JP5752944B2 - One can two water channel bath water heater - Google Patents

One can two water channel bath water heater Download PDF

Info

Publication number
JP5752944B2
JP5752944B2 JP2011011409A JP2011011409A JP5752944B2 JP 5752944 B2 JP5752944 B2 JP 5752944B2 JP 2011011409 A JP2011011409 A JP 2011011409A JP 2011011409 A JP2011011409 A JP 2011011409A JP 5752944 B2 JP5752944 B2 JP 5752944B2
Authority
JP
Japan
Prior art keywords
water
temperature
pipe
bath
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011011409A
Other languages
Japanese (ja)
Other versions
JP2012154502A (en
Inventor
翼 内山
翼 内山
芳行 佐藤
芳行 佐藤
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2011011409A priority Critical patent/JP5752944B2/en
Publication of JP2012154502A publication Critical patent/JP2012154502A/en
Application granted granted Critical
Publication of JP5752944B2 publication Critical patent/JP5752944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

本発明は、風呂の注湯・追い焚き機能および給湯機能を備えた一缶二水路型風呂給湯器に関する。   The present invention relates to a one-can two-water bath water heater having a hot water pouring / reheating function and a hot water supply function.

一般に、給湯器の温度制御には、フィードフォワード・フィードバック制御が用いられる。フィードフォワード制御では、給水温度と設定温度と水量と熱効率などから設定温度の湯を出すために必要な熱量(フィードフォワード(FF)量)を求める。しかし、流量センサのばらつきなどにより必要な熱量の真値は求められないため、その誤差分を補正すべくフィードバック制御が併用される(特許文献1参照)。   In general, feedforward feedback control is used for temperature control of a water heater. In the feed forward control, the amount of heat (feed forward (FF) amount) necessary for taking out hot water at the set temperature is obtained from the feed water temperature, the set temperature, the amount of water, the thermal efficiency, and the like. However, since the true value of the required amount of heat cannot be obtained due to variations in the flow rate sensor or the like, feedback control is used in combination to correct the error (see Patent Document 1).

フィードフォワード制御での熱量HAは、以下の式1により求まる。
HA=Hout×1500/η=(TA-TN)×1500/(η×25) …式1
ここで、Houtは加熱能力(Output)[号]、ηは熱交換器の熱効率、TAは設定温度、TNは給水温度、である。
The amount of heat HA in the feedforward control is obtained by the following formula 1.
HA = Hout × 1500 / η = (TA−TN) × 1500 / (η × 25) Equation 1
Here, Hout is the heating capacity (Output) [No.], η is the heat efficiency of the heat exchanger, TA is the set temperature, and TN is the feed water temperature.

式1の関係を利用すれば、温度センサで検出される給湯温度Toutが設定温度に安定した状態では、以下の式2に示すように、給水温度を逆算で推定することができる。   If the relationship of Formula 1 is utilized, in the state where the hot water supply temperature Tout detected by the temperature sensor is stable at the set temperature, the feed water temperature can be estimated by back calculation as shown in Formula 2 below.

TW=Tout−(Hout×25/QT) …式2
ここで、TWは、実測の給湯温度Tout、Hout、流量センサの検出する水量QTとから逆算で求めた推定給水温度である。Houtは式1に示すようにHAと熱効率ηとから求まる値である。
TW = Tout− (Hout × 25 / QT) Equation 2
Here, TW is an estimated water supply temperature obtained by back calculation from the measured hot water supply temperatures Tout and Hout and the amount of water QT detected by the flow rate sensor. Hout is a value obtained from HA and thermal efficiency η as shown in Equation 1.

実際には、Houtに係る熱効率ηは給水温度や熱量(燃焼ガス量)に依存して変動する。しかし、それらと熱効率との関係は器具固有なので、予め測定して記憶しておけば、適正な値の熱効率を代入して給水温度を逆算できるので、給水温度検出用の温度センサ(サーミスタ)の取り付けを省略した給湯器も考案されている(特許文献2参照)。   Actually, the thermal efficiency η related to Hout varies depending on the feed water temperature and the amount of heat (combustion gas amount). However, since the relationship between them and the thermal efficiency is instrument-specific, if you measure and store them in advance, you can reversely calculate the feed water temperature by substituting the appropriate value of the thermal efficiency, so the temperature sensor for detecting the feed water temperature (thermistor) A water heater has also been devised (see Patent Document 2).

実公昭63−42259号公報Japanese Utility Model Publication No. 63-42259 特開2001−012801号公報JP 2001-012801 A

風呂の追い焚き時に熱交換器を経由して浴槽水を循環させるための追い焚き循環経路は、浴槽水を取り込む風呂戻り管と、熱交換器内で熱交換を行って浴槽水を加熱する追い焚き用水管と、加熱後の浴槽水を浴槽に戻す風呂往き管とで構成される。   The recirculation path for circulating the bath water via the heat exchanger when reheating the bath is a bath return pipe that takes in the bath water and a heat exchanger that heats the bath water by exchanging heat in the heat exchanger. It consists of a watering pipe and a bath pipe that returns the heated bathtub water to the bathtub.

ところで、一缶二水路型の風呂給湯器では、給水を加熱するための給湯用水管と追い焚き用水管とが共通の熱交換器を通っている。一缶二水路型の風呂給湯器で浴槽へ湯張りする場合、給湯用水管を通じて給水を加熱して得た湯を、連結管を通じて風呂戻り管に流し込み、追い焚き循環経路を通じて浴槽へ注湯する。通常は、風呂戻り管と風呂往き管の双方を通じて浴槽への注湯が行われ、このうち風呂往き管側を流れる湯は、熱交換器の追い焚き用水管でさらに加熱されてから浴槽に注がれる。   By the way, in the canned two water channel type bath water heater, the hot water supply water pipe for heating the supplied water and the reheating water pipe pass through a common heat exchanger. When filling a bathtub with a can of two water channels, the hot water obtained by heating the water supply through the hot water supply pipe is poured into the bath return pipe through the connecting pipe and poured into the bathtub through the recirculation circulation path. . Normally, hot water is poured into the bathtub through both the bath return pipe and the bath outlet pipe, and the hot water that flows through the bath outlet pipe side is further heated by the reheating water pipe of the heat exchanger and then poured into the bathtub. Can be removed.

このような一缶二水路型の風呂給湯器においても、給湯用水管での吸熱量と追い焚き用水管での吸熱量との比である吸熱分配比を加味すれば、前述の(式2)を適用して推定の給水温度を求めることができる。すなわち、給湯用水管側での吸熱分配比をRa(たとえば、0.5)とすれば、
TW=Tout-(Hout×25×Ra/QT) …式3
で求めることができる。
In such a can and two water channel type bath water heater, if the endothermic distribution ratio, which is the ratio of the endothermic amount in the hot water supply pipe and the endothermic amount in the reheating water pipe, is taken into account, Can be used to determine the estimated feed water temperature. That is, if the endothermic distribution ratio on the hot water supply water pipe side is Ra (for example, 0.5),
TW = Tout− (Hout × 25 × Ra / QT) Equation 3
Can be obtained.

ここで、注湯中の風呂往き管側の流量と風呂戻り管側の流量との比が一定であれば、Raを固定値にして、上記式3の演算を行うことができる。   Here, if the ratio of the flow rate on the bath return pipe side and the flow rate on the bath return pipe side during pouring is constant, the calculation of Equation 3 can be performed with Ra as a fixed value.

しかし、風呂往き管側は、風呂戻り管側に比べて、熱交換器の追い焚き用水管を経由する分だけ配管抵抗が大きくなるので、給水量が毎分6リットル以下のような低水量時には、風呂往き管側の流量が通常(給水量が十分あるとき)より減少したり、ゼロになったりする。このように低水量時には風呂往き管と風呂戻り管との流量比が一定せず、吸熱分配比が不明になるので、式3を適用して給水温度を逆算で求めてFF加熱量(燃焼量)を制御することができなかった。   However, since the pipe resistance on the bath outlet pipe side is larger than the bath return pipe side through the reheating water pipe of the heat exchanger, when the water supply is low such as 6 liters per minute or less , The flow rate on the side of the bath pipe decreases or becomes zero (when there is enough water supply). As described above, the flow rate ratio between the bath outlet pipe and the bath return pipe is not constant when the water volume is low, and the endothermic distribution ratio is unknown. Therefore, the feed water temperature is calculated by applying Equation 3 to calculate the FF heating amount (combustion amount). ) Could not be controlled.

仮に、給水量が十分あるときの流量比に対応した固定値の吸熱分配比Raをそのまま使用して、低水量時の給水温度を式3により逆算で求めると、風呂戻り管側の流量がゼロまたは想定流量より少ない場合には、給水温度が実際より高く算出される。すなわち、風呂往き管側に湯が流れない状態では追い焚き用水管ではほとんど吸熱されないので、実際の吸熱分配比(給湯用水管側の吸熱比)は「1」に近くなる。それにも係らず固定の吸熱分配比Ra(たとえば、0.5)でTWを逆算するので、実際よりも給水温度が高いと勘違いしてしまう。   Temporarily, using the fixed endothermic distribution ratio Ra corresponding to the flow rate ratio when there is a sufficient amount of water supply, and calculating the water supply temperature at the time of low water amount by the reverse calculation using Equation 3, the flow rate on the bath return pipe side is zero. Alternatively, when the flow rate is lower than the assumed flow rate, the feed water temperature is calculated to be higher than actual. That is, in the state where hot water does not flow to the bath outlet pipe side, the reheating water pipe hardly absorbs heat, so the actual heat absorption distribution ratio (heat absorption ratio on the hot water supply water pipe side) is close to “1”. Nevertheless, since TW is calculated backward with a fixed heat absorption distribution ratio Ra (for example, 0.5), it is misunderstood that the feed water temperature is higher than actual.

このため、設定温度の湯を出すために必要な加熱量(FF量)も少なく算出され、場合によってはバーナーを消火した状態で湯張り(実際には水張り)が行われる。その結果、浴槽に流れ込む湯の温度が設定温度よりかなり低くなり、湯張り後に行われる、浴槽内の湯を設定温度まで昇温するための追い焚き動作に長い時間を要してしまうという問題があった。   For this reason, the amount of heating (FF amount) required to discharge hot water at the set temperature is also calculated to be small, and in some cases, hot water filling (actual water filling) is performed with the burner extinguished. As a result, the temperature of the hot water flowing into the bathtub becomes considerably lower than the set temperature, and it takes a long time to reheat the hot water in the bathtub up to the set temperature after the hot water is filled. there were.

なお、風呂往き管の流量を検出するために専用のフローセンサを設けることは、機器のコストが上昇するばかりでなく、浴槽水に混在する髪の毛などのゴミが詰まり易いため、避けたい。   It should be noted that providing a dedicated flow sensor for detecting the flow rate of the bath-out pipe not only raises the cost of the equipment but also tends to clog up dust such as hair mixed in the bath water.

また、吸熱分配比からTWを逆算で求める場合に限らず、たとえば、浴槽の水位をより的確に検出等するために、風呂往き管側の湯の流れ具合を注湯動作中に把握したいといった要請がある。   In addition, it is not limited to the case where TW is calculated from the endothermic distribution ratio. For example, in order to detect the water level in the bathtub more accurately, there is a request that the user wants to know the flow of hot water on the side of the bath pipe during the pouring operation. There is.

本発明は、上記の問題を解決しようとするものであり、風呂往き管を通じて注湯されているか否かを専用の流量センサなしに検出することのできる一缶二水路型風呂給湯器を提供することを目的としている。また、逆算で求めた推定の給水温度からFF制御の加熱量を求めて湯張りする場合の湯温が低給水量の時に設定温度より極端に低くなって湯張り後の追い焚き動作が長時間になることを防止することのできる一缶二水路型風呂給湯器を提供することを目的としている。   The present invention is intended to solve the above-mentioned problem, and provides a single-can two-water bath water heater that can detect whether or not the hot water is poured through a bath pipe without a dedicated flow sensor. The purpose is that. In addition, when the hot water filling is performed by obtaining the heating amount of FF control from the estimated water supply temperature obtained by back calculation, the hot water temperature is extremely lower than the set temperature when the water supply amount is low, and the reheating operation after filling is long. An object of the present invention is to provide a one-can two-water bath water heater that can prevent the occurrence of the problem.

かかる目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。   The gist of the present invention for achieving the object lies in the inventions of the following items.

