JP2017004635A - Nonaqueous electrolyte secondary battery, and cathode active material for nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery, and cathode active material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017004635A
JP2017004635A JP2015114485A JP2015114485A JP2017004635A JP 2017004635 A JP2017004635 A JP 2017004635A JP 2015114485 A JP2015114485 A JP 2015114485A JP 2015114485 A JP2015114485 A JP 2015114485A JP 2017004635 A JP2017004635 A JP 2017004635A
Authority
JP
Japan
Prior art keywords
pore volume
positive electrode
active material
diameter
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015114485A
Other languages
Japanese (ja)
Other versions
JP6383326B2 (en
Inventor
和隆 岩▲崎▼
Kazutaka Iwasaki
和隆 岩▲崎▼
拓也 松原
Takuya Matsubara
拓也 松原
小西 始
Hajime Konishi
始 小西
広将 戸屋
Hiromasa Toya
広将 戸屋
治夫 野口
Haruo Noguchi
治夫 野口
哲理 中山
Tetsuri Nakayama
哲理 中山
石井 勝
Masaru Ishii
勝 石井
遼太郎 坂井
Ryotaro Sakai
遼太郎 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Toyota Motor Corp
Primearth EV Energy Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Toyota Motor Corp
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Toyota Motor Corp, Primearth EV Energy Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015114485A priority Critical patent/JP6383326B2/en
Publication of JP2017004635A publication Critical patent/JP2017004635A/en
Application granted granted Critical
Publication of JP6383326B2 publication Critical patent/JP6383326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of improving output properties, and a cathode active material therefor.SOLUTION: A nonaqueous electrolyte secondary battery comprises the cathode active material consisting of secondary particles 112 each consisting of a plurality of primary particles 111 and having a hollow structure. The secondary particle 112 includes a shell part 101 consisting of the primary particles 111, and a hollow part 102 that is formed inside of the shell part 101. In the shell part 101, a through-hole 110 is provided that communicates the outside of the shell part 101 with the hollow part 102 of the shell part 101. Regarding the cathode active material, a pore volume which is calculated by pore volume distribution measurement according to a method of mercury penetration and is a partial pore volume indicating a total volume of all the through-holes each having a diameter of 0.1 μm or more and 0.6 μm or less is 0.045 ml/g or more, and the percentage of the partial pore volume with respect to all the pore volumes indicating all the volumes of the through-holes 110 each having a diameter of 1 μm or less is 75% or more.SELECTED DRAWING: Figure 3

Description

本発明は、非水電解液二次電池と、その正極活物質とに関する。   The present invention relates to a non-aqueous electrolyte secondary battery and a positive electrode active material thereof.

リチウムイオン二次電池等の非水電解液二次電池において、中空構造を有する正極活物質を用いるものは、電池の充電状態であるSOC(State Of Charge)が低い状態でも高い出力が得られることが知られている(例えば、特許文献1参照)。   A non-aqueous electrolyte secondary battery such as a lithium ion secondary battery that uses a positive electrode active material having a hollow structure can obtain a high output even when the state of charge (SOC) of the battery is low. Is known (see, for example, Patent Document 1).

特許文献1に開示された正極活物質は、殻部とその内部に形成された中空部(空洞部)とを有する中空構造の粒子形態をなし、殻部は、上記中空部と粒子外部とを連通させる貫通孔を有する。この貫通孔が殻部に形成されることによって、中空部と外部との間で電解液が行き来しやすくなり、殻部を構成する粒子と電解液とが効率よく接触するため、電池の出力特性を高めることができる。また、特許文献1には、貫通孔の開口幅の平均は、概ね0.01μm以上2.0μm以下であると、電解液の流通路として貫通孔をより有効に機能させ得ることも開示されている。   The positive electrode active material disclosed in Patent Document 1 has a hollow particle form having a shell part and a hollow part (hollow part) formed therein, and the shell part includes the hollow part and the particle outside. It has a through hole for communication. By forming this through-hole in the shell, the electrolyte easily flows between the hollow part and the outside, and the particles that make up the shell and the electrolyte efficiently contact each other. Can be increased. Patent Document 1 also discloses that when the average opening width of the through holes is approximately 0.01 μm or more and 2.0 μm or less, the through holes can function more effectively as a flow path for the electrolyte solution. Yes.

特開2014−11070号公報JP 2014-11070 A

しかし、発明者の実験等を通じて、貫通孔の開口幅の平均が上記範囲内であっても、電池の出力特性が良好にならない場合があることが判明した。そのため、貫通孔の適切な開口幅などについては、改善が求められていた。   However, it has been found through experimentation by the inventors that the output characteristics of the battery may not be good even if the average opening width of the through holes is within the above range. For this reason, there has been a demand for improvement of the appropriate opening width of the through holes.

本発明は、上記実情を鑑みてなされたものであり、その目的は、出力特性を良好にすることができる非水電解液二次電池、およびその正極活物質を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the nonaqueous electrolyte secondary battery which can make output characteristics favorable, and its positive electrode active material.

以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する非水電解液二次電池は、複数の一次粒子からなり中空構造を有する二次粒子を正極活物質に含有する非水電解液二次電池であって、前記二次粒子は、前記一次粒子からなる殻部と、前記殻部の内側に形成された中空部とを有し、前記殻部には、当該殻部の外側と当該殻部の中空部とを連通する貫通孔が設けられるとともに、前記貫通孔の直径は、1μm以下であって、水銀圧入法による細孔容積分布測定によって得られるモード径が0.1μm以上0.6μm以下であって、水銀圧入法による細孔容積分布測定によって得られる細孔容積であって0.1μm以上0.6μm以下の直径を有する全ての貫通孔の総容積を示す部分細孔容積が、0.045ml/g以上であり、水銀圧入法による細孔容積分布測定によって得られる細孔容積であって1μm以下の直径を有する全ての貫通孔の総容積を示す全細孔容積に対する前記部分細孔容積の百分率が、75%以上であることを要旨とする。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
A non-aqueous electrolyte secondary battery that solves the above problems is a non-aqueous electrolyte secondary battery that contains secondary particles having a hollow structure made of a plurality of primary particles in a positive electrode active material, wherein the secondary particles are A through-hole that has a shell part made of the primary particles and a hollow part formed inside the shell part, and communicates the outside of the shell part with the hollow part of the shell part. And the diameter of the through hole is 1 μm or less, and the mode diameter obtained by the pore volume distribution measurement by the mercury intrusion method is 0.1 μm or more and 0.6 μm or less. The pore volume obtained by pore volume distribution measurement, the partial pore volume indicating the total volume of all the through-holes having a diameter of 0.1 μm or more and 0.6 μm or less is 0.045 ml / g or more, mercury Obtained by measuring pore volume distribution by press-fitting method The gist is that the percentage of the partial pore volume with respect to the total pore volume indicating the total volume of all through-holes having a diameter of 1 μm or less is 75% or more.

上記課題を解決する非水電解液二次電池の正極活物質は、非水電解液二次電池に備えられ、複数の一次粒子からなり中空構造を有する二次粒子を含有する正極活物質であって、前記二次粒子は、前記一次粒子からなる殻部と、前記殻部の内側に形成された中空部とを有し、前記殻部には、当該殻部の外側と当該殻部の中空部とを連通する貫通孔が設けられるとともに、前記貫通孔の直径は、1μm以下であって、水銀圧入法による細孔容積分布測定によって得られるモード径が0.1μm以上0.6μm以下であって、水銀圧入法による細孔容積分布測定によって得られる細孔容積であって0.1μm以上0.6μm以下の直径を有する全ての貫通孔の総容積を示す部分細孔容積が、0.045ml/g以上であり、水銀圧入法による細孔容積分布測定によって得られる細孔容積であって1μm以下の直径を有する全ての貫通孔の総容積を示す全細孔容積に対する前記部分細孔容積の百分率が、75%以上であることを要旨とする。   A positive electrode active material for a non-aqueous electrolyte secondary battery that solves the above problems is a positive electrode active material that is provided in a non-aqueous electrolyte secondary battery and contains secondary particles that are composed of a plurality of primary particles and have a hollow structure. The secondary particles have a shell portion made of the primary particles and a hollow portion formed inside the shell portion. The shell portion includes an outer portion of the shell portion and a hollow portion of the shell portion. And a diameter of the through hole is 1 μm or less, and a mode diameter obtained by a pore volume distribution measurement by a mercury intrusion method is 0.1 μm or more and 0.6 μm or less. The pore volume obtained by measuring the pore volume distribution by the mercury intrusion method, and the partial pore volume indicating the total volume of all the through holes having a diameter of 0.1 μm or more and 0.6 μm or less is 0.045 ml. / G or more, pore volume by mercury porosimetry The gist of the invention is that the percentage of the partial pore volume with respect to the total pore volume, which is the pore volume obtained by the cloth measurement and indicates the total volume of all the through-holes having a diameter of 1 μm or less, is 75% or more. .

上記各構成では、二次粒子の殻部に設けられる貫通孔は、その最頻値であるモード径が、0.1μm以上0.6以下であって、且つ全細孔容積に対する部分細孔容積の百分率が、75%以上である。このため、貫通孔を介した電解液の中空部への流入、及び中空部から貫通孔を介した電解液の流出が円滑に行われるようになるため、良好な電池の出力特性を得ることができる。   In each of the above configurations, the through hole provided in the shell of the secondary particle has a mode diameter which is the mode value of 0.1 μm or more and 0.6 or less, and a partial pore volume with respect to the total pore volume. % Is 75% or more. For this reason, since the inflow of the electrolyte solution through the through hole into the hollow portion and the outflow of the electrolyte solution from the hollow portion through the through hole are smoothly performed, it is possible to obtain good battery output characteristics. it can.

上記非水電解液二次電池について、前記全細孔容積に対する前記部分細孔容積の百分率が90%以上であることが好ましい。
上記構成では、全細孔容積に対する部分細孔容積の百分率が、90%以上である。このため、貫通孔を介した電解液の中空部への流入、及び中空部から貫通孔を介した電解液の流出が円滑に行われるようになるため、良好な電池の出力特性を得ることができる。
About the said nonaqueous electrolyte secondary battery, it is preferable that the percentage of the said partial pore volume with respect to the said total pore volume is 90% or more.
In the above configuration, the percentage of the partial pore volume with respect to the total pore volume is 90% or more. For this reason, since the inflow of the electrolyte solution through the through hole into the hollow portion and the outflow of the electrolyte solution from the hollow portion through the through hole are smoothly performed, it is possible to obtain good battery output characteristics. it can.

上記非水電解液二次電池について、前記細孔容積分布測定によって得られる細孔容積分布であって、前記貫通孔の直径が0.6μm以下の範囲の細孔容積分布が一峰性の分布であることが好ましい。   The nonaqueous electrolyte secondary battery is a pore volume distribution obtained by the pore volume distribution measurement, and the pore volume distribution in the range where the diameter of the through hole is 0.6 μm or less is a unimodal distribution. Preferably there is.

