JP2017043717A - Thermally conducive silicone composition - Google Patents

Thermally conducive silicone composition Download PDF

Info

Publication number
JP2017043717A
JP2017043717A JP2015167998A JP2015167998A JP2017043717A JP 2017043717 A JP2017043717 A JP 2017043717A JP 2015167998 A JP2015167998 A JP 2015167998A JP 2015167998 A JP2015167998 A JP 2015167998A JP 2017043717 A JP2017043717 A JP 2017043717A
Authority
JP
Japan
Prior art keywords
component
mass
parts
group
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015167998A
Other languages
Japanese (ja)
Other versions
JP6493092B2 (en
Inventor
謙一 辻
Kenichi Tsuji
謙一 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2015167998A priority Critical patent/JP6493092B2/en
Publication of JP2017043717A publication Critical patent/JP2017043717A/en
Application granted granted Critical
Publication of JP6493092B2 publication Critical patent/JP6493092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermally conductive silicone composition having high thermal conductivity and low viscosity at same time.SOLUTION: There is provided the thermally conductive silicone composition comprising (A) organopolysiloxane having at least 2 alkenyl groups in a molecule and a kinetic viscosity at 25°C of 10 to 100,000 mm/s:100 pts.mass, (B) hydrolyzable methylpolysiloxane with one trifunctional end:50 to 110 pts.mass, (C) organohydrogenpolysiloxane containing at least 2 Si-H group in a molecule, (D) an aluminum powder having an average particle diameter of 0.3 μm or more and less than 50 μm, (E) an alumina power having an average particle diameter of 0.5 μm or more and less than 3 μm, (F) a zinc oxide powder having an average particle diameter of 0.1 μm or more and less than 2 μm and (G) a platinum-based hydrosilylation reaction catalyst:0.1 to 500 ppm as a platinum atom based on mass of the component (C).SELECTED DRAWING: None

Description

本発明は、高い熱伝導率を有し、同時に低粘度である熱伝導性シリコーン組成物に関する。   The present invention relates to a thermally conductive silicone composition having high thermal conductivity and at the same time low viscosity.

半導体素子は、その動作時の発熱による温度上昇が該半導体素子の性能低下を招くため、冷却が必要であることが広く知られている。一般的な冷却方法としては、半導体素子の発熱部材の近くに冷却部材(ヒートシンク等)を設置して冷却を行っている。この際に、発熱部材と冷却部材との間で接触が悪く隙間が生じてしまうと、その隙間に空気が介在してしまい、空気の熱伝導率が低いために冷却効率が低下してしまう問題があった。このような現象を抑制するために、発熱部材と冷却部材との間の密着性を向上させる目的で放熱グリースや放熱シート等が用いられている(特許文献1、特許文献2、及び特許文献3を参照)。   It is widely known that a semiconductor element needs to be cooled because a temperature rise due to heat generation during operation causes a decrease in performance of the semiconductor element. As a general cooling method, cooling is performed by installing a cooling member (such as a heat sink) near the heat generating member of the semiconductor element. At this time, if the contact between the heat generating member and the cooling member is poor and a gap is formed, air is interposed in the gap and the cooling efficiency is lowered due to the low thermal conductivity of the air. was there. In order to suppress such a phenomenon, a heat dissipating grease, a heat dissipating sheet, or the like is used for the purpose of improving the adhesion between the heat generating member and the cooling member (Patent Document 1, Patent Document 2, and Patent Document 3). See).

近年、サーバー向けCPU等に使用される高品位機種の半導体素子に関して、動作時の発熱量が増大しており、それに伴って放熱グリースや放熱シートに要求される放熱性能も増大している。放熱性能を向上させるには、即ち放熱グリースや放熱シート等の熱抵抗を下げる又は熱伝導率を高めることである。しかしながら、熱抵抗の低減又は熱伝導率の向上するために、放熱グリースや放熱シート等に充填する熱伝導性フィラーの充填率を向上させても、放熱グリースや放熱シート等に使用されている樹脂組成物の粘度が上昇してしまい、樹脂組成物の吐出が困難となる。そのため、これまで、放熱グリースや放熱シート等の熱抵抗を下げる又は熱伝導率を高めるに、放熱グリースや放熱シート等に充填する熱伝導性フィラーの組み合わせについて種々検討がなされてきた(特許文献4、特許文献5、及び特許文献6を参照)。   In recent years, with respect to high-quality semiconductor elements used for CPUs for servers and the like, the amount of heat generated during operation has increased, and accordingly, the heat dissipation performance required for heat dissipation grease and heat dissipation sheets has also increased. In order to improve the heat dissipation performance, that is, to reduce the thermal resistance of the heat dissipation grease or the heat dissipation sheet or to increase the thermal conductivity. However, in order to reduce the thermal resistance or improve the thermal conductivity, the resin used in the thermal grease or the thermal sheet even if the filling rate of the thermal conductive filler to be filled in the thermal grease or the thermal sheet is improved. The viscosity of the composition increases, making it difficult to discharge the resin composition. For this reason, various studies have been made so far on combinations of thermally conductive fillers to be filled in the heat-dissipating grease and the heat-dissipating sheet in order to reduce the thermal resistance of the heat-dissipating grease and the heat-dissipating sheet or increase the thermal conductivity (Patent Document 4 , Patent Document 5 and Patent Document 6).

特許第2938428号公報Japanese Patent No. 2938428 特許第2938429号公報Japanese Patent No. 2938429 特許第3952184号公報Japanese Patent No. 3952184 特許第3891969号公報Japanese Patent No. 3891969 特許第3957596号公報Japanese Patent No. 3957596 特許第3948642号公報Japanese Patent No. 3948642

しかしながら、従来検討されている熱伝導性フィラーの組み合わせは、熱伝導率の観点からすると十分でなかったり、熱伝導率が高くても粘度が高かったりするものなどであって、これらを両立するものはなかった。   However, the combination of thermally conductive fillers that have been studied in the past is not sufficient from the viewpoint of thermal conductivity, or has a high viscosity even if the thermal conductivity is high, and these are compatible. There was no.

従って、本発明の目的は、高い熱伝導率を有し、同時に低粘度である熱伝導性シリコーン組成物を提供することにある。   Accordingly, an object of the present invention is to provide a thermally conductive silicone composition having high thermal conductivity and at the same time having a low viscosity.

