JP2017007578A - リニア弁特性取得方法,リニア弁特性取得装置 - Google Patents

リニア弁特性取得方法,リニア弁特性取得装置 Download PDF

Info

Publication number
JP2017007578A
JP2017007578A JP2015126711A JP2015126711A JP2017007578A JP 2017007578 A JP2017007578 A JP 2017007578A JP 2015126711 A JP2015126711 A JP 2015126711A JP 2015126711 A JP2015126711 A JP 2015126711A JP 2017007578 A JP2017007578 A JP 2017007578A
Authority
JP
Japan
Prior art keywords
pressure
valve
linear valve
spool
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015126711A
Other languages
English (en)
Other versions
JP6502762B2 (ja
Inventor
宏司 中岡
Koji Nakaoka
宏司 中岡
雅明 駒沢
Masaaki Komazawa
雅明 駒沢
雄介 神谷
Yusuke Kamiya
雄介 神谷
雅樹 二之夕
Masaki Ninoyu
雅樹 二之夕
恵光 尾関
Keiko Ozeki
恵光 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Toyota Motor Corp
Original Assignee
Advics Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd, Toyota Motor Corp filed Critical Advics Co Ltd
Priority to JP2015126711A priority Critical patent/JP6502762B2/ja
Publication of JP2017007578A publication Critical patent/JP2017007578A/ja
Application granted granted Critical
Publication of JP6502762B2 publication Critical patent/JP6502762B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)
  • Multiple-Way Valves (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

【課題】スプール式の弁機構を用いたレギュレータと、そのレギュレータに供給するパイロット圧を調整する増圧リニア弁および減圧リニア弁を含んで構成された液圧供給装置において、増圧リニア弁および減圧リニア弁の差圧と開閉均衡電流との関係を精度よく取得する。【解決手段】増圧開閉均衡電流取得処理を行う前、スプール110が他端側(減圧側)に移動している場合に、増圧リニア弁26を開弁してスプール110を一端側(増圧側)に移動させるとともに、減圧弁開閉均衡電流取得処理を行なう前、スプール110が一端側(増圧側)に移動している場合に、減圧リニア弁28を開弁してスプール110を他端側(減圧側)に移動させる。【選択図】図2