[1]給水管が入り側に給湯管が出側にそれぞれ接続された第1の熱交換用水管と、浴槽に通じる第1風呂配管が入り側に前記浴槽に通じる第2風呂配管が出側にそれぞれ接続された第2の熱交換用水管とを備えた一缶二水路型の熱交換器と、
前記熱交換器を加熱する加熱装置と、
前記給湯管と前記第1風呂配管を接続する連結管と、
前記連結管に設けられた開閉弁と、
前記第2風呂配管に設けられた温度センサと、
前記第1の熱交換用水管の出側の水温を検出する第2温度センサと、
前記給水管の通水量を検出する水量センサと、
前記開閉弁を開いた状態で前記加熱装置による加熱を行うことで給水を昇温して前記浴槽に流し込む注湯動作を制御する制御部と、
を有し、
前記制御部は、前記注湯動作において、前記加熱装置で加えた熱量と、その熱量のうちの前記第1の熱交換用水管による吸熱割合を示す吸熱分配比と、前記第2温度センサの検出温度と、前記水量センサの検出した水量とに基づいて給水温度を算出し、該給水温度と前記検出した水量と注湯設定温度とに基づいて前記加熱装置の加熱量を制御すると共に、前記温度センサの検出温度が前記給湯管からの湯が前記第2の熱交換用水管でさらに加熱された場合に対応する温度か否かに基づいて、前記算出に使用する吸熱分配比を変更する
ことを特徴とする一缶二水路型風呂給湯器。
[1] A first heat exchange water pipe having a water supply pipe connected to the entrance side and a hot water supply pipe connected to the exit side, and a first bath pipe leading to the bathtub to the entrance side and a second bath pipe leading to the bathtub to the exit side A can and two water channel type heat exchanger each having a second heat exchange water pipe connected to
A heating device for heating the heat exchanger;
A connecting pipe connecting the hot water pipe and the first bath pipe;
An on-off valve provided in the connecting pipe;
A temperature sensor provided in the second bath piping;
A second temperature sensor for detecting a water temperature on the outlet side of the first heat exchange water pipe;
A water amount sensor for detecting the amount of water passing through the water supply pipe;
A control unit for controlling a pouring operation of raising the temperature of the feed water and pouring it into the bathtub by heating with the heating device in a state where the on-off valve is opened;
Have
In the pouring operation, the control unit is configured to detect the amount of heat applied by the heating device, an endothermic distribution ratio indicating an endothermic ratio of the heat amount by the first heat exchange water pipe, and detection of the second temperature sensor. A water supply temperature is calculated based on the temperature and the amount of water detected by the water amount sensor, and the heating amount of the heating device is controlled based on the water supply temperature, the detected amount of water and the pouring set temperature, and the temperature Changing the endothermic distribution ratio used for the calculation based on whether the detected temperature of the sensor is a temperature corresponding to the case where the hot water from the hot water supply pipe is further heated by the second heat exchange water pipe. One can two water channel bath water heater.

上記発明では、加熱装置で加えた熱量と、その熱量のうちの第1の熱交換用水管による吸熱割合を示す吸熱分配比と、第2温度センサの検出温度と、水量センサの検出した水量とに基づいて給水温度を算出し、該給水温度と検出される水量と注湯設定温度とに基づいて加熱装置の加熱量をFF制御する。そして、温度センサの検出温度が給湯管からの湯が第2の熱交換用水管でさらに加熱された場合に対応する温度か否かに基づいて、第2風呂配管に湯が流れているか否かを判定し、該判定結果に基づき、給水温度の算出に使用する吸熱分配比を変更する。   In the above invention, the amount of heat applied by the heating device, the endothermic distribution ratio indicating the heat absorption ratio of the first heat exchange water pipe among the amount of heat, the temperature detected by the second temperature sensor, and the amount of water detected by the water amount sensor The feed water temperature is calculated on the basis of the water temperature, and the heating amount of the heating device is FF-controlled based on the feed water temperature, the detected water amount, and the pouring temperature. Whether or not the hot water is flowing through the second bath pipe based on whether or not the temperature detected by the temperature sensor is a temperature corresponding to the case where the hot water from the hot water supply pipe is further heated by the second heat exchange water pipe. And the endothermic distribution ratio used to calculate the feed water temperature is changed based on the determination result.

すなわち、一缶二水路型の熱交換器の場合、第2風呂配管を流れる湯は第2の熱交換用配管でもさらに加熱されるので、第1風呂配管を流れる湯の温度より高温になる。一方、第2風呂配管に湯が流れない場合は、温度センサは空の管内の温度を検知するため、器具内の空気に近い温度を検出する。そこで、温度センサの検出温度に基づいて、第2風呂配管に湯が流れているか否かを判定してその判定結果に応じた吸熱分配比を給水温度の算出に使用する。これにより、逆算で求める給水温度が実際の給水温度に近づき、FF制御の加熱量が適正化され、低温で注湯されることが回避される。   That is, in the case of a one-can two-water channel type heat exchanger, the hot water flowing through the second bath pipe is further heated by the second heat exchanging pipe, so that the temperature becomes higher than the temperature of the hot water flowing through the first bath pipe. On the other hand, when hot water does not flow into the second bath pipe, the temperature sensor detects the temperature in the empty pipe, and thus detects the temperature close to the air in the appliance. Therefore, based on the temperature detected by the temperature sensor, it is determined whether hot water is flowing in the second bath pipe, and the heat absorption distribution ratio corresponding to the determination result is used for calculating the feed water temperature. Thereby, the feed water temperature calculated | required by a reverse calculation approaches the actual feed water temperature, the heating amount of FF control is optimized, and it is avoided that the hot water is poured at low temperature.

[2]前記制御部は、前記温度センサの検出温度が前記給湯管からの湯が前記第2の熱交換用水管でさらに加熱された場合に対応する温度より低い温度の場合は、前記第2風呂配管を通じて浴槽へ注湯されていない場合に対応する第1の吸熱分配比を前記算出に使用し、前記温度センサの検出温度が前記給湯管からの湯が前記第2の熱交換用水管でさらに加熱された場合に対応する温度の場合は、前記給水温度の算出に前記第1の吸熱分配比より前記第1の熱交換用水管による吸熱割合が低い第2の吸熱分配比を前記算出に使用する
ことを特徴とする[1]に記載の一缶二水路型風呂給湯器。
[2] When the temperature detected by the temperature sensor is lower than the temperature corresponding to the case where the hot water from the hot water supply pipe is further heated by the second heat exchange water pipe, The first endothermic distribution ratio corresponding to the case where the hot water is not poured into the bathtub through the bath pipe is used for the calculation, and the temperature detected by the temperature sensor is the hot water from the hot water supply pipe in the second heat exchange water pipe. In the case of a temperature corresponding to the case of further heating, the second endothermic distribution ratio having a lower endothermic ratio by the first heat exchange water pipe than the first endothermic distribution ratio is used for the calculation of the feed water temperature. One can two-way bath water heater according to [1], which is used.

上記発明では、温度センサの検出温度が給湯管からの湯が第2の熱交換用水管でさらに加熱された場合に対応する温度より低い温度の場合は、第2風呂配管を通じて浴槽へ注湯されていないと判定し、これに対応する第1の吸熱分配比を使用して、給水温度を算出する。一方、温度センサの検出温度が給湯管からの湯が第2の熱交換用水管でさらに加熱された場合に対応する温度の場合は、第2風呂配管を通じて浴槽へ注湯されていると判定し、給水温度の算出に、第1の吸熱分配比より第1の熱交換用水管による吸熱割合が低い第2の吸熱分配比を使用する。   In the above invention, when the temperature detected by the temperature sensor is lower than the temperature corresponding to the case where the hot water from the hot water supply pipe is further heated by the second heat exchange water pipe, the hot water is poured into the bathtub through the second bath pipe. It determines with having not, and uses the 1st heat absorption distribution ratio corresponding to this, and calculates water supply temperature. On the other hand, when the temperature detected by the temperature sensor is a temperature corresponding to the case where the hot water from the hot water supply pipe is further heated by the second heat exchange water pipe, it is determined that the hot water is poured into the bathtub through the second bath pipe. For calculating the feed water temperature, the second endothermic distribution ratio having a lower endothermic ratio by the first heat exchange water pipe than the first endothermic distribution ratio is used.

[3]前記制御部は、前記第2の吸熱分配比を使用して前記算出を行って得た給水温度が所定の適正温度より高い場合は、前記加熱量を導出する際の給水温度の算出に、前記第1の吸熱分配比と前記第2の吸熱分配比との間の第3の吸熱分配比を使用する
ことを特徴とする[2]に記載の一缶二水路型風呂給湯器。
[3] When the water supply temperature obtained by performing the calculation using the second endothermic distribution ratio is higher than a predetermined appropriate temperature, the control unit calculates the water supply temperature when deriving the heating amount. Further, a third endothermic distribution ratio between the first endothermic distribution ratio and the second endothermic distribution ratio is used. The single can two-water bath water heater according to [2].

上記発明では、第2の吸熱分配比を使用して算出した給水温度が所定の適正温度より高い場合は、第2の吸熱分配比で想定している流量比より第2風呂配管に流れる湯の量が少ないと判定できる。そこで、第1の吸熱分配比と第2の吸熱分配比との間の第3の吸熱分配比を、加熱量を導出する際の給水温度の算出に使用する。   In the said invention, when the feed water temperature calculated using the 2nd heat absorption distribution ratio is higher than predetermined | prescribed appropriate temperature, the flow of the hot water which flows into 2nd bath piping from the flow rate ratio assumed by the 2nd heat absorption distribution ratio It can be determined that the amount is small. Therefore, the third endothermic distribution ratio between the first endothermic distribution ratio and the second endothermic distribution ratio is used for calculating the feed water temperature when deriving the heating amount.

[4]前記第2の吸熱分配比は、給水量が十分ある場合に対応した値である
ことを特徴とする[2]または[3]に記載の一缶二水路型風呂給湯器。
[4] The canned two-channel water heater according to [2] or [3], wherein the second endothermic distribution ratio is a value corresponding to a sufficient water supply amount.

すなわち、第1の吸熱分配比は第2風呂配管に通水が無い場合に対応する値であり、第2の吸熱分配比は給水量が十分ある場合、すなわち、第2風呂配管に、たとえば、5割程度の湯が流れている場合に対応する値である。第3の吸熱分配比はこれらの間の値、つまり、第2風呂配管に少量の湯が流れている場合に対応する値である。   That is, the first endothermic distribution ratio is a value corresponding to the case where there is no water flow in the second bath pipe, and the second endothermic distribution ratio is when the water supply amount is sufficient, that is, in the second bath pipe, for example, This value corresponds to the case where about 50% of hot water is flowing. The third endothermic distribution ratio is a value between these values, that is, a value corresponding to a case where a small amount of hot water is flowing in the second bath pipe.

[5]前記制御部は、前記水量センサの検出する給水量が所定量以上の場合は、給水温度の算出に使用する吸熱分配比を所定値に固定して前記加熱量の制御を行う
ことを特徴とする[1]乃至[4]のいずれか1つに記載の一缶二水路型風呂給湯器。
[5] When the water supply amount detected by the water amount sensor is equal to or greater than a predetermined amount, the control unit controls the heating amount by fixing an endothermic distribution ratio used for calculating the water supply temperature to a predetermined value. One can two-water channel bath water heater according to any one of [1] to [4].

上記発明では、給水量が少ない場合のみ、吸熱分配比を動的に変更して給水温度の算出および加熱量の制御を行う。一方、給水量が所定量以上で十分あるときは、吸熱分配比をその状態に対応する固定値にして給水温度の算出および加熱量の制御を行う。   In the above invention, only when the water supply amount is small, the heat absorption distribution ratio is dynamically changed to calculate the water supply temperature and control the heating amount. On the other hand, when the amount of water supply is more than the predetermined amount, the heat absorption distribution ratio is set to a fixed value corresponding to the state, and the water supply temperature is calculated and the heating amount is controlled.

[6]前記第3の吸熱分配比を前記算出に使用した場合は、以後、吸熱分配比を前記第3の吸熱分配比に固定して前記算出および前記加熱量の制御を行う
ことを特徴とする[3]に記載の一缶二水路型風呂給湯器。
[6] When the third endothermic distribution ratio is used in the calculation, the calculation and the heating amount are controlled after fixing the endothermic distribution ratio to the third endothermic distribution ratio. One can two-way bath water heater according to [3].