すなわち本発明は、次の熱伝導性シリコーン組成物を提供するものである。
<1>
(A)1分子中に少なくとも2個のアルケニル基を有し、25℃における動粘度が10〜100,000mm/sであるオルガノポリシロキサン:100質量部、
(B)一般式(1)

Figure 2017043717

(式中、Rは炭素原子数1〜6のアルキル基であり、aは5〜100の整数である)
で表される片末端3官能の加水分解性メチルポリシロキサン:成分(A)100質量部に対して50〜110質量部、
(C)1分子中に少なくとも2個のSi−H基を含有するオルガノハイドロジェンポリシロキサン
〔成分(C)の配合量は、{Si−H基の個数}/{成分(A)のアルケニル基の個数}の値が0.5〜2.5になる量〕
(D)平均粒径が0.3μm以上50μm未満であるアルミニウム粉末で、
(D−1)平均粒径が0.3μm以上5μm未満であるアルミニウム粉末:成分(D)の20〜40質量%、
(D−2)平均粒径が5μm以上25μm未満であるアルミニウム粉末:成分(D)の20〜35質量%、及び
(D−3)平均粒径が25μm以上50μm未満であるアルミニウム粉末:成分(D)の25〜50質量%、
(E)平均粒径が0.5μm以上3μm未満であるアルミナ粉末、
(F)平均粒径が0.1μm以上2μm未満である酸化亜鉛粉末
〔上記成分(A)〜(C)の合計100質量部に対し、(D)成分の配合量は800〜1500質量部、(E)成分と(F)成分の配合量は、(E)成分と(F)成分の合計が50〜600質量部であって、成分(E)の質量比{成分(E)/(成分(E)+成分(F))}が0.2以上0.8未満となる量〕、及び
(G)白金系ヒドロシリル化反応触媒:成分(A)の質量に対して白金原子として0.1〜500ppm、
を含む熱伝導性シリコーン組成物。 That is, this invention provides the following heat conductive silicone composition.
<1>
(A) Organopolysiloxane having at least two alkenyl groups in one molecule and a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s: 100 parts by mass
(B) General formula (1)
Figure 2017043717

(Wherein R 1 is an alkyl group having 1 to 6 carbon atoms, and a is an integer of 5 to 100)
One end trifunctional hydrolyzable methylpolysiloxane represented by: 50 to 110 parts by mass with respect to 100 parts by mass of component (A),
(C) Organohydrogenpolysiloxane containing at least two Si—H groups in one molecule [compounding amount of component (C) is {number of Si—H groups} / {alkenyl group of component (A) The amount that the value of the number of} is 0.5 to 2.5]
(D) An aluminum powder having an average particle size of 0.3 μm or more and less than 50 μm,
(D-1) Aluminum powder having an average particle size of 0.3 μm or more and less than 5 μm: 20 to 40% by mass of component (D),
(D-2) Aluminum powder having an average particle diameter of 5 μm or more and less than 25 μm: 20 to 35% by mass of component (D), and (D-3) Aluminum powder having an average particle diameter of 25 μm or more and less than 50 μm: component ( 25-50% by weight of D),
(E) an alumina powder having an average particle size of 0.5 μm or more and less than 3 μm,
(F) Zinc oxide powder having an average particle size of 0.1 μm or more and less than 2 μm [based on a total of 100 parts by mass of the above components (A) to (C), the amount of component (D) is 800 to 1500 parts by mass, The blending amount of the component (E) and the component (F) is such that the sum of the component (E) and the component (F) is 50 to 600 parts by mass, and the mass ratio of the component (E) {component (E) / (component (E) + component (F))} in an amount of 0.2 to less than 0.8], and (G) platinum-based hydrosilylation reaction catalyst: 0.1 platinum atom relative to the mass of component (A) ~ 500ppm,
A thermally conductive silicone composition comprising:

<2>
(H)アセチレン化合物、各種窒素化合物、有機りん化合物、オキシム化合物、及び有機クロロ化合物より選択される少なくとも1種の反応制御剤:成分(A)100質量部に対して0.1〜5質量部
を含むことを特徴とする<1>記載の熱伝導性シリコーン組成物。
<2>
(H) At least one reaction control agent selected from acetylene compounds, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds: 0.1 to 5 parts by mass with respect to 100 parts by mass of component (A) The heat conductive silicone composition as described in <1> characterized by including.

<3>
(I)一般式(2)で表されるオルガノシラン:成分(A)100質量部に対して0.1〜10質量部

Figure 2017043717

(式中、Rは、同一又は異なっていてもよく、炭素数9〜15の置換又は非置換のアルキル基であり、Rは、同一又は異なっていてもよく、炭素数1〜8の飽和又は不飽和の1価炭化水素基であり、Rは、同一又は異なっていてもよく、炭素数1〜6の置換又は非置換のアルキル基であり、bは1〜3の整数で、特に1であることが好ましく、cは0〜2の整数であり、但しb+cは1〜3である)
を含むことを特徴とする<1>又は<2>に記載の熱伝導性シリコーン組成物。 <3>
(I) Organosilane represented by general formula (2): 0.1 to 10 parts by mass with respect to 100 parts by mass of component (A)
Figure 2017043717

(In the formula, R 2 may be the same or different and is a substituted or unsubstituted alkyl group having 9 to 15 carbon atoms, and R 3 may be the same or different and has 1 to 8 carbon atoms. A saturated or unsaturated monovalent hydrocarbon group, R 4 may be the same or different, is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, b is an integer of 1 to 3, 1 is particularly preferable, and c is an integer of 0 to 2, provided that b + c is 1 to 3)
The heat conductive silicone composition as described in <1> or <2> characterized by including.

本発明の熱伝導性シリコーン組成物は、熱伝導性フィラーの充填率を高くすることで高熱伝導率を達成すると同時に低粘度を実現できる。   The heat conductive silicone composition of this invention can implement | achieve a low viscosity simultaneously with achieving high heat conductivity by making high the filling rate of a heat conductive filler.

以下本発明を詳細に説明する。
[成分(A)オルガノポリシロキサン]
成分(A)のオルガノポリシロキサンは、ケイ素原子に直結したアルケニル基を1分子中に少なくとも2個有するもので、直鎖状でも分岐状でもよく、またこれら2種以上の異なる粘度の混合物でもよい。
The present invention will be described in detail below.
[Component (A) Organopolysiloxane]
The organopolysiloxane of component (A) has at least two alkenyl groups directly bonded to silicon atoms in one molecule, and may be linear or branched, or a mixture of two or more different viscosities. .

ケイ素原子に結合するアルケニル基としては、ビニル基、アリル基、1−ブテニル基、1−ヘキセニル基等の炭素原子数2〜6のアルケニル基が例示されるが、合成のし易さ及びコストの面からビニル基が好ましい。   Examples of the alkenyl group bonded to the silicon atom include alkenyl groups having 2 to 6 carbon atoms such as vinyl group, allyl group, 1-butenyl group, and 1-hexenyl group. A vinyl group is preferable from the viewpoint.

ケイ素原子に結合する残余の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基;フェニル基等のアリール基;2−フェニルエチル基、2−フェニルプロピル基等のアラルキル基が例示され、更にクロロメチル基、3,3,3−トリフルオロプロピル基等のハロゲン原子置換炭化水素基も例示される。これらのうち、合成のし易さ及びコストの面からメチル基が好ましい。   Examples of the remaining organic group bonded to the silicon atom include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a dodecyl group; an aryl group such as a phenyl group; a 2-phenylethyl group, and a 2-phenylpropoxy group. An aralkyl group such as a sulfur group, and a halogen atom-substituted hydrocarbon group such as a chloromethyl group and a 3,3,3-trifluoropropyl group are also exemplified. Among these, a methyl group is preferable from the viewpoint of ease of synthesis and cost.

ケイ素原子に結合するアルケニル基は、オルガノポリシロキサンの分子鎖の末端、又は途中の何れに存在してもよいが、少なくとも末端に存在することが好ましい。   The alkenyl group bonded to the silicon atom may be present at the terminal or in the middle of the molecular chain of the organopolysiloxane, but is preferably present at least at the terminal.