Description

本発明は、レギュレータのパイロット圧を調整する増圧リニア弁および減圧リニア弁の特性の取得に関するものである。
下記の特許文献1には、液圧式のブレーキシステムが記載されており、その液圧式ブレーキシステムは、(A)高圧源からの高圧の作動液をパイロット圧によって調整圧に調圧し、その調圧された作動液を供給するレギュレータと、(B)高圧源から作動液の供給を受け、パイロット圧室に供給する作動液を任意の圧力に調整する増圧リニア弁および減圧リニア弁とを含んで構成された液圧供給装置を備えている。そして、そのブレーキシステムにおいては、増圧リニア弁および減圧リニア弁を制御することによって、パイロット圧を調整して、作動液を調整圧に調整し、その調整圧に応じたブレーキ力が発生させられるようになっている。そして、増圧リニア弁および減圧リニア弁の制御には、(i)それらの各々の前後の差圧(差圧作用力)と、(ii)その差圧下において開弁状態と閉弁状態との境目である弁開閉均衡状態となる励磁電流である開閉均衡電流(閉状態から開状態に切り換えられる電流である開弁電流と考えることもできる)との関係が用いられる。その差圧と開閉均衡電流との関係は、個々の構造から定まり、各リニア弁で異なるため、例えば、液圧供給装置の組み付けが完了した後に、その関係を取得する処理が行われる。そして、その取得された関係が、基準値として制御装置に記憶され、各リニア弁の制御に用いられている。
なお、増圧リニア弁および減圧リニア弁の各々の差圧と開閉均衡電流との関係、つまり、リニア弁の特性を取得する際には、例えば、(I)増圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、パイロット圧をある大きさの液圧である保持圧に保持した状態から増圧リニア弁を開弁させるべくその増圧リニア弁に供給する励磁電流を漸変させ、増圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する増圧弁開閉均衡電流取得処理と、(II)減圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、パイロット圧を保持圧に保持した状態から減圧リニア弁を開弁させるべくその減圧リニア弁に供給する励磁電流を漸変させ、減圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する減圧弁開閉均衡電流取得処理との各々を、保持圧を変更しつつ、繰り返し行うような方法が行われる。
特開2013−208987号公報
上記特許文献1に記載の液圧供給装置が備えるレギュレータは、いわゆるポペット式の弁機構を用いて構成されたものであるが、レギュレータには、スプール式の弁機構を用いたものも存在する。そのスプール式の弁機構を用いたレギュレータは、当該レギュレータの軸線方向に移動可能とされて自身の一端側から調整圧室の液圧を受けるスプールを有し、そのスプールが可動範囲において他端に位置する場合に、低圧源と調整圧室との連通を許容するとともに、高圧源と調整圧室との連通を遮断し、そのスプールが前進して一端に位置する場合に、低圧源と調整圧室との連通を遮断するとともに、高圧源と調整圧室との連通を許容するように構成されている。つまり、調整圧室と高圧源との連通を許容していた後に、調整圧室と高圧源および低圧源との両者との連通を遮断した状態とした場合のスプールの位置と、調整圧室と低圧源との連通を許容していた後に、調整圧室と高圧源および低圧源との両者との連通を遮断した状態におけるスプールの位置とが異なることになる。つまり、例えば、調整圧をある圧力に保持されていた状態から上昇させるような場合には、スプールの位置が調整圧を保持する位置にあっても一端側(増圧側)にあるか他端側(減圧側)にあるかによって、調整圧室と高圧源との連通が許容されるまでのスプールの移動距離が異なるため、調整圧の上昇傾向も異なることとなる。
そのため、レギュレータから供給される作動液の液圧である調整圧を圧力センサにより計測して、その計測された調整圧を用いて増圧リニア弁,減圧リニア弁の差圧を推定する場合には、調整圧の上昇傾向の相違が問題となる。具体的に言えば、リニア弁の制御に用いられる差圧と開閉均衡電流との関係を取得する際に、上記の調整圧の上昇傾向の相違により、その調整圧から推定される差圧にばらつきが生じる虞がある。つまり、取得した差圧と開閉均衡電流との関係の精度が悪くなる虞があるのである。本発明は、そのような実情に鑑みてなされたものであり、リニア弁の差圧と開閉均衡電流との関係を精度よく取得することを課題とする。
上記課題を解決するために、本発明のリニア弁特性取得方法およびリニア弁特性取得装置は、上記増圧開閉均衡電流取得処理を行う前、スプールが他端側(減圧側)に移動している場合に、増圧リニア弁を開弁してスプールを一端側(増圧側)に移動させるとともに、上記減圧弁開閉均衡電流取得処理を行なう前、スプールが一端側(増圧側)に移動している場合に、減圧リニア弁を開弁してスプールを他端側(減圧側)に移動させることを特徴とする。
本発明リニア弁特性取得方法およびリニア弁特性取得装置においては、増圧リニア弁の特性を取得すべく、差圧とその差圧下における開閉均衡電流の値を取得する処理を行なう場合には、スプールが増圧側に移動した位置から行われることに統一され、減圧リニア弁の特性を取得すべく、差圧とその差圧下における開閉均衡電流の値を取得する処理を行なう場合には、スプールが減圧側に移動した位置から行われることに統一される。したがって、本発明リニア弁特性取得方法およびリニア弁特性取得装置によれば、リニア弁の差圧と開閉均衡電流との関係を精度よく取得することが可能である。
発明の態様
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から何某かの構成要素を削除した態様も、請求可能発明の一態様となり得るのである。
なお、以下の各項において、(1)項ないし(5)項の各々が、請求項1ないし請求項5の各々に相当する。
(1)(A)高圧源からの高圧の作動液をパイロット圧によって調整圧に調圧し、その調圧された作動液を供給するレギュレータであって、 (a-1)前記調整圧に調圧される作動液が収容される調整圧室と、 (a-2)当該レギュレータの軸線方向に移動可能とされて自身の一端側から前記調整圧室の液圧を受けるスプールを有し、そのスプールが可動範囲において他端に位置する場合に、低圧源と前記調整圧室との連通を許容するとともに、高圧源と前記調整圧室との連通を遮断し、そのスプールが前進して一端に位置する場合に、低圧源と前記調整圧室との連通を遮断するとともに、高圧源と前記調整圧室との連通を許容するスプール弁機構と、(a-3)前記スプールの他端側に形成され、前記パイロット圧の作動液が導入されて前記スプールを一端側に向かって付勢するためのパイロット圧室とを備えたレギュレータと、(B)高圧源から作動液の供給を受け、前記パイロット圧室に供給する作動液を任意の圧力に調整する増圧リニア弁および減圧リニア弁と、(C)前記レギュレータから供給される作動液の液圧を測定して前記調整圧を検出する調整圧センサとを含んで構成された液圧供給装置において、前記増圧リニア弁および前記減圧リニア弁の各々における(i)前後の差圧と(ii)その差圧下において開弁状態と閉弁状態との境目である弁開閉均衡状態となる励磁電流である開閉均衡電流との関係を取得するリニア弁特性取得方法であって、
前記増圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、前記パイロット圧室の液圧をある大きさの液圧である保持圧に保持した状態から前記増圧リニア弁を開弁させるべくその増圧リニア弁に供給する励磁電流を漸変させ、前記調整圧センサの検出結果に基づいて前記増圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する増圧弁開閉均衡電流取得工程と、
前記減圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、前記パイロット圧室の液圧を保持圧に保持した状態から前記減圧リニア弁を開弁させるべくその減圧リニア弁に供給する励磁電流を漸変させ、前記調整圧センサの検出結果に基づいて前記減圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する減圧弁開閉均衡電流取得工程と
を含んで、
それら増圧弁開閉均衡電流取得工程と減圧弁開閉均衡電流取得工程との各々を、前記保持圧を変更しつつ、繰り返し行うことで、前記増圧リニア弁および前記減圧リニア弁の各々における差圧と開閉均衡電流との関係を取得するものであり、
当該リニア弁特性取得方法が、さらに、
前記増圧弁開閉均衡電流取得工程の前、前記スプールが前記他端側に移動している場合に、前記増圧リニア弁を開弁して前記スプールを前記一端側に移動させるスプール増圧側移動工程と、
前記減圧弁開閉均衡電流取得工程の前、前記スプールが前記一端側に移動している場合に、前記減圧リニア弁を開弁して前記スプールを前記他端側に移動させるスプール減圧側移動工程と
を含むことを特徴とするリニア弁特性取得方法。
本項に記載の液圧供給装置は、高圧源から供給される高圧の作動液をレギュレータによって調圧して、その調圧した作動液を供給するものである。そのレギュレータは、高圧の作動液をパイロット圧によって調圧するものであり、増圧リニア弁および減圧リニア弁によって任意の圧力に調整された作動液がパイロット圧の作動液として導入される。それら増圧リニア弁および減圧リニア弁の制御には、予め取得された前後の差圧と開閉均衡電流との関係が用いられるのが一般的である。本項に記載のリニア弁特性取得方法は、その増圧リニア弁および減圧リニア弁の制御に用いられる前後の差圧と開閉均衡電流との関係を取得する方法である。ただし、本項に記載のリニア弁特性取得方法は、差圧と開閉均衡電流との関係を初期登録のために取得する場合に限定されず、液圧供給装置をある期間使用した後に、差圧と開閉均衡電流との関係を補正するために取得する場合にも用いることが可能である。
例えば、ポペット式の弁機構を含むレギュレータを備えた液圧供給装置において、リニア弁の差圧と開閉均衡電流との関係を取得する方法としては、従来から、パイロット圧室の液圧をある大きさの液圧である保持圧に保持した状態から、リニア弁に供給する励磁電流を開弁することの大きさの電流から漸変させ、リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得し、それを、保持圧を変更しつつ繰り返し行うことで、差圧と開閉均衡電流との関係を取得する方法が行われている。
本項のリニア弁取得方法は、スプール弁機構を含んだレギュレータを備えた液圧供給装置(以下、スプール弁式のレギュレータと呼ぶ場合がある。)に対して行う方法を前提としている。そのレギュレータが含むスプール弁機構は、調整圧室に連通する調整圧ポートに対する、高圧源と連通させられる高圧ポートと、低圧源と連通させられる低圧ポートとの連通を、スプールの軸線方向への移動によって切り換える機構である。スプール弁機構は、スプールが上記他端に位置する場合に、調整圧ポートを高圧ポートから遮断して低圧ポートと連通し、調整圧を低下させ、スプールがパイロット圧によって前進させられて上記他端に位置する場合に、調整圧ポートを低圧ポートから遮断して高圧ポートと連通し、調整圧を上昇させるように構成されている。
そのような構成から、スプール弁機構においては、スプールが上記他端に位置して調整圧ポートを低圧ポートと連通していた状態から、調整圧を保持した状態とした場合には、スプールは、その他端側(低圧ポート側)に位置している。一方、スプールが上記一端に位置して調整圧ポートを高圧ポートと連通していた状態から、調整圧を保持した状態とした場合には、スプールは、その一端側(高圧ポート側)に位置している。つまり、調整圧を保持した状態であっても、直前に、調整圧を増圧していたか、減圧していたかによって、スプールの位置が異なるのである(図5参照)。つまり、例えば、調整圧がある圧力に保持されていた状態から増圧させるような場合には、スプールが、調整圧が保持される位置にあっても一端側にあるか他端側にあるかによって、調整圧室と高圧源との連通が許容されるまでのスプールの移動距離が異なるのである。したがって、調整圧が保持された状態から増圧させる場合であっても、調整圧の上昇傾向も異なることとなるのである。
そして、上記調整圧センサにより調整圧を計測して、その計測された調整圧を用いて増圧リニア弁,減圧リニア弁の前後の差圧を求める場合には、調整圧の上昇傾向の相違が問題となる。具体的に言えば、例えば増圧リニア弁の差圧と開閉均衡電流との関係を取得する際に、増圧して保持圧とした場合と、減圧して保持した場合とが混在してしまうと、上記の調整圧の上昇傾向の相違により、その調整圧から推定される差圧にばらつきが生じる虞がある。つまり、取得した差圧と開閉均衡電流との関係の精度が悪くなる虞があるのである。
それに対して、本項に記載のリニア弁特性取得方法は、増圧弁開閉均衡電流取得工程の前にスプール増圧側移動工程が行われるため、増圧リニア弁の特性を取得すべく調整圧を保持圧に保持した保持状態においては、スプールが一端側(高圧ポート側)に位置した状態に統一される。また、減圧弁開閉均衡電流取得工程の前にスプール減圧側移動工程が行われるため、減圧リニア弁の特性を取得すべく調整圧を保持圧に保持した保持状態においては、スプールが他端側(低圧ポート側)に位置した状態に統一される。したがって、本項に記載のリニア弁特性取得方法によれば、取得した差圧と開閉均衡電流との関係の精度が悪化を防止することが可能である。
(2)当該リニア弁特性取得方法が、
前記増圧弁開閉均衡電流取得工程の実施後、前記減圧弁開閉均衡電流取得工程の実施前に、前記スプール減圧側移動工程を実施するとともに、
前記減圧弁開閉均衡電流取得工程の実施後、前記増圧弁開閉均衡電流取得工程の実施前に、前記スプール増圧側移動工程を実施する(1)項に記載のリニア弁特性取得方法。
本項に記載の態様は、スプール増圧側移動工程およびスプール減圧側移動工程を行うタイミングを具体化した一態様である。増圧リニア弁および減圧リニア弁の特性を取得する際には、例えば、まずパイロット圧を段階的に上昇させつつ、増圧リニア弁における差圧とその差圧下における開閉均衡電流の値を複数組取得し、次いで、パイロット圧を段階的に下降させつつ、減圧リニア弁における差圧とその差圧下における開閉均衡電流の値を複数組取得して、それを複数回繰り返し行って、複数回の取得結果に基づいて、増圧リニア弁および減圧リニア弁の各々の差圧と開閉均衡電流との関係を取得することが行われる場合がある。本項に記載の態様によれば、増圧リニア弁に対する取得処理から減圧リニア弁に対する取得処理に切り替える前に、スプールを減圧ポート側に移動させること、減圧リニア弁に対する取得処理から増圧リニア弁に対する取得処理に切り替える前に、スプールを増圧ポート側に移動させることが可能である。
(3)当該リニア弁特性取得方法が、
前記増圧弁開閉均衡電流取得工程中において前記パイロット圧室の液圧を保持圧に保持しようとした状態で、前記調整圧センサにより検出された調整圧が高くなっていく場合に、前記増圧弁開閉均衡電流取得工程を中断して前記増圧リニア弁を全開に開弁させ、前記調整圧センサにより検出された調整圧が低くなっていく場合に、前記増圧弁開閉均衡電流取得工程を中断して前記減圧リニア弁を全開に開弁させるフラッシング工程を含み、
前記減圧リニア弁に対して前記フラッシング工程を実施した後、前記増圧弁開閉均衡電流取得工程の再開前に、前記スプール増圧側移動工程を実施する (1)項または(2)項に記載のリニア弁特性取得方法。
(4)当該リニア弁特性取得方法が、
前記減圧弁開閉均衡電流取得工程中において前記パイロット圧室の液圧を保持圧に保持しようとした状態で、前記調整圧センサにより検出された調整圧が高くなっていく場合に、前記減圧弁開閉均衡電流取得工程を中断して前記増圧リニア弁を全開に開弁させ、前記調整圧センサにより検出された調整圧が低くなっていく場合に、前記減圧弁開閉均衡電流取得工程を中断して前記減圧リニア弁を全開に開弁させるフラッシング工程を含み、