[7]給水管が入り側に給湯管が出側にそれぞれ接続された第1の熱交換用水管と、浴槽に通じる第1風呂配管が入り側に前記浴槽に通じる第2風呂配管が出側にそれぞれ接続された第2の熱交換用水管とを備えた一缶二水路型の熱交換器と、
前記熱交換器を加熱する加熱装置と、
前記給湯管と前記第1風呂配管を接続する連結管と、
前記連結管に設けられた開閉弁と、
前記第2風呂配管に設けられた温度センサと、
前記開閉弁を開いた状態で前記加熱装置による加熱を行うことで給水を昇温して前記浴槽に流し込む注湯動作を制御する制御部と、
を有し、
前記制御部は、前記注湯動作の実行中に、前記温度センサの検出温度が、注湯の設定温度未満の場合に、前記第2風呂配管を通じて浴槽へ注湯されていないと判定する
ことを特徴とする一缶二水路型風呂給湯器。
[7] A first heat exchange water pipe having a water supply pipe connected to the inlet side and a hot water pipe connected to the outlet side, and a first bath pipe leading to the bathtub to the inlet side and a second bath pipe leading to the bathtub to the outlet side A can and two water channel type heat exchanger each having a second heat exchange water pipe connected to
A heating device for heating the heat exchanger;
A connecting pipe connecting the hot water pipe and the first bath pipe;
An on-off valve provided in the connecting pipe;
A temperature sensor provided in the second bath piping;
A control unit for controlling a pouring operation of raising the temperature of the feed water and pouring it into the bathtub by heating with the heating device in a state where the on-off valve is opened;
Have
The control unit determines that the hot water is not poured into the bathtub through the second bath pipe when the detected temperature of the temperature sensor is lower than a preset temperature of the hot water during the pouring operation. One can two water channel bath water heater.

一缶二水路型の熱交換器の場合、第2風呂配管を流れる湯は第2の熱交換用配管でもさらに加熱されるので、第1風呂配管を流れる湯の温度より高温になる。一方、第2風呂配管に湯が流れない場合は、温度センサは空の管内の温度を検知するため、器具内の空気に近い温度を検出する。そこで、温度センサの検出温度に基づいて、第2風呂配管に湯が流れているか否かを判定する。   In the case of a single-can two-water channel heat exchanger, the hot water flowing through the second bath pipe is further heated by the second heat exchanging pipe, so that the temperature becomes higher than the temperature of the hot water flowing through the first bath pipe. On the other hand, when hot water does not flow into the second bath pipe, the temperature sensor detects the temperature in the empty pipe, and thus detects the temperature close to the air in the appliance. Therefore, based on the temperature detected by the temperature sensor, it is determined whether hot water is flowing in the second bath pipe.

本発明に係る一缶二水路型風呂給湯器によれば、風呂往き管を通じて注湯されているか否かを専用の流量センサなしに検出することができる。また、逆算で求めた推定の給水温度からFF制御の加熱量を求めて湯張りする場合の湯温が低水量時に設定温度より極端に低くなることが防止され、湯張り後の追い焚き時間が短縮される。   According to the one can two water channel type bath water heater according to the present invention, it is possible to detect whether or not the hot water is poured through the bath outlet pipe without a dedicated flow sensor. In addition, when the amount of heating for FF control is calculated from the estimated water supply temperature obtained by back calculation, the hot water temperature is prevented from becoming extremely lower than the set temperature when the amount of water is low, and the replenishment time after filling is reduced. Shortened.

本発明の実施の形態に係る一缶二水路型風呂給湯器の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the one can two water channel type bath water heater which concerns on embodiment of this invention. 搬送モードと、搬送状態と、推定吸熱分配比RA、推定流量比QAとの対応関係を示す搬送モード表である。It is a conveyance mode table | surface which shows the correspondence of conveyance mode, a conveyance state, estimated heat absorption distribution ratio RA, and estimated flow rate ratio QA. 搬送モードの判定条件を示す判定条件表である。10 is a determination condition table showing determination conditions for a transport mode. 一缶二水路型風呂給湯器の湯張り動作を示す流れ図である。It is a flowchart which shows the hot water filling operation | movement of a one can two water channel type bath water heater. 図4の続きの動作を示す流れ図である。FIG. 5 is a flowchart showing an operation subsequent to FIG. 4. FIG. 第2の実施の形態における一缶二水路型風呂給湯器の湯張り動作であって図4の続きの部分を示す流れ図である。FIG. 5 is a flowchart showing a continuation of FIG. 4 in the hot water filling operation of the single can / two water channel type bath water heater in the second embodiment.

以下、図面に基づき本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係る一缶二水路型風呂給湯器10の概略構成を示している。一缶二水路型風呂給湯器10は、給湯機能、浴槽へ湯張りする湯張り機能、浴槽内の湯や水を設定温度へ昇温させる追い焚き機能などを備えている。   FIG. 1 shows a schematic configuration of a single can / two-channel bath water heater 10 according to an embodiment of the present invention. One can two water channel type bath water heater 10 has a hot water supply function, a hot water filling function for hot water filling a bathtub, a reheating function for raising the temperature of hot water or water in the bathtub to a set temperature, and the like.

一缶二水路型風呂給湯器10は、給水管11が入り側に給湯管12が出側にそれぞれ接続された給湯用水管(第1の熱交換用水管)14aと、浴槽3に通じる風呂往き管16が出側に、該浴槽3に通じる風呂戻り管17が入り側にそれぞれ接続された追い焚き用水管(第2の熱交換用水管)14bとを備えた一缶二水路型の熱交換器14を備えている。   One can two-way bath water heater 10 includes a hot water supply water pipe (first heat exchange water pipe) 14a in which a water supply pipe 11 is connected to the entrance side and a hot water supply pipe 12 is connected to the exit side, and a bath going to the bathtub 3. One-can two-water channel heat exchange with a pipe 16 on the outlet side and a reheating water pipe (second heat exchange water pipe) 14b connected on the inlet side with a bath return pipe 17 leading to the bathtub 3. A container 14 is provided.

熱交換器14の下方には該熱交換器14を加熱する加熱装置としてのバーナー部18が配置されている。バーナー部18にはガス供給管19が接続されると共に、該ガス供給管19の途中にはガスの供給/遮断を切り替えるガス弁21と、バーナー部18へ供給するガス量を制御信号に応じて調整する比例弁22が設けてある。バーナー部18は、点火装置や炎を確認するためのフレームロッドなどを備えている。   Below the heat exchanger 14, a burner portion 18 is disposed as a heating device for heating the heat exchanger 14. A gas supply pipe 19 is connected to the burner section 18, and a gas valve 21 for switching supply / cutoff of gas is provided in the middle of the gas supply pipe 19, and the amount of gas supplied to the burner section 18 is determined according to a control signal. A proportional valve 22 for adjustment is provided. The burner unit 18 includes an ignition device, a frame rod for checking a flame, and the like.

給湯管12の途中の所定箇所と風呂往き管16の途中の所定箇所とは、連結管24によって接続されており、該連結管24の途中には、連結管24の閉鎖/開通を切り替える注湯電磁弁25が設けてある。また、連結管24の接続箇所より上流側の給湯管12の途中には、略閉鎖状態から全開状態まで開度を調整可能な水量サーボ26が設けてある。   A predetermined location in the middle of the hot water supply pipe 12 and a predetermined location in the middle of the bath outlet pipe 16 are connected by a connecting pipe 24, and in the middle of the connecting pipe 24, pouring hot water that switches between closing and opening of the connecting pipe 24. An electromagnetic valve 25 is provided. Further, in the middle of the hot water supply pipe 12 upstream from the connection location of the connecting pipe 24, a water amount servo 26 capable of adjusting the opening degree from a substantially closed state to a fully opened state is provided.

さらに、一缶二水路型風呂給湯器10は、給水管11から分岐し、水量サーボ26より上流側の給湯管12に合流・接続されたバイパス管27を備えると共に、該バイパス管27の途中に、閉鎖状態から全開状態まで開度を調整可能なバイパス調整弁28を備えている。このバイパス管27の分岐箇所より下流側の給水管11には、当該給水管11内の水の流量検出する流量センサ(フローセンサとも呼ぶ)29が設けてある。   Further, the single can two-water bath water heater 10 is provided with a bypass pipe 27 branched from the water supply pipe 11 and joined to and connected to the hot water supply pipe 12 upstream of the water amount servo 26, and in the middle of the bypass pipe 27. In addition, a bypass adjusting valve 28 that can adjust the opening degree from the closed state to the fully opened state is provided. A flow rate sensor (also referred to as a flow sensor) 29 for detecting the flow rate of water in the water supply pipe 11 is provided in the water supply pipe 11 on the downstream side of the branching point of the bypass pipe 27.

連結管24の接続箇所より追い焚き用水管14bの入り側寄りの風呂戻り管17の途中には、浴槽3内の水を、風呂戻り管17と追い焚き用水管14bと風呂往き管16からなる追い焚き循環経路を通じて循環させるための循環ポンプ31が設けてある。また、連結管24の接続箇所より浴槽3側の風呂戻り管17の途中には、循環ポンプ31を作動させた際に水が実際に循環しているか否かを検出する流水スイッチ32が設けてある。   In the middle of the bath return pipe 17 closer to the entrance side of the reheating water pipe 14b than the connecting portion of the connecting pipe 24, the water in the bathtub 3 is composed of the bath return pipe 17, the reheating water pipe 14b, and the bath return pipe 16. A circulation pump 31 is provided for circulation through the recirculation circulation path. Further, in the middle of the bath return pipe 17 on the bathtub 3 side from the connection point of the connecting pipe 24, a running water switch 32 is provided for detecting whether water is actually circulating when the circulation pump 31 is operated. is there.

給湯用水管14aの出口近傍の給湯管12には、管内の水温を検出する熱交温度センサ41が設けてある。また、風呂往き管16の途中には、管内の温度を検出する風呂往き温度センサ42が設けてある。連結管24の接続箇所と流水スイッチ32との間の風呂戻り管17には、管内の温度を検出する風呂戻り温度センサ43が設けてある。なお、給水管11から流入する給水の温度を検出する温度センサは取り付けられていない。本例の一缶二水路型風呂給湯器10では給水温度を逆算で推定するようになっている。   The hot water supply pipe 12 near the outlet of the hot water supply water pipe 14a is provided with a heat exchange temperature sensor 41 for detecting the water temperature in the pipe. Further, a bath temperature sensor 42 for detecting the temperature in the tube is provided in the middle of the bath tube 16. The bath return pipe 17 between the connection location of the connecting pipe 24 and the running water switch 32 is provided with a bath return temperature sensor 43 that detects the temperature in the pipe. In addition, the temperature sensor which detects the temperature of the water supply which flows in from the water supply pipe | tube 11 is not attached. In the single can two-water bath water heater 10 of this example, the water supply temperature is estimated by back calculation.

このほか、一缶二水路型風呂給湯器10は、当該一缶二水路型風呂給湯器10の動作全体を制御する制御部45と、操作パネル48を備えている。操作パネル48は、給湯温度や風呂温度の設定、湯張り動作や追い焚き動作の開始指示、電源のオン/オフなど各種の操作をユーザから受けるスイッチ類、および動作状態や設定温度などを表示する表示部などで構成される。操作パネル48は、通常、浴室壁面や台所などに設置される。   In addition, the single can two water channel type bath water heater 10 includes a control unit 45 that controls the entire operation of the single can two water channel type bath water heater 10 and an operation panel 48. The operation panel 48 displays a switch for receiving various operations such as setting of a hot water supply temperature and a bath temperature, a hot water filling operation and a chasing operation start instruction, and turning on / off the power, and an operation state and a set temperature. It consists of a display unit. The operation panel 48 is usually installed on a bathroom wall or kitchen.

制御部45は、CPU(Central Processing Unit)と、該CPUが実行するプログラムや固定データなどが記憶されたフラッシュROM(Read Only Memory)と、CPUがプログラムを実行する際に各種情報を一時記憶するRAM(Random Access Memory)などを主要部とする回路で構成されている。制御部47には、各種センサ(流量センサ29、流水スイッチ32、熱交温度センサ41、風呂往き温度センサ42、風呂戻り温度センサ43)、バーナー部18、弁類(ガス弁21、比例弁22、注湯電磁弁25、水量サーボ26、バイパス調整弁28)、循環ポンプ31、操作パネル48などが接続されている。   The control unit 45 temporarily stores a CPU (Central Processing Unit), a flash ROM (Read Only Memory) storing a program executed by the CPU, fixed data, and the like, and various information when the CPU executes the program. The circuit is mainly composed of a RAM (Random Access Memory) or the like. The control unit 47 includes various sensors (flow rate sensor 29, running water switch 32, heat exchange temperature sensor 41, bathing temperature sensor 42, bath return temperature sensor 43), burner unit 18, valves (gas valve 21, proportional valve 22). A pouring solenoid valve 25, a water volume servo 26, a bypass adjustment valve 28), a circulation pump 31, an operation panel 48, and the like are connected.