成分(A)の25℃における動粘度は10〜100,000mm/sの範囲、好ましくは100〜50,000mm/sである。成分(A)の25℃における動粘度が10mm/sより低いと、得られる熱伝導性シリコーン組成物の保存安定性が悪くなり、100,000mm/sより高いと、得られる熱伝導性シリコーン組成物の伸展性が悪くなる。 The kinematic viscosity at 25 ° C. of component (A) range 10~100,000mm 2 / s, preferably 100~50,000mm 2 / s. When the kinematic viscosity at 25 ° C. of the component (A) is lower than 10 mm 2 / s, the storage stability of the obtained heat conductive silicone composition is deteriorated, and when it is higher than 100,000 mm 2 / s, the obtained heat conductivity is obtained. The extensibility of the silicone composition deteriorates.

[成分(B)加水分解性メチルポリシロキサン]
成分(B)は、下記一般式(1)で表される片末端3官能の加水分解性メチルポリシロキサンである。
[Component (B) Hydrolyzable methylpolysiloxane]
Component (B) is a monofunctional trifunctional hydrolyzable methylpolysiloxane represented by the following general formula (1).

Figure 2017043717
Figure 2017043717

一般式(1)中、Rは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基等の炭素数1〜6のアルキル基であり、aは5〜100の整数、好ましくは10〜60の整数である。aは5より小さいとシリコーン組成物のオイルブリードが増加するため信頼性が悪くなり、また100より大きいと、シリコーン組成物と充填材(成分(C)及び成分(D))との濡れ性が十分でなくなり、シリコーン組成物の粘度が上昇してしまう。 In general formula (1), R 1 is an alkyl having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group. And a is an integer of 5 to 100, preferably an integer of 10 to 60. When a is less than 5, the oil bleed of the silicone composition increases, so the reliability is deteriorated. When a is more than 100, the wettability between the silicone composition and the filler (component (C) and component (D)) is reduced. Insufficient, the viscosity of the silicone composition will increase.

成分(B)の片末端3官能の加水分解性メチルポリシロキサンの配合量は、成分(A)100質量部に対して50〜110質量部、好ましくは60〜100質量部である。成分(B)の配合量が50質量部より少ないと、シリコーン組成物と充填材との間で十分な濡れ性を発揮できずシリコーン組成物の粘度が上昇してしまう。また、成分(B)の配合量が110質量部より多くなると、シリコーン組成物のオイルブリードが増加するため信頼性が低下する。   The compounding quantity of the one terminal trifunctional hydrolyzable methylpolysiloxane of a component (B) is 50-110 mass parts with respect to 100 mass parts of components (A), Preferably it is 60-100 mass parts. When the compounding amount of the component (B) is less than 50 parts by mass, sufficient wettability cannot be exhibited between the silicone composition and the filler, and the viscosity of the silicone composition increases. Moreover, when the compounding quantity of a component (B) becomes more than 110 mass parts, since the oil bleed of a silicone composition increases, reliability falls.

[成分(C)オルガノハイドロジェンポリシロキサン]
成分(C)は、ケイ素原子に直結した水素原子(即ち、Si−H基)を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンである。このSi−H基は、成分(A)のオルガノポリシロキサンが有するアルケニル基と架橋することにより、シリコーン組成物を網状化する。成分(C)のオルガノハイドロジェンポリシロキサンは、直鎖状、分岐状及び環状のいずれであってもよく、またこれらの混合物であってもよい。
[Component (C) Organohydrogenpolysiloxane]
Component (C) is an organohydrogenpolysiloxane having at least two hydrogen atoms (that is, Si—H groups) directly bonded to silicon atoms in one molecule. This Si-H group crosslinks the alkenyl group of the organopolysiloxane of component (A) to reticulate the silicone composition. The organohydrogenpolysiloxane of component (C) may be linear, branched or cyclic, or a mixture thereof.

ケイ素原子に結合する残余の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基;フェニル基等のアリール基;2−フェニルエチル基、2−フェニルプロピル基等のアラルキル基が例示され、更にクロロメチル基、3,3,3−トリフルオロプロピル基等のハロゲン原子置換炭化水素基;2−グリシドキシエチル基、3−グリシドキシプロピル基、4−グリシドキシブチル基等のエポキシ環含有有機基も例として挙げられる。   Examples of the remaining organic group bonded to the silicon atom include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a dodecyl group; an aryl group such as a phenyl group; a 2-phenylethyl group, and a 2-phenylpropoxy group. An aralkyl group such as a chloro group, and a halogen atom-substituted hydrocarbon group such as a chloromethyl group and a 3,3,3-trifluoropropyl group; a 2-glycidoxyethyl group, a 3-glycidoxypropyl group, An epoxy ring-containing organic group such as a 4-glycidoxybutyl group is also exemplified.

成分(C)の配合量は、成分(A)中のアルケニル基の数に対する成分(C)中のSi−H基の数、即ち{Si−H基の個数}/{成分(A)のアルケニル基の個数}が0.5〜2.5の範囲がよく、好ましくは0.5〜2.3である。{Si−H基の個数}/{成分(A)のアルケニル基の個数}が0.5より小さいと、シリコーン組成物が十分な網状構造を形成できず硬化が不十分となり、材料の信頼性が低下してしまうので好ましくなく、また2.5より大きいと、シリコーン組成物の硬化物が硬くなり過ぎ柔軟性を失うため好ましくない。   The amount of component (C) is the number of Si—H groups in component (C) relative to the number of alkenyl groups in component (A), ie {number of Si—H groups} / {alkenyl of component (A). The number of groups} is preferably in the range of 0.5 to 2.5, preferably 0.5 to 2.3. If {number of Si—H groups} / {number of alkenyl groups of component (A)} is less than 0.5, the silicone composition cannot form a sufficient network structure and is insufficiently cured, resulting in reliability of the material. Is not preferable, and when it is more than 2.5, the cured product of the silicone composition becomes too hard and loses flexibility.

[成分(D)アルミニウム粉末充填材]
成分(D)は、アルミニウム粉末充填材である。成分(D)の平均粒径は、0.3μm以上50μm未満がよい。成分(D)の配合量は成分(A)〜(C)の合計100質量部に対して800〜1500質量部がよく、好ましくは900〜1400質量部、より好ましくは1000〜1350質量部の範囲である。成分(D)の配合量が800質量部より少ないと、シリコーン組成物の硬化物の熱伝導率が低くなってしまい、1500質量部より多いと、シリコーン組成物の粘度が上昇してしまうので好ましくない。
[Component (D) Aluminum powder filler]
Component (D) is an aluminum powder filler. The average particle size of the component (D) is preferably 0.3 μm or more and less than 50 μm. The blending amount of the component (D) is preferably 800 to 1500 parts by weight, preferably 900 to 1400 parts by weight, more preferably 1000 to 1350 parts by weight with respect to 100 parts by weight as a total of the components (A) to (C). It is. If the amount of component (D) is less than 800 parts by mass, the thermal conductivity of the cured product of the silicone composition will be low, and if it is more than 1500 parts by mass, the viscosity of the silicone composition will increase. Absent.