前記増圧リニア弁に対して前記フラッシング工程を実施した後、前記減圧弁開閉均衡電流取得工程の再開前に、前記スプール減圧側移動工程を実施する(1)項ないし (3)項のいずれか1つに記載のリニア弁特性取得方法。
上記2つの項に記載の態様は、スプール増圧側移動工程およびスプール減圧側移動工程を行うタイミングを具体化した一態様である。従来から、リニア弁の特性を取得すする際に、異物の噛み込み等により増圧リニア弁あるいは減圧リニア弁から作動液が漏れるような事態が生じた場合に、その異物の噛み込みが生じたと推定されるリニア弁を全開して、その異物を取り除くフラッシング工程が行われている。そのフラッシング工程が、増圧リニア弁および減圧リニア弁のうち特性を取得する処理の対象となっていないものに対して行われた場合には、フラッシング工程を終了した後のパイロット圧を保持した状態のスプールの位置が、ずれてしまうことになる。上記2つの項に記載の態様によれば、増圧リニア弁および減圧リニア弁のうち特性を取得する処理の対象となっていないものに対してフラッシング工程が行われた場合には、スプール増圧側移動工程あるいはスプール減圧側移動工程が行われ、スプールを移動させた後に、特性を取得する工程が再開されるようになっている。
(5)(A)高圧源からの高圧の作動液を調整圧に調圧し、その調圧された作動液を供給するレギュレータであって、 (a-1)前記調整圧に調圧される作動液が収容される調整圧室と、 (a-2)当該レギュレータの軸線方向に移動可能とされて自身の一端側から前記調整圧室の液圧を受けるスプールを有し、そのスプールが可動範囲において他端側に位置する場合に、低圧源と前記調整圧室との連通を許容するとともに、高圧源と前記調整圧室との連通を遮断し、そのスプールが前進して一端側に位置する場合に、低圧源と前記調整圧室との連通を遮断するとともに、高圧源と前記調整圧室との連通を許容するスプール弁機構と、(a-3)前記スプールの他端側に形成されてそのスプールを一端側に向かって付勢するためのパイロット圧室とを備えたレギュレータと、(B)高圧源から作動液の供給を受け、前記パイロット圧室に供給する作動液を任意の圧力に調整する増圧リニア弁および減圧リニア弁と、(C)前記レギュレータから供給される作動液の液圧を測定して前記調整圧を検出する調整圧センサとを含んで構成された液圧供給装置において、前記増圧リニア弁および前記減圧リニア弁の各々における(i)前後の差圧と(ii)その差圧下において開弁状態と閉弁状態との境目である弁開閉均衡状態となる励磁電流である開閉均衡電流との関係を取得するリニア弁特性取得装置であって、
(I)前記増圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、前記パイロット圧室の液圧をある大きさの液圧である保持圧に保持した状態から前記増圧リニア弁を開弁させるべくその増圧リニア弁に供給する励磁電流を漸変させ、前記調整圧センサの検出結果に基づいて前記増圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する増圧弁開閉均衡電流取得処理と、(II)前記減圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、前記パイロット圧室の液圧を保持圧に保持した状態から前記減圧リニア弁を開弁させるべくその減圧リニア弁に供給する励磁電流を漸変させ、前記調整圧センサの検出結果に基づいて前記減圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する減圧弁開閉均衡電流取得処理との各々を、前記保持圧を変更しつつ、繰り返し行うことで、前記増圧リニア弁および前記減圧リニア弁の各々における差圧と開閉均衡電流との関係を取得するように構成され、
当該リニア弁特性取得装置が、さらに、
前記増圧弁開閉均衡電流取得処理の前、前記スプールが前記他端側に移動している場合に、前記増圧リニア弁を開弁して前記スプールを前記一端側に移動させるとともに、前記減圧弁開閉均衡電流取得処理の前、前記スプールが前記一端側に移動している場合に、前記減圧リニア弁を開弁して前記スプールを前記他端側に移動させることを特徴とするリニア弁特性取得装置。
本項に記載のリニア弁特性取得装置は、先に述べたリニア弁特性取得方法を実施可能な装置である。リニア弁特性取得方法の上述した態様に記載された技術的特徴を採用することが可能である。
請求可能発明の実施例であるリニア弁特性取得方法が実施される液圧供給装置を含んで構成される液圧ブレーキシステムの概略を示す図である。 図1に示すレギュレータの断面図である。 (a)図1に示す増圧リニア弁の断面図である。(b)その増圧リニア弁の差圧と開閉均衡電流(開弁電流)との関係を示す図である。 (a)図1に示す減圧リニア弁の断面図である。(b)その減圧リニア弁の差圧と開閉均衡電流(開弁電流)との関係を示す図である。 図1に示すブレーキECUの周辺を示す図であり、請求可能発明の実施例であるリニア弁特性取得装置を示す図である。 請求可能発明の実施例であるリニア弁特性取得方法における(a)調整圧,(b)増圧リニア弁の励磁電流,(c)減圧リニア弁の励磁電流の時間的変化を示す図である。 図2に示すレギュレータの一部を拡大して示す図であり、(a)に、スプールが減圧側に位置する状態で調整圧を保持している状態を示し、(b)に、スプールが増圧側に位置する状態で調整圧を保持している状態を示している。 請求可能発明の実施例であるリニア弁特性取得方法において、増圧リニア弁の特性取得時に、減圧リニア弁に対してフラッシング工程を実施した場合の(a)調整圧,(b)増圧リニア弁の励磁電流,(c)減圧リニア弁の励磁電流の時間的変化を示す図である。 請求可能発明の実施例であるリニア弁特性取得方法において、減圧リニア弁の特性取得時に、増圧リニア弁に対してフラッシング工程を実施した場合の(a)調整圧,(b)増圧リニア弁の励磁電流,(c)減圧リニア弁の励磁電流の時間的変化を示す図である。 図5に示す外部装置において実行されるリニア弁特性取得プログラムのフローチャートを示す図である。 図10のリニア弁特性取得プログラム等において実行される増圧弁全開開弁処置プログラムのフローチャートを示す図である。 図10のリニア弁特性取得プログラム等において実行される減圧弁全開開弁処置プログラムのフローチャートを示す図である。 図10のリニア弁特性取得プログラムにおいて実行される増圧弁特性取得処理プログラムのフローチャートを示す図である。 図13の増圧弁特性取得処理プログラムにおいて実行される増圧弁開弁電流計測プログラムのフローチャートを示す図である。 図10のリニア弁特性取得プログラムにおいて実行される減圧弁特性取得処理プログラムのフローチャートを示す図である。 図15の減圧弁特性取得処理プログラムにおいて実行される減圧弁開弁電流計測プログラムのフローチャートを示す図である。 変形例のリニア弁特性取得装置を示す図である。
以下、請求可能発明を実施するための形態として、請求可能発明の実施例を、図を参照しつつ詳しく説明する。なお、請求可能発明は、下記実施例の他、前記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。また、〔発明の態様〕の各項の説明に記載されている技術的事項を利用して、下記の実施例の変形例を構成することも可能である。
<液圧ブレーキシステムの構成>
(a)全体構成
請求可能発明の実施例であるリニア弁特性取得方法が採用される液圧供給装置は、車両用の液圧ブレーキシステムに搭載される。本液圧ブレーキシステムは、ハイブリッド車両に搭載され、ブレーキオイルを作動液とする液圧ブレーキシステムである。本液圧ブレーキシステムは、図1に示すように、大まかには、(a) 4つの車輪10に設けられ、それぞれがブレーキ力を発生させる4つのブレーキ装置12と、(b) ブレーキ操作部材としてのブレーキペダル14の操作が入力されるとともに、加圧された作動液を各ブレーキ装置12に供給するマスタシリンダ16と、(c) マスタシリンダ16と4つのブレーキ装置12の間に配置されたアンチロックユニット18〔ABS〕と、(d) 作動液を低圧源であるリザーバ20から汲み上げて加圧することにより、高圧の作動液を供給する高圧源装置22と、(e) 高圧源装置22から供給される作動液を調圧してマスタシリンダ16に供給するレギュレータ24と、(f) レギュレータ24に供給される作動液の圧力を調整するための電磁式の増圧リニア弁[SLA]26および減圧リニア弁[SLR]28と、(g) それらの装置,機器,弁を制御することで当該液圧ブレーキシステムの制御を司るブレーキ電子制御ユニット[ECU]30とを含んで構成されている。なお、4つの車輪10は、左右前後を表わす必要のある場合に、右前輪10FR,左前輪10FL,右後輪10RR,左後輪10RLと表わすこととする。また、4つのブレーキ装置12等の構成要素も、左右前後を区別する必要がある場合に、車輪10と同様の符号を付して、12FR,12FL,12RR,12RL等と表わすこととする。ちなみに、[ ]の文字は、図面において表わす場合に用いる符号である。
(b)ブレーキ装置およびABSユニット
各車輪10に対応して設けられたブレーキ装置12は、車輪10とともに回転するディスクロータ,キャリアに保持されたキャリパ,キャリパに保持されたホイールシリンダ,キャリパに保持されてそのホイールシリンダによって動かされることでディスクロータを挟み付けるブレーキパッド等を含んで構成されたディスクブレーキ装置である。また、ABSユニット18は、各車輪に対応して設けられて対をなす増圧用開閉弁および減圧用開閉弁,ポンプ装置等を含んで構成されたユニットであり、スリップ現象等によって車輪10がロックした場合に作動させられて、車輪のロックが持続することを防止するための装置である。
(c)マスタシリンダ
i)マスタシリンダの構造
マスタシリンダ16は、ストロークシミュレータ一体型のマスタシリンダであり、概して言えば、ハウジング40の内部に、2つの加圧ピストンである第1加圧ピストン42,第2加圧ピストン44,入力ピストン46が配設されるとともに、ストロークシミュレータ機構48が組み込まれている。なお、マスタシリンダ16に関する以下の説明において、便宜的に、図における左方を前方,右方を後方と呼び、同様に、後に説明するピストン等の移動方向について、左方に動くことを前進,右方に動くことを後退と呼ぶこととする。
ハウジング40は、第1加圧ピストン42,第2加圧ピストン44,入力ピストン46が配設される空間を有し、その空間は、前方側の端部が閉塞されるとともに、環状をなす区画部50によって前方室52と後方室54とに区画されている。第2加圧ピストン44は、前方に開口する有底円筒状をなしており、前方室52内において前方側に配設される。一方、第1加圧ピストン42は、有底円筒状をなすとともに後端に鍔56が形成された本体部58と、本体部58から後方に延びる突出部60とを有しており、本体部58が、前方室52内において第2加圧ピストン44の後方に配設されている。区画部50は、環状をなしていることから中央に開口62が形成されたものとされており、突出部60は、その開口62を貫通して後方室54に延び出している。入力ピストン46は、後方室54に、詳しく言えば、それの一部分が後方から後方室54の内部に臨み入るようにして、配設され、後方に配置されたブレーキペダル14が、リンクロッド64を介して、入力ピストン46に連結されている。
第1加圧ピストン42と第2加圧ピストン44との間には、詳しく言えば、第1加圧ピストン42の本体部58の前方には、2つの後輪10RR,10RLに対応する2つのブレーキ装置12RR,12RLに供給される作動液が第1加圧ピストン42の前進によって加圧される第1加圧室R1が、第2加圧ピストン44の前方側には、2つの前輪10FR,10FLに対応する2つのブレーキ装置12FR,12FLに供給される作動液が第2加圧ピストン44の前進によって加圧される第2加圧室R2が、それぞれ形成されている。一方、第1加圧ピストン42と入力ピストン46との間には、ピストン間室R3が形成されている。詳しく言えば、区画部50に形成された開口62から後方に延び出す突出部60の後端と、入力ピストン46の前端とが向かい合うようにして、つまり、開口62を利用して第1加圧ピストン42と入力ピストン46とが向かい合うようにして、ピストン間室R3が形成されているのである。さらに、ハウジング40の前方室52内には、突出部60の外周において、区画部50の前端面と、第1加圧ピストン42の本体部58の後端面、つまり、鍔56の後端面とによって区画されるようにして、レギュレータ24から供給される作動液が導入される環状の入力室R4が形成されている。さらにまた、本体部58の外周において、鍔56の前方に、その鍔56を挟んで入力室R4と対向する環状の対向室R5が形成されている。
第1加圧室R1,第2加圧室R2は、それぞれ、第1加圧ピストン42,第2加圧ピストン44が移動範囲における後端に位置する際に、大気圧ポートP1,P2を介してリザーバ20と連通可能とされており、また、それぞれ、出力ポートP3,P4を介するとともにABSユニット18を介して、ブレーキ装置12と連通させられている。ちなみに、第1加圧室R1は、後に説明するレギュレータ24をも介してブレーキ装置12RR,12RLと連通させられている。なお、入力室R4は、入力ポートP5を介して、後に説明するレギュレータ24の調整圧ポートと連通させられている。
ピストン間室R3は、連通ポートP6と、対向室R5は、連通ポートP7と、それぞれ連通しており、それら連通ポートP6と連通ポートP7は、外部連通路である連通路70によって繋げられている。この連通路70の途中には、常閉型の電磁式開閉弁72、つまり、非励磁状態で閉弁状態となり、励磁状態で開弁状態となる開閉弁72が設けられており、開閉弁72が開弁状態とされた場合に、ピストン間室R3と対向室R5は連通させられる。それらピストン間室R3と対向室R5とが連通する状態では、それらによって、1つの液室、すなわち、反力室R6と呼ぶことのできる液室が形成されていると考えることができる。なお、開閉弁72は、ピストン間室R3と対向室R5との連通,非連通を切換える機能を有することから、以下、「連通切換弁72」と呼ぶこととする。
また、マスタシリンダ16には、さらに2つの大気圧ポートP8,P9が設けられており、それらは、内部通路にて連通している。一方の大気圧ポートP8はリザーバ20に繋げられており、他方の大気圧ポートP9は、外部連通路である低圧路74を介して、連通切換弁72と対向室R5との間において連通路70に繋げられている。低圧路74には、常開型の電磁式開閉弁76、つまり、非励磁状態で開弁状態となり、励磁状態で閉弁状態となる開閉弁76が設けられている。この開閉弁76は、対向室R5をリザーバ20との連通を遮断する機能を有することから、以下、「低圧源遮断弁76」と呼ぶこととする。
ハウジング40は、第1加圧ピストン42,第2加圧ピストン44,入力ピストン46が配設されている空間とは別の空間を有しており、ストロークシミュレータ機構48は、その空間と、その空間内に配設された反力ピストン80と、反力ピストン80を付勢する2つの反力スプリング82,84(いずれも圧縮コイルスプリングである)とを含んで構成されている。反力ピストン80の後方側には、バッファ室R7が形成されている(図では、殆ど潰れた空間として表わされている)。ブレーキペダル14の操作によって入力ピストン46が前進する際、バッファ室R7には、内部通路を介して、対向室R5の作動液、すなわち、反力室R6の作動液が導入され、その導入される作動液の量、すなわち、入力ピストン46の前進量に応じた反力スプリング82,84の弾性反力が反力室R6に作用することで、ブレーキペダル14に操作反力が付与される。また、本システムでは、連通路70に、反力室R6の作動液の圧力(以下、「反力圧PRCT」という場合がある。)を検出するもの、つまり、ブレーキペダル14に対する反力(ブレーキペダル12に加えられた操作力と考えることもできる。)を検出するための反力圧センサ[PRCT]86が設けられている。