次に、一缶二水路型風呂給湯器10による湯張り動作について説明する。湯張り動作は、浴槽3へ湯を注ぎ込む注湯動作と、注湯動作完了後に浴槽3内の湯を設定温度まで昇温する追い焚き動作とで構成される。   Next, the hot water filling operation by the single can two water channel type bath water heater 10 will be described. The hot water filling operation includes a pouring operation for pouring hot water into the bathtub 3 and a reheating operation for raising the temperature of the hot water in the bathtub 3 to a set temperature after the pouring operation is completed.

注湯動作では、バーナー部18を燃焼させた状態で注湯電磁弁25および水量サーボ26を開くことにより、熱交換器14の給湯用水管14aを通じて加熱した給水を給湯管12から連結管24を経て風呂戻り管17へ送り出し、追い焚き循環経路(風呂戻り管17と風呂往き管16)を通じて浴槽3へ流し込むようになっている。   In the pouring operation, the hot water supply solenoid valve 25 and the water amount servo 26 are opened while the burner unit 18 is burned, so that the hot water supplied through the hot water supply water pipe 14a of the heat exchanger 14 is connected from the hot water supply pipe 12 to the connecting pipe 24. Then, it sends out to the bath return pipe 17 and flows into the bathtub 3 through the recirculation circulation path (the bath return pipe 17 and the bath return pipe 16).

また、逆算により推定給水温度を求め、該推定給水温度に基づいて、必要なFF加熱量(目標加熱量HA)を算出して制御するようになっている。   Further, an estimated feed water temperature is obtained by back calculation, and a necessary FF heating amount (target heating amount HA) is calculated and controlled based on the estimated feed water temperature.

推定給水温度TWは、
TW=Tout−(Hout×25×RA/QT) …式4
で求める。そして、目標加熱量HAは、
HA=Hout×1500/η=(TA-TW)×QT×1500/(η×25) …式5
で求める。
Estimated water supply temperature TW is
TW = Tout− (Hout × 25 × RA / QT) Equation 4
Ask for. And the target heating amount HA is
HA = Hout × 1500 / η = (TA−TW) × QT × 1500 / (η × 25) Equation 5
Ask for.

ここで、Houtは加熱能力(Output)[号]、Toutは実測の給湯温度(熱交温度センサ41の検出温度)、RAは給湯用水管14a側の推定の吸熱分配比、QTは流量センサ29の検出する水量、TAは設定温度、ηは熱交換器14の熱効率である。なお、設定温度の湯を安定して注湯する安定状態では、Tout=TA、になる。   Here, Hout is the heating capacity (Output) [No.], Tout is the measured hot water supply temperature (detected temperature of the heat exchanger temperature sensor 41), RA is the estimated endothermic distribution ratio on the hot water supply water pipe 14a side, and QT is the flow rate sensor 29. , TA is the set temperature, and η is the thermal efficiency of the heat exchanger 14. In a stable state in which hot water at a set temperature is stably poured, Tout = TA.

式4で推定給水温度TWを算出するためには、RAとして適正な値を使用する必要がある。しかし、低水量で注湯する場合は、風呂戻り管17側を流れる湯量と風呂往き管16側を流れる湯量の比(流量比)が変動するため、それに応じて実際の吸熱分配比も変動する。   In order to calculate the estimated feed water temperature TW using Equation 4, it is necessary to use an appropriate value as RA. However, when pouring with a low amount of water, the ratio of the amount of hot water flowing through the bath return pipe 17 side to the amount of hot water flowing through the bath outlet pipe 16 side (flow rate ratio) varies, so the actual endothermic distribution ratio also varies accordingly. .

そこで、本実施の形態に係る一缶二水路型風呂給湯器10では、注湯動作時における風呂戻り管17と風呂往き管16との湯の搬送状態(搬送モード)を判定し、その判定結果に応じたRAを使用してTWを逆算するようになっている。   Therefore, in the canned two-water channel type hot water heater 10 according to the present embodiment, the hot water transport state (transport mode) between the bath return pipe 17 and the bath outlet pipe 16 during the pouring operation is determined, and the determination result The TW is calculated backward using the RA corresponding to.

図2は、搬送モードと、搬送状態と推定吸熱分配比RA、推定流量比QAとの対応関係を示す搬送モード表60である。搬送モードは、両モードと、片モード1と、片モード2の3つに区分する。両モードは、給水量が十分あって、風呂往き管16と風呂戻り管17の双方にほぼ偏り無く湯が流れている状態である。本例では、両モードは、風呂往き管16と風呂戻り管17に同量の湯が流れる搬送状態とする。両モードでの推定吸熱分配比(全体を1とした場合の給湯側の吸熱比)RAは0.5、推定流量比(全体を1とした場合に風呂戻り管17側に流れる割合)QAは0.5とする。   FIG. 2 is a transport mode table 60 showing the correspondence between the transport mode, the transport state, the estimated heat absorption distribution ratio RA, and the estimated flow rate ratio QA. The transport mode is divided into three modes: a double mode, a single mode 1, and a single mode 2. In both modes, there is a sufficient amount of water supply, and hot water flows through both the bath outlet pipe 16 and the bath return pipe 17 with almost no bias. In this example, both modes are in a conveying state in which the same amount of hot water flows through the bath outlet pipe 16 and the bath return pipe 17. The estimated endothermic distribution ratio in both modes (the endothermic ratio on the hot water supply side when the whole is 1) RA is 0.5, and the estimated flow rate ratio (the ratio of flowing toward the bath return pipe 17 when the whole is 1) QA is 0.5.

片モード1は、風呂往き管16に全く湯が流れていない搬送状態である。片モード1での推定吸熱分配比RAは1、推定流量比QAは1とする。片モード2は、風呂往き管16に小量の湯が流れている搬送状態である。片モード2での推定吸熱分配比RAは0.8、推定流量比QAは0.95とする。   One mode 1 is a conveyance state in which no hot water flows through the bath outlet pipe 16. The estimated endothermic distribution ratio RA in the single mode 1 is 1, and the estimated flow rate ratio QA is 1. The single mode 2 is a conveyance state in which a small amount of hot water flows through the bath outlet pipe 16. The estimated endothermic distribution ratio RA in the single mode 2 is 0.8, and the estimated flow rate ratio QA is 0.95.

図3は、搬送モードの判定条件を示す判定条件表70である。風呂往き管16内の温度を検出する風呂往き温度センサ42の検出温度が、給湯管12からの湯が追い焚き用水管14bでさらに加熱された場合に対応する温度より低い場合は、片モード1(風呂往き管16に湯が流れていない搬送状態)と判定する。ここでは、風呂往き温度センサ42の検出温度が設定温度TA未満の場合は、片モード1と判定する。   FIG. 3 is a determination condition table 70 showing the determination conditions for the transport mode. When the detected temperature of the bath temperature sensor 42 that detects the temperature in the bath tube 16 is lower than the temperature corresponding to the case where the hot water from the hot water supply tube 12 is further heated by the reheating water tube 14b, the one mode 1 It is determined that (the conveying state in which hot water does not flow through the bath outlet pipe 16). Here, when the temperature detected by the bathing temperature sensor 42 is lower than the set temperature TA, it is determined as the one-mode 1.

風呂往き温度センサ42の検出温度が、給湯管12からの湯が追い焚き用水管14bでさらに加熱された場合に対応する温度(ここでは設定温度TA以上とする)であって、両モードの推定吸熱分配比RAを使用して式4で逆算して得た推定給水温度TWが適正温度(たとえば、注湯温度が設定温度TA以下)の場合は両モードと判定する。   The temperature detected by the bath-out temperature sensor 42 is a temperature corresponding to the case where the hot water from the hot water supply pipe 12 is further heated by the reheating water pipe 14b (here, set to a set temperature TA or higher), and both modes are estimated. When the estimated water supply temperature TW obtained by back-calculating in Equation 4 using the heat absorption distribution ratio RA is an appropriate temperature (for example, the pouring temperature is equal to or lower than the set temperature TA), it is determined as both modes.

風呂往き温度センサ42の検出温度が給湯管12からの湯が追い焚き用水管14bでさらに加熱された場合に対応する温度(ここでは設定温度TA以上とする)であって、両モードの推定吸熱分配比RAを使用して式4で逆算して得た推定給水温度TWが適正温度より高い場合(たとえば、注湯温度が設定温度TA以上の場合)は、風呂往き管16に僅かの湯が流れている片モード2と判定する。   The temperature detected by the bath temperature sensor 42 is a temperature corresponding to the case where the hot water from the hot water supply pipe 12 is further heated by the reheating water pipe 14b (in this case, the set temperature TA or higher), and the estimated endothermic heat in both modes. When the estimated water supply temperature TW obtained by calculating back in Equation 4 using the distribution ratio RA is higher than the appropriate temperature (for example, when the pouring temperature is equal to or higher than the set temperature TA), a small amount of hot water is in the bath outlet pipe 16. It determines with the flowing one mode 2.

注湯動作において、風呂戻り管17を流れる湯は熱交換器14の給湯用水管14aでのみ加熱されて浴槽3へ注がれる。一方、風呂往き管16を流れる湯は、熱交換器14の給湯用水管14aで加熱された後、さらに、追い焚き用水管14bでも加熱される。そのため、風呂往き管16を流れる湯は、風呂戻り管17側を流れる湯より高温になる。   In the pouring operation, hot water flowing through the bath return pipe 17 is heated only in the hot water supply water pipe 14 a of the heat exchanger 14 and poured into the bathtub 3. On the other hand, the hot water flowing through the bath outlet pipe 16 is heated by the hot water supply water pipe 14a of the heat exchanger 14, and further heated by the reheating water pipe 14b. Therefore, the hot water flowing through the bath outlet pipe 16 is hotter than the hot water flowing through the bath return pipe 17 side.

たとえば、風呂戻り管17側から37℃、風呂往き管16側から43℃の湯を流量比5:5で注湯することで、浴槽3内ではこれらが混合されて設定温度の40℃となる。   For example, by pouring hot water of 37 ° C. from the bath return pipe 17 side and 43 ° C. from the bath return pipe 16 side at a flow rate ratio of 5: 5, these are mixed in the bathtub 3 to reach the set temperature of 40 ° C. .

このように、風呂往き管16に流れる湯の温度は設定温度より高くなるので、風呂往き管16に湯が流れていれば風呂往き温度センサ42の検出温度は設定温度より高くなる。一方、風呂往き管16に湯が流れない場合には、風呂往き温度センサ42の検出する風呂往き管16内の温度は、一缶二水路型風呂給湯器10内の温度(器具内の空気)と同程度になるので、風呂の設定温度より低くなる。   Thus, since the temperature of the hot water flowing through the bath going pipe 16 is higher than the set temperature, if the hot water is flowing through the bath going pipe 16, the detected temperature of the bath going temperature sensor 42 becomes higher than the set temperature. On the other hand, when hot water does not flow through the bath-out pipe 16, the temperature in the bath-out pipe 16 detected by the bath-out temperature sensor 42 is the temperature in the single can two-channel bath water heater 10 (air in the appliance). It becomes lower than the set temperature of the bath.

そこで、図3に示すように、風呂往き温度センサ42の検出温度が設定温度より低い場合は、風呂往き管16に通水なし(片モード1)と判定する。   Therefore, as shown in FIG. 3, when the temperature detected by the bath temperature sensor 42 is lower than the set temperature, it is determined that no water has passed through the bath tube 16 (one mode 1).

一方、風呂往き温度センサ42の検出温度が設定温度以上の場合は、風呂往き管16に通水ありと判定する。ただし、風呂往き管16内の流量が少ない場合でも、湯が流れてさえいれば、風呂往き温度センサ42の検出温度は設定温度より高くなる。そこで、両モードの推定吸熱分配比RAを使用して式4で逆算して得た推定給水温度TWが、適正温度(設定温度以下、あるいは「設定温度+所定のマージン温度」以下)か否かにより、風呂往き管16に十分な流量のある両モードであるか、流量が僅かな片モード2かを判別する。   On the other hand, when the temperature detected by the bath going temperature sensor 42 is equal to or higher than the set temperature, it is determined that water has passed through the bath going tube 16. However, even when the flow rate in the bath going pipe 16 is small, the detected temperature of the bath going temperature sensor 42 is higher than the set temperature as long as hot water is flowing. Therefore, whether or not the estimated water supply temperature TW obtained by back-calculating in Equation 4 using the estimated endothermic distribution ratio RA in both modes is an appropriate temperature (below the set temperature, or “set temperature + predetermined margin temperature”). Thus, it is determined whether the two modes have a sufficient flow rate in the bathroom pipe 16 or the one mode 2 in which the flow rate is small.

