求に応じて変更されることになる。このため、変更後の供給圧で燃料ガスが暖房用燃焼バーナ52にも供給されてしまい、熱交換器53での燃焼加熱に変動が生じる結果、追い焚き用熱交換器31に供給される熱源としての高温水の温度も急変動することになる。又、同様の事情は暖房制御においても生じ得る。すなわち、暖房制御において、要求燃焼能力に変動が生じて燃焼バーナ52に対する能力切換が生じると、追い焚き制御とは関係なく、追い焚き用熱交換器31に供給される高温水の温度も急変動することになる。   Factors on the heat source side that cause sudden fluctuations in the temperature of high-temperature water include execution of control associated with the use of hot water supply by the hot water supply circuit 2 or execution of control associated with a change in heating capacity in the heating circuit 5. Factors for control in the hot water supply circuit 2 include ignition (combustion start) of the hot water supply combustion burner 24 accompanying the use of hot water supply, switching of the combustion capacity (capacity switching), extinguishing (combustion stop), and factors in the heating circuit 5 The combustion burner 52 has a combustion capacity switching (capacity switching). When hot water use occurs and simultaneous use with heating operation is performed, the controller 7 gives priority to hot water control by the hot water control unit 71 (hot water priority), and the gas is opened at an opening degree corresponding to the required combustion capacity for the combustion burner 24. The proportional valve 67 will be controlled. That is, the opening degree of the gas proportional valve 67 that has been controlled according to the required combustion capacity for the heating combustion burner 52 is changed according to the request on the hot water supply side. For this reason, the fuel gas is also supplied to the heating combustion burner 52 at the changed supply pressure, and as a result of fluctuations in the combustion heating in the heat exchanger 53, the heat source supplied to the reheating heat exchanger 31. As a result, the temperature of the hot water will also fluctuate rapidly. The same situation can occur in heating control. That is, in the heating control, when the required combustion capacity fluctuates and the capacity switching with respect to the combustion burner 52 occurs, the temperature of the high-temperature water supplied to the reheating heat exchanger 31 also varies abruptly regardless of the reheating control. Will do.

このような熱源側の急変動の影響を受けて追い焚き側の往き温度が一時的に不安定化したまま、循環流量の検出処理に移行してしまうと、設定温度値T(g)の設定や、計測した降下時間値と関係テーブルとの対応関係とは合致しない温度降下特性となり、正確な循環流量の検出を行い得ないことになる。これを回避して、正確な循環流量の検出を可能とするために、設定時間twだけ一時待機して往き温度が安定するのを待った上で、循環流量の検出処理を開始するようにしているのである。   When the process proceeds to the circulation flow rate detection process with the forward temperature on the reheating side temporarily destabilized under the influence of such a sudden fluctuation on the heat source side, the set temperature value T (g) is set. In addition, the temperature drop characteristic does not agree with the correspondence between the measured descent time value and the relationship table, and the accurate circulation flow rate cannot be detected. In order to avoid this and to enable accurate detection of the circulating flow rate, the processing for detecting the circulating flow rate is started after waiting for the set temperature tw to wait for the outgoing temperature to stabilize. It is.

<他の実施形態>
なお、本発明は前記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、前記実施形態では、ステップS2で残り湯有りと判定された場合(ステップS2でYES)に、その残り湯を利用して循環流量検出処理部75による追い焚き循環回路3の循環流量の検出を行うために、一旦追い焚き制御を実行した上で、追い焚き用熱交換器31に対する熱源供給を停止して往き温度の降下時間の計測を行うようにしているが、これに限らず、例えば通常の追い焚き制御が実行される場合には、その追い焚き制御の終了時点(追い焚き用熱交換器31に対する熱源供給の停止時点)から往き温度の降下時間を計測するというように循環流量の検出処理に移行するようにすることもできる。但し、この場合にも、直前に熱源側に急変動が生じたか否かのステップS5(図3参照)の確認を行った上で、循環流量の検出処理に移行する。
<Other embodiments>
In addition, this invention is not limited to the said embodiment, Other various embodiment is included. That is, in the above embodiment, when it is determined in step S2 that there is remaining hot water (YES in step S2), the circulating flow rate detection processing unit 75 detects the circulating flow rate of the recirculation circuit 3 using the remaining hot water. In order to perform the reheating control, the heat source supply to the reheating heat exchanger 31 is stopped and the temperature drop time is measured, but the present invention is not limited to this. When normal reheating control is executed, the circulation flow rate is measured so that the temperature drop time is measured from the end time of the reheating control (when the heat source supply to the reheating heat exchanger 31 is stopped). It is also possible to shift to detection processing. However, also in this case, after confirming in step S5 (see FIG. 3) whether or not a sudden change has occurred on the heat source side immediately before, the process proceeds to the circulation flow rate detection process.

