JP2009259605A - Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance - Google Patents

Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance Download PDF

Info

Publication number
JP2009259605A
JP2009259605A JP2008107360A JP2008107360A JP2009259605A JP 2009259605 A JP2009259605 A JP 2009259605A JP 2008107360 A JP2008107360 A JP 2008107360A JP 2008107360 A JP2008107360 A JP 2008107360A JP 2009259605 A JP2009259605 A JP 2009259605A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
particles
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008107360A
Other languages
Japanese (ja)
Inventor
Motofumi Isono
基史 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008107360A priority Critical patent/JP2009259605A/en
Publication of JP2009259605A publication Critical patent/JP2009259605A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active substance which excels in high-rate property and output property and to provide a manufacturing method for the same. <P>SOLUTION: The manufacturing method for the positive electrode active substance of a secondary battery includes a mixing process for adding and mixing resin material to raw material for composing the positive electrode active substance 100 and a calcination process for calcinating the mixture and forming secondary particles 20 composed of aggregated primary particles 10 containing the positive electrode active substance. In this case, pores 30 are formed between the primary particles 10 which are aggregated by calcining the mixed resin material in the calcination process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、正極活物質、特に正極活物質を含む一次粒子が凝集してなる二次粒子から構成された電池用正極活物質に関する。また、本発明は該正極活物質の製造方法ならびに該正極活物質を備えた電池に関する。   The present invention relates to a positive electrode active material, in particular, a positive electrode active material for a battery composed of secondary particles obtained by agglomerating primary particles containing a positive electrode active material. The present invention also relates to a method for producing the positive electrode active material and a battery including the positive electrode active material.

近年、リチウムイオン電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。   In recent years, lithium-ion batteries, nickel-metal hydride batteries, and other secondary batteries have become increasingly important as power sources for vehicles or as power sources for personal computers and portable terminals. In particular, a lithium ion battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.

この種のリチウムイオン二次電池の一つの典型的な構成では、リチウムイオンを可逆的に吸蔵および放出し得る材料(電極活物質)が導電性部材(電極集電体)の上に形成された構成の電極を備える。正極に用いられる電極活物質(正極活物質)の代表例としては、リチウムと一種または二種以上の遷移金属元素とを主構成金属元素として含むリチウム遷移金属酸化物が挙げられる。   In one typical configuration of this type of lithium ion secondary battery, a material (electrode active material) capable of reversibly occluding and releasing lithium ions is formed on a conductive member (electrode current collector). An electrode having a configuration is provided. A typical example of the electrode active material (positive electrode active material) used for the positive electrode is a lithium transition metal oxide containing lithium and one or more transition metal elements as main constituent metal elements.

ところで、正極活物質として使用される形態のリチウム遷移金属酸化物は、一般に、一次粒子が凝集して成る二次粒子から構成されており、このような粒子構造面から正極活物質の特性改善を試みた種々の技術が提案されている。例えば特許文献1には、リチウムニッケル複合酸化物において、二次粒子における空隙率を所定値以下にすることにより、正極における活物質の充填密度を高く保つ技術が開示されている。他の先行技術文献としては例えば特許文献2が挙げられる。また、正極活物質の粒子(一次粒子)内部に空孔を形成する技術として例えば特許文献3が開示されている。
特開2001−85006号公報 特開平9−231973号公報 特開2002−75365号公報
By the way, the lithium transition metal oxide in a form used as a positive electrode active material is generally composed of secondary particles formed by agglomeration of primary particles. Various attempted techniques have been proposed. For example, Patent Document 1 discloses a technique for maintaining a high packing density of the active material in the positive electrode by setting the porosity in the secondary particles to a predetermined value or less in the lithium nickel composite oxide. Another prior art document is, for example, Patent Document 2. Further, for example, Patent Document 3 is disclosed as a technique for forming pores inside the positive electrode active material particles (primary particles).
JP 2001-85006 A Japanese Patent Laid-Open No. 9-231973 JP 2002-75365 A

しかしながら、特許文献1の技術では、二次粒子の空隙(細孔)率を低減して正極活物質の充填密度を高くしているため、二次粒子内部の正極活物質粒子(一次粒子)に電解液を接触させることができず、それゆえに所望の電池性能(例えばハイレート特性や高出力特性など)が十分に得られない虞がある。また、正極活物質内の空隙(細孔)の形成方法についてもなお改善の余地のあるものであった。   However, in the technique of Patent Document 1, since the positive electrode active material packing density is increased by reducing the void (pore) ratio of the secondary particles, the positive electrode active material particles (primary particles) inside the secondary particles are used. There is a possibility that the electrolytic solution cannot be brought into contact, and therefore desired battery performance (for example, high rate characteristics, high output characteristics, etc.) cannot be sufficiently obtained. Moreover, there is still room for improvement in the method for forming voids (pores) in the positive electrode active material.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、ハイレート特性および出力特性に優れた電池用正極活物質およびその製造方法を提供することである。他の一つの目的は、そのような電池用正極活物質を有するリチウム二次電池その他の二次電池を提供することである。   This invention is made | formed in view of this point, The main objective is to provide the positive electrode active material for batteries excellent in the high-rate characteristic and output characteristics, and its manufacturing method. Another object is to provide a lithium secondary battery or other secondary battery having such a positive electrode active material for a battery.

上記課題を解決すべく本発明により二次電池用の正極活物質が提供される。この正極活物質は、正極活物質粒子を含む一次粒子と、該一次粒子が相互に凝集してなる二次粒子とを備える。上記二次粒子の内部であって上記凝集した一次粒子間には、細孔が形成されている。そして、本発明によって提供される正極活物質の好適な一態様では、上記二次粒子の全体積に占める該細孔の体積比Xが0.25<X<0.4の範囲内である。特に好ましくは、かかる体積比Xが0.3よりも大きく且つ0.4よりも小さいことを特徴とする。   In order to solve the above problems, the present invention provides a positive electrode active material for a secondary battery. The positive electrode active material includes primary particles including positive electrode active material particles and secondary particles obtained by agglomerating the primary particles with each other. Pores are formed inside the secondary particles and between the aggregated primary particles. In a preferred embodiment of the positive electrode active material provided by the present invention, the volume ratio X of the pores in the total volume of the secondary particles is in the range of 0.25 <X <0.4. Particularly preferably, the volume ratio X is larger than 0.3 and smaller than 0.4.