ii)マスタシリンダの機能
通常の状態では、上記連通切換弁72は、開弁状態、上記低圧源遮断弁76は、閉弁状態にあり、ピストン間室R3と対向室R5とによって、上記反力室R6が形成されている。本マスタシリンダ16では、第1加圧ピストン42を前方に移動させるべくピストン間室R3の作動液の圧力が作用する第1加圧ピストン42の受圧面積(対ピストン間室受圧面積)、すなわち、第1加圧ピストン42の突出部60の後端面の面積と、第1加圧ピストン42を後方に移動させるべく対向室R5の作動液の圧力が作用する第1加圧ピストン42の受圧面積(対対向室受圧面積)、すなわち、第1加圧ピストン42の鍔56の前端面の面積とが、等しくされている。したがって、ブレーキペダル14を操作して入力ピストン46を前進させても、操作力、すなわち、反力室R6の圧力によっては、第1加圧ピストン42,第2加圧ピストン44は前進せず、マスタシリンダ16によって加圧された作動液がブレーキ装置12に供給されることはない。その一方で、入力室R4に高圧源装置22からの作動液の圧力が導入されると、その作動液の圧力に依存して第1加圧ピストン42,第2加圧ピストン44は前進し、入力室R4の作動液の圧力に応じた圧力に加圧された作動液が、ブレーキ装置12に供給される。つまり、本マスタシリンダ16によれば、通常状態(通常時)において、ブレーキペダル14に加えられた操作力に依存せずに高圧源装置22からマスタシリンダ16に供給される作動液の圧力、つまり、レギュレータ24からマスタシリンダ16に供給される作動液の圧力に依存した大きさのブレーキ力を、ブレーキ装置12が発生させるのである。
本システムが搭載されている車両は、上述したようにハイブリッド車両であり、当該車 両においては、回生ブレーキ力が利用できる。そのため、ブレーキ操作に基づいて決定されるブレーキ力から回生ブレーキ力を減じた分のブレーキ力を、ブレーキ装置12によって発生させればよい。本システムは、上記高圧源圧依存制動力発生状態が実現されることから、ブレーキ操作力に依存しないブレーキ力をブレーキ装置12が発生させることができる。そのような作用から、本システムは、ハイブリッド車両に好適な液圧ブレーキシステムなのである。
一方、電気的失陥時には、上記連通切換弁72および低圧源遮断弁76は励磁されず、連通切換弁72は、閉弁状態、上記低圧源遮断弁76は、開弁状態とされ、ピストン間室R3は密閉されるとともに対向室R5は大気圧に開放される。その状態では、ブレーキペダル14に加えられた操作力は、ピストン間室R3の作動液を介して第1加圧ピストン42に伝達され、第1加圧ピストン42,第2加圧ピストン44は前進する。つまり、ブレーキペダル14に加えられた操作力に依存した大きさのブレーキ力をブレーキ装置12が発生させるのである。なお、入力室R4に、マスタ圧PMSTによって調圧された作動液がレギュレータ24から導入されれば、第1加圧ピストン42,第2加圧ピストン44は、レギュレータ24からマスタシリンダ16に供給される作動液の圧力と操作力との両方によって前進させられ、それら両方に依存した大きさのブレーキ力、つまり、レギュレータ24からマスタシリンダ16に供給される作動液の圧力に依存した大きさのブレーキ力と操作力に依存した大きさのブレーキ力とが足し合わされたブレーキ力をブレーキ装置12が発生させることになる。
(d)高圧源装置
高圧源装置22は、リザーバ20から作動液を汲み上げるポンプ90と、そのポンプ90を駆動するポンプモータ92と、ポンプ90から吐出された作動液を加圧された状態で蓄えるアキュムレータ[ACC]94とを含んで構成される。ポンプモータ92は、アキュムレータ94に蓄えられている作動液の圧力(以下、「高圧源圧PACC」という場合がある。いわゆる「アキュムレータ圧」である。)が、高圧源圧センサ[PACC]96の検出値に基づいて、予め定められた範囲内にあるように制御される。
(e)レギュレータ
i)レギュレータの構造
レギュレータ24は、自身に供給される作動液の液圧(パイロット圧)に応じて機械的に作動するパイロット式の圧力制御弁であり、そのパイロット圧に応じて高圧源装置22の液圧を調圧し、その調圧した作動液をマスタシリンダ16の入力室R4に供給するものである。
レギュレータ24の構造について、図2をも参照しつつ、詳しく説明する。レギュレータ24は、大まかには、ハウジング100と、そのハウジング100内に設けられたスプール弁機構102およびパイロットピストン104とを含んで構成されている。図において左右に延びる中心軸線が、レギュレータ24の軸線、詳しく言えば、ハウジング100の軸線であり、軸線方向における右側を一端側、左側を他端側と呼ぶこととする。また、パイロットピストン104等の移動方向について、一端側に向かって動くことを前進,他端側に向かって動くことを後退と呼ぶ場合がある。
スプール弁機構102は、スプール110と、そのスプール110を摺動可能に保持するスプール保持筒112とを備えている。スプール保持筒112は、ハウジング100内に嵌入され、ハウジング100の一端側に固定されている。つまり、そのスプール保持筒112をも含んでハウジングが構成されていると考えることもできる。
スプール110の一端側には、スプール保持筒112およびハウジング100によって、調整圧室R8が区画形成されている。スプール弁機構102は、スプール110が他端側の移動端にある場合に、リザーバ20と調整圧室R8とを連通するとともに、高圧源装置22と調整圧室R8との連通を遮断する。そして、スプール110の一端側への移動によって、リザーバ20と調整圧室R8との連通を遮断するとともに、高圧源装置22と調整圧室R8とを連通するようになっている。以下に、スプール弁機構102の構成について詳しく説明する。
スプール110は、スプール保持筒112の他端側から延び出しており、それらスプール110とスプール保持筒112との間に配設された圧縮コイルスプリングである離間スプリング114によって、他端側に向かって付勢されている。また、スプール110の他端側には、パイロットピストン104が配設されており、そのパイロットピストン104も、離間スプリング116によって他端側に向かって付勢されている。スプール110は、ハウジング110の他端に当接したパイロットピストン104に当接した位置が、可動範囲における他端側の移動端である。スプール110がその位置に位置する場合には、調整圧室R8は、スプール保持筒112に形成された内部ポート118,ハウジング100に形成された内部通路120等を介して、リザーバ20にマスタシリンダ16を介して連通させられた大気圧ポートP10に連通している。
ハウジング100には、大気圧ポートP10のほかに、高圧源装置22から作動液が供給される高圧ポートP11、および、調整圧室R8の調圧された作動液をマスタシリンダ16の入力室R4に供給するための調整圧ポートP12が設けられている。スプール保持筒112には、それらポートP11,P12に連通するための内部ポート122,124が形成されている。なお、調整圧ポートP12に連通するための内部ポート124は、調整圧室R8に、内部通路によって調整圧室R8に連通している。そして、スプール110が他端側の移動端にある場合には、調整圧ポートP12に連通するための内部ポート124がスプール110の外周面で塞がれており、調整圧室R8と高圧源装置22との連通は遮断されている。
そして、スプール110が一端側に移動することによって、スプール110の外周面に形成された凹所により2つの内部ポート122,124が連通させられる。つまり、調整圧室R8と高圧源装置22とが連通させられるのである。なお、その場合には、大気圧ポートP10に連通するための内部ポート118は、スプール110の外周面で塞がれ、調整圧室R8とリザーバ20との連通が遮断される。
上記パイロットピストン104の他端側には、ハウジング100とによって、第1パイロット圧室R9が区画形成されている。第1パイロット圧室R9は、ハウジング100に形成された第1パイロット圧ポートP13,P14に、内部通路によって連通しており、図1からも解るように、それら第1パイロット圧ポートP13,P14のそれぞれを介して、マスタシリンダ16の第1加圧室R1,後輪のブレーキ装置12RL,12RRと連通している。したがって、第1パイロット圧室R9は、マスタシリンダ16からブレーキ装置12RL,12RRへの作動液の供給経路の一部となっている。つまり、第1パイロット圧室R9には、マスタシリンダ16から後輪側の車輪10RL,10RRに対応するブレーキ装置12RL,12RRに供給される作動液、つまり、マスタ圧PMSTの作動液が、第1パイロット圧PPLT1の作動液として導入される。したがって、パイロットピストン104は、第1パイロット圧室R9の作動液の圧力、すなわち、第1パイロット圧PPLT1の作用によって、スプール110とともに前進する構成とされている。
また、パイロットピストン104は、一端側に有底穴130が形成されている。一方、スプール保持筒112の他端側は、一端側に比較して、外径の小さな小外径部132とされている。その小外径部130の外径は、有底穴130の直径と同じほぼ同じ大きさとされており、その有底穴130の内側に、スプール保持筒112の小外径部132が入り込んだ状態となっている。そして、パイロットピストン104とスプール110との間、詳しくは、パイロットピストン104の有底穴130と、スプール110およびスプール保持筒112の他端側の面とによって、第2パイロット圧室R10が区画形成されている。その第2パイロット圧室R10は、ハウジング100に形成された第2パイロット圧ポートP15,P16に連通しており、それら第2パイロット圧ポートP15,P16のそれぞれを介して、増圧リニア弁26,減圧リニア弁28と連通している。したがって、第2パイロット圧室R10には、それら増圧リニア弁26,減圧リニア弁28によって圧力が調整された作動液が、第2パイロット圧PPLT2の作動液として導入される。したがって、スプール110は、第2パイロット圧室R10の作動液の圧力、すなわち、第2パイロット圧PPLT2の作用によって前進する構成とされている。
なお、パイロットピストン104には、内部に緩衝ピストン140が軸線方向に摺動可能に保持されている。その緩衝ピストン140は、圧縮コイルスプリングである緩衝スプリング142によって弾性的に支持されている。その緩衝ピストン140の先端側(一端側)の空間は、第2パイロット圧室R10と連通しており、その第2パイロット圧PPLT2に生じた圧力振動を抑える機能を有している。ちなみに、緩衝ピストン140が設けられたパイロットピストン104の内部空間は、大気圧ポートP10に連通しており、作動液の液圧は、常に大気圧とされている。
スプール保持筒112の小外径部132の外周側には、パイロットピストン104およびハウジング100とによって、調整圧室R8と連通するもう1つの調整圧室R11が区画形成されている。つまり、パイロットピストン104は、その調整圧室R11の作動液の液圧によって、他端側へ向かう力が付与されるようになっている。以下の説明において、スプール110の一端側に設けられた調整圧室R8を、第1調整圧室R8と、パイロットピストン104の一端側に設けられた調整圧室R11を、第2調整圧室R11と呼ぶこととする。なお、それら調整圧室R8,R11と入力室R4とを連通させるべく、調整圧ポートP12と入力ポートP5とを繋ぐ液通路であるサーボ通路150には、レギュレータ24によって調圧されて入力室R4に供給される作動液の液圧であるサーボ圧(調整圧)PSRVを検出する調整圧センサとしてのサーボ圧センサ[PSRV]152が設けられている。
また、ハウジング100には、内部通路によって高圧ポートP11と連通するもう1つの高圧ポートP17が設けられており、図1から解るように、この高圧ポートP17は増圧リニア弁26およびリリーフ弁154に連通している。さらに、ハウジング100には、内部通路によって大気圧ポートP10と連通するもう1つの大気圧ポートP18が設けられており、図1から解るように、この大気圧ポートP18は、リリーフ弁154に連通している。したがって、高圧源装置22からの高圧源圧PACCの作動液は、レギュレータ24を介して増圧リニア弁26に供給され、その高圧源圧PACCが設定以上の圧力となった場合に、高圧源装置22からの作動液は、レギュレータ24を介して、リザーバ20に流れるようにされている。
ii)レギュレータの機能
本レギュレータ24では、増圧リニア弁26と減圧リニア弁28とによって第2パイロット圧室R10の作動液の圧力である第2パイロット圧PPLT2が増加させられた場合に、スプール110が、その第2パイロット圧PPLT2によって付勢されて他端側の移動端から一端側に移動する。この移動によって、スプール弁機構102が高圧源装置22と調整圧室R8,R11とを連通させることで、マスタシリンダ16の入力室R4に供給される作動液の圧力、すなわち、サーボ圧PSRVが上昇させられる。その一方で、サーボ圧PSRVの上昇で、調整圧室R8の作動液の圧力も上昇し、スプール110が、サーボ圧PSRVによって付勢される。つまり、第2パイロット圧PPLT2によってスプール110を前進させる力と、サーボ圧PSRVによってスプール110を後退させる力とがバランスする状態が維持されて、マスタシリンダ16に供給される作動液の圧力であるサーボ圧PSRVが第2パイロット圧PPLT2に応じた大きさに調圧される。なお、スプール110の第2パイロット圧室R10の液圧(第2パイロット圧PPLT2)を受ける受圧面積と、スプール110の第1調整圧室R8の液圧(サーボ圧PSRV)を受ける受圧面積とは、ほぼ等しくされており、サーボ圧PSRVは、第2パイロット圧PPLT2とほぼ同じ大きさに調圧される(厳密にいえば、サーボ圧PSRVは、第2パイロット圧PPLT2より僅かに小さくなる)。
ちなみに、第1パイロット圧室R9には、マスタ圧PMSTの作動液が、第1パイロット圧PPLT1の作動液として導入されるが、マスタシリンダ16の増圧比、すなわち、サーボ圧PSRVに対するマスタ圧PMSTの比は、ほぼ1とされている。そして、パイロットピストン104には、第1パイロット圧室R9の液圧(第1パイロット圧PPLT1=マスタ圧PMST)による前進させる向きの力,第2パイロット圧室R10の液圧(第2パイロット圧PPLT2)による後退させる向きの力,第2調整圧室R11の液圧(サーボ圧PSRV)による後退させる向きの力が作用する。本レギュレータ24では、後退させる向きの力が、前進させる力より大きくなるため、パイロットピストン104は前進せず、第2パイロット圧PPLT2による調圧が行われている場合、第1パイロット圧PPLT1に依拠した力を、スプール110には作用させないようになっている。
一方、電気的失陥時等には、第1パイロット圧PPLT1による調圧が行われる。また、この場合、第2パイロット圧室R10は、大気圧に開放されている。第1パイロット圧PPLT1の作動液として導入された作動液の圧力であるマスタ圧PMSTが増加した場合に、パイロットピストン104は、前進させられて、スプール110に当接した状態でそのスプール110とともに前進し、スプール110は他端側の移動端から一端側に移動する。この移動によって、スプール弁機構102が高圧源装置22と調整圧室R8,R11とを連通させることで、マスタシリンダ16の入力室R4に供給される作動液の圧力、すなわち、サーボ圧PSRVが上昇させられる。その一方で、サーボ圧PSRVの上昇で、第1調整圧室R8の作動液の圧力と、第2調整圧室R11の作動液の圧力も上昇し、パイロットピストン104およびスプール110が、サーボ圧PSRVによって付勢される。つまり、第1パイロット圧PPLT1によってパイロットピストン104およびスプール110を前進させる力と、サーボ圧PSRVによってパイロットピストン104およびスプール110を後退させる力とがバランスする状態が維持されて、マスタシリンダ16に供給される作動液の圧力であるサーボ圧PSRVが第1パイロット圧PPLT1に応じた大きさに調圧される。