すなわち、風呂往き管16と風呂戻り管17に通常の流量比(たとえば、5:5)で湯が流れていると仮定した場合の吸熱分配比(両モードのRA)を用いて推定給水温度TWを式4から逆算で求め、この推定給水温度TWが異常に高い(たとえば、注湯温度が設定温度を超える)場合は、仮定した吸熱分配比RAが間違っていたと判定する。つまり、両モードではなく片モード2であると判定する。   That is, the estimated water supply temperature TW using the heat absorption distribution ratio (RA in both modes) when hot water is flowing through the bath outlet pipe 16 and the bath return pipe 17 at a normal flow rate ratio (for example, 5: 5). Is calculated by reverse calculation from Equation 4, and when the estimated feed water temperature TW is abnormally high (for example, the pouring temperature exceeds the set temperature), it is determined that the assumed endothermic distribution ratio RA is incorrect. That is, it is determined that the mode is one mode 2 instead of both modes.

次に、一缶二水路型風呂給湯器10の湯張り動作を図4、図5に示す流れ図に基づいて説明する。   Next, the hot water filling operation of the single can / two water channel type bath water heater 10 will be described with reference to the flowcharts shown in FIGS.

一缶二水路型風呂給湯器10の制御部45は、操作パネル48を通じて利用者から風呂の湯張り動作の実行指示(設定温度TAの指定を含む)を受けると、図4、図5に示す処理を開始する。   When the control unit 45 of the single-can two-water-type bath water heater 10 receives an instruction to execute a bath filling operation (including designation of the set temperature TA) from the user through the operation panel 48, it is shown in FIGS. Start processing.

まず、制御部45は、注湯電磁弁25を開き、水量サーボ26の開度を所定の最小開度に設定し(ステップS101)、バーナー部18を最低加熱量で点火する(ステップS102)。   First, the controller 45 opens the pouring solenoid valve 25, sets the opening of the water amount servo 26 to a predetermined minimum opening (step S101), and ignites the burner unit 18 with the minimum heating amount (step S102).

次に制御部45は、前回の給湯時に求めた最終の推定給水温度TWを記憶部から読み出す(ステップS103)。この推定給水温度TWと設定温度TAと、当該一缶二水路型風呂給湯器10における最大加熱量Hmax[Kcal/h]とから、以下の式6により、ターゲット水量QTA[リットル/分]を求める(ステップS104)。   Next, the control part 45 reads the last estimated water supply temperature TW calculated | required at the time of the last hot water supply from a memory | storage part (step S103). From the estimated water supply temperature TW, the set temperature TA, and the maximum heating amount Hmax [Kcal / h] in the single can two-channel bath water heater 10, the target water amount QTA [liter / min] is obtained by the following equation 6. (Step S104).

QTA=Hmax×η×25/(1500×(TA−TW)) …式6
続いて、制御部45は、推定給水温度TWと流量センサ29の検出水量QTとから設定温度TAの湯を注湯するための目標加熱量HAを前述の式5にて算出し、該算出した目標加熱量HAでバーナー部18を燃焼させて注湯する(ステップS105)。
QTA = Hmax × η × 25 / (1500 × (TA−TW)) Equation 6
Subsequently, the control unit 45 calculates the target heating amount HA for pouring hot water of the set temperature TA from the estimated water supply temperature TW and the detected water amount QT of the flow sensor 29 by the above-described equation 5, and the calculation is performed. The burner unit 18 is burned and poured with the target heating amount HA (step S105).

続いて、流量センサ29の検出水量QTがターゲット水量QTA未満か否かを調べる。流量センサ29の検出水量QTがターゲット水量QTA未満の場合は(ステップS106;Yes)、水量サーボ26が全開でなければ(ステップS107;No)、水量サーボ26をさらに所定量開いて(ステップS108)、ステップS105に移行する。ステップS105において制御部45は、水量サーボ26の開度を上げた後の水量に対応する目標加熱量HAを算出し、その目標加熱量HAでバーナー部18を燃焼させて注湯を行う。   Subsequently, it is checked whether or not the detected water amount QT of the flow sensor 29 is less than the target water amount QTA. When the detected water amount QT of the flow sensor 29 is less than the target water amount QTA (step S106; Yes), if the water amount servo 26 is not fully open (step S107; No), the water amount servo 26 is further opened by a predetermined amount (step S108). The process proceeds to step S105. In step S105, the control unit 45 calculates a target heating amount HA corresponding to the water amount after increasing the opening of the water amount servo 26, and burns the burner unit 18 with the target heating amount HA to perform pouring.

流量センサ29の検出水量QTがターゲット水量QTAになった場合(ステップS106;No)もしくは流量センサ29の検出水量QTがターゲット水量QTA未満であるが水量サーボ26が既に全開の場合は(ステップS107;Yes)、現在の検出流量が、低水量と判定する基準流量以下か否かを判定する(ステップS109)。ここでは、9リットル/分以上か否かを判定する。   When the detected water amount QT of the flow sensor 29 becomes the target water amount QTA (step S106; No) or when the detected water amount QT of the flow sensor 29 is less than the target water amount QTA but the water amount servo 26 is already fully opened (step S107; Yes), it is determined whether or not the current detected flow rate is equal to or less than the reference flow rate for determining the low water amount (step S109). Here, it is determined whether it is 9 liters / minute or more.

流量センサ29の検出水量QTが9リットル/分を超える場合は、低水量でないので、注湯動作は風呂往き管16と風呂戻り管17との双方に湯が十分流れる両モードで行われる。そこで、流量センサ29の検出水量QTが9リットル/分を超える場合は(ステップS109;No)、推定吸熱分配比RAを両モードの値(図2の場合、0.5)に固定設定し(ステップS110)、図5のステップS112へ移行する。なお、推定吸熱分配比RAを固定設定した場合は、その後の処理で推定吸熱分配比RAの値は変更されない。   When the detected water amount QT of the flow sensor 29 exceeds 9 liters / minute, since the amount of water is not low, the pouring operation is performed in both modes in which hot water sufficiently flows through both the bath outlet pipe 16 and the bath return pipe 17. Therefore, when the detected water amount QT of the flow sensor 29 exceeds 9 liters / minute (step S109; No), the estimated endothermic distribution ratio RA is fixedly set to the value of both modes (in the case of FIG. 2, 0.5) ( Step S110) and the process proceeds to Step S112 in FIG. When the estimated heat absorption distribution ratio RA is fixedly set, the value of the estimated heat absorption distribution ratio RA is not changed in the subsequent processing.

流量センサ29の検出水量QTが9リットル/分以下ならば(ステップS109;Yes)、推定吸熱分配比RAを両モードの値に仮設定して(ステップS111)図5のステップS112へ移行する。仮設定の場合、推定吸熱分配比RAの値は以後の処理で変更され得る。   If the detected water amount QT of the flow sensor 29 is 9 liters / minute or less (step S109; Yes), the estimated heat absorption distribution ratio RA is temporarily set to the value of both modes (step S111), and the process proceeds to step S112 in FIG. In the case of temporary setting, the value of the estimated heat absorption distribution ratio RA can be changed in the subsequent processing.

図5のステップS112では、制御部45は、風呂往き温度センサ42の検出温度が設定温度TA未満か否かを判定し、風呂往き温度センサ42の検出温度が設定温度TA以上の場合は(ステップS112;No)、推定吸熱分配比RAを、両モードの値に維持して、ステップS117へ移行する。   In step S112 of FIG. 5, the control unit 45 determines whether or not the detected temperature of the bathing temperature sensor 42 is lower than the set temperature TA, and if the detected temperature of the bathing temperature sensor 42 is equal to or higher than the set temperature TA (step S112; No), the estimated endothermic distribution ratio RA is maintained at the value of both modes, and the process proceeds to step S117.

風呂往き温度センサ42の検出温度が設定温度TA未満であれば(ステップS112;Yes)、風呂往き管16に湯が流れていないと判定して、推定吸熱分配比RAを片モード1の値に変更して仮設定する(ステップS113)。なお、この場合、風呂往き温度センサ42の検出温度が設定温度以上か否かを判定するステップS114では必ず「No」となり、ステップS117へ移行する。   If the detected temperature of the bath going temperature sensor 42 is lower than the set temperature TA (step S112; Yes), it is determined that no hot water is flowing in the bath going tube 16, and the estimated heat absorption distribution ratio RA is set to the value of the one mode 1. Change and provisionally set (step S113). In this case, in step S114 for determining whether the detected temperature of the bathing temperature sensor 42 is equal to or higher than the set temperature, “No” is always set, and the process proceeds to step S117.

ステップS117では、現在設定されている推定吸熱分配比RAを使用して推定給水温度TWを式4にて算出し、その算出した推定給水温度TWが適正温度か否かに基づいて、搬送モード(すなわち、推定吸熱分配比RA)を見直す処理が行われる。   In step S117, the estimated feed water temperature TW is calculated using Equation 4 using the currently set estimated heat absorption distribution ratio RA. Based on whether or not the calculated estimated feed water temperature TW is an appropriate temperature, the transfer mode ( That is, a process for reviewing the estimated endothermic distribution ratio RA) is performed.

詳細には、現在設定されている推定吸熱分配比RAを使用して推定給水温度TWを式4にて算出し、該推定給水温度TWに基づいて、オフ流量Qmin[リットル/分]を以下の式7で求める。   More specifically, the estimated water supply temperature TW is calculated by Equation 4 using the currently set estimated heat absorption distribution ratio RA, and the off flow rate Qmin [liter / minute] is calculated based on the estimated water supply temperature TW as follows: Obtained by Equation 7.

オフ流量Qmin=Hmin×η/(TA−TW) …式7
ここで、Hmin[Kcal/h]は、当該一缶二水路型風呂給湯器10における最低加熱量である。オフ流量は、最低加熱量で加熱した場合に注湯温度が設定温度TAになる流量である。
OFF flow rate Qmin = Hmin × η / (TA−TW) Equation 7
Here, Hmin [Kcal / h] is the minimum heating amount in the single-can two-water bath water heater 10. The off flow rate is a flow rate at which the pouring temperature becomes the set temperature TA when heated at the minimum heating amount.

流量センサ29が現在検出している流量QTが、算出したオフ流量Qmin以下の場合は、バーナー部18を消火しなければならないことになる。すなわち、バーナー部18を最低加熱量で燃焼させても注湯温度が風呂の設定温度を超えてしまうことを意味する。現在の検出流量QTが、式7で算出されたオフ流量Qmin以下になるのは、式4で算出した推定給水温度TWが異常に高い(図3の「不適正(設定温度以上)」に該当する)場合であり、該TWの算出時に使用した推定吸熱分配比RAが間違っていて、実際より小さい値であったと判定できる。   When the flow rate QT currently detected by the flow rate sensor 29 is equal to or less than the calculated off flow rate Qmin, the burner unit 18 must be extinguished. That is, even if the burner part 18 is burned with the minimum heating amount, it means that the pouring temperature exceeds the set temperature of the bath. The current detected flow rate QT falls below the off flow rate Qmin calculated by Equation 7 because the estimated water supply temperature TW calculated by Equation 4 is abnormally high (corresponds to “inappropriate (set temperature or higher)” in FIG. 3. It is possible to determine that the estimated endothermic distribution ratio RA used when calculating the TW is wrong and smaller than the actual value.

このような間違いが生じるのは、両モードの推定吸熱分配比「0.5」を使用して推定給水温度TWを式4で算出したが、実際は風呂往き管16に少量の湯しか流れていない場合である。そこで、流量センサ29が現在検出している流量QTが、算出したオフ流量Qmin以下の場合は(ステップS118;No)、推定吸熱分配比RAを、風呂往き管16に少量の湯が流れている場合の搬送モードである片モード2の値に固定設定して(ステップS119)、ステップS120へ移行する。   The reason why such an error occurs is that the estimated water supply temperature TW is calculated by Equation 4 using the estimated endothermic distribution ratio “0.5” in both modes, but only a small amount of hot water actually flows through the bath outlet pipe 16. Is the case. Therefore, when the flow rate QT currently detected by the flow rate sensor 29 is less than or equal to the calculated off flow rate Qmin (step S118; No), a small amount of hot water is flowing through the bath outlet pipe 16 with the estimated endothermic distribution ratio RA. The value is fixedly set to the value of the single mode 2 that is the transport mode in this case (step S119), and the process proceeds to step S120.