ここで、二次粒子の全体積に占める細孔の体積比(以下、「細孔体積比」ともいう。)とは、二次粒子全体の体積のうちに占める細孔部分の体積の比率(分数比率)であり、具体的には、細孔体積比=全細孔体積/(二次粒子を構成する全一次粒子体積+全細孔体積)から算出される。かかる細孔の体積(容積)は、例えば水銀ポロシメータ法による細孔分布測定によって得ることができる。水銀ポロシメータ法による細孔分布測定は、例えば市販される株式会社島津製作所製の自動ポロシメータ装置を用いて容易に行うことができる。また、一次粒子の粒径は、例えば走査型電子顕微鏡(SEM)の画像を処理することにより算出することができ、二次粒子の粒径は、例えばレーザ回折・散乱法による測定結果から容易に得ることができる。   Here, the volume ratio of pores to the total volume of secondary particles (hereinafter also referred to as “pore volume ratio”) is the ratio of the volume of the pore portion to the total volume of secondary particles ( Specifically, it is calculated from pore volume ratio = total pore volume / (total primary particle volume constituting secondary particles + total pore volume). The volume (volume) of such pores can be obtained by, for example, pore distribution measurement by a mercury porosimeter method. The pore distribution measurement by the mercury porosimeter method can be easily performed using, for example, a commercially available automatic porosimeter device manufactured by Shimadzu Corporation. The primary particle size can be calculated, for example, by processing an image of a scanning electron microscope (SEM), and the secondary particle size can be easily determined from, for example, a measurement result by a laser diffraction / scattering method. Obtainable.

上記構成の正極活物質では、二次粒子の内部であって上記凝集した一次粒子(正極活物質粒子)間に外部とつながる(開口された)細孔が形成されているので、二次粒子表面に露出した一次粒子(正極活物質粒子)だけでなく、二次粒子内部に埋め込まれた一次粒子(正極活物質粒子)にも上記細孔を介して電解液を供給することができる。これにより、正極活物質と電解液との接触面積(反応有効面積)を大きくすることができる。その結果、本発明によって提供される正極活物質を用いれば、ハイレート特性および高出力特性に優れた電池を提供することができる。   In the positive electrode active material having the above-described structure, since the pores that are connected to the outside (opened) are formed inside the secondary particles and between the aggregated primary particles (positive electrode active material particles), the surface of the secondary particles In addition to the primary particles (positive electrode active material particles) exposed to the primary particles, the electrolyte can be supplied to the primary particles (positive electrode active material particles) embedded in the secondary particles through the pores. Thereby, the contact area (reaction effective area) of a positive electrode active material and electrolyte solution can be enlarged. As a result, if the positive electrode active material provided by the present invention is used, a battery excellent in high rate characteristics and high output characteristics can be provided.

また、細孔体積比を特に上記範囲内に設定することにより、正極活物質の実効的な電子伝導性を損なうことなく、該正極活物質の比表面積(正極活物質と電解液との反応面積)を大きくすることができる。細孔体積比が小さすぎる場合には、正極活物質と電解液との反応面積を十分に大きくすることができずに電池の出力特性の改善が望めない虞がある。このため、細孔体積比は0.3よりも大きいことが好ましい。一方、細孔体積比が大きすぎる場合には、正極活物質の熱的安定性を損なう虞があり、さらには正極活物質粒子間の導通が確保できずに正極活物質の実効的な電子伝導性を損なう虞がある。このため、細孔体積比は0.4よりも小さいことが好ましい。即ち、上記細孔体積比Xは、0.3<X<0.4であることが好ましい。   In addition, by setting the pore volume ratio within the above range, the specific surface area of the positive electrode active material (reaction area between the positive electrode active material and the electrolytic solution can be obtained without impairing the effective electronic conductivity of the positive electrode active material. ) Can be increased. If the pore volume ratio is too small, the reaction area between the positive electrode active material and the electrolytic solution cannot be made sufficiently large, and there is a possibility that improvement of the output characteristics of the battery cannot be expected. For this reason, the pore volume ratio is preferably larger than 0.3. On the other hand, if the pore volume ratio is too large, the thermal stability of the positive electrode active material may be impaired, and further, the conduction between the positive electrode active material particles cannot be ensured and the effective electron conduction of the positive electrode active material is not ensured. There is a risk of impairing sex. For this reason, the pore volume ratio is preferably smaller than 0.4. That is, the pore volume ratio X is preferably 0.3 <X <0.4.

なお、上記複数の細孔は、上記二次粒子の内部に均一に分布するように形成されていることが望ましい。外部に連絡する(開口する)細孔が均一に分布していることにより、電解液を二次粒子中心付近の正極活物質粒子(一次粒子)にまで一様に浸透させることができる。これにより、正極活物質と電解液との接触面積(反応有効面積)は効果的に増大し得る。   The plurality of pores are preferably formed so as to be uniformly distributed inside the secondary particles. Since the pores communicating (opening) to the outside are uniformly distributed, the electrolyte can be uniformly permeated into the positive electrode active material particles (primary particles) near the center of the secondary particles. Thereby, the contact area (reaction effective area) of a positive electrode active material and electrolyte solution can increase effectively.