スプール110は、スプール保持筒112に対するクリアランスを狭めることで、作動液の液漏れを抑えるため、その外径は、比較的小さなものとされている。それに対して、パイロットピストン104の外径は、そのスプール110の外径により大きくされている。つまり、パイロットピストン104の他端側において第1パイロット圧PPLT1を受ける受圧面積AP_rは、スプール110のサーボ圧PSRVを受ける受圧面積ASPより大きくされているのである。そのため、パイロットピストン104を作動させるためのマスタ圧が大きくなることはない。一方で、パイロットピストン104の他端側において第1パイロット圧PPLT1を受ける受圧面積AP_rは、スプール110の第1調整圧室R8の液圧(サーボ圧PSRV)を受ける受圧面積ASPとパイロットピストン104の一端側において第2調整圧室R11の液圧(サーボ圧PSRV)を受ける受圧面積AP_f1とを足し合わせた面積と、ほぼ等しくされており、サーボ圧PSRVは、第1パイロット圧PPLT1とほぼ同じ大きさに調圧されるのである(厳密にいえば、サーボ圧PSRVは、第1パイロット圧PPLT1より僅かに小さくなる)。
f)増圧リニア弁および減圧リニア弁
増圧リニア弁26は、高圧源装置22とレギュレータ24との間に配設された常閉型の電磁式リニア弁である。その増圧リニア弁26は、図3(a)に示すように、ポペット弁170とソレノイド172とを含んで構成される。ポペット弁170は、弁座174および弁子176と、弁子176を弁座174に接近させる向きに付勢するスプリング178とを備えている。ソレノイド172は、コイル180と、コイル180に電流が供給されることにより生じる電磁駆動力Fdを弁子176に付与するプランジャ182とを備えている。弁子176には、高圧源装置22と第2パイロット圧室R10との液圧差に応じた差圧作用力Fpが、弁座174から離間させる向きに作用するようになっている。
そして、増圧リニア弁26は、差圧作用力Fpと電磁駆動力Fdとの和がスプリング178の弾性力Fsより大きくなると、閉弁状態から開弁状態に切り換えられる。具体的には、増圧リニア弁26は、図3(b)に示すように、前後の差圧ΔPSLA、つまり、高圧源圧PACCと第2パイロット圧PPLT2との液圧差が大きいほど、開弁状態と閉弁状態との境目である弁開閉均衡状態となる励磁電流である開閉均衡電流は小さくなる。さらに言えば、本ブレーキシステムにおいては、高圧源圧PACCが定められた大きさに保たれているため、第2パイロット圧PPLT2が小さいほど、開閉均衡電流は小さくなるのである。換言すれば、励磁電流が大きくなるほど、開度(例えば、閉弁状態から開弁状態への移行のし易さ)が高くなるのである。
一方、減圧リニア弁28は、レギュレータ24と低圧源であるリザーバ20との間に配設された常開型の電磁式リニア弁である。その減圧リニア弁28は、図4(a)に示すように、ポペット弁186とソレノイド188とを含んで構成される。ポペット弁186は、弁座190および弁子191と、弁子191を弁座190から離間させる向きに付勢するスプリング192とを備えている。ソレノイド188は、コイル194とプランジャ195とを備え、弁座190に着座させる向きの電磁駆動力Fdを弁子191に付与する。また、減圧リニア弁28は、第2パイロット圧室R10とリザーバ20との液圧差に応じた差圧作用力Fpが、弁子190を弁座から離間させる向きに作用するようになっている。
そして、減圧リニア弁28、電磁駆動力Fdが差圧作用力Fpとスプリング178の弾性力Fsとの和より小さくなると、閉弁状態から開弁状態に切り換えられる。具体的には、減圧リニア弁28は、図4(b)に示すように、前後の差圧ΔPSLR、つまり、第2パイロット圧PPLT2とリバーバ20の液圧(大気圧PATM)との液圧差が大きいほど、開閉均衡電流は大きくなる。さらに言えば、本ブレーキシステムにおいては、減圧リニア弁28の下流側がリザーバ20であるため、第2パイロット圧PPLT2が大きいほど、開閉均衡電流は大きくなるのである。換言すれば、励磁電流が大きくなるほど、開度(例えば、閉弁状態から開弁状態への移行のし易さ)が低くなるのである。
上記の図3(b)に示された増圧リニア弁26の差圧と開閉均衡電流との関係、および、図4(b)に示された減圧リニア弁28の差圧と開閉均衡電流との関係は、ブレーキECU30のROMにマップデータとして記憶されている。そのマップデータは、本ブレーキシステムが搭載される車両が出荷される前に、工場内で、リニア弁26,28の差圧と開閉均衡電流との関係が取得され、記憶させられたものである。本発明は、そのリニア弁26,28の差圧と開閉平均電流との関係を取得する方法に関するものであるため、ここでの説明は留保し、後に詳しく説明するものとする。また、開閉均衡電流は、後に説明するその取得方法から分かるように、閉状態から開状態に切り換えられる時の電流であるため、開弁電流と考えることもでき、以下の説明においては、開弁電流と呼ぶ場合がある。
そして、増圧リニア弁26,減圧リニア弁28は、レギュレータ24を挟んで、詳しく言えば、レギュレータ24の第2パイロット圧室R10を挟んで、直列的に配置されており、増圧リニア弁26,減圧リニア弁28の各々に供給される励磁電流を制御することにより、第2パイロット圧室R10の作動液の圧力を制御することができるのである。つまり、本ブレーキシステムでは、それら増圧リニア弁26,減圧リニア弁28とレギュレータ24とを含んで、マスタシリンダ16に調圧した作動液を供給する液圧供給装置が構成されているのである。
g)制御系
本システムの制御、つまり、ブレーキ制御は、ブレーキECU30によって行われる。ブレーキECU30は、大まかには、高圧源装置22(詳しくは、それが有するモータ92)の制御を行い、また、増圧リニア弁26および減圧リニア弁28の制御を行う。ブレーキECU30は、図5に示すように、コンピュータを主体とするものであり、後に説明する制御を実行するためのプログラム等が記憶された記憶部200と、それらのプログラムを実行する実行部202と、高圧源装置22のモータ92,増圧リニア弁26,減圧リニア弁28等をそれぞれ駆動するための制御回路204とを含んで構成されている。
ブレーキECU30には、反力圧PRCT,高圧源圧PACC,サーボ圧PSRVを、制御に必要な情報として取得するため、上述の反力圧センサ86,高圧源圧センサ96,サーボ圧センサ152が接続されている。また、本システムには、ブレーキペダル14の操作量を検出するストロークセンサ[δPDL]210,増圧リニア弁26や減圧リニア弁28に流れる電流を検出する電流センサ212等が接続されている。そして、本システムにおけるECU30による制御は、ここで挙げた各種のセンサの検出値に基づいて行われる。
<液圧ブレーキシステムの作動>
本液圧ブレーキシステムが搭載された車両では、通常、ブレーキ操作量センサ160の検出値に基づいて取得されたブレーキ操作量δPDLと、反力圧センサの検出値PRCTに基づいて取得されたブレーキ操作力FPDLとの両者に基づいて、必要とされるブレーキ力である必要ブレーキ力が算出される。その必要ブレーキ力から回生ブレーキシステムで発生させられる回生ブレーキ力を減算したものが、必要液圧ブレーキ力として決定される。本液圧ブレーキシステムは、この必要液圧ブレーキ力を発生させるべく作動する。
まず、マスタシリンダ16の作動に関して言えば、通常の状態では、先に説明したように、ECU30は、連通切換弁72および低圧源遮断弁76を励磁し、連通切換弁72を開弁状態、低圧源遮断弁76を閉弁状態とする。そして、入力室R4にレギュレータ24からの作動液の圧力を導入して、その作動液の圧力に依存して第1加圧ピストン42,第2加圧ピストン44を前進させ、入力室R4の作動液の圧力に応じた圧力に加圧された作動液(マスタ圧PMSTの作動液)を、ブレーキ装置12に供給する。つまり、通常状態においては、ECU30は、前述の必要液圧ブレーキ力を発生させるべく、入力室R4の液圧、つまり、サーボ圧PSRVを制御するのである。つまり、ECU30は、レギュレータ24の第2パイロット圧PPLT2を制御して、調整圧室R8の液圧を第2パイロット圧PPLT2に応じた大きさに調圧することで、サーボ圧PSRVを制御するのである。
ECU30は、必要液圧ブレーキ力に基づいて目標サーボ圧PSRV を決定し、サーボ圧センサ152の検出値に基づいて取得される実サーボ圧PSRVが目標サーボ圧となるように、それら目標サーボ圧PSRV と実サーボ圧PSRVとの偏差ΔPSRVに基づくフィードバック制御を行うようになっている。具体的には、偏差ΔPSRVが、増圧閾値ΔPより大きい場合には増圧モードとされ、減圧閾値ΔPより小さい場合には減圧モードとされ、減圧閾値ΔP以上かつ増圧閾値ΔP以下である場合には保持モードとされる。
増圧モードでは、減圧リニア弁28が閉弁され、増圧リニア弁26の制御によって、第2パイロット圧室R10に作動液を供給し、第2パイロット圧PPLT2が増加させられる。その増圧リニア弁26への供給電流ISLAが、前後の差圧ΔPSLAに応じた開弁電流ISLA-OPENと、上記の偏差ΔPSRVとに基づいて、次式に従って決定される。
SLA=ISLA-OPEN+KSLA・ΔPSRVSLA:制御ゲイン
なお、前後の差圧ΔPSLAは、高圧源圧センサ96の検出値と第2パイロット圧PPLT2(実サーボ圧PSRVから推定)との差から求められる。そして、開弁電流ISLA-OPENは、図3(b)に示した、差圧ΔPSLAと開弁電流ISLA-OPENとの関係を示すマップデータから求められるようになっているのである。
減圧モードでは、増圧リニア弁26が閉弁され、減圧リニア弁28の制御によって、第2パイロット圧PPLT2が低下させられる。その減圧リニア弁28の供給電流ISLRが、前後の差圧ΔPSLRに応じた開弁電流ISLR-OPENと、上記の偏差ΔPSRVとに基づいて、次式に従って決定される。
SLR=ISLR-OPEN−KSLR・ΔPSRVSLR:制御ゲイン
なお、前後の差圧ΔPSLRは、第2パイロット圧PPLT2(実サーボ圧PSRVから推定)とリザーバ20の液圧(大気圧PATM)の差から求められる。そして、開弁電流ISLA-OPENは、図4(b)に示した、差圧ΔPSLRと開弁電流ISLR-OPENとの関係を示すマップデータから求められるようになっているのである。
また、保持モードでは、増圧リニア弁26,減圧リニア弁28が閉状態とされ、第2パイロット圧PPLT2が維持される。なお、その際の増圧リニア弁26,減圧リニア弁28への供給電流は、第2パイロット圧が目標サーボ圧に応じた大きさに達した場合の差圧作用力が作用しても閉弁状態を保持し得る大きさとされる。ちなみに、増圧モードにおける減圧リニア弁28への供給電流、および、減圧モードにおける増圧リニア弁26への供給電流も同様である。
<リニア弁の特性取得>
ここで、先の説明において留保しているところのリニア弁26,28の特性を取得する方法について説明する。本実施例のリニア弁特性取得方法は、まず、増圧リニア弁26および減圧リニア弁28の各々に対する差圧と開弁電流との関係の基準値、つまり、先に述べた、差圧と開弁電流との関係を示すマップデータを取得する際に用いられる。つまり、本実施例のリニア弁特性取得方法は、上述した液圧ブレーキシステムが搭載された車両が出荷される前に、工場内で、ブレーキECU30に記憶させるマップデータを取得する際に用いられるのである。なお、当該ブレーキシステムが、車体に組み付けられた後であっても、組み付けられる前であってもよい。
本実施例のリニア弁取得方法は、図6(a)に示すように、サーボ圧PSRV、つまり、第2パイロット圧PPLT2を階段状に昇圧させつつ増圧リニア弁26の特性を取得し、次いで、第2パイロット圧PPLT2を階段状に降圧させつつ減圧リニア弁28の特性を取得する。そして、それらの処理をさらに複数回行って、それら複数回の取得値に基づいて、増圧リニア弁26および減圧リニア弁28の各々のマップデータが作成されるようになっている。以下に、本リニア弁取得方法について詳しく説明する。
(a)増圧弁開弁電流取得工程(増圧弁開閉均衡電流取得工程)
本実施例のリニア弁特性取得方法は、増圧リニア弁26に対して、まず、サーボ圧PSRV(第2パイロット圧PPLT2)をある大きさの液圧である保持圧に保持した状態から、増圧リニア弁26を開弁させるべくその増圧リニア弁26への励磁電流ISLAを、開弁することない大きさの励磁電流から一定の勾配で漸増させつつ、サーボ圧センサ152の検出結果を監視する。そして、サーボ圧PSRVが設定値ΔP以上増加した場合に、増圧リニア弁26が開弁したと判断し、その時点での差圧を、高圧源圧センサ96により検出された高圧源PACCと、サーボ圧センサ152により検出されたサーボ圧PSRVとの差から取得する。
ΔPSLA=PACC−PSRV
また、その時点での励磁電流ISLAをその差圧ΔPSLAに対する開弁電流ISLA-OPENとして取得するのである。
(b)減圧弁開弁電流取得工程(減圧弁開閉均衡電流取得工程)
次いで、増圧リニア弁26が開弁した状態で、設定された時間だけ経過させ、再び、増圧リニア弁26の励磁電流を0として閉弁し、ある保持圧に保持した状態とするのである。そして、上述した処理により、差圧ΔPSLAとその差圧ΔPSLAに対する開弁電流ISLA-OPENを取得するのである。この処理を、サーボ圧PSRVが予め設定された最大値PMAXに達するまで複数回行って、差圧ΔPSLAおよびその差圧ΔPSLAに対する開弁電流ISLA-OPENを複数組取得するようになっている。なお、図6(a)では、3回しか示していないが、実際には、10回以上繰り返して行っている。
サーボ圧PSRVが最大値PMAXに達した場合には、続いて、減圧リニア弁28の特性を取得する処理が行われる。減圧リニア弁28に対しても、上述した増圧リニア弁26に対する処理と同様の処理が行われる。つまり、サーボ圧PSRV(第2パイロット圧PPLT2)をある大きさの液圧である保持圧に保持した状態から、減圧リニア弁28を開弁させるべくその減圧リニア弁28への励磁電流ISLRを、開弁することない大きさの励磁電流から一定の勾配で漸減させつつ、サーボ圧センサ152の検出結果を監視する。そして、サーボ圧PSRVが設定値ΔP以上減少した場合に、減圧リニア弁28が開弁したと判断し、その時点での差圧を、サーボ圧センサ152により検出されたサーボ圧PSRVと、リザーバ20の液圧(大気圧PATM)との差から取得する。
ΔPSLR=PSRV−PATM
また、その時点での励磁電流ISLRをその差圧ΔPSLRに対する開弁電流ISLR-OPENとして取得するのである。そして、サーボ圧PSRVが大気圧PATMとなるまで、サーボ圧PSRVを減圧しつつ同様の処理を繰り返し行って、差圧ΔPSLRおよびその差圧ΔPSLRに対する開弁電流ISLR-OPENを複数組取得するのである。
(c)マップデータ作成工程
そして、上述した増圧弁開弁電流取得工程および減圧弁開弁電流取得工程を、図6(a)に示すように、複数回繰り返して行って、それらのデータに基づいて、増圧リニア弁26および減圧リニア弁28の各々に対する差圧と開弁電流との関係の基準値、つまり、先に述べた、差圧と開弁電流との関係を示すマップデータ(図3(b),図4(b))が作成されるようになっている。
(d)増圧弁開弁電流取得工程と減圧弁開弁電流取得工程との切換時の対処