前記実施形態では、比率λを乗じて得た1種類の設定温度値まで降下するのに要した降下時間値を検出し、この1種類の降下時間値に対応する循環流量値を関係テーブルから割り出すようにしているが、これに限らず、2種類のλ1(例えばλ1=0.5),λ2(例えばλ=0.67)を用いて得た2種類の設定温度値に基づき、これら2種類の設定温度値まで往き温度が降下した2種類の降下時間値を検出し、これら2種類の降下時間値に対応する2つの循環流量値を関係テーブルから割り出し、これらを平均化処理して最終の循環流量値を得るようにすることができる。平均化処理することで、より高精度な循環流量値の検出が可能になる。   In the embodiment, the descent time value required to drop to one type of set temperature value obtained by multiplying by the ratio λ is detected, and the circulation flow value corresponding to this one type of descent time value is calculated from the relation table. However, the present invention is not limited to this, and based on two set temperature values obtained using two types of λ1 (for example, λ1 = 0.5) and λ2 (for example, λ = 0.67), these two types Detecting two types of fall time values when the going temperature has dropped to the set temperature value, and calculating two circulation flow values corresponding to these two types of fall time values from the relationship table, averaging them, and finally A circulation flow rate value can be obtained. By performing the averaging process, it becomes possible to detect the circulating flow rate value with higher accuracy.

前記実施形態で用いる関係テーブルとして外気温の高低の如何に対応した複数種類の関係テーブルをテーブル記憶部752に予め記憶設定する代わりに、計測された降下時間値に対し、あるいは、その降下時間値に基づき関係テーブルから割り出される循環流量値に対し、外気温の高低の如何に応じて補正を加えるようにしてもよい。例えば、外気温センサにより検出した外気温が基準温度範囲よりも低ければ温度降下の度合も大きく温度降下に要する時間も少なめになると考えられるため、タイマ手段751から出力されたタイマ値に対しプラス側の補正を加え、逆に外気温が基準温度範囲よりも高ければ前記タイマ値に対しマイナス側の補正を加えるようにする。補正幅としては、例えばプラス・マイナス0.05秒とすればよい。このような外気温に基づく補正を加えることで、検出処理により得られる循環流量値としてより一層精度(正確性)の高いものを得ることができるようになる。   Instead of storing and setting in advance in the table storage unit 752 a plurality of types of relationship tables corresponding to how the outside air temperature is high or low as the relationship table used in the embodiment, or for the measured fall time value or its fall time value The circulation flow rate value calculated from the relationship table may be corrected according to whether the outside air temperature is high or low. For example, if the outside air temperature detected by the outside air temperature sensor is lower than the reference temperature range, it is considered that the degree of the temperature drop is large and the time required for the temperature drop is also short, so the timer value output from the timer means 751 is on the plus side. On the contrary, if the outside air temperature is higher than the reference temperature range, a negative correction is added to the timer value. The correction width may be, for example, plus / minus 0.05 seconds. By adding such correction based on the outside air temperature, it becomes possible to obtain an even higher precision (accuracy) as the circulation flow rate value obtained by the detection process.

なお、関係テーブルとしては、関係曲線又は関係曲線を直線近似にした線形の関係線を設定してもよいし、そのような関係曲線を規定する数式を設定してもよいし、数値表を設定してもよいし、いずれでもよい。数式を設定するには実験結果から例えば最小二乗法等を用いて近似式を定めることができ、この近似式に基づいて降下時間値と循環流量値との座標系で関係曲線を特定することもでき、あるいは、その近似式そのものを関係テーブルとして設定することができる。又、数値表を関係テーブルとして設定した場合には、ぴったり合致する循環流量の値がない場合には、隣接する循環流量の数値間で線形補間により、循環流量の値を割り出すようにすることができる。   As the relationship table, a relationship curve or a linear relationship line obtained by linearly approximating the relationship curve may be set, a mathematical expression defining such a relationship curve may be set, or a numerical table may be set You may do either. To set the mathematical formula, an approximate expression can be determined from the experimental results using, for example, the least square method, etc., and the relationship curve can be specified in the coordinate system of the descent time value and the circulating flow value based on this approximate expression. Alternatively, the approximate expression itself can be set as a relation table. In addition, when the numerical table is set as a relational table, if there is no exact matching circulating flow value, the circulating flow value may be calculated by linear interpolation between adjacent circulating flow values. it can.