成分(D)は、更にその平均粒径により、複数の種類に分類してもよく、例えば、成分(D−1)、成分(D−2)及び成分(D−3)の3種類に分類してもよい。成分(D−1)は、アルミニウム粉末の平均粒径が0.3μm以上5μm未満であり、好ましくは0.3μm以上4μm以下がよい。成分(D−2)は、アルミニウム粉末の平均粒径が5μm以上25μm未満であり、好ましくは6μm以上12μm以下がよい。成分(D−3)は、アルミニウム粉末の平均粒径が25μm以上50μm未満であり、好ましくは30μm以上50μm未満がよい。   The component (D) may be further classified into a plurality of types depending on the average particle diameter, for example, the component (D-1), the component (D-2), and the component (D-3). May be. Component (D-1) has an average particle size of aluminum powder of 0.3 μm or more and less than 5 μm, preferably 0.3 μm or more and 4 μm or less. Component (D-2) has an average particle diameter of aluminum powder of 5 μm or more and less than 25 μm, preferably 6 μm or more and 12 μm or less. In the component (D-3), the average particle size of the aluminum powder is 25 μm or more and less than 50 μm, preferably 30 μm or more and less than 50 μm.

成分(D−1)の配合量は、成分(D)の質量全体に対して20〜40質量%がよく、好ましくは20〜35質量%がよい。成分(D−1)の配合量が20質量%より少ないと、成分(D−1)が成分(B)及び(C)と最密充填構造をとれないため、シリコーン組成物の粘度が上昇することがある。また、成分(D−1)の配合量が40質量%を超えると成分(D−1)が成分(D−2)と最密充填構造をとれないため、シリコーン組成物の粘度が上昇することがある。
成分(D−2)の配合量は、成分(D)の質量全体に対して20〜35質量%がよく、好ましくは25〜35質量%である。成分(D−2)の配合量が20質量%より少ないと、成分(D−2)が成分(D−3)と最密充填構造をとれないため、シリコーン組成物の粘度が上昇することがある。また、成分(D−2)の配合量が35質量%を超えると、成分(D−2)が成分(D−1)と最密充填構造をとれないため、シリコーン組成物の粘度が上昇することがある。
成分(D−3)の配合量は、成分(D)の質量全体に対して25〜50質量%がよく、好ましくは30〜50質量%である。成分(D−3)の配合量が25質量%より少ないと、シリコーン組成物の熱伝導率が低くなってしまうことがある。また、成分(D−3)の配合量が50質量%を超えると、シリコーン組成物の滑らかさがなくなり、接触熱抵抗が上昇して、シリコーン組成物の熱抵抗が上昇してしまうことがある。
20-40 mass% is good with respect to the whole mass of a component (D), and, as for the compounding quantity of a component (D-1), Preferably 20-35 mass% is good. When the amount of component (D-1) is less than 20% by mass, component (D-1) cannot take a close-packed structure with components (B) and (C), so the viscosity of the silicone composition increases. Sometimes. Moreover, since the component (D-1) cannot take a close-packed structure with the component (D-2) when the blending amount of the component (D-1) exceeds 40% by mass, the viscosity of the silicone composition increases. There is.
20-35 mass% is good with respect to the whole mass of a component (D), and, as for the compounding quantity of a component (D-2), Preferably it is 25-35 mass%. When the amount of component (D-2) is less than 20% by mass, component (D-2) cannot take a close-packed structure with component (D-3), and the viscosity of the silicone composition may increase. is there. Moreover, since the component (D-2) cannot take a close-packed structure with the component (D-1) when the blending amount of the component (D-2) exceeds 35% by mass, the viscosity of the silicone composition increases. Sometimes.
The compounding amount of the component (D-3) is preferably 25 to 50% by mass, and preferably 30 to 50% by mass with respect to the total mass of the component (D). When the amount of component (D-3) is less than 25% by mass, the thermal conductivity of the silicone composition may be lowered. Moreover, when the compounding quantity of a component (D-3) exceeds 50 mass%, the smoothness of a silicone composition will be lose | eliminated, contact thermal resistance will rise, and the thermal resistance of a silicone composition may rise. .

[成分(E)アルミナ粉末充填材]
成分(E)はアルミナ粉末の充填材である。成分(E)の平均粒径は0.5μm以上3μm未満がよく、好ましくは0.5μm以上2μm以下である。成分(E)の平均粒径が0.5μmより小さいとシリコーン組成物の粘度が上昇し、3μm以上であると、成分(D−1)を使用する場合に、成分(D−1)、成分(E)及び成分(F)において最密充填構造をとることができないためシリコーン組成物の粘度が上昇してしまい好ましくない。
[Component (E) Alumina powder filler]
Component (E) is an alumina powder filler. The average particle size of the component (E) is preferably 0.5 μm or more and less than 3 μm, and preferably 0.5 μm or more and 2 μm or less. When the average particle size of component (E) is smaller than 0.5 μm, the viscosity of the silicone composition increases, and when it is 3 μm or more, when component (D-1) is used, component (D-1) and component In (E) and component (F), since the close-packed structure cannot be taken, the viscosity of the silicone composition increases, which is not preferable.

[成分(F)酸化亜鉛粉末充填材]
成分(F)は酸化亜鉛粉末の充填材である。成分(F)の平均粒径は0.1μm以上2μm未満がよい。成分(F)の平均粒径が0.1μmより小さいとシリコーン組成物の粘度が上昇し、2μm以上であると、成分(D−1)を使用する場合に、成分(D−1)、成分(E)及び成分(F)において最密充填構造をとることができないためシリコーン組成物の粘度が上昇してしまい好ましくない。
[Component (F) Zinc oxide powder filler]
Component (F) is a filler of zinc oxide powder. The average particle size of the component (F) is preferably 0.1 μm or more and less than 2 μm. When the average particle size of component (F) is smaller than 0.1 μm, the viscosity of the silicone composition increases, and when it is 2 μm or more, when component (D-1) is used, component (D-1) and component In (E) and component (F), since the close-packed structure cannot be taken, the viscosity of the silicone composition increases, which is not preferable.

成分(E)と成分(F)との配合量は、成分(A)〜(C)の合計100質量部に対して、50〜600質量部の範囲が好ましい。成分(E)と成分(F)との配合量が50質量部より少ないと、シリコーン組成物内の充填材が最密充填していないため粘度が高くなり、また600質量部より多いと粘度が上昇するので好ましくない。成分(E)と成分(F)との配合比率については、質量比{成分(E)の質量/(成分(E)と成分(F)の合計質量)}が0.2以上0.8未満の範囲がよく、好ましくは0.3以上0.7以下の範囲である。この質量比が0.2より小さいとシリコーン組成物の粘度が上昇し、0.8以上だと熱伝導性フィラーの充填が最密構造でなくなってしまうため硬化物の熱伝導率が低下するので好ましくない。   The compounding amount of the component (E) and the component (F) is preferably in the range of 50 to 600 parts by mass with respect to 100 parts by mass in total of the components (A) to (C). When the blending amount of component (E) and component (F) is less than 50 parts by mass, the filler in the silicone composition is not close-packed and the viscosity becomes high. Since it rises, it is not preferable. Regarding the blending ratio of component (E) and component (F), the mass ratio {mass of component (E) / (total mass of component (E) and component (F))} is 0.2 or more and less than 0.8. The range is good, and the range is preferably 0.3 or more and 0.7 or less. If this mass ratio is less than 0.2, the viscosity of the silicone composition will increase. If it is 0.8 or more, the thermal conductivity of the cured product will decrease because the filling of the heat conductive filler will not be a close-packed structure. It is not preferable.