本実施例のリニア弁特性取得方法の対象となる液圧供給装置は、前述したように、スプール弁機構102を主体とするレギュレータ24を含んで構成されている。そのレギュレータ24において、調整圧室R8とリザーバ20との連通、詳しくは、調整圧室R8と大気圧ポートP10に連通する内部ポート118との連通を許容していた後に、その連通を遮断してサーボ圧PSRVが保持される状態とした場合には、スプール110は、図7(a)に示す位置に位置する。一方、調整圧室R11と高圧源装置22との連通、詳しくは、調整圧室R11に連通する内部ポート124と高圧ポートP11に連通する内部ポート122との連通を許容していた後に、その連通を遮断してサーボ圧PSRVが保持される状態とした場合、スプール110は、図7(b)に示す位置に位置する。つまり、同じサーボ圧PSRVが保持される状態であっても、スプール110の位置が異なるのである。
つまり、例えば、サーボPSRV圧を保持されていた状態から上昇させるような場合には、スプール110の位置が増圧側にあるか減圧側にあるかによって、調整圧室R8と高圧源装置22との連通が許容されるまでのスプール110の移動距離が異なるため、増圧リニア弁26の励磁電流の変化に対するサーボ圧PSRVの上昇傾向も異なることとなるのである。そして、レギュレータ24から供給される作動液の液圧である調整圧をサーボ圧センサ152により計測し、その計測されたサーボ圧を用いて増圧リニア弁26,減圧リニア弁28の差圧を推定する場合には、サーボ圧の上昇傾向の相違が問題となる。具体的に言えば、サーボ圧PSRVの上昇傾向の相違により、そのサーボ圧PSRVから推定される差圧ΔPSLA,ΔPSLRにばらつきが生じる虞があり、そのばらつきのあるデータを用いてマップデータを作成してしまうと、そのマップデータの精度が悪化してしまうことになるのである。
そこで、本実施例のリニア弁特性取得方法は、図6に示すように、増圧弁開弁電流取得工程が終了し、減圧弁開弁電流取得工程を開始する前に、一旦、減圧リニア弁28を開弁して、増圧側においてサーボ圧PSRVを保持している位置にあるスプール110を、減圧側に移動させるようになっている。(スプール減圧側移動工程)また、減圧弁開弁電流取得工程が終了し、増圧弁開弁電流取得工程を開始する前に、一旦、増圧リニア弁26を開弁して、減圧側においてサーボ圧PSRVを保持している位置にあるスプール110を、増圧側に移動させるようになっている。(スプール増圧側移動工程)
(e)フラッシング工程
なお、増圧弁開弁電流取得工程および減圧弁開弁電流取得工程の各々において、サーボ圧PSRVを保持状態とする場合、増圧リニア弁26および減圧リニア弁28の両者が確実に閉弁状態となっているか否かの判定が行われる。具体的には、サーボ圧センサ152により検出されたサーボ圧PSRVが、保持状態とすべく増圧リニア弁26および減圧リニア弁28の両者に閉弁状態とする指令が出された時点におけるサーボ圧PSRVからの変化量ΔPSRVが設定値+ΔP以上となった場合に、増圧リニア弁26に漏れが生じていると判断され、変化量ΔPSRVが設定値−ΔP以下となった場合に、減圧リニア弁28に漏れが生じていると判断される。
漏れが生じていると判断された場合には、増圧弁開弁電流取得工程あるいは減圧弁開弁電流取得工程は中断される。そして、例えば、異物の噛み込みによって漏れが生じている場合が考えられるため、漏れが生じていると判断された増圧リニア弁26もしくは減圧リニア弁28を、一旦、全開に開弁させるフラッシング工程(全開開弁工程)が行われるようになっている。
ただし、図8に示すように、増圧弁開弁電流取得工程においてパイロット圧PPLT2を保持しようとした状態でサーボ圧PSRVが低くなり、減圧リニア弁28に対してフラッシング工程を行った場合には、スプール110が減圧側に移動させられている。そのため、本リニア弁特性取得方法では、増圧弁開弁電流取得工程を再開する前に、一旦、増圧リニア弁26を開弁して、スプール110を増圧側に移動させるようになっている。(スプール増圧側移動工程)また、図9に示すように、減圧弁開弁電流取得工程においてパイロット圧PPLT2を保持しようとした状態でサーボ圧PSRVが高くなり、増圧リニア弁28に対してフラッシング工程を行った場合には、スプール110が増圧側に移動させられている。そのため、本リニア弁特性取得方法では、減圧弁開弁電流取得工程を再開する前に、一旦、減圧リニア弁28を開弁して、スプール110を減圧側に移動させるようになっている。(スプール減圧側移動工程)
(E)制御プログラム
本実施例のリニア弁特性取得方法は、図10にフローチャートを示すリニア弁特性取得プログラムによって実行される。なお、そのリニア弁特性取得プログラムは、図5に示すように、工場内の設備に含まれる装置250(以下、「外部装置250」と呼ぶこととする)に記憶されており、リニア弁特性取得プログラムの実行時においては、ブレーキECU30との間で、リニア弁26,28等への指令や、センサの検出結果等のデータの受け渡しが行われるようになっている。なお、外部装置250は、コンピュータを主体とするものであり、以下に説明するプログラム等が記憶されている記憶部252と、そのプログラムを実行する実行部254とを含んで構成されている。
リニア弁特性取得プログラムでは、上述した増圧弁開弁電流取得工程を実行するための処理、および、減圧弁開弁電流取得工程を実行するための処理が、順に行われるのであるが、ステップ2(以下、「ステップ」を「S」と省略する)における増圧弁特性取得処理の実行の前に、まず、S1において、スプール増圧側移動工程を実行するための増圧弁全開開弁処理が行われる。また、S4における減圧弁特性取得処理の実行の前には、S3において、スプール減圧側移動工程を実行するための減圧弁全開開弁処理が行われる。
増圧弁全開開弁処理は、図11にフローチャートを示す増圧弁全開開弁処理プログラムが実行されることによって行われる。増圧弁全開開弁処理プログラムは、S11において、増圧リニア弁26への励磁電流ISLAが、励磁電流の最大値であるIMAXとされるとともに、減圧リニア弁28への励磁電流ISLRが、第2パイロット圧が変更されても減圧リニア弁28を開弁させない大きさの電流である閉弁電流Ishutとされる。そして、S12において、増圧リニア弁26を開弁させてから設定時間が経過したか否が判定され、設定時間が経過するまではS11が繰り返し実行される。増圧リニア弁26を開弁させて設定時間が経過した場合には、S13において、増圧リニア弁26への励磁電流ISLAが0とされて閉弁状態とされるとともに、減圧リニア弁28への励磁電流ISLRが、減圧リニア弁28の閉弁状態を保持する大きさの電流であり上記閉弁電流Ishutより小さな保持電流Iholdとされ、第2パイロット圧PPLT2(サーボ圧PSRV)が保持された状態(以下、保持状態と呼ぶこととする。)とされる。以上で、増圧弁全開開弁処理プログラムは終了する。
また、減圧弁全開開弁処理は、図12にフローチャートを示す減圧弁全開開弁処理プログラムが実行されることによって行われる。減圧弁全開開弁処理プログラムは、S21において、増圧リニア弁26への励磁電流ISLAが0とされて閉弁状態とされるとともに、減圧リニア弁28への励磁電流ISLRが0とされて全開に開弁した状態とされる。そして、S22において、減圧リニア弁28を開弁させてから設定時間が経過したか否が判定され、設定時間が経過するまではS21が繰り返し実行される。減圧リニア弁28を開弁させて設定時間が経過した場合には、S23において、減圧リニア弁28への励磁電流ISLRが閉弁電流Ishutとされて閉弁状態とされる。なお、S24において、減圧リニア弁28を閉弁させてから設定時間が経過したか否が判定され、設定時間が経過した場合には、S25において、減圧リニア弁28への励磁電流ISLRが保持電流Iholdとされる。以上で、減圧弁全開開弁処理プログラムは終了する。
リニア弁特性取得プログラムでは、S1における増圧弁全開開弁処理が終了すると、S2において、増圧弁特性取得処理が行われる。その増圧弁特性取得処理は、図13にフローチャートを示す増圧弁特性取得処理プログラムが実行されることによって行われる。この増圧弁特性取得処理プログラムでは、まず、S31において、保持状態とされ、S32およびS33において、サーボ圧PSRVが監視される。保持状態からのサーボ圧の変化量ΔPSRVが設定値ΔP以上となった場合には、S34において、増圧リニア弁26に対するフラッシング工程として、先に説明した増圧弁全開開弁処理が行われる。
また、保持状態からのサーボ圧の変化量ΔPSRVが設定値−ΔP以下となった場合には、S35において、減圧リニア弁28に対するフラッシング工程として、先に説明した減圧弁全開開弁処理が行われる。そして、減圧リニア弁28に対するフラッシングが行われると、スプール110が減圧側に移動させられてしまうため、続いて、S34において、スプール増圧側移動工程として、増圧弁全開開弁処理が実行され、スプール110が増圧側に移動させられるようになっている。
設定時間以上、保持状態が継続できた場合には、S37において、増圧リニア弁26の開弁電流を計測する処理が行われる。その処理は、図14にフローチャートを示す増圧弁開弁電流計測プログラムが実行されることによって行われる。その増圧弁開弁電流計測プログラムでは、S51において、増圧リニア弁26への励磁電流ISLAが、増圧リニア弁26が開弁することのない大きさから、一定の勾配で漸増させられる。そして、S52において、サーボ圧PSRVが監視され、サーボ圧PSRVが保持状態から設定値ΔPOPENだけ増加した場合に、増圧リニア弁26が開弁したと判断され、その時点での増圧リニア弁26の前後の差圧ΔPSLAが外部装置250の記憶部252に記憶されるとともに、その時点での励磁電流ISLAが、外部装置250の記憶部252に開弁電流ISLA-OPENとして記憶される。以上で、増圧弁開弁電流計測プログラムが終了する。
S37の増圧弁開弁電流計測処理が終了すると、S38において、継続して増圧リニア弁26による第2パイロット圧PPLT2の増圧が行われる。その第2パイロット圧PPLT2の増圧は、増圧リニア弁26に励磁電流を供給し始めてから設定時間が経過するまで行われる。そして、設定時間が経過して、第2パイロット圧PPLT2のある程度の増圧が完了したら、S31からS37までの処理が、再度行われ、差圧ΔPSLAとその差圧に対する開弁電流ISLA-OPENとの取得が行われる。そして、サーボ圧PSRVが最大値PMAXに達するまで、それらの処理が、繰り返し行われる。サーボ圧PSRVが最大値PMAXに達した場合には、S41において、保持状態とされ、増圧弁特性取得処理プログラムが終了する。
そして、リニア弁特性取得プログラムでは、S2における増圧弁特性取得処理が終了すると、S3において増圧弁全開開弁処理が行われ、次いで、S4において、減圧弁特性取得処理が実行される。その減圧弁特性取得処理は、図15にフローチャートを示す減圧弁特性取得処理プログラムが実行されることによって行われる。この減圧弁特性取得処理プログラムでは、まず、S61において、保持状態とされ、S62およびS63において、サーボ圧PSRVが監視される。保持状態からのサーボ圧の変化量ΔPSRVが設定値−ΔP以下となった場合には、S64において、減圧リニア弁28に対するフラッシング工程として、先に説明した減圧弁全開開弁処理が行われる。
また、保持状態からのサーボ圧の変化量ΔPSRVが設定値ΔP以上となった場合には、S65において、増圧リニア弁26に対するフラッシング工程として、先に説明した増圧弁全開開弁処理が行われる。そして、増圧リニア弁26に対するフラッシングが行われると、スプール110が増圧側に移動させられてしまうため、続いて、S64において、スプール減圧側移動工程として、減圧弁全開開弁処理が実行され、スプール110が減圧側に移動させられるようになっている。
設定時間以上、保持状態が継続できた場合には、S67において、減圧リニア弁28の開弁電流を計測する処理が行われる。その処理は、図16にフローチャートを示す減圧弁開弁電流計測プログラムが実行されることによって行われる。その減圧弁開弁電流計測プログラムでは、S81において、減圧リニア弁28への励磁電流ISLRが、減圧リニア弁28が開弁することのない大きさから、一定の勾配で漸減させられる。そして、S82において、サーボ圧PSRVが監視され、サーボ圧PSRVが保持状態から設定値ΔPOPENだけ減少した場合に、減圧リニア弁28が開弁したと判断され、その時点での減圧リニア弁28の前後の差圧ΔPSLRが外部装置250の記憶部252に記憶されるとともに、その時点での励磁電流ISLRが、外部装置250の記憶部252に開弁電流ISLR-OPENとして記憶される。以上で、減圧弁開弁電流計測プログラムが終了する。
S67の減圧弁開弁電流計測処理が終了すると、S68において、継続して減圧リニア弁28による第2パイロット圧PPLT2の減圧が行われる。その第2パイロット圧PPLT2の減圧は、設定時間が経過するまで行われる。そして、設定時間が経過して、第2パイロット圧PPLT2のある程度の減圧が完了したら、S61からS67までの処理が、再度行われ、差圧ΔPSLRとその差圧に対する開弁電流ISLR-OPENとの取得が行われる。そして、サーボ圧PSRVが大気圧となるまで、それらの処理が、繰り返し行われる。サーボ圧PSRVが大気圧となった場合には、S71において、保持状態とされ、減圧弁特性取得処理プログラムが終了する。
リニア弁特性取得プログラムでは、S4おける減圧弁特性取得処理が終了すると、S5において、カウンタNがカウントアップされ、設定された回数Nとなるまで、S1からS4の処理が繰り返し行われる。S1からS4の処理が設定された回数N終了すると、S7において、詳細な説明は省略するが、それら取得結果に基づいて、増圧リニア弁26の差圧と開弁電流との関係を示すマップデータと、減圧リニア弁28の差圧と開弁電流との関係を示すマップデータとが作成され、その作成されたマップデータが、ブレーキECU30の記憶部200に記憶される。そして、S8においてカウンタN等のリセットが行われ、リニア弁特性取得プログラムが終了する。
(F)リニア弁特性取得装置
本実施例のリニア弁特性取得方法を行うための上記リニア弁特性取得プログラムは、外部装置250の記憶部252に記憶されている。つまり、図5に示すように、外部装置250の記憶部252は、リニア弁特性取得プログラムが記憶されたリニア弁特性取得プログラム記憶部260を有していると考えることができる。一方、ブレーキECU30の記憶部200は、リニア弁の特性である差圧と開弁電流との関係(マップデータ)が記憶されるリニア弁特性記憶部262を有していると考えることができる。したがって、本実施例においては、外部装置250とブレーキECU30とを含んで、リニア弁特性取得装置が構成されていると考えることができる。
なお、図17に示すように、上記のリニア弁特性取得プログラム記憶部260は、ブレーキECU30の記憶部200に設けられていてもよい。そのような構成とした場合には、例えば、車両の修理や整備の際に、リニア弁特性取得プログラムを実行して、リニア弁26,28の差圧と開弁電流との関係を取得し、そのリニア弁26,28の差圧と開弁電流との関係を補正することが可能である。この場合には、ブレーキECU30が、リニア弁特性取得装置を含んでいると考えることができる。
10:車輪 12:ブレーキ装置 14:ブレーキペダル 16:マスタシリンダ 18:アンチロックユニット[ABS] 20:リザーバ〔低圧源〕 22:高圧源装置〔高圧源〕 24:レギュレータ 26:増圧リニア弁[SLA] 28:減圧リニア弁[SLR] 30:ブレーキ電子制御ユニット〔制御装置〕[ECU] 48:ストロークシミュレータ 72:連通切換弁 76:低圧源遮断弁 86:反力圧センサ[PRCT] 96:高圧源圧センサ[PACC] 102:スプール弁機構〔弁機構〕 110:スプール 152:サーボ圧センサ〔調整圧センサ〕[PSVR] 200:記憶部 202:実行部 204:制御回路 212:電流センサ 250:外部装置 252:記憶部 254:実行部 R8:第1調整圧室 R10:第2パイロット圧室 R11:第2調整圧室 P10:大気圧ポート P11:高圧ポート P12:調整圧ポート P17:高圧ポート P18:大気圧ポート