モード径が0.1μm以上0.6μm以下である二次粒子は、0.1μm以上0.6μm以下の範囲にピークを有する。上記構成では、0.6μm以下の範囲の対数微分細孔容積分布は一峰性の分布であるため、0.1μm以上0.6μm以下の範囲に一つのピークを有し、それ以外のピークを有さない。すなわち、二次粒子の貫通孔の直径は、その多くが0.1μm以上0.6μm以下の範囲に含まれ、その範囲よりも小さい範囲の直径を有する貫通孔は少ない。そのため、貫通孔を介した電解液の中空部への流入、及び中空部から貫通孔を介した電解液の流出が円滑に行われるようになるため、良好な電池の出力特性を得ることができる。   Secondary particles having a mode diameter of 0.1 μm or more and 0.6 μm or less have a peak in the range of 0.1 μm or more and 0.6 μm or less. In the above configuration, since the logarithmic differential pore volume distribution in the range of 0.6 μm or less is a unimodal distribution, it has one peak in the range of 0.1 μm to 0.6 μm and other peaks. No. That is, most of the diameters of the through holes of the secondary particles are included in the range of 0.1 μm or more and 0.6 μm or less, and there are few through holes having a diameter in a range smaller than the range. Therefore, since the inflow of the electrolyte solution through the through hole into the hollow portion and the outflow of the electrolyte solution from the hollow portion through the through hole can be performed smoothly, good output characteristics of the battery can be obtained. .

本発明の非水電解液二次電池およびその正極活物質によれば、電池の出力特性を良好にすることができる。   According to the nonaqueous electrolyte secondary battery and the positive electrode active material of the present invention, the output characteristics of the battery can be improved.

非水電解液二次電池をリチウムイオン二次電池に具体化した一実施形態について、その斜視構造の概略を示す図。The figure which shows the outline of the perspective structure about one Embodiment which actualized the non-aqueous-electrolyte secondary battery to the lithium ion secondary battery. 同実施形態において、リチウムイオン二次電池を構成する電極体の一部を展開した状態を示す図。The figure which shows the state which expand | deployed some electrode bodies which comprise a lithium ion secondary battery in the same embodiment. 同実施形態において、リチウムイオン二次電池の正極を構成する正極活物質粒子(二次粒子)の断面を模式的に示す断面図。Sectional drawing which shows typically the cross section of the positive electrode active material particle (secondary particle) which comprises the positive electrode of a lithium ion secondary battery in the same embodiment. 水銀圧入法による細孔径の測定を説明するための模式図。The schematic diagram for demonstrating the measurement of the pore diameter by the mercury intrusion method. 実施例1〜3及び比較例1,2について、水銀圧入法によって測定された複数の正極活物質試料の細孔容積分布を示すグラフ。The graph which shows the pore volume distribution of the several positive electrode active material sample measured by the mercury intrusion method about Examples 1-3 and Comparative Examples 1 and 2. FIG. 実施例1〜3及び比較例1,2について、総細孔容積に対する部分細孔容積の比率を示す容積比率と電池内部抵抗との関係を示すグラフ。The graph which shows the relationship between the volume ratio which shows the ratio of the partial pore volume with respect to total pore volume, and battery internal resistance about Examples 1-3 and Comparative Examples 1 and 2. FIG. 実施例1〜3及び比較例1,2について、部分細孔容積、容積比率、及び内部抵抗を示表。A table showing partial pore volume, volume ratio, and internal resistance for Examples 1 to 3 and Comparative Examples 1 and 2.

以下、非水電解液二次電池と、その正極活物質とについて、その一実施形態を説明する。本実施形態では、非水電解液二次電池を、リチウムイオン二次電池に具体化して説明する。リチウムイオン二次電池は、リチウムイオンを、正極と負極との間で移動させることによって充放電を行う電池である。   Hereinafter, an embodiment of the non-aqueous electrolyte secondary battery and the positive electrode active material will be described. In the present embodiment, the non-aqueous electrolyte secondary battery is described as a lithium ion secondary battery. A lithium ion secondary battery is a battery that charges and discharges by moving lithium ions between a positive electrode and a negative electrode.

まずリチウムイオン二次電池の構成について説明する。
図1に示すように、リチウムイオン二次電池は、ケース11と、ケース11の開口を封止する蓋体12とを備える。蓋体12には、正極端子13と、負極端子14とが設けられている。ケース11内には、電極体15が、非水電解液とともに収容されている。
First, the configuration of the lithium ion secondary battery will be described.
As shown in FIG. 1, the lithium ion secondary battery includes a case 11 and a lid 12 that seals the opening of the case 11. The lid 12 is provided with a positive electrode terminal 13 and a negative electrode terminal 14. In the case 11, the electrode body 15 is accommodated together with the non-aqueous electrolyte.

図2を参照して、電極体15の構成について説明する。電極体15は、正極である正極シート20と、負極である負極シート30とが、セパレータ40,41を介して巻回された積層体である。正極シート20は、長尺状に形成され、シート状の正極集電体21と、正極集電体21の両面に設けられた正極合材層22とを備える。負極シート30は、長尺状に形成され、シート状の負極集電体31と、負極集電体31の両面に設けられた負極合材層32とを備える。巻回前の積層体は、正極シート20、セパレータ40、負極シート30、セパレータ41の順に積層されている。   The configuration of the electrode body 15 will be described with reference to FIG. The electrode body 15 is a laminate in which a positive electrode sheet 20 that is a positive electrode and a negative electrode sheet 30 that is a negative electrode are wound through separators 40 and 41. The positive electrode sheet 20 is formed in a long shape, and includes a sheet-like positive electrode current collector 21 and a positive electrode mixture layer 22 provided on both surfaces of the positive electrode current collector 21. The negative electrode sheet 30 is formed in a long shape, and includes a sheet-like negative electrode current collector 31 and a negative electrode mixture layer 32 provided on both surfaces of the negative electrode current collector 31. The laminated body before winding is laminated | stacked in order of the positive electrode sheet 20, the separator 40, the negative electrode sheet 30, and the separator 41. FIG.

積層体は、その長尺方向に巻回されることによって巻回体とされ、巻回体をその周面から押圧することによって扁平形状に成形されている。成形後の電極体15であって、その径方向の中央部には、正極合材層22と負極合材層32とが密に積層された部分が形成されている。   The laminated body is formed into a wound body by being wound in the longitudinal direction, and is formed into a flat shape by pressing the wound body from its peripheral surface. In the molded electrode body 15, a portion in which the positive electrode mixture layer 22 and the negative electrode mixture layer 32 are densely laminated is formed in the central portion in the radial direction.

また、正極シート20の長尺方向に沿って延びる一方の端部には、正極合材層22が形成されずに正極集電体21が露出した正極端部23が設けられている。この正極端部23は、負極シート30及びセパレータ40,41からはみ出た状態となっている。この正極端部23は、ケース11内の内部正極端子等を介して、正極端子13に電気的に接続されている。   Further, a positive electrode end portion 23 where the positive electrode current collector 21 is exposed without forming the positive electrode mixture layer 22 is provided at one end portion extending in the longitudinal direction of the positive electrode sheet 20. The positive electrode end portion 23 protrudes from the negative electrode sheet 30 and the separators 40 and 41. The positive electrode end portion 23 is electrically connected to the positive electrode terminal 13 via an internal positive electrode terminal or the like in the case 11.

また、負極シート30の長尺方向に沿って延びる一方の端部にも、負極合材層32が形成されずに負極集電体31が露出した負極端部33が設けられている。この負極端部33は、正極シート20及びセパレータ40,41からはみ出た状態となっている。この負極端部33は、ケース11内の内部負極端子等を介して、負極端子14に電気的に接続されている。   In addition, a negative electrode end portion 33 in which the negative electrode current collector 31 is exposed without forming the negative electrode mixture layer 32 is provided at one end portion extending in the longitudinal direction of the negative electrode sheet 30. The negative electrode end 33 protrudes from the positive electrode sheet 20 and the separators 40 and 41. The negative electrode end portion 33 is electrically connected to the negative electrode terminal 14 via an internal negative electrode terminal or the like in the case 11.

(正極)
次に、正極について詳述する。まず、正極シート20を構成する正極集電体21は、従来の二次電池の構成要素と同様の構成要素を用いることができる。例えば、正極集電体21の材料として、導電性の良好な金属からなる導電性材料が好ましく用いられる。例えば、導電性材料としては、アルミニウムを含む材料、アルミニウム合金を含む材料を用いることができる。
(Positive electrode)
Next, the positive electrode will be described in detail. First, the positive electrode current collector 21 constituting the positive electrode sheet 20 can use the same components as those of a conventional secondary battery. For example, as the material of the positive electrode current collector 21, a conductive material made of a metal having good conductivity is preferably used. For example, as the conductive material, a material containing aluminum or a material containing an aluminum alloy can be used.

正極合材層22に含まれる正極活物質は、層状の結晶構造を有するリチウム遷移金属酸化物を含有する。リチウム遷移金属酸化物は、Li以外に、1乃至複数の所定の遷移金属元素を含む。リチウム遷移金属酸化物に含有される遷移金属元素は、Ni,Co,Mnの少なくとも一つであることが好ましい。   The positive electrode active material contained in the positive electrode mixture layer 22 contains a lithium transition metal oxide having a layered crystal structure. The lithium transition metal oxide contains one or more predetermined transition metal elements in addition to Li. The transition metal element contained in the lithium transition metal oxide is preferably at least one of Ni, Co, and Mn.

上記リチウム遷移金属酸化物の好適な一例として、Ni,CoおよびMnの全てを含むリチウム遷移金属酸化物(以下「LNCM酸化物」と表記することもある。)が挙げられる。   A preferable example of the lithium transition metal oxide is a lithium transition metal oxide containing all of Ni, Co, and Mn (hereinafter sometimes referred to as “LNCM oxide”).

正極活物質は、遷移金属元素(すなわち、Ni,CoおよびMnの少なくとも1種)の他に、付加的に、1種または複数種の元素を含有し得る。付加的な元素としては、周期表の1族(ナトリウム等のアルカリ金属)、2族(マグネシウム、カルシウム等のアルカリ土類金属)、4族(チタン、ジルコニウム等の遷移金属)、6族(クロム、タングステン等の遷移金属)、8族(鉄等の遷移金属)、13族(半金属元素であるホウ素、もしくはアルミニウムのような金属)および17族(フッ素のようなハロゲン)に属するいずれかの元素を含むことができる。   In addition to the transition metal element (that is, at least one of Ni, Co, and Mn), the positive electrode active material can additionally contain one or more elements. Additional elements include Group 1 (alkali metals such as sodium), Group 2 (alkaline earth metals such as magnesium and calcium), Group 4 (transition metals such as titanium and zirconium), Group 6 (chromium). , Transition metals such as tungsten), group 8 (transition metals such as iron), group 13 (metals such as boron, which is a semimetal element) and group 17 (halogens such as fluorine) Elements can be included.

好ましい一態様において、正極活物質は、下記一般式(1)で表される組成(平均組成)を有し得る。

Li1+xNiCoMn(1−y−z)MAαMBβ …(1)

上記式(1)において、xは、0≦x≦0.2を満たす実数であり得る。yは、0.1<y<0.6を満たす実数であり得る。zは、0.1<z<0.6を満たす実数であり得る。MAは、W,CrおよびMoから選択される少なくとも1種の金属元素であり、αは0<α≦0.01(典型的には0.0005≦α≦0.01、例えば0.001≦α≦0.01)を満たす実数である。MBは、Zr,Mg,Ca,Na,Fe,Zn,Si,Sn,Al,BおよびFからなる群から選択される1種または2種以上の元素であり、βは0≦β≦0.01を満たす実数であり得る。βが実質的に0(すなわち、MBを実質的に含有しない酸化物)であってもよい。なお、層状構造のリチウム遷移金属酸化物を示す化学式では、便宜上、O(酸素)の組成比を2として示しているが、この数値は厳密に解釈されるべきではなく、多少の組成の変動(典型的には1.95以上2.05以下の範囲に包含される)を許容し得るものである。
In a preferred embodiment, the positive electrode active material may have a composition (average composition) represented by the following general formula (1).