なお、本発明により提供される正極活物質としては、典型的な電池で使用されるものであればよく特に制限されないが、リチウムイオン電池等のリチウム二次電池の場合、特に正極活物質として少なくともリチウム及びマンガンを含むリチウムマンガン複合酸化物(典型的にはLiMn、他の構成元素としてNi、Co、Cr、Alからなる群のうちから選択された1種類以上を含み得る)を好適に使用することができる。 The positive electrode active material provided by the present invention is not particularly limited as long as it is used in a typical battery, but in the case of a lithium secondary battery such as a lithium ion battery, at least as the positive electrode active material. Suitable lithium-manganese composite oxide containing lithium and manganese (typically LiMn 2 O 4 , which may contain one or more selected from the group consisting of Ni, Co, Cr, Al as other constituent elements) Can be used for

また、本発明によると、ここに開示される何れかの正極活物質を用いて正極を構築した電池(典型的には二次電池、特にリチウムイオン電池等のリチウム二次電池)が提供される。かかる電池は、上記正極活物質を正極に用いて構築されていることから、優れた電池性能を示すものである。例えば、上記正極活物質を用いて電池を構築することにより、ハイレート特性に優れたリチウム二次電池等の二次電池(大電流放電した場合でも放電特性の低下が小さい電池)を提供することができる。   The present invention also provides a battery (typically a secondary battery, particularly a lithium secondary battery such as a lithium ion battery) in which a positive electrode is constructed using any of the positive electrode active materials disclosed herein. . Since such a battery is constructed using the positive electrode active material as a positive electrode, it exhibits excellent battery performance. For example, by building a battery using the positive electrode active material, it is possible to provide a secondary battery such as a lithium secondary battery excellent in high-rate characteristics (a battery with a small decrease in discharge characteristics even when a large current is discharged). it can.

また、本発明は、ここに開示される二次電池の正極活物質の製造方法を提供する。この製造方法は、正極活物質を構成するための原材料に樹脂材を添加して混合する混合工程と、上記混合した混合物を焼成し、上記正極活物質を含む一次粒子が相互に凝集してなる二次粒子が形成される焼成工程とを包含する。そして、上記焼成工程において、上記混合した樹脂材を焼失させることにより上記凝集した一次粒子間に細孔を形成することを特徴とする。   Moreover, this invention provides the manufacturing method of the positive electrode active material of the secondary battery disclosed here. In this manufacturing method, a mixing step of adding and mixing a resin material to a raw material for constituting a positive electrode active material, and firing the mixed mixture, the primary particles containing the positive electrode active material are aggregated with each other. A firing step in which secondary particles are formed. In the firing step, pores are formed between the aggregated primary particles by burning out the mixed resin material.

本発明の製造方法によれば、二次粒子内に電解液が浸入し得る細孔が適当量形成された正極活物質を容易に形成することができ、正極活物質の比表面積(正極活物質と電解液との反応面積)を容易に大きくすることができる。その結果、ハイレート特性および高出力特性に優れた電池を簡易に提供することができる。また、上記混合工程において、樹脂材の添加量を適宜調整することにより、二次粒子内の細孔体積比を任意で且つ確実に制御することができる。すなわち、上記方法によれば、二次粒子の全体積に占める上記細孔の体積比が好ましい所定値となるように上記樹脂材の添加量を調整することができ、これにより、所望の細孔体積比を容易に実現することができる。   According to the production method of the present invention, it is possible to easily form a positive electrode active material having an appropriate amount of pores into which an electrolyte can enter into the secondary particles, and the specific surface area of the positive electrode active material (positive electrode active material) The reaction area between the electrolyte and the electrolyte can be easily increased. As a result, a battery having excellent high rate characteristics and high output characteristics can be easily provided. Moreover, in the said mixing process, the pore volume ratio in a secondary particle can be arbitrarily and reliably controlled by adjusting the addition amount of a resin material suitably. That is, according to the above method, the amount of the resin material added can be adjusted so that the volume ratio of the pores occupying the total volume of the secondary particles becomes a preferable predetermined value. The volume ratio can be easily realized.

上記細孔体積比は、0.3よりも大きく且つ0.4よりも小さい値に設定されることが好ましい。これにより、正極活物質の実効的な電子伝導性を損なうことなく、該正極活物質の比表面積(正極活物質と電解液との反応面積)を大きくすることができる。   The pore volume ratio is preferably set to a value larger than 0.3 and smaller than 0.4. Thereby, the specific surface area (reaction area between the positive electrode active material and the electrolytic solution) of the positive electrode active material can be increased without impairing the effective electronic conductivity of the positive electrode active material.

ここに開示されるいずれかの方法において、上記樹脂材は粒子状を有する。そして、上記混合工程では、上記粒子状の樹脂材を上記原材料中に均一に分散するように混合する。樹脂材を粒子状とすることにより該樹脂材を原材料中に均一に分散させ易くなる。これにより、細孔が二次粒子中心付近まで一様に形成(分布)された正極活物質を容易に形成することができる。   In any of the methods disclosed herein, the resin material has a particulate shape. In the mixing step, the particulate resin material is mixed so as to be uniformly dispersed in the raw material. By making the resin material into particles, it becomes easier to uniformly disperse the resin material in the raw material. Thereby, the positive electrode active material in which the pores are uniformly formed (distributed) to the vicinity of the center of the secondary particle can be easily formed.

ここに開示されるいずれかの方法において、上記焼成工程は、上記混合物を前記樹脂材が焼失可能な温度域で焼成し、上記原材料間に介在する上記樹脂材を焼失させる第1焼成工程と、上記第1焼成工程よりもさらに高温で焼成し、上記混合物中の原材料同士が反応して上記正極活物質の二次粒子が形成される第2焼成工程とを含む。このように、樹脂材を所定温度で焼失させて細孔を形成した上で、さらに高温にて原材料同士を反応させているので、電解液が二次粒子内部に浸入するのに適する細孔を有する正極活物質(二次粒子)を安定して(品質安定性よく)製造することができる。   In any one of the methods disclosed herein, the baking step includes baking a mixture in a temperature range where the resin material can be burnt down, and burning out the resin material interposed between the raw materials. And a second baking step in which the raw materials in the mixture are reacted with each other to form secondary particles of the positive electrode active material. In this way, the resin material is burned off at a predetermined temperature to form pores, and the raw materials are reacted with each other at a higher temperature, so pores suitable for the electrolyte to enter the secondary particles are formed. The positive electrode active material (secondary particles) can be produced stably (with good quality stability).

なお、リチウム二次電池の場合、上記正極活物質としては、例えば、少なくともリチウム及びマンガンを含むリチウムマンガン複合酸化合物(典型的にはLiMn、他の構成元素としてNi、Co、Cr、Alからなる群のうちから選択された1種類以上を含み得る)を好適に使用することができる。 In the case of a lithium secondary battery, as the positive electrode active material, for example, a lithium manganese complex acid compound containing at least lithium and manganese (typically LiMn 2 O 4 , Ni, Co, Cr, Can be suitably used which may include one or more selected from the group consisting of Al.