24 給湯用燃焼バーナ
31 追い焚き用熱交換器
32 追い焚き循環路
36 往き温度センサ(往き温度検出手段)
52 暖房用燃焼バーナ
55 温水循環路(暖房循環路)
67 ガス比例弁(燃料調整弁)
75 循環流量検出処理部
753 熱源変動監視部
B 浴槽
24 Hot water combustion burner 31 Reheating heat exchanger 32 Reheating circulation path 36 Outward temperature sensor (outward temperature detection means)
52 Combustion burner for heating 55 Hot water circuit (heating circuit)
67 Gas proportional valve (fuel regulating valve)
75 Circulation Flow Detection Processing Unit 753 Heat Source Fluctuation Monitoring Unit B Bathtub

Claims (5)

給湯用の水を燃焼加熱するための給湯用燃焼バーナと、温水暖房用の熱源として暖房循環路に循環供給される熱媒を加熱するための暖房用燃焼バーナと、熱源として前記暖房用燃焼バーナにより加熱された熱媒の循環供給を受ける一方、追い焚き循環路を通して浴槽からの湯水の循環供給を受けて液−液熱交換により前記湯水を追い焚き加熱するための追い焚き用熱交換器と、この追い焚き用熱交換器を通して前記追い焚き循環路に循環される湯水の循環流量を制御上の処理により検出するための循環流量検出処理部とを備え、前記給湯用燃焼バーナと前記暖房用燃焼バーナとは共通の燃料調整弁を介して燃焼供給を受けるように構成され、前記循環流量検出処理部は、前記追い焚き循環路内を湯水が循環している状態に維持しつつ前記暖房循環路を通しての前記追い焚き用熱交換器に対する熱源の循環供給を遮断させた状態で、前記追い焚き用熱交換器を通過して浴槽に向かう前記湯水の往き温度の降下状況に基づいて前記循環流量を検出するように構成されている複合熱源機であって、
前記循環流量検出処理部は、前記給湯用燃焼バーナ及び暖房用燃焼バーナの内の少なくとも1つの制御状況について監視し、前記循環流量の検出処理を開始する際に、前記追い焚き用熱交換器に循環供給される熱媒温度に急変動をもたらす制御が実行されたときには、前記往き温度が安定するのに要するものとして予め設定された時間だけ待機した上で、前記循環流量の検出処理を開始するように構成されている、
ことを特徴とする複合熱源機。
A hot water combustion burner for burning and heating hot water, a heating combustion burner for heating a heating medium circulated and supplied to a heating circuit as a heat source for hot water heating, and the heating combustion burner as a heat source A reheating heat exchanger for receiving a circulating supply of hot water from a bathtub through a recirculation circuit and reheating and heating the hot water by liquid-liquid heat exchange A circulating flow rate detection processing unit for detecting a circulating flow rate of hot water circulated through the reheating circulation path through the reheating heat exchanger by control processing, and the hot water supply combustion burner and the heating unit The combustion burner is configured to receive combustion supply through a common fuel adjustment valve, and the circulation flow rate detection processing unit maintains the heating water while circulating the hot water in the recirculation circuit. The circulation based on the drop state of the temperature of the hot water going through the reheating heat exchanger toward the bathtub while the circulation supply of the heat source to the reheating heat exchanger through the ring is shut off A combined heat source machine configured to detect a flow rate,
The circulating flow rate detection processing unit monitors at least one control state of the hot water supply combustion burner and the heating combustion burner, and starts the circulating flow rate detection processing when the reheating heat exchanger is started. When control that causes a sudden change in the temperature of the circulating heat medium is executed, the process of detecting the circulating flow rate is started after waiting for a time set in advance as required for the forward temperature to stabilize. Configured as
This is a combined heat source machine.
請求項1に記載の複合熱源機であって、
前記循環流量検出処理部は、前記給湯用燃焼バーナが前記暖房用燃焼バーナと同時燃焼状態になった場合における前記給湯用燃焼バーナの燃焼開始、燃焼能力の切換、又は、燃焼停止のいずれかを含む制御が実行されたとき、前記熱媒温度に急変動をもたらす制御が実行されたものとして、前記循環流量の検出処理の開始前に前記設定時間だけ待機するように構成されている、複合熱源機。
The composite heat source machine according to claim 1,
The circulating flow rate detection processing unit performs any one of combustion start of the hot water supply combustion burner, switching of combustion capacity, or combustion stop when the hot water supply combustion burner is in a simultaneous combustion state with the heating combustion burner. A composite heat source configured to wait for the set time before the start of the circulating flow rate detection process, assuming that the control that causes a sudden change in the temperature of the heating medium is executed when the control including the control is executed. Machine.
請求項1又は請求項2に記載の複合熱源機であって、