Li 1 + x Ni y Co z Mn (1-yz) MA α MB β O 2 (1)

In the above formula (1), x may be a real number that satisfies 0 ≦ x ≦ 0.2. y may be a real number that satisfies 0.1 <y <0.6. z may be a real number that satisfies 0.1 <z <0.6. MA is at least one metal element selected from W, Cr and Mo, and α is 0 <α ≦ 0.01 (typically 0.0005 ≦ α ≦ 0.01, for example 0.001 ≦ It is a real number satisfying α ≦ 0.01). MB is one or more elements selected from the group consisting of Zr, Mg, Ca, Na, Fe, Zn, Si, Sn, Al, B, and F, and β is 0 ≦ β ≦ 0. It can be a real number satisfying 01. β may be substantially 0 (that is, an oxide containing substantially no MB). Note that in the chemical formula showing the lithium transition metal oxide having a layered structure, the composition ratio of O (oxygen) is shown as 2 for convenience, but this numerical value should not be interpreted strictly, and some composition variation ( (Typically included in the range of 1.95 to 2.05).

(正極活物質の中空構造)
次に図3を参照して、正極活物質の中空構造について説明する。正極活物質は、典型的には、殻部101と、その内部に形成された中空部102(空洞部)とを有する中空構造の粒子形態をなす。この正極活物質粒子100は、典型的には、概ね球形、やや歪んだ球形等であり得る。正極活物質粒子100の殻部101は、中空部102と粒子外部とを連通させる貫通孔110を有する。
(Hollow structure of positive electrode active material)
Next, the hollow structure of the positive electrode active material will be described with reference to FIG. The positive electrode active material typically takes the form of a hollow-structured particle having a shell portion 101 and a hollow portion 102 (hollow portion) formed therein. Typically, the positive electrode active material particles 100 may have a generally spherical shape, a slightly distorted spherical shape, or the like. The shell portion 101 of the positive electrode active material particle 100 has a through hole 110 that allows the hollow portion 102 to communicate with the outside of the particle.

殻部101は、リチウム遷移金属酸化物の一次粒子111が球殻状に集まって形成されたものである。即ち、正極活物質粒子100は、一次粒子111が集まった二次粒子112である。ここで「一次粒子」とは、外見上の幾何学的形態から判断して単位粒子(ultimate particle)と考えられる粒子を指す。ここに開示される正極活物質において、一次粒子111は、典型的にはリチウム遷移金属酸化物の結晶子の集合物である。正極活物質の形状観察はSEM(Scanning Electron Microscope)画像により行うことができる。中空部102は、隣接する二次粒子112の間に存在する隙間より大きい空間である。   The shell portion 101 is formed by collecting primary particles 111 of a lithium transition metal oxide in a spherical shell shape. That is, the positive electrode active material particles 100 are secondary particles 112 in which primary particles 111 are collected. Here, the “primary particle” refers to a particle that is considered to be a unit particle (ultimate particle) based on an apparent geometric form. In the positive electrode active material disclosed herein, the primary particles 111 are typically a collection of crystallites of a lithium transition metal oxide. The shape of the positive electrode active material can be observed with a SEM (Scanning Electron Microscope) image. The hollow portion 102 is a space larger than a gap existing between adjacent secondary particles 112.

一次粒子111は、その長径L1が、0.1μm以上1.0μm以下であり得る。長径L1が小さすぎると、電池の容量維持性が低下傾向となることがあり得る。そのような観点から、長径L1は0.2μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.4μm以上であることがさらに好ましい。なお、長径L1は、正極活物質粒子表面のSEM画像において、概ね最も長い長径L1を有する一次粒子111を選択し、当該選択された一次粒子111において最も長い径を長径L1とするとよい。   The primary particle 111 may have a major axis L1 of 0.1 μm or more and 1.0 μm or less. If the long diameter L1 is too small, the capacity maintenance of the battery may tend to decrease. From such a viewpoint, the major axis L1 is preferably 0.2 μm or more, more preferably 0.3 μm or more, and further preferably 0.4 μm or more. For the long diameter L1, it is preferable to select the primary particle 111 having the longest long diameter L1 in the SEM image of the surface of the positive electrode active material particle, and set the longest diameter in the selected primary particle 111 as the long diameter L1.

一方、長径L1が大きすぎると、結晶の表面から内部(L1の中央部)までの距離(Liイオンの拡散距離)が長くなるため、結晶内部へのイオン拡散が遅くなり、出力特性(特に、低SOC域における出力特性)が低くなりがちである。そのような観点から、長径L1は0.8μm以下であることが好ましい。好ましい一態様では、一次粒子の長径L1は0.2μm以上0.8μm以下である。一次粒子111の長径L1は、例えば、正極活物質粒子100の粒子表面のSEM画像に基づいて測定することができる。   On the other hand, if the major axis L1 is too large, the distance (Li ion diffusion distance) from the surface of the crystal to the inside (the center portion of L1) becomes long, so that the ion diffusion into the crystal becomes slow, and the output characteristics (particularly, The output characteristics in the low SOC range tend to be low. From such a viewpoint, the major axis L1 is preferably 0.8 μm or less. In a preferred embodiment, the major particle L1 of the primary particles is 0.2 μm or more and 0.8 μm or less. The major axis L1 of the primary particle 111 can be measured based on, for example, an SEM image of the particle surface of the positive electrode active material particle 100.

正極活物質粒子100の平均粒径(二次粒径)は、例えば、およそ2μm以上であることが好ましく、3μm以上であることがより好ましい。正極活物質粒子100の平均粒径が小さすぎると、中空部102の容積も小さくなるため、中空部102に蓄えられる電解液の量も少なくなる。また、正極活物質の生産性の観点からは、正極活物質粒子100の平均粒径は25μm以下であることが好ましく、15μm以下であることがより好ましい。好ましい一態様では、正極活物質の平均粒径は、3μm以上10μm以下である。上記正極活物質粒子の平均粒径は、当該分野で公知の方法、例えばレーザ回折散乱法に基づく測定による体積基準のメジアン径(D50:50%体積平均粒径)として求めることができる。 The average particle diameter (secondary particle diameter) of the positive electrode active material particles 100 is, for example, preferably about 2 μm or more, and more preferably 3 μm or more. When the average particle diameter of the positive electrode active material particles 100 is too small, the volume of the hollow portion 102 is also small, and the amount of the electrolyte solution stored in the hollow portion 102 is also small. Further, from the viewpoint of productivity of the positive electrode active material, the average particle diameter of the positive electrode active material particles 100 is preferably 25 μm or less, and more preferably 15 μm or less. In a preferred embodiment, the positive electrode active material has an average particle size of 3 μm or more and 10 μm or less. The average particle diameter of the positive electrode active material particles can be determined as a volume-based median diameter (D 50 : 50% volume average particle diameter) measured by a method known in the art, for example, a laser diffraction scattering method.

正極活物質粒子100は、粒子空孔率が5%以上の中空構造を有することが好ましい。ここで、「粒子空孔率」とは、正極合材層22をランダムな位置で切断した断面の平均において、該活物質の見かけの断面積のうち中空部102が占める割合をいう。この割合は、例えば、正極合材層22の断面におけるSEM画像を通じて把握することができる。   The positive electrode active material particles 100 preferably have a hollow structure with a particle porosity of 5% or more. Here, the “particle porosity” refers to the ratio of the hollow portion 102 in the apparent cross-sectional area of the active material in the average of the cross sections obtained by cutting the positive electrode mixture layer 22 at random positions. This ratio can be grasped through an SEM image in the cross section of the positive electrode mixture layer 22, for example.

粒子空孔率は、10%以上であることがより好ましく、15%以上であることがさらに好ましい。粒子空孔率の上限は特に限定されないが、中空構造の耐久性や製造容易性等の点から、通常は95%以下とすることが適当である。   The particle porosity is more preferably 10% or more, and further preferably 15% or more. The upper limit of the particle porosity is not particularly limited, but it is usually suitably 95% or less from the viewpoint of the durability of the hollow structure and the ease of production.

次に、殻部101の構成について説明する。好ましい一態様では、殻部101は、一次粒子111が環状(数珠状)に連なった形態を有する。一次粒子111は、殻部101の厚み方向において、単層であってもよく、多層であってもよい。   Next, the configuration of the shell 101 will be described. In a preferred embodiment, the shell portion 101 has a form in which the primary particles 111 are arranged in a ring shape (beaded). The primary particles 111 may be a single layer or multiple layers in the thickness direction of the shell portion 101.

好ましい一態様に係る正極活物質粒子100は、殻部101の全体に亘って、一次粒子111が実質的に単層で連なった形態に構成されている。また、殻部101が多層構造である場合、一次粒子111の積層数は、およそ5個以下(例えば2〜5個)であることが好ましく、およそ3個以下(例えば2〜3個)であることがより好ましい。なお、図3に示す正極活物質粒子100は、その構成の一例を示すものであり、殻部101の層数、中空部102の形状、殻部101の厚みと中空部102の幅との比率、貫通孔110の数や大きさ等は、図3に示す正極活物質粒子100に限定されるものではない。   The positive electrode active material particles 100 according to a preferred embodiment are configured in such a manner that the primary particles 111 are substantially continuous in a single layer over the entire shell portion 101. When the shell 101 has a multilayer structure, the number of the primary particles 111 stacked is preferably about 5 or less (for example, 2 to 5), and about 3 or less (for example, 2 to 3). It is more preferable. Note that the positive electrode active material particle 100 shown in FIG. 3 shows an example of the configuration, and the number of layers of the shell portion 101, the shape of the hollow portion 102, the ratio of the thickness of the shell portion 101 and the width of the hollow portion 102. The number and size of the through holes 110 are not limited to the positive electrode active material particles 100 shown in FIG.

また、殻部101は、貫通孔110以外の部分では、少なくとも一般的な電解液を通過させない程度に緻密に焼結している。この構造の正極活物質粒子100によると、正極活物質粒子100の外部と中空部102との間で電解液が流通し得る箇所が、貫通孔110のある箇所に制限される。   Further, the shell 101 is densely sintered at a portion other than the through-hole 110 so as not to allow at least a general electrolytic solution to pass therethrough. According to the positive electrode active material particles 100 having this structure, the locations where the electrolytic solution can flow between the outside of the positive electrode active material particles 100 and the hollow portion 102 are limited to the locations where the through holes 110 are present.

殻部101の厚さは、好ましくは3.0μm以下であり、より好ましくは2.5μm以下、さらに好ましくは2.0μm以下である。殻部101の厚さが小さいほど、充電時には殻部101の内部(厚さの中央部)からもLiイオンが放出されやすく、放電時にはLiイオンが殻部101の内部まで吸収されやすくなる。   The thickness of the shell portion 101 is preferably 3.0 μm or less, more preferably 2.5 μm or less, and still more preferably 2.0 μm or less. The smaller the thickness of the shell portion 101, the easier it is to release Li ions from the inside of the shell portion 101 (the central portion of the thickness) during charging, and it becomes easier for Li ions to be absorbed up to the inside of the shell portion 101 during discharging.

殻部101の厚さの下限値は特に限定されないが、通常は、概ね0.1μm以上であることが好ましい。殻部の厚さを0.1μm以上とすることにより、電池の製造時または使用時に加わり得る応力や、充放電に伴う正極活物質の膨張収縮等に対して、高い耐久性を保持することができる。内部抵抗低減効果と耐久性とを両立させる観点からは、殻部の厚さはおよそ0.1μm以上2.2μm以下であることが好ましく、0.2μm以上2.0μm以下であることがより好ましく、0.5μm以上1.5μm以下であることが特に好ましい。   Although the lower limit value of the thickness of the shell portion 101 is not particularly limited, it is generally preferable that the thickness is generally 0.1 μm or more. By setting the thickness of the shell portion to 0.1 μm or more, high durability can be maintained against stress that can be applied during the manufacture or use of the battery, expansion / contraction of the positive electrode active material accompanying charge / discharge, and the like. it can. From the viewpoint of achieving both an internal resistance reduction effect and durability, the thickness of the shell is preferably about 0.1 μm to 2.2 μm, more preferably 0.2 μm to 2.0 μm. It is particularly preferably 0.5 μm or more and 1.5 μm or less.