なお、本発明において、成分(D)〜(F)の充填材の平均粒径は、日機装(株)製マイクロトラックMT3300EXにより測定した体積基準の体積平均径である。また、成分(D)〜(F)の充填材は、その形状が不定形でも球状でも如何なる形状でもよく、事前に表面を処理した粉末であってもよい。   In the present invention, the average particle diameter of the fillers of components (D) to (F) is a volume-based volume average diameter measured by Nikkiso Co., Ltd. Microtrac MT3300EX. In addition, the fillers of the components (D) to (F) may be indefinite, spherical, or any shape, and may be a powder whose surface has been treated in advance.

[成分(G)触媒]
成分(G)の白金系ヒドロシリル化触媒は、成分(A)のアルケニル基と成分(C)のSi−H基との間の付加反応の促進成分である。成分(G)は、白金および白金化合物から選ばれる触媒であり、例えば白金の単体、塩化白金酸、白金−オレフィン錯体、白金−アルコール錯体、白金配意化合物等が挙げられる。成分(G)の配合量は、成分(A)の質量に対して白金原子として0.1〜500ppmの範囲が好ましい。成分(G)の配合量が0.1ppmより小さいと触媒としての効果なく、500ppmを超えても効果が増大することがなく不経済であるので好ましくない。
[Component (G) Catalyst]
The platinum-based hydrosilylation catalyst of component (G) is a component that promotes the addition reaction between the alkenyl group of component (A) and the Si—H group of component (C). The component (G) is a catalyst selected from platinum and a platinum compound, and examples thereof include platinum alone, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, and platinum coordination compounds. The compounding amount of component (G) is preferably in the range of 0.1 to 500 ppm as platinum atoms with respect to the mass of component (A). If the blending amount of the component (G) is less than 0.1 ppm, the effect as a catalyst is not achieved, and even if it exceeds 500 ppm, the effect is not increased and it is uneconomical.

本発明では、必要により、次の成分を配合してもよい。
[成分(H)反応制御剤]
成分(H)の反応制御剤は、室温でのヒドロシリル化反応の進行を抑え、シェルフライフ、ポットライフを延長させるものである。反応制御剤としては、付加反応硬化型シリコーン組成物に使用される従来公知のものを使用することができる。具体的には、例えば、1−エチニル−1−シクロヘキサノール、3,5−ジメチル−1−ヘキシン−3−オール等のアセチレン化合物;トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の各種窒素化合物;トリフェニルホスフィン等の有機りん化合物;オキシム化合物;有機クロロ化合物等が挙げられる。
In this invention, you may mix | blend the following component as needed.
[Component (H) Reaction Control Agent]
The component (H) reaction control agent suppresses the progress of the hydrosilylation reaction at room temperature and prolongs shelf life and pot life. As the reaction control agent, those conventionally known for use in addition reaction curable silicone compositions can be used. Specifically, for example, acetylene compounds such as 1-ethynyl-1-cyclohexanol and 3,5-dimethyl-1-hexyn-3-ol; various nitrogen compounds such as tributylamine, tetramethylethylenediamine and benzotriazole; Organic phosphorus compounds such as phenylphosphine; oxime compounds; organic chloro compounds and the like.

成分(H)の配合量は、成分(A)100質量部に対して0.1〜5質量部の範囲がよい。成分(H)の配合量が0.1質量部より小さいと十分なシェルフライフ、ポットライフが得られず、5質量部より大きいとシリコーン組成物の硬化性が低下するので好ましくない。また、成分(H)の反応制御剤は、シリコーン組成物への分散性を良くするためにトルエン等で希釈して使用してもよい。   The amount of component (H) is preferably in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of component (A). When the amount of component (H) is less than 0.1 parts by mass, sufficient shelf life and pot life cannot be obtained, and when it is more than 5 parts by mass, the curability of the silicone composition is lowered, which is not preferable. Further, the reaction control agent of component (H) may be diluted with toluene or the like in order to improve dispersibility in the silicone composition.

[成分(I)オルガノシラン]
成分(I)は、下記一般式(2)で表されるオルガノシランであり、ウェッターとして用いられる。
[Component (I) Organosilane]
Component (I) is an organosilane represented by the following general formula (2), and is used as a wetter.

Figure 2017043717
Figure 2017043717

式(2)中、Rは、同一又は異なっていてもよく、炭素数9〜15の置換又は非置換のアルキル基であり、Rは、同一又は異なっていてもよく、炭素数1〜8の飽和又は不飽和の1価炭化水素基であり、Rは、同一又は異なっていてもよく、炭素数1〜6の置換又は非置換のアルキル基であり、bは1〜3の整数で、特に1であることが好ましく、cは0〜2の整数であり、但しb+cは1〜3である。 In Formula (2), R 2 may be the same or different and is a substituted or unsubstituted alkyl group having 9 to 15 carbon atoms, and R 3 may be the same or different and has 1 to 1 carbon atoms. 8 is a saturated or unsaturated monovalent hydrocarbon group, R 4 may be the same or different, is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and b is an integer of 1 to 3 In particular, 1 is preferable, and c is an integer of 0 to 2, provided that b + c is 1 to 3.

で示される基としては、例えば、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。炭素数が9より小さいと成分(I)と充填材との濡れ性が十分でなく、15より大きいとオルガノシランが常温で固化するので、取り扱いが不便な上、得られたシリコーン組成物の低温特性が低下するので好ましくない。また、Rで示される基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキルアルケニル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基;3.3.3−トリフロロプロピル基、2−(パーフロロブチル)エチル基、2−(パーフロロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基が挙げられるが、特にメチル基、エチル基が好ましい。また、Rで示される基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられるが、特にメチル基、エチル基が好ましい。 Examples of the group represented by R 2 include a nonyl group, a decyl group, a dodecyl group, a tetradecyl group, and the like. If the carbon number is smaller than 9, the wettability between the component (I) and the filler is not sufficient, and if it is larger than 15, the organosilane is solidified at room temperature. This is not preferable because the characteristics deteriorate. Examples of the group represented by R 3 include alkyl groups such as methyl group, ethyl group, propyl group, hexyl group, and octyl group; cycloalkylalkenyl groups such as cyclopentyl group and cyclohexyl group; vinyl group and allyl group. An aryl group such as a phenyl group and a tolyl group; an aralkyl group such as a 2-phenylethyl group and a 2-methyl-2-phenylethyl group; 3.3.3-trifluoropropyl group, 2- (perfluoro Examples thereof include halogenated hydrocarbon groups such as butyl) ethyl group, 2- (perfluorooctyl) ethyl group, and p-chlorophenyl group, and methyl group and ethyl group are particularly preferable. Examples of the group represented by R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group and an ethyl group are particularly preferable.

成分(I)の式(2)で表されるオルガノシランの具体例としては、例えば、C10H21Si(OCH3)3、C12H25Si(OCH3)3、C12H25Si(OC2H5)3、C10H21Si(CH3)(OCH3)2、C10H21Si(C6H6)(OCH3)2、C10H21Si(CH3)(OC2H5)2、C10H21Si(CH=CH2)(OCH3)2、C10H21Si(CH2CH2CF3)(OCH3)2を挙げることができる。 Specific examples of the organosilane represented by the formula (2) of the component (I) include, for example, C 10 H 21 Si (OCH 3 ) 3 , C 12 H 25 Si (OCH 3 ) 3 , C 12 H 25 Si (OC 2 H 5 ) 3 , C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 , C 10 H 21 Si (C 6 H 6 ) (OCH 3 ) 2 , C 10 H 21 Si (CH 3 ) ( OC 2 H 5 ) 2 , C 10 H 21 Si (CH═CH 2 ) (OCH 3 ) 2 , C 10 H 21 Si (CH 2 CH 2 CF 3 ) (OCH 3 ) 2 can be mentioned.