以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解質の構成および製法、リチウム二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Embodiments according to the present invention will be described below with reference to the drawings. In the following drawings, members / parts having the same action are described with the same reference numerals. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than the matters specifically mentioned in the present specification and matters necessary for carrying out the present invention (for example, the configuration and manufacturing method of an electrode body including a positive electrode and a negative electrode, the configuration and manufacturing method of a separator and an electrolyte, General techniques relating to the construction of lithium secondary batteries and other batteries, etc.) can be understood as design matters for those skilled in the art based on the prior art in this field.

特に限定することを意図したものではないが、以下では主としてリチウム二次電池(典型的にはリチウムイオン電池)用の正極活物質を例として、図1を参照しつつ本実施形態に係る正極活物質100の構成について説明する。図1は本実施形態に係る正極活物質100の存在形態を模式的に示した説明図である。   Although not intended to be particularly limited, a positive electrode active material according to the present embodiment will be mainly described below with reference to FIG. 1 mainly using a positive electrode active material for a lithium secondary battery (typically, a lithium ion battery) as an example. The structure of the substance 100 will be described. FIG. 1 is an explanatory view schematically showing the existence form of the positive electrode active material 100 according to the present embodiment.

図1に示すように、正極活物質100は、正極活物質を含む一次粒子10と、該一次粒子10が相互に凝集してなる二次粒子20とを備えている。一次粒子10は他と区分し得る最小単位粒子として把握され得る。例えば、正極活物質粒子の単一の結晶(例えば単結晶)であり得る。一次粒子10の粒径(平均粒径)は特に制限されないが、電池性能の観点からは0.1μm〜1μmの範囲であることが好ましい。かかる一次粒子10の粒径は、例えば走査型電子顕微鏡(SEM)の画像処理により容易に測定することができる。なお、一次粒子10中には、正極活物質粒子以外の他の粒子(例えば導電材)が含まれていてもよい。導電材を混合することにより、正極活物質の電子伝導性を向上することができる。   As shown in FIG. 1, the positive electrode active material 100 includes primary particles 10 containing a positive electrode active material and secondary particles 20 formed by agglomerating the primary particles 10 with each other. The primary particles 10 can be grasped as the smallest unit particles that can be distinguished from others. For example, it may be a single crystal (for example, a single crystal) of positive electrode active material particles. The particle size (average particle size) of the primary particles 10 is not particularly limited, but is preferably in the range of 0.1 μm to 1 μm from the viewpoint of battery performance. The particle size of the primary particles 10 can be easily measured by, for example, image processing with a scanning electron microscope (SEM). The primary particles 10 may contain other particles (for example, a conductive material) other than the positive electrode active material particles. By mixing the conductive material, the electron conductivity of the positive electrode active material can be improved.

また、二次粒子20は、複数の一次粒子10が相互に固着した状態で形成されている。二次粒子の粒径(平均粒径)は特に制限されないが、電池性能の観点からは5μm〜25μmの範囲であることが好ましい。かかる二次粒子の粒径(平均粒径)は、例えばレーザ回折・散乱法による測定結果から容易に得ることができる。上記二次粒子20の内部であって上記凝集した一次粒子10間には、細孔30が形成されている。細孔30は、外部に連絡する(開口された)形状および孔径を有していればよく、その孔径(平均孔径)は例えば0.1μm〜0.5μmの範囲である。この実施形態では、細孔30は、上記二次粒子20の内部(凝集した各一次粒子10間)に均一に分布(分散)するように形成されている。そして、上記二次粒子20の全体積に占める細孔30の体積比が0.3〜0.4の範囲となるように形成されている。即ち、下記(1)式から算出される細孔体積比Xは、0.3<X<0.4であることが好ましい。なお、細孔30の体積(容積)は、例えば水銀ポロシメータ法による細孔分布測定によって容易に得ることができる。   The secondary particles 20 are formed in a state where a plurality of primary particles 10 are fixed to each other. The particle size (average particle size) of the secondary particles is not particularly limited, but is preferably in the range of 5 μm to 25 μm from the viewpoint of battery performance. The particle size (average particle size) of such secondary particles can be easily obtained from the measurement result by, for example, laser diffraction / scattering method. Fine pores 30 are formed inside the secondary particles 20 and between the aggregated primary particles 10. The pores 30 need only have a shape (opened) communicating with the outside and a pore diameter, and the pore diameter (average pore diameter) is, for example, in the range of 0.1 μm to 0.5 μm. In this embodiment, the pores 30 are formed so as to be uniformly distributed (dispersed) inside the secondary particles 20 (between the aggregated primary particles 10). And it is formed so that the volume ratio of the pores 30 occupying the total volume of the secondary particles 20 may be in the range of 0.3 to 0.4. That is, the pore volume ratio X calculated from the following formula (1) is preferably 0.3 <X <0.4. Note that the volume (volume) of the pores 30 can be easily obtained by, for example, pore distribution measurement by a mercury porosimeter method.

式(1) X = A / (A + B)
X:細孔体積比、A:細孔の全体積、B:二次粒子を構成する一次粒子の全体積
本実施形態に係る正極活物質100では、二次粒子20の内部であって上記凝集した一次粒子10(正極活物質粒子)間に外部とつながる(開口された)細孔30が形成されているので、二次粒子20表面に露出した一次粒子10(正極活物質粒子)だけでなく、二次粒子20内部に埋没した一次粒子10(正極活物質粒子)にも上記細孔30を介して電解液を供給することができる。これにより、正極活物質100と電解液(図示せず)との接触面積(反応有効面積)を大きくすることができる。その結果、本実施形態の正極活物質100を用いれば、ハイレート特性および高出力特性に優れた電池を提供することができる。
Formula (1) X = A / (A + B)
X: pore volume ratio, A: total volume of pores, B: total volume of primary particles constituting the secondary particles In the positive electrode active material 100 according to the present embodiment, inside the secondary particles 20 and the above-mentioned aggregation Since the pores 30 connected to the outside (opened) are formed between the primary particles 10 (positive electrode active material particles), not only the primary particles 10 (positive electrode active material particles) exposed on the surface of the secondary particles 20 The electrolyte solution can also be supplied through the pores 30 to the primary particles 10 (positive electrode active material particles) buried in the secondary particles 20. Thereby, the contact area (reaction effective area) of the positive electrode active material 100 and electrolyte solution (not shown) can be enlarged. As a result, if the positive electrode active material 100 of this embodiment is used, a battery excellent in high rate characteristics and high output characteristics can be provided.