次に、貫通孔110について詳述する。殻部101の貫通孔110は、中空部102と、正極活物質粒子100の外部とで電解液を行き来させる。貫通孔110は、殻部101を構成する複数の一次粒子111の間に設けられた隙間によって構成される。殻部101に貫通孔110が設けられることで、外部の電解液が貫通孔110を介して中空部102に流入しやすくなるとともに、中空部102内の電解液が貫通孔110を介して外部に流出しやすくなる。その結果、中空部102内の電解液が適当に入れ替わる。   Next, the through hole 110 will be described in detail. The through hole 110 of the shell part 101 allows the electrolyte solution to pass back and forth between the hollow part 102 and the outside of the positive electrode active material particles 100. The through hole 110 is constituted by a gap provided between the plurality of primary particles 111 constituting the shell portion 101. By providing the through-hole 110 in the shell portion 101, it is easy for an external electrolyte to flow into the hollow portion 102 through the through-hole 110, and the electrolyte in the hollow portion 102 is exposed to the outside via the through-hole 110. It becomes easy to leak. As a result, the electrolytic solution in the hollow portion 102 is appropriately replaced.

また、中空部102には電解液が蓄えられるため、正極合材層22で電解液が不足する、液枯れも生じにくくなる。リチウムイオン二次電池は、リチウムイオンの移動により充放電を行うため、中空部102と外部との間で電解液を行き来しやすくすることで、中空部102に面する一次粒子111がより活発に充放電に活用され得る。   Moreover, since electrolyte solution is stored in the hollow part 102, electrolyte solution runs short in the positive electrode mixture layer 22, and it becomes difficult to produce liquid withering. Since the lithium ion secondary battery charges and discharges by movement of lithium ions, the primary particles 111 facing the hollow portion 102 are more actively activated by facilitating the transfer of the electrolyte between the hollow portion 102 and the outside. It can be utilized for charging and discharging.

また、リチウムイオン二次電池の内部抵抗は、活物質と電解液との界面の電荷移動抵抗、正極活物質内のLiイオンの拡散移動抵抗、電解液の溶液抵抗等の複数の抵抗成分から構成される。中空構造の正極活物質粒子100の場合、貫通孔110の数や直径等も、Liイオンの拡散に影響を与えるため、リチウムイオン二次電池の内部抵抗に寄与すると考えられる。   The internal resistance of the lithium ion secondary battery is composed of a plurality of resistance components such as charge transfer resistance at the interface between the active material and the electrolyte, diffusion transfer resistance of Li ions in the positive electrode active material, and solution resistance of the electrolyte. Is done. In the case of the positive electrode active material particles 100 having a hollow structure, the number and diameter of the through-holes 110 also affect the diffusion of Li ions, and thus are considered to contribute to the internal resistance of the lithium ion secondary battery.

正極活物質粒子100が有する貫通孔110の数は、正極活物質粒子100の一粒子当たりの平均として、およそ1〜10個程度(例えば1〜5個)であることが好ましい。上記平均貫通孔数が多すぎると、中空形状を維持しにくくなることがある。また、平均貫通孔数は多いほど電解液が行き来しやすくなるが、平均貫通孔数を多くすると単位体積あたりの正極活物質量が少なくなるため、エネルギー密度が低下する。このため、貫通孔110の数は、必要最小限とすることが好ましい。   The number of through-holes 110 included in the positive electrode active material particles 100 is preferably about 1 to 10 (for example, 1 to 5) as an average per particle of the positive electrode active material particles 100. If the average number of through holes is too large, it may be difficult to maintain the hollow shape. Further, the larger the average number of through-holes, the easier the electrolyte goes back and forth. However, when the average number of through-holes is increased, the amount of the positive electrode active material per unit volume decreases, and the energy density decreases. For this reason, it is preferable that the number of through-holes 110 be the minimum necessary.

また、一つの正極活物質粒子100に設けられる複数の貫通孔110の直径Dは、1μm以下におけるモード径が、0.1μm以上0.6μm以下である。貫通孔110の直径Dは、貫通孔110を円形状の孔にモデル化したときの直径であり、必ずしも貫通孔110の開口幅の最大値を示すものではない。   The diameter D of the plurality of through holes 110 provided in one positive electrode active material particle 100 has a mode diameter of 0.1 μm or more and 0.6 μm or less at 1 μm or less. The diameter D of the through hole 110 is a diameter when the through hole 110 is modeled as a circular hole, and does not necessarily indicate the maximum value of the opening width of the through hole 110.

貫通孔110の直径Dのモード径が、0.1μm以上であると、電解液の流通路として貫通孔110をより有効に機能させ得る。貫通孔110の直径Dが0.6μmよりも大きいと、殻部101の全体に対する空孔率が大きくなるため、殻部101の強度が低下する可能性がある。なお、直径が1μm超の細孔は、二次粒子112である正極活物質粒子100の隙間の大きさに相当するため、貫通孔110とみなさない。   When the mode diameter of the diameter D of the through hole 110 is 0.1 μm or more, the through hole 110 can function more effectively as a flow path for the electrolytic solution. If the diameter D of the through hole 110 is larger than 0.6 μm, the porosity of the entire shell portion 101 is increased, and thus the strength of the shell portion 101 may be reduced. Note that pores having a diameter of more than 1 μm correspond to the size of the gap between the positive electrode active material particles 100 that are the secondary particles 112, and thus are not regarded as the through holes 110.

正極活物質粒子100における貫通孔110のモード径は、水銀圧入法により測定される細孔容積分布から求められる。一般的に、細孔容積分布は、細孔の直径と、同じ直径(又は同じ直径範囲)を有する複数の細孔の総容積との関係を示すものであり、モード径は、細孔容積が最大となるときの直径である。   The mode diameter of the through hole 110 in the positive electrode active material particle 100 is obtained from the pore volume distribution measured by a mercury intrusion method. In general, the pore volume distribution indicates the relationship between the pore diameter and the total volume of a plurality of pores having the same diameter (or the same diameter range). This is the maximum diameter.

水銀圧入法は、水銀と固体試料との接触角が大きいことを利用した測定法である。細孔を含む固体試料と水銀とが接触しただけでは、直径が小さい細孔には水銀は浸入しない。このため、水銀を加圧することによって固体試料の細孔に水銀を浸入させ、細孔の直径と容積とを算出する。水銀に加える圧力が大きくなるほど、直径が小さい細孔に水銀が浸入する。また、細孔に圧入された水銀量から、細孔容積が算出される。   The mercury intrusion method is a measurement method that utilizes the large contact angle between mercury and a solid sample. Mercury does not penetrate into pores with a small diameter simply by contacting a solid sample containing pores with mercury. For this reason, mercury is intruded into the pores of the solid sample by pressurizing mercury, and the diameter and volume of the pores are calculated. As the pressure applied to mercury increases, mercury penetrates into pores with a small diameter. Further, the pore volume is calculated from the amount of mercury press-fitted into the pores.

図4を参照して、水銀に加えられる圧力と、一般的な細孔の直径Dとの関係について説明する。細孔200は、底部を有する円形状の孔であると仮定する。圧力Pが加えられた水銀201が、直径Dの細孔200に浸入しうるとき、下記数式1に従って、圧力Pと、水銀の接触角θと、水銀の表面張力σとから、細孔200の直径Dが求められる。即ち、水銀201に圧力Pが加えられたとき、下記数式1で求められる直径D以上の細孔200に水銀201が浸入するとみなすことができる。なお、接触角θ及び表面張力σは、定数を用いることが多い。   With reference to FIG. 4, the relationship between the pressure applied to mercury and the diameter D of a general pore is demonstrated. The pore 200 is assumed to be a circular hole having a bottom. When the mercury 201 to which the pressure P is applied can enter the pore 200 having the diameter D, the pressure P, the contact angle θ of mercury, and the surface tension σ of mercury are determined according to the following formula 1. A diameter D is determined. That is, when the pressure P is applied to the mercury 201, it can be considered that the mercury 201 enters the pores 200 having a diameter D or more obtained by the following formula 1. In many cases, constants are used for the contact angle θ and the surface tension σ.


−4σcosθ=PD ・・・(数式1)

正極活物質粒子100の細孔容積を測定する方法の一例について説明する。装置として、水銀ポロシメータが用いられる。また、正極活物質の試料をセルに入れて、セル内を真空排気する。さらに真空排気したセル内に水銀を注入し、水銀に圧力を加える。このとき、圧力を、例えば14kPa〜414MPaまで変化させる。なお、測定圧力「14kPa」では、直径Dが90μm相当からそれ以上の大きさの細孔に水銀を浸入させることができる。測定圧力「414MPa」では、直径Dが0.003μm相当からそれ以上の大きさの細孔に水銀を浸入させることができる。

−4σ cos θ = PD (Formula 1)

An example of a method for measuring the pore volume of the positive electrode active material particles 100 will be described. A mercury porosimeter is used as the device. Further, a sample of the positive electrode active material is put in the cell, and the inside of the cell is evacuated. Further, mercury is injected into the evacuated cell and pressure is applied to the mercury. At this time, the pressure is changed, for example, from 14 kPa to 414 MPa. Note that at a measurement pressure of “14 kPa”, mercury can be introduced into pores having a diameter D corresponding to 90 μm or more and larger. At a measurement pressure of “414 MPa”, mercury can be infiltrated into pores having a diameter D equivalent to 0.003 μm or more.

なお、正極活物質粒子100を試料としたとき、殻部101に形成された貫通孔110は、中空部102と連通しているため、水銀圧入法によって測定される細孔容積分布に基づき得られた細孔容積は、実質的に中空部102の容積も含む。   When the positive electrode active material particle 100 is used as a sample, the through-hole 110 formed in the shell portion 101 communicates with the hollow portion 102 and is thus obtained based on the pore volume distribution measured by the mercury intrusion method. The pore volume substantially includes the volume of the hollow portion 102.

また、モード径を測定するにあたり、水銀の密度は、13.52g/ml以上13.54g/ml以下であればよく、接触角θは、130°以上140°以下であればよく、表面張力σは、480dyns/cm以上485dyns/cm以下であればよい。   Further, in measuring the mode diameter, the mercury density may be 13.52 g / ml or more and 13.54 g / ml or less, the contact angle θ may be 130 ° or more and 140 ° or less, and the surface tension σ May be 480 dyns / cm or more and 485 dyns / cm or less.

ここで、水銀圧入法によって得られる細孔容積であって1μm以下の径を有する貫通孔110の全容積を全細孔容積Vaとし、0.1μm以上0.6μm以下の径を有する貫通孔110の全容積を部分細孔容積Vbとすると、全細孔容積Vaに対する部分細孔容積Vbの百分率である容積比率Rt(Rt=(Vb/Va)・100)が、75%以上である。容積比率Rtが、75%以上であると、0.1μm以上0.6μm以下の径を有する貫通孔110の割合を十分に多くすることができる。当該貫通孔110は、電解液の流通路として有効に機能する孔であるため、リチウムイオン二次電池において内部抵抗を低下させることができる。   Here, the total volume of the through holes 110 having a diameter of 1 μm or less, which is a pore volume obtained by the mercury intrusion method, is defined as a total pore volume Va, and the through holes 110 having a diameter of 0.1 μm or more and 0.6 μm or less. Is the partial pore volume Vb, the volume ratio Rt (Rt = (Vb / Va) · 100), which is a percentage of the partial pore volume Vb to the total pore volume Va, is 75% or more. When the volume ratio Rt is 75% or more, the ratio of the through holes 110 having a diameter of 0.1 μm or more and 0.6 μm or less can be sufficiently increased. Since the through-hole 110 is a hole that effectively functions as a flow path for the electrolytic solution, the internal resistance can be reduced in the lithium ion secondary battery.