成分(I)の配合量は、成分(A)100質量部に対して0.1〜10質量部の範囲がよく、好ましくは0.1〜7質量部である。成分(I)の配合量が0.1質量部より少ないと、シリコーン組成物が濡れ性の乏しいものとなり、10質量部より多くしても効果が増大しないため不経済である。   The compounding amount of component (I) is preferably in the range of 0.1 to 10 parts by mass, preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of component (A). If the amount of component (I) is less than 0.1 parts by mass, the silicone composition will have poor wettability, and if it exceeds 10 parts by mass, the effect will not increase, which is uneconomical.

[その他の成分]
本発明には、上記した成分(A)〜(I)以外に必要に応じて、CPUなどのICパッケージと、ヒートシンク等の放熱体とを化学的に接着、固定するために接着助剤等を添加してもよく、シリコーン組成物の劣化を防ぐために酸化防止剤等を添加してもよい。
[Other ingredients]
In the present invention, in addition to the components (A) to (I) described above, an adhesion aid or the like is used to chemically bond and fix an IC package such as a CPU and a heat sink such as a heat sink as necessary. An antioxidant or the like may be added to prevent deterioration of the silicone composition.

[熱伝導性シリコーン組成物の製造方法]
本発明の熱伝導性シリコーン組成物の製造方法は、従来の熱伝導性シリコーン組成物の製造方法に従えばよく、特に制限されるものではない。例えば、成分(A)〜(G)及び必要に応じて、成分(H)、成分(I)及びその他の成分をトリミックス、ツウィンミックス、プラネタリミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて混合する。
[Method for producing thermally conductive silicone composition]
The manufacturing method of the heat conductive silicone composition of this invention should just follow the manufacturing method of the conventional heat conductive silicone composition, and is not restrict | limited in particular. For example, components (A) to (G) and, if necessary, component (H), component (I) and other components are mixed into a trimix, twin mix, planetary mixer (all of which are manufactured by Inoue Seisakusho Co., Ltd.). (Registered trademark), Ultramixer (registered trademark of Mizuho Kogyo Co., Ltd. mixer), Hibis Dispermix (registered trademark of Special Kikai Kogyo Co., Ltd. mixer) and the like.

以下、実施例及び比較例を挙げて、本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。評価方法及び測定方法を以下に示す。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example. Evaluation methods and measurement methods are shown below.

〔粘度〕
熱伝導性シリコーン組成物の絶対粘度は、マルコム粘度計(タイプPC−1TL)を用いて25℃で測定した。
〔viscosity〕
The absolute viscosity of the thermally conductive silicone composition was measured at 25 ° C. using a Malcolm viscometer (type PC-1TL).

〔熱伝導率〕
熱伝導性シリコーン組成物の熱伝導率は、各組成物を3cm厚の型に流し込み、キッチン用ラップを被せて京都電子工業(株)社製のModel QTM−500で測定した。
〔Thermal conductivity〕
The thermal conductivity of the thermally conductive silicone composition was measured with a Model QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd. after pouring each composition into a 3 cm thick mold and covering with a kitchen wrap.

〔熱抵抗測定〕
直径12.7mm円形アルミニウム板2枚の間に熱伝導性シリコーン組成物を挟み込み、そのアルミニウム板を125℃のオーブンで90分間加熱し、該熱伝導性シリコーン組成物を加熱硬化させて熱抵抗測定用の試験片を作製した。この試験片について、キセノンフラッシュ法熱拡散率計(NETZSCH社製 LFA447)を用いて熱抵抗を測定した。
(Thermal resistance measurement)
A heat conductive silicone composition is sandwiched between two circular aluminum plates having a diameter of 12.7 mm, the aluminum plate is heated in an oven at 125 ° C. for 90 minutes, and the heat conductive silicone composition is heated and cured to measure thermal resistance. Test specimens were prepared. About this test piece, the thermal resistance was measured using the xenon flash method thermal diffusivity meter (LFA447 by NETZSCH).

実施例及び比較例で使用した各成分を以下に記載する。ここで、動粘度はウベローデ型オストワルド粘度計(柴田科学社製)により25℃で測定した値である。また、平均粒径はマイクロトラックMT3300EX(日機装(株)製)により測定した体積基準の体積平均径である。   Each component used in the examples and comparative examples is described below. Here, the kinematic viscosity is a value measured at 25 ° C. using an Ubbelohde Ostwald viscometer (manufactured by Shibata Kagaku Co., Ltd.). The average particle diameter is a volume-based volume average diameter measured by Microtrac MT3300EX (manufactured by Nikkiso Co., Ltd.).

成分(A)
A−1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が1000mm/sのジメチルポリシロキサン
Ingredient (A)
A-1: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 1000 mm 2 / s

成分(B)
B−1:下記式で表される片末端3官能の加水分解性メチルポリシロキサン

Figure 2017043717
Ingredient (B)
B-1: One-terminal trifunctional hydrolyzable methylpolysiloxane represented by the following formula
Figure 2017043717

成分(C)
C−1:下記式で表されるオルガノハイドロジェンポリシロキサン

Figure 2017043717
Ingredient (C)
C-1: Organohydrogenpolysiloxane represented by the following formula
Figure 2017043717

成分(D)
D−1:平均粒径2μmのアルミニウム粉末
D−2:平均粒径10μmのアルミニウム粉末
D−3:平均粒径35μmのアルミニウム粉末
Ingredient (D)
D-1: Aluminum powder having an average particle diameter of 2 μm D-2: Aluminum powder having an average particle diameter of 10 μm D-3: Aluminum powder having an average particle diameter of 35 μm

成分(E)
E−1:平均粒径0.6μmのアルミナ粉末
E−2:平均粒径0.3μmのアルミナ粉末(比較例)
Ingredient (E)
E-1: Alumina powder having an average particle diameter of 0.6 μm E-2: Alumina powder having an average particle diameter of 0.3 μm (Comparative Example)

成分(F)
F−1:平均粒径0.5μmの酸化亜鉛粉末
F−2:平均粒径5μmの酸化亜鉛粉末(比較例)
Ingredient (F)
F-1: Zinc oxide powder having an average particle size of 0.5 μm F-2: Zinc oxide powder having an average particle size of 5 μm (comparative example)

成分(G)
G−1:白金−ジビニルテトラメチルジシロキサン錯体を上記A−1と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)
Ingredient (G)
G-1: Solution in which a platinum-divinyltetramethyldisiloxane complex is dissolved in the same dimethylpolysiloxane as in A-1 (platinum atom content: 1% by mass)

成分(H)
H−1:1−エチニル‐1−シクロヘキサノールの50%トルエン溶液
Ingredient (H)
H-1: 1-ethynyl-1-cyclohexanol in 50% toluene

成分(I)
I−1:オルガノシランC10H21Si(OCH3)3
Ingredient (I)
I-1: Organosilane C 10 H 21 Si (OCH 3 ) 3

[実施例1〜7、比較例1〜11]
成分(A)〜(I)を以下のように混合して実施例1〜7及び比較例1〜11のシリコーン組成物を得た。即ち、5リットルのプラネタリミキサー(井上製作所(株)製)に100質量部の成分(A)をとり、表1、2に示す配合量(質量部)で成分(B)、(D)、(E)、(F)及び(I)を加えて、更に表1、2に示す配合量で成分(G)及び(H)を加えて1時間混合した。次に成分(C)を表1、2に示す配合量で加えて均一になるように混合した。得られた各組成物について、上記の評価及び測定を行った。
[Examples 1-7, Comparative Examples 1-11]
Components (A) to (I) were mixed as follows to obtain silicone compositions of Examples 1 to 7 and Comparative Examples 1 to 11. That is, 100 parts by mass of the component (A) is taken in a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), and the components (B), (D), ( E), (F) and (I) were added, and components (G) and (H) were further added in the blending amounts shown in Tables 1 and 2 and mixed for 1 hour. Next, the component (C) was added in the blending amounts shown in Tables 1 and 2 and mixed uniformly. Said evaluation and measurement were performed about each obtained composition.