流量センサ29の検出している水量QTが、算出したオフ流量Qminより多い場合は(ステップS118;Yes)、推定給水温度TWの算出に使用した推定吸熱分配比RAは間違っていないと判定し、そのままにして、ステップS120へ移行する。   If the water amount QT detected by the flow sensor 29 is larger than the calculated off flow rate Qmin (step S118; Yes), it is determined that the estimated endothermic distribution ratio RA used for calculating the estimated water supply temperature TW is not incorrect, The process proceeds to step S120.

ステップS120では、加熱量が安定しているか否かを判定し、安定している場合は(ステップS120;Yes)、現在設定されている推定吸熱分配比RAを使用して式4により推定給水温度TWを算出し、記憶部に記憶されている推定給水温度TWを算出したTWに更新する(ステップS121)。そして、更新後の推定給水温度TWと、現在の水量QTと、設定温度TAとから式5により目標加熱量HAを求め、該目標加熱量HAでバーナー部18を燃焼させて注湯動作を行って(ステップS122)、ステップS123へ移行する。   In step S120, it is determined whether or not the heating amount is stable. If the heating amount is stable (step S120; Yes), the estimated water supply temperature is calculated according to equation 4 using the currently set estimated heat absorption distribution ratio RA. TW is calculated, and the estimated water supply temperature TW stored in the storage unit is updated to the calculated TW (step S121). Then, the target heating amount HA is obtained from the updated estimated water supply temperature TW, the current water amount QT, and the set temperature TA by Equation 5, and the burner unit 18 is burned with the target heating amount HA to perform the pouring operation. (Step S122), the process proceeds to step S123.

加熱量が安定していない場合は(ステップS120;No)、推定給水温度TWを更新せずに、ステップS123へ移行する。   When the heating amount is not stable (step S120; No), the process proceeds to step S123 without updating the estimated water supply temperature TW.

ステップS123では、浴槽3への注湯動作が完了(目標水位に到達)したか否かを判定し、未完了の場合は(ステップS123;No)、現時点の推定吸熱分配比RAが両モード固定または片モード2固定であるかを判定する(ステップS124)、両モード固定または片モード2固定であれば(ステップS124;Yes)、ステップS120へ移行する。すなわち、推定吸熱分配比RAが固定設定されている場合は、現在の推定吸熱分配比RAを使用して以後の注湯動作を行う。   In step S123, it is determined whether or not the pouring operation to the bathtub 3 has been completed (the target water level has been reached). If it has not been completed (step S123; No), the current estimated heat absorption distribution ratio RA is fixed in both modes. Alternatively, it is determined whether the single mode 2 is fixed (step S124). If the dual mode is fixed or the single mode 2 is fixed (step S124; Yes), the process proceeds to step S120. That is, when the estimated endothermic distribution ratio RA is fixed, the subsequent estimated pouring operation is performed using the current estimated endothermic distribution ratio RA.

両モード固定でも片モード2固定でもない場合は(ステップS124;No)、現在の推定吸熱分配比RAを見直す可能性があるので、ステップS116へ移行する。   If neither mode is fixed nor single mode 2 is fixed (step S124; No), there is a possibility that the current estimated endothermic distribution ratio RA may be reviewed, and the process proceeds to step S116.

ステップS116では、現在の推定吸熱分配比RAが片モード1の値か否かを判定する。片モード1であれば(ステップS116;Yes)、風呂往き温度センサ42の温度が設定温度以上か否かを判定する(ステップS114)。風呂往き温度センサ42の温度が設定温度未満であれば(ステップS114;No)、片モード1は正しいので、そのまま維持してステップS117へ移行して処理を継続する。   In step S116, it is determined whether or not the current estimated endothermic distribution ratio RA is a value of one-mode. If it is one mode 1 (step S116; Yes), it will be determined whether the temperature of the bathing temperature sensor 42 is more than preset temperature (step S114). If the temperature of the bathing temperature sensor 42 is lower than the set temperature (step S114; No), the single mode 1 is correct, so that it is maintained as it is, and the process proceeds to step S117 to continue the processing.

風呂往き温度センサ42の温度が設定温度以上の場合は(ステップS114;Yes)、風呂往き管16に湯が流れているので、推定吸熱分配比RAを両モードの値に仮設定して(ステップS115)、再度ステップS116へ移行する。この場合、ステップS116;No、ステップS112;NoとなってステップS117へ移行することになる。つまり、推定吸熱分配比RAを両モードの値に仮設定してステップS117以後の処理を継続することになる。   When the temperature of the bath going temperature sensor 42 is equal to or higher than the set temperature (step S114; Yes), since hot water is flowing through the bath going tube 16, the estimated endothermic distribution ratio RA is temporarily set to the value of both modes (step). S115), the process proceeds to step S116 again. In this case, step S116; No, step S112; No, and the process proceeds to step S117. That is, the estimated heat absorption distribution ratio RA is temporarily set to the values of both modes, and the processing after step S117 is continued.

以上のような処理を行う中で注湯完了になると(ステップS123;Yes)、制御部45は注湯電磁弁25を閉じて(ステップS125)、バーナー部18を消火し、注湯動作を終了させる。   When pouring is completed while performing the above processing (step S123; Yes), the control unit 45 closes the pouring electromagnetic valve 25 (step S125), extinguishes the burner unit 18, and ends the pouring operation. Let

その後、浴槽3内の水温が設定温度になるまで、追い焚き動作を行い(ステップS126)、設定温度まで昇温したら湯張り動作を終了する(エンド)。   Thereafter, the reheating operation is performed until the water temperature in the bathtub 3 reaches the set temperature (step S126), and when the temperature rises to the set temperature, the hot water filling operation is terminated (end).

このように、本発明の一缶二水路型風呂給湯器10では、風呂往き温度センサ42の検出温度に基づいて風呂往き管16に湯が流れているか否かを判定し、さらに、湯が流れていると判定した場合には、両モードの推定吸熱分配比RAを仮設定して式4で推定給水温度TWを求め、このTWが適正温度(設定温度以下)か否かに基づいて風呂往き管16内の湯の流量が少量か否かを判定する。そして、この判定結果が示す流量に応じた推定吸熱分配比RAを使用して推定給水温度TWを求めてFF加熱量を制御する。   As described above, in the single can two-channel bath water heater 10 of the present invention, it is determined whether hot water is flowing in the bath outlet pipe 16 based on the temperature detected by the bath outlet temperature sensor 42, and further hot water flows. If it is determined that the estimated endothermic distribution ratio RA of both modes is temporarily set, the estimated water supply temperature TW is obtained from Equation 4, and the bath is taken based on whether or not the TW is an appropriate temperature (below the set temperature). It is determined whether or not the flow rate of hot water in the pipe 16 is small. Then, the estimated water supply temperature TW is obtained using the estimated heat absorption distribution ratio RA corresponding to the flow rate indicated by the determination result, and the FF heating amount is controlled.

これにより、誤った推定吸熱分配比RAを使用して誤った推定給水温度TWを算出した結果、注湯動作中にバーナーを消火したり、燃焼量を必要以上に絞ったりする、といった動作が防止される。これにより、浴槽3に湯張りされる湯の温度が設定温度に近づき、注湯動作後の追い焚き時間を短縮することができる。   As a result of calculating the wrong estimated water supply temperature TW using the wrong estimated endothermic distribution ratio RA, operations such as extinguishing the burner during the pouring operation and reducing the combustion amount more than necessary are prevented. Is done. Thereby, the temperature of the hot water filled in the bathtub 3 approaches the set temperature, and the reheating time after the pouring operation can be shortened.

<第2の実施の形態>
第1の実施の形態では、風呂往き管16に通水があるか否かを、風呂往き温度センサ42の検出温度と風呂の設定温度TAとを比較して判定したが(ステップS112、S114)、第2の実施の形態では、比較する風呂の設定温度にヒステリシスを与えている。
<Second Embodiment>
In the first embodiment, whether or not there is water in the bath going pipe 16 is determined by comparing the detected temperature of the bath going temperature sensor 42 with the set temperature TA of the bath (steps S112 and S114). In the second embodiment, hysteresis is given to the set temperature of the bath to be compared.

また、第1の実施の形態では、推定給水温度TWを基準に求めたオフ流量Qminが現在検出される流量QTより多い場合に(ステップS118;No)、搬送モードを片モード2に変更する(ステップS119)ようにしたが、第2の実施の形態では、さらに熱交温度センサ41が所定の上限温度を超える場合も、搬送モードを片モード2に変更するようになっている(図6のステップS206)。その他は第1の実施の形態と同様である。   Further, in the first embodiment, when the off flow rate Qmin obtained based on the estimated feed water temperature TW is larger than the currently detected flow rate QT (step S118; No), the transport mode is changed to the single mode 2 ( However, in the second embodiment, the transport mode is changed to the single mode 2 even when the heat exchange temperature sensor 41 exceeds a predetermined upper limit temperature (see FIG. 6). Step S206). Others are the same as in the first embodiment.

第2の実施の形態では、図4の処理の後、結合子Bへ移行して図6の処理を行う。なお、図6では、図5と同一処理のステップには同一のステップ番号を与えてあり、それらの説明は適宜省略する。   In the second embodiment, after the processing of FIG. 4, the process proceeds to connector B and the processing of FIG. 6 is performed. In FIG. 6, the same step numbers are given to the same processing steps as those in FIG. 5, and description thereof will be omitted as appropriate.

図6の処理(結合子B以降の処理)では、制御部45は、風呂往き温度センサ42の検出温度が「設定温度TA+Kh温度1×(設定温度TA−風呂温度)」以下か否かを判定し(ステップS201)、風呂往き温度センサ42の検出温度が「設定温度TA+Kh温度1×(設定温度TA−風呂温度)」以下でなければ(ステップS201;No)、ステップS205へ移行する。   In the process of FIG. 6 (process after connector B), the control unit 45 determines whether or not the temperature detected by the bath temperature sensor 42 is equal to or lower than “set temperature TA + Kh temperature 1 × (set temperature TA−bath temperature)”. If the temperature detected by the bath temperature sensor 42 is not equal to or lower than “set temperature TA + Kh temperature 1 × (set temperature TA−bath temperature)” (step S201; No), the process proceeds to step S205.

風呂往き温度センサ42の検出温度が「設定温度TA+Kh温度1×(設定温度TA−風呂温度)」以下であれば(ステップS201;Yes)、風呂往き管16に湯が流れていないと判定して、推定吸熱分配比RAを片モード1の値に変更して仮設定する(ステップS202)。その後、風呂往き温度センサ42の検出温度が「設定温度TA+Kh温度2×(設定温度TA−風呂温度)」以上か否かを判定し(ステップS203)、風呂往き温度センサ42の検出温度が「設定温度TA+Kh温度2×(設定温度TA−風呂温度)」以上であれば(ステップS203;Yes)、推定吸熱分配比RAを両モードの値に仮設定するように戻して(ステップS204)、ステップS201へ移行する。   If the detection temperature of the bath temperature sensor 42 is equal to or lower than “set temperature TA + Kh temperature 1 × (set temperature TA−bath temperature)” (step S201; Yes), it is determined that no hot water is flowing in the bath tube 16. Then, the estimated heat absorption distribution ratio RA is changed to the value of the single mode 1 and temporarily set (step S202). Thereafter, it is determined whether or not the detected temperature of the bathing temperature sensor 42 is equal to or higher than “set temperature TA + Kh temperature 2 × (set temperature TA−bath temperature)” (step S203), and the detected temperature of the bathing temperature sensor 42 is “set”. If it is equal to or higher than “temperature TA + Kh temperature 2 × (set temperature TA−bath temperature)” (step S203; Yes), the estimated endothermic distribution ratio RA is temporarily set back to the value of both modes (step S204), and step S201. Migrate to

風呂往き温度センサ42の検出温度が「設定温度TA+Kh温度2×(設定温度TA−風呂温度)」以上でなければ(ステップS203;No)、ステップS205へ移行する。   If the temperature detected by the bath temperature sensor 42 is not equal to or higher than “set temperature TA + Kh temperature 2 × (set temperature TA−bath temperature)” (step S203; No), the process proceeds to step S205.