また、部分細孔容積Vbは、0.045ml/g以上である。部分細孔容積Vbが、0.045ml/g以上であって、且つ容積比率Rtが75%以上であると、0.1μm以上0.6μm以下の径を有する貫通孔110を通じて、正極活物質粒子100の中空部内に十分な量の電解液が蓄えられ、リチウムイオン二次電池の内部抵抗を低下させることができる。また、十分な量の電解液が蓄えられることにより、大電流放電にも対応可能であるため、電気自動車(ハイブリッド自動車を含む)にも好適に利用可能である。なお、部分細孔容積Vbが0.045ml/g未満であると、0.1μm以上0.6μm以下の径を有する貫通孔110を有していても、当該貫通孔110を介して正極活物質粒子100内に十分な量の電解液が入り込まない。そのため、リチウムイオン二次電池の内部抵抗が高くなってしまい、大電流にも対応できない。また、容積比率Rtを90%以上とすると、内部抵抗をさらに低下させることができる。   The partial pore volume Vb is 0.045 ml / g or more. When the partial pore volume Vb is 0.045 ml / g or more and the volume ratio Rt is 75% or more, the positive electrode active material particles pass through the through holes 110 having a diameter of 0.1 μm or more and 0.6 μm or less. A sufficient amount of electrolyte is stored in the hollow portion of 100, and the internal resistance of the lithium ion secondary battery can be reduced. In addition, since a sufficient amount of electrolyte can be stored, it is possible to cope with a large current discharge, and therefore it can be suitably used for electric vehicles (including hybrid vehicles). When the partial pore volume Vb is less than 0.045 ml / g, the positive electrode active material can be provided through the through-hole 110 even if the through-hole 110 has a diameter of 0.1 μm or more and 0.6 μm or less. A sufficient amount of electrolyte does not enter the particles 100. For this reason, the internal resistance of the lithium ion secondary battery becomes high, and it cannot cope with a large current. Further, when the volume ratio Rt is 90% or more, the internal resistance can be further reduced.

なお、正極は、正極活物質として、上述した中空構造の正極活物質のほかに、従来公知の他の正極活物質(例えば中実構造の正極活物質)を含んでもよい。但し、他の正極活物質の割合は、正極活物質全体の50質量%以下、好ましくは30質量%以下、より好ましくは10質量%以下とすることが望ましい。   The positive electrode may include other positive electrode active materials known in the art (for example, a positive electrode active material having a solid structure) in addition to the above-described positive electrode active material having a hollow structure as a positive electrode active material. However, the proportion of the other positive electrode active material is 50% by mass or less, preferably 30% by mass or less, more preferably 10% by mass or less of the entire positive electrode active material.

次に、中空構造の正極活物質粒子100の作用について説明する。この正極活物質粒子100と対比されるものとしては、一般的な多孔質構造の粒子が挙げられる。ここで多孔質構造とは、実体のある部分と空隙部分とが粒子全体にわたって混在している構造(スポンジ状構造)を指す。多孔質構造を有する正極活物質粒子の代表例として、いわゆる噴霧焼成法(スプレードライ製法と称されることもある。)により得られた正極活物質粒子が挙げられる。本実施形態における中空構造の正極活物質粒子は、実体のある部分が殻部101に偏っており、中空部102に明確にまとまった空間が形成されているという点で、上記多孔質構造の正極活物質粒子とは、構造上、明らかに区別されるものである。   Next, the effect | action of the positive electrode active material particle 100 of a hollow structure is demonstrated. Examples of contrast with the positive electrode active material particles 100 include particles having a general porous structure. Here, the porous structure refers to a structure (sponge-like structure) in which a substantial part and a void part are mixed over the entire particle. As a typical example of the positive electrode active material particles having a porous structure, positive electrode active material particles obtained by a so-called spray firing method (sometimes referred to as a spray dry production method) can be given. The positive electrode active material particles having a hollow structure according to the present embodiment are such that the substantial portion is biased toward the shell portion 101, and a space is clearly formed in the hollow portion 102. The active material particles are clearly distinguished from each other in structure.

上記の中空構造を有する正極活物質粒子100は、内部に空洞のない緻密構造の正極活物質粒子に比べて、一次粒子111の凝集が少ない。そのため、該粒子内の粒界が少なく、粒子内部へのLiイオンの拡散が速い。このような粒界の少ない正極活物質粒子100によると、正極活物質粒子100を有するリチウムイオン二次電池の出力特性を向上させることができる。   The positive electrode active material particles 100 having the hollow structure described above have less aggregation of the primary particles 111 than the positive electrode active material particles having a dense structure without a cavity inside. Therefore, there are few grain boundaries in the particles, and Li ions diffuse quickly into the particles. According to the positive electrode active material particles 100 with few grain boundaries, the output characteristics of the lithium ion secondary battery having the positive electrode active material particles 100 can be improved.

例えば、低SOC域の電池出力では、正極活物質のLi固体内拡散性が律速であり、Li固体内拡散性にはLi拡散距離が影響する。このため、正極活物質粒子100を、貫通孔110を有する中空構造とし、且つ貫通孔110のモード径と容積比率Rtとを好ましい範囲とすることで、貫通孔110を介して殻部101のLiイオンと電解液とを効率よく接触させることが可能となる。これにより、Liイオンの固体内拡散性が高められ、リチウムイオン二次電池の内部抵抗が低下するので、低SOC域の出力特性を向上することができる。   For example, at the battery output in the low SOC range, the Li solid diffusivity of the positive electrode active material is rate limiting, and the Li diffusion distance affects the Li solid diffusivity. For this reason, the positive electrode active material particles 100 have a hollow structure having the through-holes 110, and the mode diameter and volume ratio Rt of the through-holes 110 are in a preferable range, so that the Li of the shell portion 101 is interposed through the through-holes 110. It becomes possible to make an ion and electrolyte solution contact efficiently. Thereby, the in-solid diffusibility of Li ions is enhanced, and the internal resistance of the lithium ion secondary battery is lowered, so that the output characteristics in the low SOC region can be improved.

(負極)
次に、負極について説明する。負極集電体31としては、従来のリチウムイオン二次電池と同様に、導電性の良好な金属からなる導電性部材が好ましく用いられる。そのような導電性部材としては、例えば銅または銅を主成分とする合金を用いることができる。
(Negative electrode)
Next, the negative electrode will be described. As the negative electrode current collector 31, a conductive member made of a metal having good conductivity is preferably used as in the case of a conventional lithium ion secondary battery. As such a conductive member, for example, copper or an alloy containing copper as a main component can be used.

負極合材層には、電荷担体となるLiイオンを吸蔵および放出可能な負極活物質が含まれる。負極活物質の組成や形状に特に制限はなく、従来からリチウムイオン二次電池に用いられる物質の1種または2種以上を使用することができる。そのような負極活物質としては、例えばリチウムイオン二次電池で一般的に用いられる炭素材料が挙げられる。上記炭素材料の代表例としては、グラファイトカーボン(黒鉛)、アモルファスカーボン等が挙げられる。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。その他、負極活物質として、チタン酸リチウム等の酸化物、ケイ素材料、スズ材料等の単体、合金、化合物、上記材料を併用した複合材料を用いることも可能である。   The negative electrode mixture layer includes a negative electrode active material that can occlude and release Li ions serving as charge carriers. There is no restriction | limiting in particular in a composition and a shape of a negative electrode active material, The 1 type (s) or 2 or more types of the material conventionally used for a lithium ion secondary battery can be used. As such a negative electrode active material, for example, a carbon material generally used in lithium ion secondary batteries can be cited. Representative examples of the carbon material include graphite carbon (graphite) and amorphous carbon. A particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially is preferably used. In addition, as the negative electrode active material, it is also possible to use oxides such as lithium titanate, simple substances such as silicon materials and tin materials, alloys, compounds, and composite materials using the above materials in combination.

なお、非水電解液、及びセパレータは、従来からリチウムイオン二次電池に用いられるものを用いることができる。電解液としては、リチウム塩(例えばLiClO、LiPF、LiAsF、LiBF、LiSOCF等)を、有機溶媒に溶解したものが挙げられる。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、テトラヒドロフラン、2‐メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、又はリン酸トリエチル、リン酸トリオクチル等のリン化合物等が挙げられ、これらを1乃至複数混合して用いることができる。 In addition, what is conventionally used for a lithium ion secondary battery can be used for a non-aqueous electrolyte and a separator. Examples of the electrolytic solution include a lithium salt (for example, LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3, etc.) dissolved in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate, tetrahydrofuran, and 2-methyltetrahydrofuran. And ether compounds such as dimethoxyethane, sulfur compounds such as ethyl methyl sulfone and butane sultone, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate.

(正極活物質の製造方法)
次に、正極活物質の製造方法について説明する。正極活物質の製造方法は、例えば、原料水酸化物生成工程と、混合工程と、焼成工程とを含む。
(Method for producing positive electrode active material)
Next, the manufacturing method of a positive electrode active material is demonstrated. The manufacturing method of a positive electrode active material includes a raw material hydroxide production | generation process, a mixing process, and a baking process, for example.

原料水酸化物生成工程は、遷移金属化合物の水溶液にアンモニウムイオン(NH )を供給して、遷移金属水酸化物の粒子を水溶液から析出させる工程である。ここで、水溶液は、リチウム遷移金属酸化物を構成する遷移金属元素の少なくとも1種を含む。 The raw material hydroxide generation step is a step of supplying ammonium ions (NH 4 + ) to the aqueous solution of the transition metal compound to precipitate the transition metal hydroxide particles from the aqueous solution. Here, the aqueous solution contains at least one transition metal element constituting the lithium transition metal oxide.

原料水酸化物生成工程は、水溶液から遷移金属水酸化物を析出させる核生成段階と、核生成段階よりも水溶液のpHを減少させた状態で遷移金属水酸化物を成長させる粒子成長段階とを含むことが好ましい。粒子成長段階では、pH及びアンモニウムイオン濃度を変更することにより、遷移金属水酸化物の析出速度を調整することで、正極活物質粒子100の構造を変化させることができる。反応液中のアンモニウムイオン濃度を低くし、析出速度を高めると、貫通孔110を有する中空構造の正極活物質粒子100を生成しやすくなる。また、粒子成長時間を調整することによっても、粒子空孔率等を調整することができる。   The raw material hydroxide generation step includes a nucleation stage in which the transition metal hydroxide is precipitated from the aqueous solution, and a particle growth stage in which the transition metal hydroxide is grown in a state in which the pH of the aqueous solution is reduced as compared with the nucleation stage. It is preferable to include. In the particle growth stage, the structure of the positive electrode active material particle 100 can be changed by adjusting the deposition rate of the transition metal hydroxide by changing the pH and ammonium ion concentration. If the ammonium ion concentration in the reaction solution is decreased and the deposition rate is increased, the positive electrode active material particles 100 having a hollow structure having the through-holes 110 are easily generated. Also, the particle porosity and the like can be adjusted by adjusting the particle growth time.