Figure 2017043717
(表-1)単位:質量部
Figure 2017043717
(Table-1) Unit: parts by mass

Figure 2017043717
(表-2)単位:質量部
Figure 2017043717
(Table-2) Unit: parts by mass

Claims (3)

(A)1分子中に少なくとも2個のアルケニル基を有し、25℃における動粘度が10〜100,000mm/sであるオルガノポリシロキサン:100質量部、
(B)一般式(1)
Figure 2017043717

(式中、Rは炭素原子数1〜6のアルキル基であり、aは5〜100の整数である)
で表される片末端3官能の加水分解性メチルポリシロキサン:成分(A)100質量部に対して50〜110質量部、
(C)1分子中に少なくとも2個のSi−H基を含有するオルガノハイドロジェンポリシロキサン
〔成分(C)の配合量は、{Si−H基の個数}/{成分(A)のアルケニル基の個数}の値が0.5〜2.5になる量〕
(D)平均粒径が0.3μm以上50μm未満であるアルミニウム粉末で、
(D−1)平均粒径が0.3μm以上5μm未満であるアルミニウム粉末:成分(D)の20〜40質量%、
(D−2)平均粒径が5μm以上25μm未満であるアルミニウム粉末:成分(D)の20〜35質量%、及び
(D−3)平均粒径が25μm以上50μm未満であるアルミニウム粉末:成分(D)の25〜50質量%、
(E)平均粒径が0.5μm以上3μm未満であるアルミナ粉末、
(F)平均粒径が0.1μm以上2μm未満である酸化亜鉛粉末
〔上記成分(A)〜(C)の合計100質量部に対し、(D)成分の配合量は800〜1500質量部、(E)成分と(F)成分の配合量は、(E)成分と(F)成分の合計が50〜600質量部であって、成分(E)の質量比{成分(E)/(成分(E)+成分(F))}が0.2以上0.8未満となる量〕、及び
(G)白金系ヒドロシリル化反応触媒:成分(A)の質量に対し白金原子として0.1〜500ppm、
を含む熱伝導性シリコーン組成物。
(A) Organopolysiloxane having at least two alkenyl groups in one molecule and a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s: 100 parts by mass
(B) General formula (1)
Figure 2017043717

(Wherein R 1 is an alkyl group having 1 to 6 carbon atoms, and a is an integer of 5 to 100)
One end trifunctional hydrolyzable methylpolysiloxane represented by: 50 to 110 parts by mass with respect to 100 parts by mass of component (A),
(C) Organohydrogenpolysiloxane containing at least two Si—H groups in one molecule [compounding amount of component (C) is {number of Si—H groups} / {alkenyl group of component (A) The amount that the value of the number of} is 0.5 to 2.5]
(D) An aluminum powder having an average particle size of 0.3 μm or more and less than 50 μm,
(D-1) Aluminum powder having an average particle size of 0.3 μm or more and less than 5 μm: 20 to 40% by mass of component (D),
(D-2) Aluminum powder having an average particle diameter of 5 μm or more and less than 25 μm: 20 to 35% by mass of component (D), and (D-3) Aluminum powder having an average particle diameter of 25 μm or more and less than 50 μm: component ( 25-50% by weight of D),
(E) an alumina powder having an average particle size of 0.5 μm or more and less than 3 μm,
(F) Zinc oxide powder having an average particle size of 0.1 μm or more and less than 2 μm [based on a total of 100 parts by mass of the above components (A) to (C), the compounding amount of component (D) is 800 to 1500 parts by mass, The blending amount of the component (E) and the component (F) is such that the sum of the component (E) and the component (F) is 50 to 600 parts by mass, and the mass ratio of the component (E) {component (E) / (component (E) + component (F))} in an amount of 0.2 to less than 0.8], and (G) platinum-based hydrosilylation reaction catalyst: 0.1 to 0.1 platinum atoms relative to the mass of component (A) 500 ppm,
A thermally conductive silicone composition comprising:
(H)アセチレン化合物、各種窒素化合物、有機りん化合物、オキシム化合物、及び有機クロロ化合物より選択される少なくとも1種の反応制御剤:成分(A)100質量部に対して0.1〜5質量部
を含むことを特徴とする請求項1記載の熱伝導性シリコーン組成物。
(H) At least one reaction control agent selected from acetylene compounds, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds: 0.1 to 5 parts by mass with respect to 100 parts by mass of component (A) The heat conductive silicone composition of Claim 1 characterized by the above-mentioned.
(I)一般式(2)で表されるオルガノシラン:成分(A)100質量部に対して0.1〜10質量部
Figure 2017043717

(式中、Rは、同一又は異なっていてもよく、炭素数9〜15の置換又は非置換のアルキル基であり、Rは、同一又は異なっていてもよく、炭素数1〜8の飽和又は不飽和の1価炭化水素基であり、Rは、同一又は異なっていてもよく、炭素数1〜6の置換又は非置換のアルキル基であり、bは1〜3の整数で、特に1であることが好ましく、cは0〜2の整数であり、但しb+cは1〜3である)
を含むことを特徴とする請求項1又は2記載の熱伝導性シリコーン組成物。

(I) Organosilane represented by general formula (2): 0.1 to 10 parts by mass with respect to 100 parts by mass of component (A)
Figure 2017043717

(In the formula, R 2 may be the same or different and is a substituted or unsubstituted alkyl group having 9 to 15 carbon atoms, and R 3 may be the same or different and has 1 to 8 carbon atoms. A saturated or unsaturated monovalent hydrocarbon group, R 4 may be the same or different, is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, b is an integer of 1 to 3, 1 is particularly preferable, and c is an integer of 0 to 2, provided that b + c is 1 to 3)
The heat conductive silicone composition of Claim 1 or 2 characterized by the above-mentioned.