また、細孔体積比Xを特に上記範囲内(0.25<X<0.4、特には0.3<X<0.4)内に設定することにより、正極活物質100の実効的な電子伝導性を損なうことなく、該正極活物質100の比表面積(正極活物質100と電解液との反応面積)を大きくすることができる。細孔体積比が小さすぎる場合には、正極活物質100と電解液との反応面積を十分に大きくすることができずに電池の出力特性の改善が望めない虞がある。このため、細孔体積比は0.3よりも大きいことが好ましい。一方、細孔体積比が大きすぎる場合には、正極活物質100の熱的安定性を損なう虞があり、さらには正極活物質粒子間の導通が確保できずに正極活物質100の実効的な電子伝導性を損なう虞がある。このため、細孔体積比は0.4よりも小さいことが好ましい。即ち、上記細孔体積比Xは、0.3<X<0.4であることが好ましい。   In addition, by setting the pore volume ratio X within the above range (0.25 <X <0.4, particularly 0.3 <X <0.4), the positive electrode active material 100 can be effectively used. The specific surface area of the positive electrode active material 100 (reaction area between the positive electrode active material 100 and the electrolytic solution) can be increased without impairing the electronic conductivity. When the pore volume ratio is too small, the reaction area between the positive electrode active material 100 and the electrolytic solution cannot be sufficiently increased, and there is a possibility that improvement of the output characteristics of the battery cannot be expected. For this reason, the pore volume ratio is preferably larger than 0.3. On the other hand, when the pore volume ratio is too large, the thermal stability of the positive electrode active material 100 may be impaired, and further, conduction between the positive electrode active material particles cannot be ensured, and the positive electrode active material 100 is effective. There is a risk of impairing electronic conductivity. For this reason, the pore volume ratio is preferably smaller than 0.4. That is, the pore volume ratio X is preferably 0.3 <X <0.4.

さらに、この実施形態では、複数の細孔30は、二次粒子20の内部(凝集した一次粒子10間)に均一に分布するように形成されている。このように外部に連絡する(開口する)細孔30が均一に分布(分散)していることにより、電解液を二次粒子20中心付近の正極活物質粒子10(一次粒子)にまで一様に浸透させることができる。これにより、正極活物質100と電解液との接触面積(反応有効面積)は効果的に増大し得る。   Furthermore, in this embodiment, the plurality of pores 30 are formed so as to be uniformly distributed inside the secondary particles 20 (between the aggregated primary particles 10). Thus, by uniformly distributing (dispersing) the pores 30 communicating (opening) to the outside, the electrolyte is uniformly distributed to the positive electrode active material particles 10 (primary particles) near the center of the secondary particles 20. Can penetrate. Thereby, the contact area (reaction effective area) of the positive electrode active material 100 and electrolyte solution can increase effectively.

なお、本発明の実施に好適な正極活物質としては、典型的なリチウム二次電池で使用されるものであればよく特に制限されないが、リチウムイオン電池等のリチウム二次電池の場合、特に正極活物質として少なくともリチウム及びマンガンを含むリチウムマンガン複合酸化物(典型的にはマンガン酸リチウム即ちLiMn、或いはLi,Mn以外の構成元素としてNi、Co、Cr、Alからなる群のうちから選択された1種類以上を含むリチウムマンガン複合酸化物でもよい)を好適に使用することができる。 The positive electrode active material suitable for the practice of the present invention is not particularly limited as long as it is used in a typical lithium secondary battery, but in the case of a lithium secondary battery such as a lithium ion battery, in particular, the positive electrode Lithium manganese composite oxide containing at least lithium and manganese as an active material (typically lithium manganate, that is, LiMn 2 O 4 , or a group consisting of Ni, Co, Cr, and Al as constituent elements other than Li and Mn Lithium-manganese composite oxide containing one or more selected types) may be preferably used.

次に、図2および図3A〜図3Cを参照しながら、本実施形態に係る電池の製造方法、特に正極活物質100の製造方法について説明する。図2は正極活物質100の製造フローを示す図であり、図3A〜図3Cはその製造工程を模式的に示す工程図である。以下では組成式LiMnで表されるマンガン酸リチウムを一例として正極活物質100の製造方法について説明する。 Next, with reference to FIG. 2 and FIGS. 3A to 3C, a method for manufacturing the battery according to this embodiment, in particular, a method for manufacturing the positive electrode active material 100 will be described. FIG. 2 is a diagram showing a manufacturing flow of the positive electrode active material 100, and FIGS. 3A to 3C are process diagrams schematically showing the manufacturing process. Hereinafter a method for manufacturing the positive electrode active material 100 lithium manganate represented by the composition formula LiMn 2 O 4 as an example.

図2に示すように、この製造方法では、まず、ステップS10に示すように正極活物質100を構成するための原材料12に樹脂材40を添加して混合する(混合工程)。次いで、ステップS20に示すように上記混合した混合物22を焼成し、上記正極活物質を含む一次粒子10が相互に凝集してなる二次粒子20が形成される(焼成工程)。そして、ステップS20の焼成工程において、上記混合した樹脂材40を焼失させることにより上記凝集した一次粒子10間に細孔30を形成する。   As shown in FIG. 2, in this manufacturing method, first, as shown in step S10, the resin material 40 is added to and mixed with the raw material 12 for constituting the positive electrode active material 100 (mixing step). Next, as shown in step S20, the mixed mixture 22 is fired to form secondary particles 20 in which the primary particles 10 containing the positive electrode active material are aggregated with each other (firing step). And in the baking process of step S20, the pores 30 are formed between the aggregated primary particles 10 by burning out the mixed resin material 40.