混合工程は、洗浄、濾過、乾燥して得られた遷移金属水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する工程である。所定の割合でできるだけ均一に混合すると良い。   The mixing step is a step of preparing an unfired mixture by mixing a transition metal hydroxide obtained by washing, filtering and drying and a lithium compound. It is better to mix as uniformly as possible at a predetermined ratio.

焼成工程は、混合物を焼成して正極活物質を得る工程である。焼成工程は、例えば酸化性雰囲気中(例えば大気雰囲気中)で行われる。焼成温度は、例えば700℃以上1100℃以下である。また、焼成工程は、異なる温度範囲で焼成する複数の工程を含んでいてもよい。さらに、好適には、焼成後に焼成物を解砕し、篩分けを行なうとよい。   A baking process is a process of baking a mixture and obtaining a positive electrode active material. The firing step is performed, for example, in an oxidizing atmosphere (for example, in an air atmosphere). The firing temperature is, for example, 700 ° C. or higher and 1100 ° C. or lower. Moreover, the baking process may include a plurality of processes for baking at different temperature ranges. More preferably, the fired product is crushed and sieved after firing.

正極合材層には、正極活物質の他、必要に応じて導電材、結着材(バインダ)等の添加材が含有され得る。導電材としては、カーボン粉末やカーボンファイバー等の導電性粉末を含むことが好ましい。結着材としては各種のポリマー材料が挙げられる。   In addition to the positive electrode active material, the positive electrode mixture layer may contain additives such as a conductive material and a binder (binder) as necessary. The conductive material preferably contains conductive powder such as carbon powder or carbon fiber. Examples of the binder include various polymer materials.

正極合材層22に占める正極活物質の割合は、50質量%超であることが好ましい。70質量%以上97質量%以下であることがより好ましく、特に75質量%以上95質量%以下であるとよい。   The proportion of the positive electrode active material in the positive electrode mixture layer 22 is preferably more than 50% by mass. It is more preferably 70% by mass or more and 97% by mass or less, and particularly preferably 75% by mass or more and 95% by mass or less.

上述した正極活物質粒子を用いた正極の作製方法は特に限定されず、従来の方法を適宜採用することができる。例えば以下の方法によって作製することができる。まず、正極活物質、必要に応じて導電材、結着材等を適当な溶媒(水系溶媒、非水系溶媒またはこれらの混合溶媒)で混合してペースト状またはスラリー状の正極合材層形成用組成物を調製する。   The method for producing the positive electrode using the positive electrode active material particles described above is not particularly limited, and a conventional method can be appropriately employed. For example, it can be produced by the following method. First, a positive electrode active material, if necessary, a conductive material, a binder, etc. are mixed with an appropriate solvent (aqueous solvent, non-aqueous solvent or a mixed solvent thereof) to form a paste-like or slurry-like positive electrode mixture layer A composition is prepared.

上記組成物を正極集電体に塗付し、乾燥により溶媒を揮発させた後、圧縮(プレス)する。
正極集電体21上への正極合材層22の単位面積当たりの塗布量は、特に限定されるものではないが、充分な導電経路(伝導パス)を確保する観点から、正極集電体21の片面当たり3mg/cm以上が好ましく、5mg/cm以上がより好ましく、特に6mg/cm以上であるとよい。なお、塗布量は、正極合材層形成用組成物の固形分換算の塗付量である。
The above composition is applied to the positive electrode current collector, and the solvent is volatilized by drying, followed by compression (pressing).
The coating amount per unit area of the positive electrode mixture layer 22 on the positive electrode current collector 21 is not particularly limited. However, from the viewpoint of securing a sufficient conductive path (conductive path), the positive electrode current collector 21. It is preferably 3 mg / cm 2 or more per side, more preferably 5 mg / cm 2 or more, and particularly preferably 6 mg / cm 2 or more. The coating amount is a coating amount in terms of solid content of the composition for forming a positive electrode mixture layer.

また、正極集電体21の片面当たりの塗布量は、45mg/cm以下が好ましく、28mg/cm以下がより好ましく、特に15mg/cm以下が好ましい。正極合材層の密度も、特に限定されないが、1.0g/cm以上3.8g/cm以下であることが好ましく、1.5g/cm以上3.0g/cm以下がより好ましく、特に1.8g/cm以上2.4g/cm以下とすることが好ましい。 In addition, the coating amount per side of the positive electrode current collector 21 is preferably 45 mg / cm 2 or less, more preferably 28 mg / cm 2 or less, and particularly preferably 15 mg / cm 2 or less. The density of the positive-electrode mixture layer is also not particularly limited, is preferably not more than 1.0 g / cm 3 or more 3.8 g / cm 3, more preferably 1.5 g / cm 3 or more 3.0 g / cm 3 or less In particular, it is preferably 1.8 g / cm 3 or more and 2.4 g / cm 3 or less.

以下、実施例1〜3、比較例1〜2について説明する。なお、実施例は本発明を限定するものではない。
(実施例1)
正極活物質は、Li1.14Ni0.34Co0.33Mn0.33Zr0.0020.005で表される平均組成を有するものを準備した。この正極活物質について、以下の測定条件でモード径の測定及び容積比率Rtの測定を行い、図5中、「実施例1」として表す細孔容積分布を得た。なお、細孔容積分布は、細孔容積を直径Dの対数(logD)で微分したLog微分細孔容積分布で表している。即ち、グラフの縦軸は、細孔容積Vを直径Dの対数(logD)で微分した値(dV/d(logD))であり、横軸は、直径Dである。
Hereinafter, Examples 1-3 and Comparative Examples 1-2 will be described. In addition, an Example does not limit this invention.
Example 1
A positive electrode active material having an average composition represented by Li 1.14 Ni 0.34 Co 0.33 Mn 0.33 Zr 0.002 W 0.005 O 2 was prepared. With respect to this positive electrode active material, the mode diameter was measured and the volume ratio Rt was measured under the following measurement conditions, and a pore volume distribution represented as “Example 1” in FIG. 5 was obtained. The pore volume distribution is represented by a Log differential pore volume distribution obtained by differentiating the pore volume by the logarithm (log D) of the diameter D. That is, the vertical axis of the graph is a value (dV / d (logD)) obtained by differentiating the pore volume V by the logarithm (logD) of the diameter D, and the horizontal axis is the diameter D.

測定装置:マイクロメリテックス細孔分布測定装置 オートポア 9520形 島津製作所製
水銀密度:13.53g/ml
接触角:130°
表面張力:485dyns/cm
細孔容積分布のピークの頂点に対応する直径は、およそ0.25μmであって、0.1μm以上0.6μm以下の範囲に含まれた。また図7の表に示すように、貫通孔のモード径が0.6μm以下の部分細孔容積は、0.066ml/gであり、容積比率Rtは、92%であった。
Measuring device: Micromeritex pore distribution measuring device Autopore 9520 model, manufactured by Shimadzu Corporation Mercury density: 13.53 g / ml
Contact angle: 130 °
Surface tension: 485 dynes / cm
The diameter corresponding to the peak apex of the pore volume distribution was approximately 0.25 μm, and was included in the range of 0.1 μm to 0.6 μm. Further, as shown in the table of FIG. 7, the partial pore volume having a through-hole mode diameter of 0.6 μm or less was 0.066 ml / g, and the volume ratio Rt was 92%.

(実施例2)
実施例1と同様な材料からなる正極活物質について、実施例1と同じ条件で、モード径の測定及び容積比率Rtの測定を行い、図5中、「実施例2」として表す細孔容積分布を得た。細孔容積分布のピークの頂点に対応する直径は、およそ0.25μmであって、0.1μm以上0.6μm以下の範囲に含まれた。また図7の表に示すように、貫通孔のモード径が0.6μm以下の細孔容積は、0.048ml/gであり、容積比率Rtは、93%であった。
(Example 2)
For the positive electrode active material made of the same material as in Example 1, the mode diameter and volume ratio Rt were measured under the same conditions as in Example 1, and the pore volume distribution represented as “Example 2” in FIG. Got. The diameter corresponding to the peak apex of the pore volume distribution was approximately 0.25 μm, and was included in the range of 0.1 μm to 0.6 μm. Further, as shown in the table of FIG. 7, the pore volume having a through-hole mode diameter of 0.6 μm or less was 0.048 ml / g, and the volume ratio Rt was 93%.

(実施例3)
実施例1と同様な材料からなる正極活物質について、実施例1と同じ条件で、モード径の測定及び容積比率Rtの測定を行い、図5中、「実施例3」として表す細孔容積分布を得た。直径0.6μm以下の範囲の細孔容積分布は、2つのピークを有する二峰性であった。そのうち部分細孔容積が高いピークの頂点に対応する直径は、およそ0.25μmであって、0.1μm以上0.6μm以下の範囲に含まれた。他方のピークの頂点に対応する直径は、0.04μm付近であって、他方のピークは、高さが小さいものであった。また図7の表に示すように、貫通孔のモード径が0.6μm以下の細孔容積は、0.048ml/gであり、容積比率Rtは、76%であった。
(Example 3)
For the positive electrode active material made of the same material as in Example 1, the mode diameter and volume ratio Rt were measured under the same conditions as in Example 1, and the pore volume distribution represented as “Example 3” in FIG. Got. The pore volume distribution in the range of 0.6 μm or less in diameter was bimodal with two peaks. Among them, the diameter corresponding to the apex of the peak having a high partial pore volume was approximately 0.25 μm, and was included in the range of 0.1 μm to 0.6 μm. The diameter corresponding to the apex of the other peak was around 0.04 μm, and the other peak had a small height. Further, as shown in the table of FIG. 7, the pore volume having a through-hole mode diameter of 0.6 μm or less was 0.048 ml / g, and the volume ratio Rt was 76%.

(比較例1)
実施例1と同様な材料からなる正極活物質について、実施例1と同じ条件で、モード径の測定及び容積比率Rtの測定を行い、図5中、「比較例1」として表す細孔容積分布を得た。直径0.6μm以下の範囲の細孔容積分布は、2つのピークを有する二峰性であった。そのうち部分細孔容積が高いピークの頂点に対応する直径は、およそ0.25μmであって、0.1μm以上0.6μm以下の範囲に含まれた。他方のピークは、直径0.07μm付近にあり、幅が広いブロードなピークであった。また図7の表に示すように、貫通孔のモード径が0.6μm以下の細孔容積は、0.069ml/gであり、容積比率Rtは、67%であった。
(Comparative Example 1)
For the positive electrode active material made of the same material as in Example 1, the mode diameter and volume ratio Rt were measured under the same conditions as in Example 1, and the pore volume distribution represented as “Comparative Example 1” in FIG. Got. The pore volume distribution in the range of 0.6 μm or less in diameter was bimodal with two peaks. Among them, the diameter corresponding to the apex of the peak having a high partial pore volume was approximately 0.25 μm, and was included in the range of 0.1 μm to 0.6 μm. The other peak was in the vicinity of 0.07 μm in diameter and was a broad and broad peak. Further, as shown in the table of FIG. 7, the pore volume having a through-hole mode diameter of 0.6 μm or less was 0.069 ml / g, and the volume ratio Rt was 67%.