JP2015167998A 2015-08-27 2015-08-27 Thermally conductive silicone composition Active JP6493092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015167998A JP6493092B2 (en) 2015-08-27 2015-08-27 Thermally conductive silicone composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015167998A JP6493092B2 (en) 2015-08-27 2015-08-27 Thermally conductive silicone composition

Publications (2)

Publication Number Publication Date
JP2017043717A true JP2017043717A (en) 2017-03-02
JP6493092B2 JP6493092B2 (en) 2019-04-03

Family

ID=58211326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167998A Active JP6493092B2 (en) 2015-08-27 2015-08-27 Thermally conductive silicone composition

Country Status (1)

Country Link
JP (1) JP6493092B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021826A1 (en) * 2017-07-24 2019-01-31 東レ・ダウコーニング株式会社 Multicomponent-curable thermally-conductive silicone gel composition, thermally-conductive member and heat dissipation structure
WO2019021824A1 (en) * 2017-07-24 2019-01-31 東レ・ダウコーニング株式会社 Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
WO2019021825A1 (en) * 2017-07-24 2019-01-31 東レ・ダウコーニング株式会社 Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
JPWO2021079714A1 (en) * 2019-10-24 2021-04-29
WO2022042176A1 (en) * 2020-08-27 2022-03-03 深圳先进电子材料国际创新研究院 Heat-conducting gel and preparation method therefor
WO2024024498A1 (en) * 2022-07-29 2024-02-01 信越化学工業株式会社 Thermally conductive silicone composition and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof
JP2009209165A (en) * 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd Thermally-conductive cured product and method for producing same
JP2010013521A (en) * 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd Heat conductive silicone composition
JP2014037460A (en) * 2012-08-13 2014-02-27 Shin Etsu Chem Co Ltd Heat-conductive composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof
JP2009209165A (en) * 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd Thermally-conductive cured product and method for producing same
JP2010013521A (en) * 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd Heat conductive silicone composition
JP2014037460A (en) * 2012-08-13 2014-02-27 Shin Etsu Chem Co Ltd Heat-conductive composition

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578245B2 (en) 2017-07-24 2023-02-14 Dow Toray Co., Ltd. Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
JPWO2019021826A1 (en) * 2017-07-24 2020-08-13 ダウ・東レ株式会社 Multi-component curable heat conductive silicone gel composition, heat conductive member and heat dissipation structure
CN111051434B (en) * 2017-07-24 2022-03-29 陶氏东丽株式会社 Multi-component curable heat-conductive silicone gel composition, heat-conductive member, and heat-dissipating structure
KR20200032709A (en) * 2017-07-24 2020-03-26 다우 도레이 캄파니 리미티드 Multi-component curing type thermally conductive silicone gel composition, thermally conductive member and heat dissipation structure
KR20200033879A (en) * 2017-07-24 2020-03-30 다우 도레이 캄파니 리미티드 Heat conductive silicone gel composition, heat conductive member and heat dissipation structure
CN111051434A (en) * 2017-07-24 2020-04-21 陶氏东丽株式会社 Multi-component curable heat-conductive silicone gel composition, heat-conductive member, and heat-dissipating structure
CN111051433A (en) * 2017-07-24 2020-04-21 陶氏东丽株式会社 Thermally conductive silicone gel composition, thermally conductive member, and heat dissipation structure
CN111094458A (en) * 2017-07-24 2020-05-01 陶氏东丽株式会社 Thermally conductive silicone gel composition, thermally conductive member, and heat dissipation structure
JPWO2019021824A1 (en) * 2017-07-24 2020-07-30 ダウ・東レ株式会社 Heat conductive silicone gel composition, heat conductive member and heat dissipation structure
WO2019021824A1 (en) * 2017-07-24 2019-01-31 東レ・ダウコーニング株式会社 Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
KR102625362B1 (en) * 2017-07-24 2024-01-18 다우 도레이 캄파니 리미티드 Thermal conductive silicone gel composition, thermally conductive member and heat dissipation structure
KR102625363B1 (en) * 2017-07-24 2024-01-17 다우 도레이 캄파니 리미티드 Multi-component curable thermally conductive silicone gel composition, thermally conductive member and heat dissipation structure
WO2019021825A1 (en) * 2017-07-24 2019-01-31 東レ・ダウコーニング株式会社 Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
CN111094458B (en) * 2017-07-24 2022-03-29 陶氏东丽株式会社 Thermally conductive silicone gel composition, thermally conductive member, and heat dissipation structure
TWI811225B (en) * 2017-07-24 2023-08-11 日商陶氏東麗股份有限公司 Multi-component curable thermally conductive polysiloxane gel composition, thermally conductive member, and heat dissipation structure
US11674040B2 (en) 2017-07-24 2023-06-13 Dow Toray Co., Ltd. Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
TWI784028B (en) * 2017-07-24 2022-11-21 日商陶氏東麗股份有限公司 Thermally conductive silicone gel composition, thermally conductive member, and heat dissipation structure
US11549043B2 (en) 2017-07-24 2023-01-10 Dow Toray Co., Ltd. Multicomponent-curable thermally-conductive silicone gel composition, thermally-conductive member and heat dissipation structure
WO2019021826A1 (en) * 2017-07-24 2019-01-31 東レ・ダウコーニング株式会社 Multicomponent-curable thermally-conductive silicone gel composition, thermally-conductive member and heat dissipation structure
JP7276493B2 (en) 2019-10-24 2023-05-18 信越化学工業株式会社 Thermally conductive silicone composition and method for producing the same
CN114641538A (en) * 2019-10-24 2022-06-17 信越化学工业株式会社 Heat-conductive silicone composition and method for producing same
CN114641538B (en) * 2019-10-24 2023-10-31 信越化学工业株式会社 Thermally conductive silicone composition and method for producing same
EP4050068A4 (en) * 2019-10-24 2023-12-27 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition and production method therefor
WO2021079714A1 (en) * 2019-10-24 2021-04-29 信越化学工業株式会社 Thermally conductive silicone composition and production method therefor
JPWO2021079714A1 (en) * 2019-10-24 2021-04-29
WO2022042176A1 (en) * 2020-08-27 2022-03-03 深圳先进电子材料国际创新研究院 Heat-conducting gel and preparation method therefor
WO2024024498A1 (en) * 2022-07-29 2024-02-01 信越化学工業株式会社 Thermally conductive silicone composition and production method therefor

Also Published As

Publication number Publication date
JP6493092B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6493092B2 (en) Thermally conductive silicone composition
JP5898139B2 (en) Thermally conductive silicone composition
JP5434795B2 (en) Thermally conductive silicone grease composition
JP6614362B2 (en) Thermally conductive silicone composition
JP5648619B2 (en) Thermally conductive silicone composition
JP5832983B2 (en) Silicone composition
JP6217588B2 (en) Thermally conductive silicone potting composition
WO2016140020A1 (en) Heat-conducting silicone composition
JP5843364B2 (en) Thermally conductive composition
JP2010013521A (en) Heat conductive silicone composition
JP5947267B2 (en) Silicone composition and method for producing thermally conductive silicone composition
JP7070320B2 (en) Thermally conductive silicone composition
JP6915599B2 (en) Thermally conductive silicone composition
WO2021131212A1 (en) Heat-conductive silicone composition
JP6579272B2 (en) Thermally conductive silicone composition
JP6264307B2 (en) Addition-curing silicone composition
JP7371249B2 (en) High thermal conductivity silicone composition
JP2009221310A (en) Heat-conductive silicone grease composition
JP6791672B2 (en) Thermally conductive polysiloxane composition
JP6943028B2 (en) Thermally conductive silicone composition
JP6314710B2 (en) Thermally conductive silicone composition
JPWO2020004442A1 (en) Thermally conductive silicone composition and thermally conductive sheet
JP2021185215A (en) Thermally conductive addition curing-type silicone composition
JPWO2020031669A1 (en) Silicone composition and its manufacturing method
JP6959950B2 (en) Non-curable thermally conductive silicone composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6493092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150