Claims (5)

  1. (A)高圧源からの高圧の作動液をパイロット圧によって調整圧に調圧し、その調圧された作動液を供給するレギュレータであって、 (a-1)前記調整圧に調圧される作動液が収容される調整圧室と、 (a-2)当該レギュレータの軸線方向に移動可能とされて自身の一端側から前記調整圧室の液圧を受けるスプールを有し、そのスプールが可動範囲において他端に位置する場合に、低圧源と前記調整圧室との連通を許容するとともに、高圧源と前記調整圧室との連通を遮断し、そのスプールが前進して一端に位置する場合に、低圧源と前記調整圧室との連通を遮断するとともに、高圧源と前記調整圧室との連通を許容するスプール弁機構と、(a-3)前記スプールの他端側に形成され、前記パイロット圧の作動液が導入されて前記スプールを一端側に向かって付勢するためのパイロット圧室とを備えたレギュレータと、(B)高圧源から作動液の供給を受け、前記パイロット圧室に供給する作動液を任意の圧力に調整する増圧リニア弁および減圧リニア弁と、(C)前記レギュレータから供給される作動液の液圧を測定して前記調整圧を検出する調整圧センサとを含んで構成された液圧供給装置において、前記増圧リニア弁および前記減圧リニア弁の各々における(i)前後の差圧と(ii)その差圧下において開弁状態と閉弁状態との境目である弁開閉均衡状態となる励磁電流である開閉均衡電流との関係を取得するリニア弁特性取得方法であって、
    前記増圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、前記パイロット圧室の液圧をある大きさの液圧である保持圧に保持した状態から前記増圧リニア弁を開弁させるべくその増圧リニア弁に供給する励磁電流を漸変させ、前記調整圧センサの検出結果に基づいて前記増圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する増圧弁開閉均衡電流取得工程と、
    前記減圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、前記パイロット圧室の液圧を保持圧に保持した状態から前記減圧リニア弁を開弁させるべくその減圧リニア弁に供給する励磁電流を漸変させ、前記調整圧センサの検出結果に基づいて前記減圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する減圧弁開閉均衡電流取得工程と
    を含んで、
    それら増圧弁開閉均衡電流取得工程と減圧弁開閉均衡電流取得工程との各々を、前記保持圧を変更しつつ、繰り返し行うことで、前記増圧リニア弁および前記減圧リニア弁の各々における差圧と開閉均衡電流との関係を取得するものであり、
    当該リニア弁特性取得方法が、さらに、
    前記増圧弁開閉均衡電流取得工程の前、前記スプールが前記他端側に移動している場合に、前記増圧リニア弁を開弁して前記スプールを前記一端側に移動させるスプール増圧側移動工程と、
    前記減圧弁開閉均衡電流取得工程の前、前記スプールが前記一端側に移動している場合に、前記減圧リニア弁を開弁して前記スプールを前記他端側に移動させるスプール減圧側移動工程と
    を含むことを特徴とするリニア弁特性取得方法。
  2. 当該リニア弁特性取得方法が、
    前記増圧弁開閉均衡電流取得工程の実施後、前記減圧弁開閉均衡電流取得工程の実施前に、前記スプール減圧側移動工程を実施するとともに、
    前記減圧弁開閉均衡電流取得工程の実施後、前記増圧弁開閉均衡電流取得工程の実施前に、前記スプール増圧側移動工程を実施する請求項1に記載のリニア弁特性取得方法。
  3. 当該リニア弁特性取得方法が、
    前記増圧弁開閉均衡電流取得工程中において前記パイロット圧室の液圧を保持圧に保持しようとした状態で、前記調整圧センサにより検出された調整圧が高くなっていく場合に、前記増圧弁開閉均衡電流取得工程を中断して前記増圧リニア弁を全開に開弁させ、前記調整圧センサにより検出された調整圧が低くなっていく場合に、前記増圧弁開閉均衡電流取得工程を中断して前記減圧リニア弁を全開に開弁させるフラッシング工程を含み、
    前記減圧リニア弁に対して前記フラッシング工程を実施した後、前記増圧弁開閉均衡電流取得工程の再開前に、前記スプール増圧側移動工程を実施する請求項1または請求項2に記載のリニア弁特性取得方法。
  4. 当該リニア弁特性取得方法が、
    前記減圧弁開閉均衡電流取得工程中において前記パイロット圧室の液圧を保持圧に保持しようとした状態で、前記調整圧センサにより検出された調整圧が高くなっていく場合に、前記減圧弁開閉均衡電流取得工程を中断して前記増圧リニア弁を全開に開弁させ、前記調整圧センサにより検出された調整圧が低くなっていく場合に、前記減圧弁開閉均衡電流取得工程を中断して前記減圧リニア弁を全開に開弁させるフラッシング工程を含み、
    前記増圧リニア弁に対して前記フラッシング工程を実施した後、前記減圧弁開閉均衡電流取得工程の再開前に、前記スプール減圧側移動工程を実施する請求項1ないし請求項3のいずれか1つに記載のリニア弁特性取得方法。
  5. (A)高圧源からの高圧の作動液を調整圧に調圧し、その調圧された作動液を供給するレギュレータであって、 (a-1)前記調整圧に調圧される作動液が収容される調整圧室と、 (a-2)当該レギュレータの軸線方向に移動可能とされて自身の一端側から前記調整圧室の液圧を受けるスプールを有し、そのスプールが可動範囲において他端側に位置する場合に、低圧源と前記調整圧室との連通を許容するとともに、高圧源と前記調整圧室との連通を遮断し、そのスプールが前進して一端側に位置する場合に、低圧源と前記調整圧室との連通を遮断するとともに、高圧源と前記調整圧室との連通を許容するスプール弁機構と、(a-3)前記スプールの他端側に形成されてそのスプールを一端側に向かって付勢するためのパイロット圧室とを備えたレギュレータと、(B)高圧源から作動液の供給を受け、前記パイロット圧室に供給する作動液を任意の圧力に調整する増圧リニア弁および減圧リニア弁と、(C)前記レギュレータから供給される作動液の液圧を測定して前記調整圧を検出する調整圧センサとを含んで構成された液圧供給装置において、前記増圧リニア弁および前記減圧リニア弁の各々における(i)前後の差圧と(ii)その差圧下において開弁状態と閉弁状態との境目である弁開閉均衡状態となる励磁電流である開閉均衡電流との関係を取得するリニア弁特性取得装置であって、
    (I)前記増圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、前記パイロット圧室の液圧をある大きさの液圧である保持圧に保持した状態から前記増圧リニア弁を開弁させるべくその増圧リニア弁に供給する励磁電流を漸変させ、前記調整圧センサの検出結果に基づいて前記増圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する増圧弁開閉均衡電流取得処理と、(II)前記減圧リニア弁の差圧と開閉均衡電流との関係を取得すべく、前記パイロット圧室の液圧を保持圧に保持した状態から前記減圧リニア弁を開弁させるべくその減圧リニア弁に供給する励磁電流を漸変させ、前記調整圧センサの検出結果に基づいて前記減圧リニア弁が開弁したことが検出された時に、その時点での差圧を取得するとともに、その時点での励磁電流をその差圧に対する開閉均衡電流として取得する減圧弁開閉均衡電流取得処理との各々を、前記保持圧を変更しつつ、繰り返し行うことで、前記増圧リニア弁および前記減圧リニア弁の各々における差圧と開閉均衡電流との関係を取得するように構成され、
    当該リニア弁特性取得装置が、さらに、
    前記増圧弁開閉均衡電流取得処理の前、前記スプールが前記他端側に移動している場合に、前記増圧リニア弁を開弁して前記スプールを前記一端側に移動させるとともに、前記減圧弁開閉均衡電流取得処理の前、前記スプールが前記一端側に移動している場合に、前記減圧リニア弁を開弁して前記スプールを前記他端側に移動させることを特徴とするリニア弁特性取得装置。
JP2015126711A 2015-06-24 2015-06-24 リニア弁特性取得方法,リニア弁特性取得装置 Active JP6502762B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015126711A JP6502762B2 (ja) 2015-06-24 2015-06-24 リニア弁特性取得方法,リニア弁特性取得装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015126711A JP6502762B2 (ja) 2015-06-24 2015-06-24 リニア弁特性取得方法,リニア弁特性取得装置