(比較例2)
実施例1と同様な材料からなる正極活物質について、実施例1と同じ条件で、モード径の測定及び容積比率Rtの測定を行い、図5中、「比較例2」として表す細孔容積分布を得た。直径0.6μm以下の範囲の細孔容積分布は、2つのピークを有する二峰性であった。そのうち部分細孔容積が高いピークの頂点に対応する直径は、およそ0.2μmであって、0.1μm以上0.6μm以下の範囲に含まれた。他方のピークは、直径0.02μm付近にみられた。また図7の表に示すように、貫通孔のモード径が0.6μm以下の細孔容積は、0.058ml/gであり、容積比率Rtは、53%であった。
(Comparative Example 2)
For the positive electrode active material made of the same material as in Example 1, the mode diameter and volume ratio Rt were measured under the same conditions as in Example 1, and the pore volume distribution represented as “Comparative Example 2” in FIG. Got. The pore volume distribution in the range of 0.6 μm or less in diameter was bimodal with two peaks. Among them, the diameter corresponding to the apex of the peak having a high partial pore volume was approximately 0.2 μm, and was included in the range of 0.1 μm to 0.6 μm. The other peak was seen near a diameter of 0.02 μm. Further, as shown in the table of FIG. 7, the pore volume having a through-hole mode diameter of 0.6 μm or less was 0.058 ml / g, and the volume ratio Rt was 53%.

(評価)
次に、実施例1〜3、比較例1〜2の正極活物質を用いて、リチウムイオン二次電池を作成した。負極は、非晶質炭素にてコートされた球形化天然黒鉛に、カルボキシメチルセルロース(CMC)とスチレンブタジエンコポリマー(SBR)を混合して作成した。電解液の組成は、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを同量ずつ混合し、LiPFを溶解したものとした。そして、このリチウムイオン二次電池を放電回路に接続し、内部抵抗を測定した。電池のSOCは60%、温度は20℃とした。
(Evaluation)
Next, lithium ion secondary batteries were created using the positive electrode active materials of Examples 1 to 3 and Comparative Examples 1 and 2. The negative electrode was prepared by mixing carboxymethyl cellulose (CMC) and styrene butadiene copolymer (SBR) with spheroidized natural graphite coated with amorphous carbon. The composition of the electrolytic solution was such that ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed in equal amounts to dissolve LiPF 6 . And this lithium ion secondary battery was connected to the discharge circuit, and internal resistance was measured. The SOC of the battery was 60% and the temperature was 20 ° C.

図6に示すグラフは、横軸が容積比率Rtを示し、縦軸が内部抵抗Rsを示す。実施例1のリチウムイオン二次電池の内部抵抗は「2.886mΩ」、実施例2のリチウムイオン二次電池の内部抵抗は「2.881mΩ」と良好な値となり、両者の値はほぼ同じであった。また、実施例3のリチウムイオン二次電池の内部抵抗は「2.889」と2.9mΩ以下であり、これも良好な値となった。   In the graph shown in FIG. 6, the horizontal axis represents the volume ratio Rt, and the vertical axis represents the internal resistance Rs. The internal resistance of the lithium ion secondary battery of Example 1 was “2.886 mΩ”, and the internal resistance of the lithium ion secondary battery of Example 2 was “2.881 mΩ”, both values being substantially the same. there were. In addition, the internal resistance of the lithium ion secondary battery of Example 3 was “2.889”, which was 2.9 mΩ or less, which was also a good value.

一方、比較例1のリチウムイオン二次電池及び比較例2のリチウムイオン二次電池は、部分細孔容積が0.045ml/g以上であるにも関らず、容積比率Rtも70%未満であり、内部抵抗も2.9mΩよりも大きくなった。また、実施例2の容積比率Rtと実施例3の容積比率Rtとの差は17%である。一方、比較例1の容積比率Rtと実施例3の容積比率Rtとの差は9%と実施例2と実施例3との容積比率Rtの差よりも小さいが、それらの内部抵抗の差は、実施例2と実施例3との内部抵抗の差よりも大きい。   On the other hand, although the lithium ion secondary battery of Comparative Example 1 and the lithium ion secondary battery of Comparative Example 2 have a partial pore volume of 0.045 ml / g or more, the volume ratio Rt is also less than 70%. In addition, the internal resistance was larger than 2.9 mΩ. Further, the difference between the volume ratio Rt of Example 2 and the volume ratio Rt of Example 3 is 17%. On the other hand, the difference between the volume ratio Rt of Comparative Example 1 and the volume ratio Rt of Example 3 is 9% and smaller than the difference of the volume ratio Rt between Example 2 and Example 3, but the difference in their internal resistance is The difference in internal resistance between Example 2 and Example 3 is larger.

したがって、比較例1のリチウムイオン二次電池及び比較例2のリチウムイオン二次電池は、直径が小さい貫通孔110が多く形成され、貫通孔110を介した電解液の中空部への流入、及び中空部から貫通孔を介した電解液の流出が円滑に行われていないと考えられる。実施例1〜3のリチウムイオン二次電池は、直径の大きい貫通孔110が多く形成されていると推定され、貫通孔110を介した電解液の中空部への流入、及び中空部から貫通孔を介した電解液の流出が円滑に行われていると考えられる。なお、電気自動車の場合、多くの数(例えば50以上)のリチウムイオン二次電池からなる組電池が用いられ、大電流放電が行われるため、内部抵抗の差が小さくても組電池全体としては大きく影響する。   Therefore, the lithium ion secondary battery of Comparative Example 1 and the lithium ion secondary battery of Comparative Example 2 are formed with a large number of through holes 110 having a small diameter, and the inflow of the electrolyte solution through the through holes 110 into the hollow portion, and It is considered that the electrolyte does not smoothly flow out from the hollow portion through the through hole. In the lithium ion secondary batteries of Examples 1 to 3, it is presumed that many through holes 110 having a large diameter are formed, and the inflow of the electrolytic solution to the hollow portion through the through holes 110 and the through holes from the hollow portions to the through holes 110 are performed. It is considered that the outflow of the electrolyte solution through the slab is carried out smoothly. In the case of an electric vehicle, an assembled battery made up of a large number (for example, 50 or more) of lithium ion secondary batteries is used and large current discharge is performed. Therefore, even if the difference in internal resistance is small, A big influence.

以上説明したように、上記実施形態によれば、以下に列挙する効果が得られるようになる。
(1)二次粒子である正極活物質粒子100の殻部101に設けられる貫通孔110は、その最頻値であるモード径が、0.1μm以上0.6μm以下であって、且つ全細孔容積に対する部分細孔容積の百分率である容積比率Rtが、75%以上であり、さらに好ましくは90%以上である。このため、貫通孔110を介した電解液の中空部への流入、及び中空部から貫通孔を介した電解液の流出が円滑に行われるようになるため、良好な電池の出力特性を得ることができる。
As described above, according to the embodiment, the effects listed below can be obtained.
(1) The through-hole 110 provided in the shell part 101 of the positive electrode active material particle 100 which is a secondary particle has a mode diameter which is the mode value of 0.1 μm to 0.6 μm and is fine. The volume ratio Rt, which is the percentage of the partial pore volume with respect to the pore volume, is 75% or more, more preferably 90% or more. For this reason, since the inflow of the electrolyte solution through the through hole 110 into the hollow portion and the outflow of the electrolyte solution from the hollow portion through the through hole can be performed smoothly, good battery output characteristics can be obtained. Can do.

(2)モード径が0.1μm以上0.6μm以下である正極活物質粒子100の0.6μm以下の範囲の細孔容積分布(図5における対数微分細孔容積分布)は一峰性の分布であるとき、0.1μm以上0.6μm以下の範囲に一つのピークを有し、それ以外のピークを有さない。すなわち、正極活物質粒子100の貫通孔110の直径は、その多くが0.1μm以上0.6μm以下の範囲に含まれ、その範囲よりも小さい範囲の直径を有する貫通孔110は少ない。そのため、このような正極活物質粒子100では、貫通孔110を介した電解液の中空部102への流入、及び中空部102から貫通孔110を介した電解液の流出が円滑に行われるようになるため、良好な電池の出力特性を得ることができる。   (2) The pore volume distribution (logarithmic differential pore volume distribution in FIG. 5) in the range of 0.6 μm or less of the positive electrode active material particle 100 having a mode diameter of 0.1 μm or more and 0.6 μm or less is a unimodal distribution. In some cases, it has one peak in the range of 0.1 μm to 0.6 μm and no other peaks. That is, most of the diameters of the through holes 110 of the positive electrode active material particles 100 are included in the range of 0.1 μm or more and 0.6 μm or less, and there are few through holes 110 having a diameter in a range smaller than that range. Therefore, in such positive electrode active material particles 100, the electrolyte solution can smoothly flow into the hollow portion 102 through the through hole 110, and the electrolyte solution can flow out from the hollow portion 102 through the through hole 110 smoothly. Therefore, good battery output characteristics can be obtained.

(他の実施例)
なお、上記各実施形態は、以下のように適宜変更して実施することもできる。
・正極合材層22は、正極集電体21の少なくとも一方の面に設けられていればよく、片面に設けられていてもよい。また、負極合材層32は、負極集電体31の少なくとも一方の面に設けられていればよく、片面に設けられていてもよい。
(Other examples)
In addition, each said embodiment can also be suitably changed and implemented as follows.
-The positive electrode mixture layer 22 should just be provided in the at least one surface of the positive electrode electrical power collector 21, and may be provided in the single side | surface. Moreover, the negative electrode composite material layer 32 should just be provided in the at least one surface of the negative electrode collector 31, and may be provided in the single side | surface.

・電解液と正極との間でナトリウムイオンが移動するナトリウムイオン二次電池であってもよい。
・電極体15は、正極シート20及び負極シート30を、セパレータ40,41を介して巻回した電極構造に限定されず、電池の形状や使用目的に応じて適宜変更してもよい。例えば、正極シート20及び負極シート30を、セパレータ40,41を介して積層した巻回しないタイプの電極構造であってもよい。
A sodium ion secondary battery in which sodium ions move between the electrolytic solution and the positive electrode may be used.
-The electrode body 15 is not limited to the electrode structure which wound the positive electrode sheet 20 and the negative electrode sheet 30 via the separators 40 and 41, You may change suitably according to the shape and intended purpose of a battery. For example, a non-winding type electrode structure in which the positive electrode sheet 20 and the negative electrode sheet 30 are stacked via separators 40 and 41 may be used.