この実施形態では、マンガン酸リチウムからなる正極活物質100は以下の製造工程を経て作製され得る。まず、マンガン酸リチウムを構成する原材料12を用意する。この実施形態では、従来公知の方法により二酸化マンガン(MnO)を合成し、該二酸化マンガンに炭酸リチウム(Li)を所定比で添加して原材料12を用意する。 In this embodiment, the positive electrode active material 100 made of lithium manganate can be manufactured through the following manufacturing process. First, the raw material 12 which comprises lithium manganate is prepared. In this embodiment, manganese dioxide (MnO 2 ) is synthesized by a conventionally known method, and lithium carbonate (Li 2 O 3 ) is added to the manganese dioxide at a predetermined ratio to prepare the raw material 12.

次いで、図3Aに示すように、用意した原材料(この例では二酸化マンガン粉末および炭酸リチウム粉末)12に所定量の樹脂材40を添加して混合する。混合する樹脂材40は、正極活物質の合成温度(原材料12同士が反応する反応温度)よりも低い温度域で焼失(燃え抜け)可能な可燃性の樹脂であればよく、その形状は特に制限されないが原材料12と混ざり易い形状(ここでは粒子状)が望ましい。粒径10nm〜100nm程度のポリスチレン微粒子(典型的にはPSビーズ)を好適に使用し得る。ポリスチレン系樹脂は可燃性樹脂であり、例えば熱分解温度は300℃〜400℃(引火温度は345℃〜360℃)である。このように粒子状樹脂材(ポリスチレン微粒子)40を使用することにより、該樹脂材40を原材料12中に均一に分布(分散)するように混合することができる。なお、樹脂材40の材料は、正極活物質の作製条件(例えば合成温度)などに応じて適宜変更することができる。   Next, as shown in FIG. 3A, a predetermined amount of resin material 40 is added to and mixed with the prepared raw materials 12 (in this example, manganese dioxide powder and lithium carbonate powder). The resin material 40 to be mixed may be a flammable resin that can be burned out (burned out) in a temperature range lower than the synthesis temperature of the positive electrode active material (reaction temperature at which the raw materials 12 react with each other), and its shape is particularly limited. A shape that is easy to mix with the raw material 12 (in this case, a particulate shape) is desirable. Polystyrene fine particles (typically PS beads) having a particle size of about 10 nm to 100 nm can be suitably used. Polystyrene resin is a combustible resin, for example, thermal decomposition temperature is 300 degreeC-400 degreeC (ignition temperature is 345 degreeC-360 degreeC). Thus, by using the particulate resin material (polystyrene fine particles) 40, the resin material 40 can be mixed so as to be uniformly distributed (dispersed) in the raw material 12. In addition, the material of the resin material 40 can be appropriately changed according to the production conditions (for example, synthesis temperature) of the positive electrode active material.

次に、混合した混合物22を大気中(または酸素雰囲気下)で焼成する。この実施形態では、この焼成工程は、第1焼成工程(図2のステップS22)と、第2焼成工程(図2のステップS24)と、の2段階に分けて行われる。具体的には、図3Bに示すように、まず、混合物22を樹脂材40が焼失可能な温度域で焼成し、原材料12間に介在する樹脂材40を焼失させる(第1焼成工程)。この実施形態では、二酸化マンガン粉末12と炭酸リチウム粉末12とポリスチレン微粒子40とを約400℃で焼成し、ポリスチレン微粒子40を酸化反応によってガス(例えばCO)化する。このように第1焼成ステップにて樹脂材40を焼失させることにより、混合物22中の原材料12間には細孔30が形成される。なお、この実施形態では、上記400℃の加熱によって原材料12同士が遊動し得ない程度に相互に固着される。 Next, the mixed mixture 22 is fired in the air (or in an oxygen atmosphere). In this embodiment, this baking process is performed in two stages, a first baking process (step S22 in FIG. 2) and a second baking process (step S24 in FIG. 2). Specifically, as shown in FIG. 3B, first, the mixture 22 is fired in a temperature range in which the resin material 40 can be burned away, and the resin material 40 interposed between the raw materials 12 is burned away (first firing step). In this embodiment, the manganese dioxide powder 12, the lithium carbonate powder 12, and the polystyrene fine particles 40 are fired at about 400 ° C., and the polystyrene fine particles 40 are gasified (for example, CO 2 ) by an oxidation reaction. Thus, the pores 30 are formed between the raw materials 12 in the mixture 22 by burning out the resin material 40 in the first firing step. In this embodiment, the raw materials 12 are fixed to each other to the extent that the raw materials 12 cannot float by the heating at 400 ° C.

続いて、図3Cに示すように、上記第1焼成工程よりもさらに高温で焼成し、上記混合物22中の原材料12同士が反応して正極活物質の二次粒子10が形成される(第2焼成工程)。この実施形態では、上記混合物22を約600℃で焼成することにより、二酸化マンガン粉末12と炭酸リチウム粉末12との反応が進行して、マンガン酸リチウムの一次粒子10が成長する。このようにして成長したマンガン酸リチウムを含む一次粒子10は、該一次粒子10同士が相互に凝集して固着された一塊状態となる。そして、該一次粒子10の一塊状態を粉砕することにより、正極活物質の二次粒子20へと分割する。このようにして正極活物質を含む一次粒子10が相互に凝集してなる二次粒子20が形成されるとともに、該凝集した一次粒子10間に細孔30を形成することができる。   Subsequently, as shown in FIG. 3C, firing is performed at a higher temperature than in the first firing step, and the raw materials 12 in the mixture 22 react to form the secondary particles 10 of the positive electrode active material (second). Firing step). In this embodiment, the mixture 22 is baked at about 600 ° C., whereby the reaction between the manganese dioxide powder 12 and the lithium carbonate powder 12 proceeds to grow primary particles 10 of lithium manganate. The primary particles 10 containing lithium manganate thus grown are in a lump state in which the primary particles 10 are aggregated and fixed to each other. And the lump state of this primary particle 10 is grind | pulverized, and it divides | segments into the secondary particle 20 of a positive electrode active material. In this way, the secondary particles 20 formed by aggregating the primary particles 10 including the positive electrode active material are formed, and the pores 30 can be formed between the aggregated primary particles 10.