前記循環流量検出処理部は、前記追い焚き用熱交換器に前記熱媒が循環供給されている途中で前記暖房用燃焼バーナについて燃焼能力を切換える制御が実行されたとき、前記熱媒温度に急変動をもたらす制御が実行されたものとして、前記循環流量の検出処理の開始前に前記設定時間だけ待機するように構成されている、複合熱源機。
The composite heat source machine according to claim 1 or 2,
The circulation flow rate detection processing unit suddenly increases the temperature of the heating medium when the control for switching the combustion capacity of the heating combustion burner is performed while the heating medium is being circulated and supplied to the reheating heat exchanger. A combined heat source apparatus configured to wait for the set time before the start of the circulating flow rate detection process, assuming that control that causes fluctuations is performed.
温水暖房用の熱源として暖房循環路に循環供給される熱媒を加熱するための暖房用燃焼バーナと、熱源として前記暖房用燃焼バーナにより加熱された熱媒の循環供給を受ける一方、追い焚き循環路を通して浴槽からの湯水の循環供給を受けて液−液熱交換により前記湯水を追い焚き加熱するための追い焚き用熱交換器と、この追い焚き用熱交換器を通して前記追い焚き循環路に循環される湯水の循環流量を制御上の処理により検出するための循環流量検出処理部とを備え、前記循環流量検出処理部は、前記追い焚き循環路内を湯水が循環している状態に維持しつつ前記暖房循環路を通しての前記追い焚き用熱交換器に対する熱源の循環供給を遮断させた状態で、前記追い焚き用熱交換器を通過して浴槽に向かう前記湯水の往き温度の降下状況に基づいて前記循環流量を検出するように構成されている複合熱源機であって、
前記循環流量検出処理部は、前記暖房用燃焼バーナの制御状況について監視し、前記循環流量の検出処理を開始する際に、前記追い焚き用熱交換器に循環供給される熱媒温度に急変動をもたらす制御が実行されたときには、前記往き温度が安定するのに要するものとして予め設定された時間だけ待機した上で、前記循環流量の検出処理を開始するように構成されている、
ことを特徴とする複合熱源機。
A heating combustion burner for heating the heating medium circulated and supplied to the heating circulation path as a heat source for hot water heating, and a circulation supply of the heating medium heated by the heating combustion burner as a heat source while being recirculated A recirculating heat exchanger for recirculating and heating the hot and cold water by liquid-liquid heat exchange upon receiving a circulating supply of hot water from the bathtub through the passage, and circulating to the recirculation circulation path through the reheating heat exchanger A circulating flow rate detection processing unit for detecting the circulating flow rate of the hot and cold water through control processing, and the circulating flow rate detection processing unit maintains hot water circulating in the recirculation circuit. While the circulation supply of the heat source to the reheating heat exchanger through the heating circulation path is cut off, the temperature drop state of the hot water going to the bathtub through the reheating heat exchanger A composite heat source machine that is configured to detect the circulating flow rate based,
The circulating flow rate detection processing unit monitors the control status of the heating combustion burner, and suddenly changes the temperature of the heat medium supplied to the reheating heat exchanger when starting the circulating flow rate detection processing. When the control that brings about is performed, the detection of the circulating flow rate is started after waiting for a time set in advance as required for the going-out temperature to stabilize,
This is a combined heat source machine.
請求項4に記載の複合熱源機であって、
前記循環流量検出処理部は、前記追い焚き用熱交換器に前記熱媒が循環供給されている途中で前記暖房用燃焼バーナについて燃焼能力を切換える制御が実行されたとき、前記熱媒温度に急変動をもたらす制御が実行されたものとして、前記循環流量の検出処理の開始前に前記設定時間だけ待機するように構成されている、複合熱源機。
The composite heat source machine according to claim 4,
The circulation flow rate detection processing unit suddenly increases the temperature of the heating medium when the control for switching the combustion capacity of the heating combustion burner is performed while the heating medium is being circulated and supplied to the reheating heat exchanger. A combined heat source apparatus configured to wait for the set time before the start of the circulating flow rate detection process, assuming that control that causes fluctuations is performed.
JP2015167565A 2015-08-27 2015-08-27 Combined heat source machine Active JP6540378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015167565A JP6540378B2 (en) 2015-08-27 2015-08-27 Combined heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015167565A JP6540378B2 (en) 2015-08-27 2015-08-27 Combined heat source machine