なお、Kh温度1<Kh温度2とする。
(Kh温度2−Kh温度1)×(設定温度TA−風呂温度)は、ヒステリシスの幅である。
Note that Kh temperature 1 <Kh temperature 2.
(Kh temperature 2−Kh temperature 1) × (set temperature TA−bath temperature) is a width of hysteresis.

また、風呂温度は、搬送モードに応じた流量比を用いて、以下の式8により算出する。
風呂温度=Tout×QA+BAgo×(1−QA) …式8
QAは、図2に示す推定流量比QAである。BAgoは、風呂往き管16から浴槽3へ注がれる湯の温度であり、以下の式9で求める。
BAgo=Tout+(Hout×25×(1−RA)/(QT×(1−QA))) …式9
Moreover, bath temperature is calculated by the following formula | equation 8 using the flow rate ratio according to conveyance mode.
Bath temperature = Tout × QA + BAgo × (1−QA) Equation 8
QA is the estimated flow rate ratio QA shown in FIG. BAgo is the temperature of hot water poured from the bath outlet pipe 16 to the bathtub 3 and is calculated by the following equation (9).
BAgo = Tout + (Hout × 25 × (1-RA) / (QT × (1-QA))) Equation 9

ステップS205では、現在設定されている推定吸熱分配比RAを使用して推定給水温度TWを式4にて算出し、該推定給水温度TWに基づいて、オフ流量Qmin[リットル/分]を前述の式7で求める。なお、ステップS205の処理は図5のステップS117と同一である。   In step S205, the estimated water supply temperature TW is calculated by Equation 4 using the currently set estimated heat absorption distribution ratio RA, and the off flow rate Qmin [liter / minute] is calculated based on the estimated water supply temperature TW. Obtained by Equation 7. Note that the process of step S205 is the same as step S117 of FIG.

熱交温度センサ41の検出温度Toutが予め定めた上限温度より高い場合、もしくは流量センサ29が現在検出している流量QTが算出したオフ流量Qmin以下の場合は(ステップS206;Yes)、推定吸熱分配比RAを片モード2の値に固定設定して(ステップS119)、ステップS120へ移行する。前記上限温度はバーナー部18の消火を必要とするほどの高温に設定されている。   If the detected temperature Tout of the heat exchanger temperature sensor 41 is higher than a predetermined upper limit temperature, or if the flow rate QT currently detected by the flow rate sensor 29 is less than or equal to the calculated off flow rate Qmin (step S206; Yes), estimated heat absorption The distribution ratio RA is fixedly set to the value of the single mode 2 (step S119), and the process proceeds to step S120. The upper limit temperature is set to a high temperature that requires the burner section 18 to be extinguished.

熱交温度センサ41の検出温度Toutが予め定めた上限温度より高くなく、かつ流量センサ29の検出している水量QTが、算出したオフ流量Qmin以上の場合は(ステップS206;No)、ステップS120へ移行する。   If the detected temperature Tout of the heat exchanger temperature sensor 41 is not higher than the predetermined upper limit temperature and the water amount QT detected by the flow sensor 29 is equal to or greater than the calculated off flow rate Qmin (step S206; No), step S120 Migrate to

このように、ヒステリシスを与えて判定することで、判定の境界温度(図5のステップS112,114では設定温度TA)付近における判定結果の頻繁な変動を防ぐことができる。また、熱交温度センサ41が所定の上限温度を超えた場合(図6のステップS206;Yes)も搬送モードを片モード2に変更するようにしたので、高温の湯が浴槽3に注がれることが防止される。   Thus, by providing the hysteresis and making the determination, frequent fluctuations in the determination result in the vicinity of the determination boundary temperature (the set temperature TA in steps S112 and 114 in FIG. 5) can be prevented. In addition, when the heat exchanger temperature sensor 41 exceeds the predetermined upper limit temperature (step S206 in FIG. 6; Yes), since the transport mode is changed to the single mode 2, hot water is poured into the bathtub 3. It is prevented.

以上、本発明の実施の形態を図面によって説明してきたが、具体的な構成は実施の形態に示したものに限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   The embodiment of the present invention has been described with reference to the drawings. However, the specific configuration is not limited to that shown in the embodiment, and there are changes and additions within the scope of the present invention. Are also included in the present invention.

たとえば、図2に示す推定吸熱分配比RAや推定流量比QAの値は一例であり、これらに限定されるものではなく、機器の特性に応じて設定すればよい。また、バーナー部18での燃焼面を切り替え可能になっている場合は、燃焼させる燃焼面の位置や数に対応させて各搬送モードにおける推定吸熱分配比RAを切り替えるようにするとよい。   For example, the values of the estimated heat absorption distribution ratio RA and the estimated flow rate ratio QA shown in FIG. 2 are examples, and are not limited to these, and may be set according to the characteristics of the device. In addition, when the combustion surface in the burner unit 18 can be switched, the estimated endothermic distribution ratio RA in each transport mode may be switched in accordance with the position and number of combustion surfaces to be burned.

また、実施の形態では、推定吸熱分配比RAを固定設定する場合と仮設定する場合を設けたが、仮設定のみとし、常に推定吸熱分配比RAを見直す処理を行うようにしてもよい。   In the embodiment, the case where the estimated endothermic distribution ratio RA is fixedly set and the case where the estimated endothermic distribution ratio RA is fixed are provided. However, only the temporary setting may be performed, and the process of reviewing the estimated endothermic distribution ratio RA may be performed.

また、実施の形態では搬送モードとして、両モード、片モード1、片モード2を設けたが、両モードと片モード1のみとしてもよい。すなわち、風呂往き温度センサ42の検出温度に基づく判定のみで、搬送モード(つまり、推定吸熱分配比RA)を決定するようにしてもよい。   In the embodiment, both modes, one mode 1, and one mode 2 are provided as the transport mode. However, both modes and one mode 1 may be used. That is, the conveyance mode (that is, the estimated heat absorption distribution ratio RA) may be determined only by the determination based on the temperature detected by the bath temperature sensor 42.

実施の形態(図5のステップS118または図6のステップS206)では、推定吸熱分配比RAを使用して式4で推定給水温度TWを求め、このTWから算出したオフ流量Qminと現在の水量QTとの比較から搬送モードを片モード2とするか否かを判定したが、これは「式4で求めた推定給水温度TWが異常に高い」ことを、TWから算出したオフ流量Qminが現在の検出水量QTより少ないことを持って判定したものであり、推定給水温度TWを基準温度(たとえば、設定温度)と比較し、温度から直接判定するようにしてもよい。   In the embodiment (step S118 in FIG. 5 or step S206 in FIG. 6), the estimated water supply temperature TW is obtained by Equation 4 using the estimated endothermic distribution ratio RA, and the off flow rate Qmin calculated from this TW and the current water amount QT. It was determined whether or not the transport mode is set to the single mode 2 from the comparison with the above. This indicates that “the estimated water supply temperature TW obtained by Equation 4 is abnormally high” and that the OFF flow rate Qmin calculated from the TW is the current It is determined that the detected water amount is less than the detected water amount QT, and the estimated water supply temperature TW may be compared with a reference temperature (for example, a set temperature) and directly determined from the temperature.

注湯動作中に風呂往き管16に湯が流れているか否かを風呂往き温度センサ42の検出温度と設定温度(あるいはこれにヒステリシスを持たせた温度)との比較により判定したが、設定温度に代えて熱交温度センサ41の検出温度あるいは風呂戻り温度センサ43の検出温度と比較してもよい。要するに風呂戻り管17から浴槽3へ流れる湯に比べて風呂往き管16から浴槽3へ流れる湯は追い焚き用水管14bでさらに加熱されて温度が高くなるので、そのような高い温度の湯が風呂往き温度センサ42によって検出されるか否かに基づいて、風呂往き管16に湯が流れているか否かを判定すればよい。   Whether or not hot water is flowing through the bath going pipe 16 during the pouring operation is determined by comparing the detected temperature of the bath going temperature sensor 42 with a set temperature (or a temperature with hysteresis). Instead of this, the temperature detected by the heat exchanger temperature sensor 41 or the temperature detected by the bath return temperature sensor 43 may be compared. In short, compared with the hot water flowing from the bath return pipe 17 to the bathtub 3, the hot water flowing from the bath outlet pipe 16 to the bathtub 3 is further heated by the reheating water pipe 14 b, and the temperature becomes higher. Whether hot water is flowing in the bath outlet pipe 16 may be determined based on whether or not it is detected by the outlet temperature sensor 42.

なお、注湯動作中に風呂往き管16に湯が流れているか否かを風呂往き温度センサ42の検出温度に基づいて判定する技術の用途は、実施の形態で示すもの、すなわち、推定吸熱分配比RAを推定してFF燃焼量を制御する場合に限定されない。たとえば、浴槽の水位をより的確に検出等するために、風呂往き管16側の湯の流れ具合を注湯動作中に検出する用途などにも利用できる。   The application of the technique for determining whether hot water is flowing in the bath outlet pipe 16 during the pouring operation based on the temperature detected by the bath outlet temperature sensor 42 is the one shown in the embodiment, that is, the estimated endothermic distribution. The present invention is not limited to the case where the ratio RA is estimated to control the FF combustion amount. For example, in order to more accurately detect the water level of the bathtub, the present invention can be used for detecting the flow of hot water on the side of the bath outlet pipe 16 during the pouring operation.

例えば、風呂往き管16と連結管24との交点より風呂戻り管17側に圧力センサを設ける場合がある。風呂戻り管17側に湯が流れている場合には、注湯終了後圧力センサの前後配管(風呂往き管16と風呂戻り管17の両方)ともに湯水で満たされているので圧力センサの検出値を信用することができる。しかし、風呂往き管16の連結管24との交点より風呂戻り管17側に湯水が満たされていない場合には、圧力センサの検出値を信用できない。従来は、注湯動作中に風呂戻り管17側に湯水が流れているか否かを認識できなかったので、注湯終了後、圧力センサでの検出の前に、循環ポンプ31を所定時間以上作動させて風呂往き管16と風呂戻り管17に湯水が確実に満たされる状態を作り出すという準備動作が必要であった。本発明の技術、すなわち、注湯動作中に風呂往き管16に湯が流れているか否かを風呂往き温度センサ42の検出温度に基づいて判定する技術を使用すれば、注湯動作後に風呂往き管16が湯水で満たされているか否かを認識できるので、既に満たされている場合には上述の準備動作は不要になる。   For example, a pressure sensor may be provided on the bath return pipe 17 side from the intersection of the bath outlet pipe 16 and the connecting pipe 24. When hot water is flowing to the bath return pipe 17 side, the pressure sensor detection value is obtained because both the front and rear pipes of the pressure sensor (both the bath outlet pipe 16 and the bath return pipe 17) are filled with hot water after pouring is finished. Can be trusted. However, when hot water is not filled on the bath return pipe 17 side from the intersection of the bath going pipe 16 and the connecting pipe 24, the detection value of the pressure sensor cannot be trusted. Conventionally, since it was not possible to recognize whether hot water is flowing to the bath return pipe 17 side during the pouring operation, the circulating pump 31 is operated for a predetermined time or more after the pouring and before detection by the pressure sensor. Therefore, a preparatory operation for creating a state in which the bath outlet pipe 16 and the bath return pipe 17 are surely filled with hot water is required. If the technique of the present invention, that is, the technique for determining whether hot water is flowing through the bath outlet pipe 16 during the pouring operation based on the temperature detected by the bathing temperature sensor 42, the bathing is performed after the pouring operation. Since it can be recognized whether or not the pipe 16 is filled with hot water, the above-described preparation operation is not necessary when the pipe 16 is already filled.

なお、実施の形態では、一缶二水路型の熱交換器としたが、より多くの水管が熱交換器を通る一缶多水型の熱交換器を使用する風呂給湯器にも本発明は適用される。すなわち、給湯、追い焚き以外に第3の熱交換用水管が熱交換器を通る構成であっても、第3の熱交換用水管での吸熱量を考慮して、各搬送モードでの推定吸熱分配比RAを設定すればよい。   In the embodiment, a single-can two-channel heat exchanger is used, but the present invention is also applied to a bath water heater that uses a single-can multi-water heat exchanger in which more water pipes pass through the heat exchanger. Applied. That is, in addition to hot water supply and reheating, even if the third heat exchanging water pipe passes through the heat exchanger, the estimated endothermic heat in each transport mode in consideration of the amount of heat absorbed in the third heat exchanging water pipe The distribution ratio RA may be set.