本実施形態の製造方法によれば、二次粒子20内に電解液が浸入し得る細孔が適当量形成された正極活物質100を容易に形成することができ、正極活物質100の比表面積(正極活物質と電解液との反応面積)を容易に大きくすることができる。その結果、ハイレート特性および高出力特性に優れた電池を簡易に提供することができる。また、図3Aの混合工程において、樹脂材40の添加量を適宜調整することにより、二次粒子20内の細孔体積比を任意で且つ確実に制御することができる。すなわち、上記方法によれば、二次粒子20の全体積に占める上記細孔30の体積比が好ましい所定値となるように上記樹脂材40の添加量を調整することができ、これにより、所望の細孔体積比を容易に実現することができる。   According to the manufacturing method of the present embodiment, it is possible to easily form the positive electrode active material 100 in which appropriate amounts of pores into which the electrolytic solution can enter the secondary particles 20 are formed. (Reaction area between the positive electrode active material and the electrolytic solution) can be easily increased. As a result, a battery having excellent high rate characteristics and high output characteristics can be easily provided. In the mixing step of FIG. 3A, the pore volume ratio in the secondary particles 20 can be arbitrarily and reliably controlled by appropriately adjusting the amount of the resin material 40 added. That is, according to the above method, the amount of the resin material 40 added can be adjusted so that the volume ratio of the pores 30 occupying the total volume of the secondary particles 20 becomes a preferable predetermined value. The pore volume ratio can be easily realized.

上記細孔体積比は、0.3よりも大きく且つ0.4よりも小さい値に設定されることが好ましい。これにより、正極活物質の実効的な電子伝導性を損なうことなく、該正極活物質の比表面積(正極活物質と電解液との反応面積)を大きくすることができる。また、上述したように、樹脂材40を所定温度(ここでは400℃)で焼失させて細孔30を形成した上で、さらに高温にて原材料12同士を反応させているので、電解液が二次粒子20内部に浸入するのに適する細孔30を有する正極活物質(二次粒子)を安定して(品質安定性よく)製造することができる。   The pore volume ratio is preferably set to a value larger than 0.3 and smaller than 0.4. Thereby, the specific surface area (reaction area between the positive electrode active material and the electrolytic solution) of the positive electrode active material can be increased without impairing the effective electronic conductivity of the positive electrode active material. Further, as described above, since the resin material 40 is burned off at a predetermined temperature (here, 400 ° C.) to form the pores 30 and the raw materials 12 are reacted with each other at a higher temperature, two electrolytes are used. A positive electrode active material (secondary particles) having pores 30 suitable for entering the inside of the secondary particles 20 can be stably produced (with high quality stability).

なお、本実施形態の方法により提供される正極活物質100は、上記のようにハイレート特性に優れることから、種々の形態の電池の構成要素または該電池に内蔵される電極体の正極の構成要素として好ましく利用され得る。例えば、ここに開示されるいずれかの方法により製造された正極活物質100を備えた正極と、負極(従来公知の製法により製造された負極であってもよい)と、該正負極間に配置される電解質と、典型的には正負極間を離隔するセパレータ(固体状またはゲル状の電解質を用いた電池では省略され得る。)と、を備えるリチウム二次電池の構成要素として好ましく使用され得る。かかる電池を構成する外容器の構造(例えば金属製の筐体やラミネートフィルム構造物)やサイズ、あるいは正負極集電体を主構成要素とする電極体の構造(例えば捲回構造や積層構造)等について特に制限はない。   In addition, since the positive electrode active material 100 provided by the method of the present embodiment is excellent in high rate characteristics as described above, it is a constituent element of various types of batteries or a positive electrode constituent element of an electrode body incorporated in the battery. Can be preferably used. For example, a positive electrode including the positive electrode active material 100 manufactured by any of the methods disclosed herein, a negative electrode (which may be a negative electrode manufactured by a conventionally known manufacturing method), and the positive and negative electrodes are disposed. And a separator that typically separates the positive and negative electrodes (can be omitted in a battery using a solid or gel electrolyte) and can be preferably used as a component of a lithium secondary battery . Structure (for example, metal casing or laminate film structure) and size of an outer container constituting such a battery, or structure of an electrode body (for example, a wound structure or a laminated structure) having a positive / negative electrode current collector as a main component There is no particular restriction on the etc.

上記樹脂材40の添加量を変えることにより二次粒子20内の細孔体積比を制御し得ることを確認するため、以下の実験を行った。すなわち、樹脂材40の添加量を変えて正極活物質100を合成し、それらの二次粒子20内の細孔体積(容積)をそれぞれ測定した。本実施例では、樹脂材40の添加量を変えて5種類のマンガン酸リチウム(LiMn)を合成した。以下、詳細に説明する。 In order to confirm that the pore volume ratio in the secondary particles 20 can be controlled by changing the amount of the resin material 40 added, the following experiment was performed. That is, the positive electrode active material 100 was synthesized by changing the addition amount of the resin material 40, and the pore volume (volume) in the secondary particles 20 was measured. In this example, five types of lithium manganate (LiMn 2 O 4 ) were synthesized by changing the addition amount of the resin material 40. Details will be described below.

原材料12としての二酸化マンガン(MnO)粉末と炭酸リチウム(Li)粉末とを所定のLi/Mnモル比(この実施例では1:2)となるように秤量し、これに樹脂材40としてのポリスチレン微粒子(平均粒径10nm〜100nm程度)を所定量(詳しくは、原材料100質量部に対してポリスチレン微粒子15質量部の配合となるように)添加して混合した。次いで、この混合物を、酸素雰囲気下400℃で焼成(第1焼成工程)し、さらに600℃で焼成(第2焼成工程)を行うことにより、マンガン酸リチウムを合成した。得られたマンガン酸リチウムは、一次粒子が相互に凝集した球状の二次粒子からなり、該二次粒子の平均粒径は8μm程度であった。 Manganese dioxide (MnO 2 ) powder and lithium carbonate (Li 2 O 3 ) powder as raw material 12 are weighed so as to have a predetermined Li / Mn molar ratio (1: 2 in this example), and a resin material A predetermined amount of polystyrene fine particles (average particle size of about 10 nm to 100 nm) as 40 was added and mixed (specifically, 15 parts by mass of polystyrene fine particles with respect to 100 parts by mass of raw materials). Next, this mixture was fired at 400 ° C. in an oxygen atmosphere (first firing step), and further fired at 600 ° C. (second firing step) to synthesize lithium manganate. The obtained lithium manganate was composed of spherical secondary particles in which primary particles were aggregated with each other, and the average particle size of the secondary particles was about 8 μm.