Publications (2)

Publication Number Publication Date
JP2017044413A true JP2017044413A (en) 2017-03-02
JP6540378B2 JP6540378B2 (en) 2019-07-10

Family

ID=58211755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167565A Active JP6540378B2 (en) 2015-08-27 2015-08-27 Combined heat source machine

Country Status (1)

Country Link
JP (1) JP6540378B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110671811A (en) * 2019-10-21 2020-01-10 珠海格力电器股份有限公司 Gas water heater and control method thereof
JP7067028B2 (en) 2017-11-20 2022-05-16 株式会社ノーリツ Hot water heating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317749A (en) * 2000-05-08 2001-11-16 Tokyo Gas Co Ltd Method of controlling trial operation of hot-water heater
JP2008032334A (en) * 2006-07-31 2008-02-14 Noritz Corp Water heater with bath function
JP2010196961A (en) * 2009-02-25 2010-09-09 Noritz Corp Heating control device
JP2011169529A (en) * 2010-02-19 2011-09-01 Noritz Corp Bath device
JP2013096582A (en) * 2011-10-27 2013-05-20 Noritz Corp Bath device
JP2014206342A (en) * 2013-04-15 2014-10-30 リンナイ株式会社 Hot water supply system
JP2016156525A (en) * 2015-02-23 2016-09-01 株式会社ノーリツ Water heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317749A (en) * 2000-05-08 2001-11-16 Tokyo Gas Co Ltd Method of controlling trial operation of hot-water heater
JP2008032334A (en) * 2006-07-31 2008-02-14 Noritz Corp Water heater with bath function
JP2010196961A (en) * 2009-02-25 2010-09-09 Noritz Corp Heating control device
JP2011169529A (en) * 2010-02-19 2011-09-01 Noritz Corp Bath device
JP2013096582A (en) * 2011-10-27 2013-05-20 Noritz Corp Bath device
JP2014206342A (en) * 2013-04-15 2014-10-30 リンナイ株式会社 Hot water supply system
JP2016156525A (en) * 2015-02-23 2016-09-01 株式会社ノーリツ Water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067028B2 (en) 2017-11-20 2022-05-16 株式会社ノーリツ Hot water heating device
CN110671811A (en) * 2019-10-21 2020-01-10 珠海格力电器股份有限公司 Gas water heater and control method thereof
CN110671811B (en) * 2019-10-21 2023-10-27 珠海格力电器股份有限公司 Gas water heater and control method thereof

Also Published As

Publication number Publication date
JP6540378B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP5326650B2 (en) Heating control device
CN112189118A (en) Boiler for both heating and hot water and control method thereof
JP5946685B2 (en) Hot water system
JP2017044413A (en) Composite heat source machine
JP6858621B2 (en) Heat source device
JP6428364B2 (en) Water heater
WO2015087523A1 (en) Hot-water supply device
JP6045108B2 (en) One can two water channel combustion equipment
JP2007278674A (en) Water heater
JP5811332B2 (en) Heat source machine
JP6515550B2 (en) One can dual channel water heater
JP2021032487A (en) Hot water supply device
JP5752944B2 (en) One can two water channel bath water heater
KR101586165B1 (en) Hot water supply system
JP5598711B2 (en) Heat source machine
JP2017122535A (en) Bath water heater
JP2013096582A (en) Bath device
JP5012408B2 (en) Hot water storage water heater
JP3850635B2 (en) How to detect the amount of water remaining in the bathtub
JP5734677B2 (en) One can two water bath water heater
JP2000161782A (en) Bath hot-water supplier
JP6745028B2 (en) Bath water heater
JP2023022377A (en) Instantaneous hot water system
JP3748681B2 (en) One can two water bath hot water heater
JP3952485B2 (en) Bath water heater

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180723

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150