11…ケース、12…蓋体、13…正極端子、14…負極端子、15…電極体、20…正極シート、30…負極シート、100…正極活物質粒子、101…殻部、102…中空部、110…貫通孔、111…一次粒子、112…二次粒子。   DESCRIPTION OF SYMBOLS 11 ... Case, 12 ... Lid body, 13 ... Positive electrode terminal, 14 ... Negative electrode terminal, 15 ... Electrode body, 20 ... Positive electrode sheet, 30 ... Negative electrode sheet, 100 ... Positive electrode active material particle, 101 ... Shell part, 102 ... Hollow part 110 through-holes 111 primary particles 112 secondary particles

Claims (4)

複数の一次粒子からなり中空構造を有する二次粒子を正極活物質に含有する非水電解液二次電池であって、
前記二次粒子は、前記一次粒子からなる殻部と、前記殻部の内側に形成された中空部とを有し、前記殻部には、当該殻部の外側と当該殻部の中空部とを連通する貫通孔が設けられるとともに、
前記貫通孔の直径は、1μm以下であって、水銀圧入法による細孔容積分布測定によって得られるモード径が0.1μm以上0.6μm以下であって、
水銀圧入法による細孔容積分布測定によって得られる細孔容積であって0.1μm以上0.6μm以下の直径を有する全ての貫通孔の総容積を示す部分細孔容積が、0.045ml/g以上であり、
水銀圧入法による細孔容積分布測定によって得られる細孔容積であって1μm以下の直径を有する全ての貫通孔の総容積を示す全細孔容積に対する前記部分細孔容積の百分率が、75%以上である
ことを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery containing secondary particles composed of a plurality of primary particles and having a hollow structure in a positive electrode active material,
The secondary particles have a shell part made of the primary particles and a hollow part formed inside the shell part, and the shell part includes an outer side of the shell part and a hollow part of the shell part. A through-hole communicating with the
The diameter of the through hole is 1 μm or less, and the mode diameter obtained by the pore volume distribution measurement by the mercury intrusion method is 0.1 μm or more and 0.6 μm or less,
A partial pore volume obtained by measuring the pore volume distribution by the mercury intrusion method and indicating the total volume of all through-holes having a diameter of 0.1 μm or more and 0.6 μm or less is 0.045 ml / g. That's it,
The percentage of the partial pore volume with respect to the total pore volume, which is the pore volume obtained by the pore volume distribution measurement by the mercury intrusion method and indicates the total volume of all through-holes having a diameter of 1 μm or less, is 75% or more. A non-aqueous electrolyte secondary battery, characterized in that
前記全細孔容積に対する前記部分細孔容積の百分率が90%以上である
請求項1に記載の非水電解液二次電池。
The nonaqueous electrolyte secondary battery according to claim 1, wherein a percentage of the partial pore volume with respect to the total pore volume is 90% or more.
前記細孔容積分布測定によって得られる細孔容積分布であって、前記貫通孔の直径が0.6μm以下の範囲の細孔容積分布が一峰性の分布である
請求項1又は2に記載の非水電解液二次電池。
The pore volume distribution obtained by the pore volume distribution measurement, wherein the pore volume distribution in a range where the diameter of the through-hole is 0.6 μm or less is a unimodal distribution. Water electrolyte secondary battery.
非水電解液二次電池に備えられ、複数の一次粒子からなり中空構造を有する二次粒子を含有する正極活物質であって、
前記二次粒子は、前記一次粒子からなる殻部と、前記殻部の内側に形成された中空部とを有し、前記殻部には、当該殻部の外側と当該殻部の中空部とを連通する貫通孔が設けられるとともに、
前記貫通孔の直径は、1μm以下であって、水銀圧入法による細孔容積分布測定によって得られるモード径が0.1μm以上0.6μm以下であって、
水銀圧入法による細孔容積分布測定によって得られる細孔容積であって0.1μm以上0.6μm以下の直径を有する全ての貫通孔の総容積を示す部分細孔容積が、0.045ml/g以上であり、
水銀圧入法による細孔容積分布測定によって得られる細孔容積であって1μm以下の直径を有する全ての貫通孔の総容積を示す全細孔容積に対する前記部分細孔容積の百分率が、75%以上である
ことを特徴とする非水電解液二次電池の正極活物質。
A positive electrode active material provided in a non-aqueous electrolyte secondary battery, containing secondary particles having a hollow structure consisting of a plurality of primary particles,
The secondary particles have a shell part made of the primary particles and a hollow part formed inside the shell part, and the shell part includes an outer side of the shell part and a hollow part of the shell part. A through-hole communicating with the
The diameter of the through hole is 1 μm or less, and the mode diameter obtained by the pore volume distribution measurement by the mercury intrusion method is 0.1 μm or more and 0.6 μm or less,
A partial pore volume obtained by measuring the pore volume distribution by the mercury intrusion method and indicating the total volume of all through-holes having a diameter of 0.1 μm or more and 0.6 μm or less is 0.045 ml / g. That's it,
The percentage of the partial pore volume with respect to the total pore volume, which is the pore volume obtained by the pore volume distribution measurement by the mercury intrusion method and indicates the total volume of all through-holes having a diameter of 1 μm or less, is 75% or more. A positive electrode active material for a non-aqueous electrolyte secondary battery.
JP2015114485A 2015-06-05 2015-06-05 Nonaqueous electrolyte secondary battery and positive electrode active material of nonaqueous electrolyte secondary battery Active JP6383326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114485A JP6383326B2 (en) 2015-06-05 2015-06-05 Nonaqueous electrolyte secondary battery and positive electrode active material of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114485A JP6383326B2 (en) 2015-06-05 2015-06-05 Nonaqueous electrolyte secondary battery and positive electrode active material of nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2017004635A true JP2017004635A (en) 2017-01-05
JP6383326B2 JP6383326B2 (en) 2018-08-29

Family

ID=57752811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114485A Active JP6383326B2 (en) 2015-06-05 2015-06-05 Nonaqueous electrolyte secondary battery and positive electrode active material of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6383326B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181158A1 (en) * 2017-03-31 2018-10-04 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2019069402A1 (en) * 2017-10-04 2019-04-11 株式会社 東芝 Electrode, non-aqueous electrolyte battery, and battery pack
JP2020035693A (en) * 2018-08-31 2020-03-05 住友金属鉱山株式会社 Transition metal composite hydroxide, manufacturing method thereof, lithium transition metal composite oxide active material, and lithium ion secondary battery
JPWO2021054466A1 (en) * 2019-09-19 2021-03-25
EP3683865A4 (en) * 2017-09-14 2021-04-21 Kabushiki Kaisha Toshiba Electrode and nonaqueous electrolyte battery
WO2021145420A1 (en) * 2020-01-17 2021-07-22 住友化学株式会社 Positive electrode active material for all-solid-state lithium ion battery, electrode, and all-solid-state lithium ion battery
JP2022109396A (en) * 2021-01-15 2022-07-28 プライムアースEvエナジー株式会社 Lithium ion secondary battery, and method for manufacturing cathode for lithium ion secondary battery
WO2022254871A1 (en) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 Coated active material, electrode material and battery
WO2023037816A1 (en) * 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 Coated active material, electrode material and battery
EP4123323A4 (en) * 2020-09-29 2024-02-14 Lg Energy Solution Ltd Apparatus and method for predicting performance of secondary cell according to electrode structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021032A (en) * 2008-07-11 2010-01-28 Hitachi Chem Co Ltd Anode material for lithium secondary battery and lithium secondary battery
JP2011119092A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Active material particles, and use of same
JP2013065409A (en) * 2011-09-15 2013-04-11 Toyota Motor Corp Lithium secondary battery
JP2013118156A (en) * 2011-12-05 2013-06-13 Toyota Motor Corp Lithium ion secondary battery
WO2013094701A1 (en) * 2011-12-20 2013-06-27 住友金属鉱山株式会社 Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP2014011070A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2014067680A (en) * 2012-09-27 2014-04-17 Mitsubishi Chemicals Corp Graphite particle for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
US20150079471A1 (en) * 2013-09-16 2015-03-19 Ningde Amperex Technology Limited Lithium-ion battery positive electrode material and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021032A (en) * 2008-07-11 2010-01-28 Hitachi Chem Co Ltd Anode material for lithium secondary battery and lithium secondary battery
JP2011119092A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Active material particles, and use of same
JP2013065409A (en) * 2011-09-15 2013-04-11 Toyota Motor Corp Lithium secondary battery
JP2013118156A (en) * 2011-12-05 2013-06-13 Toyota Motor Corp Lithium ion secondary battery
WO2013094701A1 (en) * 2011-12-20 2013-06-27 住友金属鉱山株式会社 Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP2014011070A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2014067680A (en) * 2012-09-27 2014-04-17 Mitsubishi Chemicals Corp Graphite particle for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
US20150079471A1 (en) * 2013-09-16 2015-03-19 Ningde Amperex Technology Limited Lithium-ion battery positive electrode material and preparation method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174106A (en) * 2017-03-31 2018-11-08 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
CN110462897A (en) * 2017-03-31 2019-11-15 住友化学株式会社 Positive active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
WO2018181158A1 (en) * 2017-03-31 2018-10-04 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN110462897B (en) * 2017-03-31 2022-08-09 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
EP3683865A4 (en) * 2017-09-14 2021-04-21 Kabushiki Kaisha Toshiba Electrode and nonaqueous electrolyte battery
US11967720B2 (en) 2017-09-14 2024-04-23 Kabushiki Kaisha Toshiba Electrode and nonaqueous electrolyte battery
US11515532B2 (en) 2017-10-04 2022-11-29 Kabushiki Kaisha Toshiba Electrode, nonaqueous electrolyte battery and battery pack
WO2019069402A1 (en) * 2017-10-04 2019-04-11 株式会社 東芝 Electrode, non-aqueous electrolyte battery, and battery pack
JPWO2019069402A1 (en) * 2017-10-04 2020-06-18 株式会社東芝 Electrodes, non-aqueous electrolyte batteries and battery packs
JP2020035693A (en) * 2018-08-31 2020-03-05 住友金属鉱山株式会社 Transition metal composite hydroxide, manufacturing method thereof, lithium transition metal composite oxide active material, and lithium ion secondary battery
JP7172301B2 (en) 2018-08-31 2022-11-16 住友金属鉱山株式会社 Transition metal composite hydroxide, method for producing transition metal composite hydroxide, lithium transition metal composite oxide active material, and lithium ion secondary battery
JPWO2021054466A1 (en) * 2019-09-19 2021-03-25
WO2021054466A1 (en) * 2019-09-19 2021-03-25 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN114514636A (en) * 2019-09-19 2022-05-17 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
CN114514636B (en) * 2019-09-19 2024-03-26 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2021114412A (en) * 2020-01-17 2021-08-05 住友化学株式会社 Positive electrode active material for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery
WO2021145420A1 (en) * 2020-01-17 2021-07-22 住友化学株式会社 Positive electrode active material for all-solid-state lithium ion battery, electrode, and all-solid-state lithium ion battery
EP4123323A4 (en) * 2020-09-29 2024-02-14 Lg Energy Solution Ltd Apparatus and method for predicting performance of secondary cell according to electrode structure
JP7337106B2 (en) 2021-01-15 2023-09-01 プライムアースEvエナジー株式会社 Lithium ion secondary battery and method for producing positive electrode for lithium ion secondary battery
JP2022109396A (en) * 2021-01-15 2022-07-28 プライムアースEvエナジー株式会社 Lithium ion secondary battery, and method for manufacturing cathode for lithium ion secondary battery
WO2022254871A1 (en) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 Coated active material, electrode material and battery
WO2023037816A1 (en) * 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 Coated active material, electrode material and battery

Also Published As

Publication number Publication date
JP6383326B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6383326B2 (en) Nonaqueous electrolyte secondary battery and positive electrode active material of nonaqueous electrolyte secondary battery
US20150372294A1 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery using negative electrode active material, and nonaqueous electrolyte secondary battery using negative electrode
KR101494506B1 (en) Lithium ion secondary cell
JP5904382B2 (en) Lithium ion secondary battery
JP5854285B2 (en) Secondary battery
KR20130087038A (en) Secondary battery
CN109997253B (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5534363B2 (en) Composite nanoporous electrode material, production method thereof, and lithium ion secondary battery
JP5598716B2 (en) Lithium secondary battery and manufacturing method thereof
JP2009259605A (en) Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance
JP5773225B2 (en) Secondary battery
WO2016084346A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20130076891A (en) Secondary battery
KR20140027447A (en) Lithium ion secondary cell
JP5614591B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN113097446A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5594247B2 (en) Non-aqueous electrolyte lithium-air secondary battery positive electrode and method for producing the same
CN109792048B (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2015103302A (en) Nonaqueous electrolyte secondary battery
JPWO2019131129A1 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary batteries
JP2012243478A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2024048183A1 (en) Negative electrode for secondary batteries, secondary battery, and method for producing negative electrode for secondary batteries
JP7337106B2 (en) Lithium ion secondary battery and method for producing positive electrode for lithium ion secondary battery
JP2023137478A (en) Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery
JP2023132411A (en) Cathode for secondary batteries and method for manufacturing cathode for secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180803

R150 Certificate of patent or registration of utility model

Ref document number: 6383326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250