実施の形態では、熱交温度センサ41の検出温度をToutとして各演算を行ったが、風呂戻り温度センサ43の検出温度をToutに使用してもよい。   In the embodiment, each calculation is performed with the detected temperature of the heat exchanger temperature sensor 41 as Tout, but the detected temperature of the bath return temperature sensor 43 may be used as Tout.

3…浴槽
10…一缶二水路型風呂給湯器
11…給水管
12…給湯管
14…熱交換器
14a…給湯用水管
14b…追い焚き用水管
16…風呂往き管
17…風呂戻り管
18…バーナー部
19…ガス供給管
21…ガス弁
22…比例弁
24…連結管
25…注湯電磁弁
26…水量サーボ
27…バイパス管
28…バイパス調整弁
29…流量センサ
31…循環ポンプ
32…流水スイッチ
41…熱交温度センサ
42…風呂往き温度センサ
43…風呂戻り温度センサ
45…制御部
48…操作パネル
60…搬送モード表
70…判定条件表
DESCRIPTION OF SYMBOLS 3 ... Bathtub 10 ... One can two water channel type bath water heater 11 ... Water supply pipe 12 ... Hot water supply pipe 14 ... Heat exchanger 14a ... Hot water supply water pipe 14b ... Reheating water pipe 16 ... Bath return pipe 17 ... Bath return pipe 18 ... Burner Portion 19: Gas supply pipe 21 ... Gas valve 22 ... Proportional valve 24 ... Connecting pipe 25 ... Pouring solenoid valve 26 ... Water volume servo 27 ... Bypass pipe 28 ... Bypass adjustment valve 29 ... Flow sensor 31 ... Circulating pump 32 ... Flowing water switch 41 ... Heat exchange temperature sensor 42 ... Bathing temperature sensor 43 ... Bath return temperature sensor 45 ... Control unit 48 ... Operation panel 60 ... Transfer mode table 70 ... Judgment condition table

Claims (7)

給水管が入り側に給湯管が出側にそれぞれ接続された第1の熱交換用水管と、浴槽に通じる第1風呂配管が入り側に前記浴槽に通じる第2風呂配管が出側にそれぞれ接続された第2の熱交換用水管とを備えた一缶二水路型の熱交換器と、
前記熱交換器を加熱する加熱装置と、
前記給湯管と前記第1風呂配管を接続する連結管と、
前記連結管に設けられた開閉弁と、
前記第2風呂配管に設けられた温度センサと、
前記第1の熱交換用水管の出側の水温を検出する第2温度センサと、
前記給水管の通水量を検出する水量センサと、
前記開閉弁を開いた状態で前記加熱装置による加熱を行うことで給水を昇温して前記浴槽に流し込む注湯動作を制御する制御部と、
を有し、
前記制御部は、前記注湯動作において、前記加熱装置で加えた熱量と、その熱量のうちの前記第1の熱交換用水管による吸熱割合を示す吸熱分配比と、前記第2温度センサの検出温度と、前記水量センサの検出した水量とに基づいて給水温度を算出し、該給水温度と前記検出した水量と注湯設定温度とに基づいて前記加熱装置の加熱量を制御すると共に、前記温度センサの検出温度が前記給湯管からの湯が前記第2の熱交換用水管でさらに加熱された場合に対応する温度か否かに基づいて、前記算出に使用する吸熱分配比を変更する
ことを特徴とする一缶二水路型風呂給湯器。
A first heat exchange water pipe with a water supply pipe connected to the inlet side and a hot water pipe connected to the outlet side respectively, and a first bath pipe leading to the bathtub connected to the outlet side and a second bath pipe connected to the bathtub to the outlet side, respectively A one-can two-water channel heat exchanger provided with a second heat exchange water pipe,
A heating device for heating the heat exchanger;
A connecting pipe connecting the hot water pipe and the first bath pipe;
An on-off valve provided in the connecting pipe;
A temperature sensor provided in the second bath piping;
A second temperature sensor for detecting a water temperature on the outlet side of the first heat exchange water pipe;
A water amount sensor for detecting the amount of water passing through the water supply pipe;
A control unit for controlling a pouring operation of raising the temperature of the feed water and pouring it into the bathtub by heating with the heating device in a state where the on-off valve is opened;
Have
In the pouring operation, the control unit is configured to detect the amount of heat applied by the heating device, an endothermic distribution ratio indicating an endothermic ratio of the heat amount by the first heat exchange water pipe, and detection of the second temperature sensor. A water supply temperature is calculated based on the temperature and the amount of water detected by the water amount sensor, and the heating amount of the heating device is controlled based on the water supply temperature, the detected amount of water and the pouring set temperature, and the temperature Changing the endothermic distribution ratio used for the calculation based on whether the detected temperature of the sensor is a temperature corresponding to the case where the hot water from the hot water supply pipe is further heated by the second heat exchange water pipe. One can two water channel bath water heater.
前記制御部は、前記温度センサの検出温度が前記給湯管からの湯が前記第2の熱交換用水管でさらに加熱された場合に対応する温度より低い温度の場合は、前記第2風呂配管を通じて浴槽へ注湯されていない場合に対応する第1の吸熱分配比を前記算出に使用し、前記温度センサの検出温度が前記給湯管からの湯が前記第2の熱交換用水管でさらに加熱された場合に対応する温度の場合は、前記給水温度の算出に前記第1の吸熱分配比より前記第1の熱交換用水管による吸熱割合が低い第2の吸熱分配比を前記算出に使用する
ことを特徴とする請求項1に記載の一缶二水路型風呂給湯器。
When the temperature detected by the temperature sensor is lower than the temperature corresponding to the case where the hot water from the hot water supply pipe is further heated by the second heat exchange water pipe, the control unit passes through the second bath pipe. The first endothermic distribution ratio corresponding to the case where no hot water is poured into the bathtub is used for the calculation, and the temperature detected by the temperature sensor is such that the hot water from the hot water supply pipe is further heated by the second heat exchange water pipe. In the case of the temperature corresponding to the case, the second endothermic distribution ratio having a lower endothermic ratio by the first heat exchange water pipe than the first endothermic distribution ratio is used for the calculation of the feed water temperature. The single-can two-water channel bath water heater according to claim 1.
前記制御部は、前記第2の吸熱分配比を使用して前記算出を行って得た給水温度が所定の適正温度より高い場合は、前記加熱量を導出する際の給水温度の算出に、前記第1の吸熱分配比と前記第2の吸熱分配比との間の第3の吸熱分配比を使用する
ことを特徴とする請求項2に記載の一缶二水路型風呂給湯器。
When the feed water temperature obtained by performing the calculation using the second endothermic distribution ratio is higher than a predetermined appropriate temperature, the control unit calculates the feed water temperature when deriving the heating amount. The canned two-channel bath water heater according to claim 2, wherein a third endothermic distribution ratio between the first endothermic distribution ratio and the second endothermic distribution ratio is used.
前記第2の吸熱分配比は、給水量が十分ある場合に対応した値である
ことを特徴とする請求項2または3に記載の一缶二水路型風呂給湯器。
The canned two-water channel bath water heater according to claim 2 or 3, wherein the second endothermic distribution ratio is a value corresponding to a sufficient water supply amount.
前記制御部は、前記水量センサの検出する給水量が所定量以上の場合は、給水温度の算出に使用する吸熱分配比を所定値に固定して前記加熱量の制御を行う
ことを特徴とする請求項1乃至4のいずれか1つに記載の一缶二水路型風呂給湯器。
When the water supply amount detected by the water amount sensor is equal to or greater than a predetermined amount, the control unit controls the heating amount by fixing an endothermic distribution ratio used for calculating the water supply temperature to a predetermined value. One can two water channel type bath water heater according to any one of claims 1 to 4.
前記第3の吸熱分配比を前記算出に使用した場合は、以後、吸熱分配比を前記第3の吸熱分配比に固定して前記算出および前記加熱量の制御を行う
ことを特徴とする請求項3に記載の一缶二水路型風呂給湯器。
When the third endothermic distribution ratio is used for the calculation, the calculation and the heating amount are controlled after fixing the endothermic distribution ratio to the third endothermic distribution ratio. 3. A single can two-water bath water heater according to 3.
給水管が入り側に給湯管が出側にそれぞれ接続された第1の熱交換用水管と、浴槽に通じる第1風呂配管が入り側に前記浴槽に通じる第2風呂配管が出側にそれぞれ接続された第2の熱交換用水管とを備えた一缶二水路型の熱交換器と、
前記熱交換器を加熱する加熱装置と、
前記給湯管と前記第1風呂配管を接続する連結管と、
前記連結管に設けられた開閉弁と、
前記第2風呂配管に設けられた温度センサと、
前記開閉弁を開いた状態で前記加熱装置による加熱を行うことで給水を昇温して前記浴槽に流し込む注湯動作を制御する制御部と、
を有し、
前記制御部は、前記注湯動作の実行中に、前記温度センサの検出温度が、注湯の設定温度未満の場合に、前記第2風呂配管を通じて浴槽へ注湯されていないと判定する
ことを特徴とする一缶二水路型風呂給湯器。
A first heat exchange water pipe with a water supply pipe connected to the inlet side and a hot water pipe connected to the outlet side respectively, and a first bath pipe leading to the bathtub connected to the outlet side and a second bath pipe connected to the bathtub to the outlet side, respectively A one-can two-water channel heat exchanger provided with a second heat exchange water pipe,
A heating device for heating the heat exchanger;
A connecting pipe connecting the hot water pipe and the first bath pipe;
An on-off valve provided in the connecting pipe;
A temperature sensor provided in the second bath piping;
A control unit for controlling a pouring operation of raising the temperature of the feed water and pouring it into the bathtub by heating with the heating device in a state where the on-off valve is opened;
Have
The control unit determines that the hot water is not poured into the bathtub through the second bath pipe when the detected temperature of the temperature sensor is lower than a preset temperature of the hot water during the pouring operation. One can two water channel bath water heater.
JP2011011409A 2011-01-21 2011-01-21 One can two water channel bath water heater Active JP5752944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011409A JP5752944B2 (en) 2011-01-21 2011-01-21 One can two water channel bath water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011409A JP5752944B2 (en) 2011-01-21 2011-01-21 One can two water channel bath water heater

Publications (2)

Publication Number Publication Date
JP2012154502A JP2012154502A (en) 2012-08-16
JP5752944B2 true JP5752944B2 (en) 2015-07-22

Family

ID=46836418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011409A Active JP5752944B2 (en) 2011-01-21 2011-01-21 One can two water channel bath water heater

Country Status (1)

Country Link
JP (1) JP5752944B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071809A (en) * 2016-10-25 2018-05-10 株式会社ノーリツ Bath water heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3834396B2 (en) * 1996-09-25 2006-10-18 株式会社ガスター Water heater with memorial and hot water filling function
JP2000146285A (en) * 1998-11-17 2000-05-26 Matsushita Electric Ind Co Ltd Hot water supply apparatus with extra firing/hot water filling function

Also Published As

Publication number Publication date
JP2012154502A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP6032931B2 (en) Hot water system
JP5295985B2 (en) Hot water system
JP5326650B2 (en) Heating control device
JP6129033B2 (en) Hot water system
JP6858621B2 (en) Heat source device
JP5752944B2 (en) One can two water channel bath water heater
JP5708975B2 (en) Water heater
JP5285920B2 (en) Gas hot water heating system
JP6540378B2 (en) Combined heat source machine
KR101797646B1 (en) Hot water proportional control device to the season of the instantaneous boiler and method thereof
JP2001141308A (en) Method of controlling latent heat recovery type water heater
JP6362469B2 (en) Hot water storage system
JP6228881B2 (en) Heat source equipment
JP2017122533A (en) Bath water heater
JP6428364B2 (en) Water heater
JP6498133B2 (en) Hot water storage type water heater and hot water supply method with hot water storage type water heater
JP2021032487A (en) Hot water supply device
JP5734677B2 (en) One can two water bath water heater
JP5598711B2 (en) Heat source machine
JP2017122535A (en) Bath water heater
JP5870844B2 (en) Hot water storage water heater
KR102453204B1 (en) Hot water supplying device of an integrated pipe system
JP3881190B2 (en) Water heater with remembrance
JP2005249340A (en) Hot-water supply system
JP2022072067A (en) Hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150521

R150 Certificate of patent or registration of utility model

Ref document number: 5752944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250