Publications (2)

Publication Number Publication Date
JP2017007578A true JP2017007578A (ja) 2017-01-12
JP6502762B2 JP6502762B2 (ja) 2019-04-17

Family

ID=57762884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015126711A Active JP6502762B2 (ja) 2015-06-24 2015-06-24 リニア弁特性取得方法,リニア弁特性取得装置

Country Status (1)

Country Link
JP (1) JP6502762B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113803314A (zh) * 2021-09-10 2021-12-17 浙江华益精密机械有限公司 直动式减泄压阀

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000062598A (ja) * 1998-08-25 2000-02-29 Aisin Seiki Co Ltd リニアソレノイドバルブ駆動制御方法及び装置
JP2004237982A (ja) * 2004-04-27 2004-08-26 Toyota Motor Corp 液圧ブレーキ装置、作動特性取得装置,制御弁検査装置
JP2006199133A (ja) * 2005-01-20 2006-08-03 Toyota Motor Corp 液圧制御装置および作動特性取得装置
JP2006298313A (ja) * 2005-04-25 2006-11-02 Toyota Motor Corp 液圧制御装置および作動特性取得装置
WO2013150632A1 (ja) * 2012-04-05 2013-10-10 トヨタ自動車株式会社 車両のブレーキ装置
JP2013208987A (ja) * 2012-03-30 2013-10-10 Toyota Motor Corp シリンダ装置および液圧ブレーキシステム
JP2015010630A (ja) * 2013-06-27 2015-01-19 トヨタ自動車株式会社 圧力制御装置
JP2015102233A (ja) * 2013-11-28 2015-06-04 トヨタ自動車株式会社 電磁弁制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000062598A (ja) * 1998-08-25 2000-02-29 Aisin Seiki Co Ltd リニアソレノイドバルブ駆動制御方法及び装置
JP2004237982A (ja) * 2004-04-27 2004-08-26 Toyota Motor Corp 液圧ブレーキ装置、作動特性取得装置,制御弁検査装置
JP2006199133A (ja) * 2005-01-20 2006-08-03 Toyota Motor Corp 液圧制御装置および作動特性取得装置
JP2006298313A (ja) * 2005-04-25 2006-11-02 Toyota Motor Corp 液圧制御装置および作動特性取得装置
JP2013208987A (ja) * 2012-03-30 2013-10-10 Toyota Motor Corp シリンダ装置および液圧ブレーキシステム
WO2013150632A1 (ja) * 2012-04-05 2013-10-10 トヨタ自動車株式会社 車両のブレーキ装置
JP2015010630A (ja) * 2013-06-27 2015-01-19 トヨタ自動車株式会社 圧力制御装置
JP2015102233A (ja) * 2013-11-28 2015-06-04 トヨタ自動車株式会社 電磁弁制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113803314A (zh) * 2021-09-10 2021-12-17 浙江华益精密机械有限公司 直动式减泄压阀

Also Published As

Publication number Publication date
JP6502762B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6276144B2 (ja) 液漏れ検知方法
JP5817912B2 (ja) 液圧ブレーキシステム
JP2006151248A (ja) 異常検出装置
US9701288B2 (en) Hydraulic brake system
JP2016043753A (ja) ブレーキ液圧制御装置
JP6654391B2 (ja) 液圧制御装置
JP2015020518A (ja) 液圧ブレーキシステム
JP2000283055A (ja) ポンプ装置および液圧システム
JP6502762B2 (ja) リニア弁特性取得方法,リニア弁特性取得装置
JP6470703B2 (ja) 車両用制動装置
JP2017052305A (ja) 液圧ブレーキシステムおよび作動開始電流取得方法
JP6359976B2 (ja) 液圧ブレーキシステム
US10196049B2 (en) Hydraulic brake system
JP2004237982A (ja) 液圧ブレーキ装置、作動特性取得装置,制御弁検査装置
JP5668727B2 (ja) 車両用ブレーキシステム
JP5692141B2 (ja) 液圧ブレーキシステム
JP6457373B2 (ja) 調圧システム、その調圧システムを備えた車両用液圧ブレーキシステムおよびその調圧システムにおける調圧特性取得方法
JP5494200B2 (ja) 液圧制動システム
JP6567962B2 (ja) 液圧ブレーキシステム
JP2005254898A (ja) 液圧ブレーキ装置
JP6252427B2 (ja) 調圧器、および、それを備えた車両用液圧ブレーキシステム
JP6149823B2 (ja) ブレーキ液圧制御装置および液圧ブレーキシステム
JP6052262B2 (ja) 調圧器、および、それを備えた車両用液圧ブレーキシステム
JP6365204B2 (ja) 調圧器、および、それを備えた車両用液圧ブレーキシステム
JP2015217884A (ja) レギュレータおよび液圧ブレーキシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R151 Written notification of patent or utility model registration

Ref document number: 6502762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250