また、実施例2〜4として樹脂材40(ポリスチレン微粒子)の添加量を変えてマンガン酸リチウム(LiMn)を合成した。具体的には、実施例2〜4の順に原材料100質量部に対するポリスチレン微粒子の配合量をそれぞれ20質量部、25質量部、30質量部に増加してマンガン酸リチウムの合成を行った。なお、ポリスチレン微粒子の添加量を増加したこと以外は実施例1と同様の条件にて作製した。 Further, as Examples 2 to 4, lithium manganate (LiMn 2 O 4 ) was synthesized by changing the addition amount of the resin material 40 (polystyrene fine particles). Specifically, lithium manganate was synthesized by increasing the blending amount of polystyrene fine particles to 100 parts by mass of raw materials in the order of Examples 2 to 4 to 20 parts by mass, 25 parts by mass, and 30 parts by mass, respectively. In addition, it produced on the conditions similar to Example 1 except having increased the addition amount of the polystyrene fine particle.

なお、比較例として樹脂材40(ポリスチレン微粒子)を添加せずにマンガン酸リチウム(LiMn)を合成したものを用意した。ポリスチレン微粒子を添加しないこと以外は実施例1〜4と同様の条件にて作製した。 Incidentally, it was prepared a composite of lithium manganese oxide (LiMn 2 O 4) without the addition of a resin material 40 (polystyrene particles) as a comparative example. It produced on the conditions similar to Examples 1-4 except not adding a polystyrene microparticle.

以上のように作製した上記実施例1〜4および比較例のマンガン酸リチウム(LiMn)を、走査型電子顕微鏡(SEM)により表面および断面観察した。なお、断面加工は集束イオンビーム(FIB)を用いて行った。その結果を、図4A及び図4B(比較例)、図5A及び図5B(実施例1)、図6A及び図6B(実施例2)、図7A及び図7B(実施例3)、図8A及び図8B(実施例4)にそれぞれ示す。図4B〜図8BのSEM断面図から明らかなように、樹脂材(ポリスチレン微粒子)40を添加した実施例1〜4のマンガン酸リチウムは、樹脂材(ポリスチレン微粒子)40を添加しなかった比較例の場合に比べて二次粒子内の細孔体積が増加していることが確認された。また、実施例1〜4の比較から、樹脂材(ポリスチレン微粒子)40の添加量が増加するに従い、二次粒子内の細孔体積が増加していることが分かった。 The surface and cross section of the lithium manganate (LiMn 2 O 4 ) of Examples 1 to 4 and Comparative Example prepared as described above were observed with a scanning electron microscope (SEM). The cross-section processing was performed using a focused ion beam (FIB). The results are shown in FIGS. 4A and 4B (Comparative Example), FIGS. 5A and 5B (Example 1), FIGS. 6A and 6B (Example 2), FIGS. 7A and 7B (Example 3), FIGS. Each is shown in FIG. 8B (Example 4). As is apparent from the SEM cross-sectional views of FIGS. 4B to 8B, the lithium manganates of Examples 1 to 4 to which the resin material (polystyrene fine particles) 40 was added were comparative examples in which the resin material (polystyrene fine particles) 40 was not added. It was confirmed that the pore volume in the secondary particles was increased compared to the case of. Moreover, it turned out from the comparison of Examples 1-4 that the pore volume in a secondary particle is increasing as the addition amount of the resin material (polystyrene microparticles) 40 increases.

また、上記実施例1〜4および比較例のマンガン酸リチウムの細孔体積(細孔容積)を水銀ポロシメータ法による細孔分布測定により測定した。この実施例では水銀ポロシメータ法による細孔分布測定は、株式会社島津製作所製の自動ポロシメータ装置を用いて行った。その結果を表1に示す。   Moreover, the pore volume (pore volume) of the lithium manganate of Examples 1 to 4 and Comparative Example was measured by pore distribution measurement by a mercury porosimeter method. In this example, the pore distribution measurement by the mercury porosimeter method was performed using an automatic porosimeter device manufactured by Shimadzu Corporation. The results are shown in Table 1.

Figure 2009259605
Figure 2009259605

表1から明らかなように、樹脂材(ポリスチレン微粒子)40の添加量が増加するに従い、二次粒子内の細孔体積比が増加していることが定量的にも確認された。これらの細孔体積測定および上記SEM観察の結果から、樹脂材40の添加量を変えることにより二次粒子20内の細孔体積比を効果的に制御し得ることが確認された。   As is clear from Table 1, it was also quantitatively confirmed that the pore volume ratio in the secondary particles increased as the addition amount of the resin material (polystyrene fine particles) 40 increased. From these pore volume measurements and SEM observation results, it was confirmed that the pore volume ratio in the secondary particles 20 can be effectively controlled by changing the amount of the resin material 40 added.

さらに、多数の細孔30を有する正極活物質100を正極活物質として使用することにより、ハイレート特性に優れた電池を構築し得ることを確認すべく、以下の実験を行った。すなわち、上記実施例1〜4および比較例として合成したマンガン酸リチウム(LiMn)を用いてそれぞれのリチウムイオン二次電池を作製し、各二次電池について放電特性試験を行い、それらの放電レート特性を評価した。試験用リチウムイオン二次電池は、以下のようにして作製した。 Furthermore, the following experiment was conducted in order to confirm that a battery excellent in high-rate characteristics can be constructed by using the positive electrode active material 100 having a large number of pores 30 as the positive electrode active material. That is, to produce each of the lithium ion secondary battery using the synthesized lithium manganate as the Examples 1 to 4 and Comparative Examples (LiMn 2 O 4), subjected to discharge characteristics test for each of the secondary batteries, their The discharge rate characteristics were evaluated. The test lithium ion secondary battery was produced as follows.

上記合成したマンガン酸リチウム(LiMn)を、正極導電剤としてのアセチレンブラック(電気化学工業(株)製品)および正極結着材としてのPVDFとともに適当な溶媒に分散させて正電極材ペーストを調製した。このペーストを正極集電体(アルミニウム箔)に塗布して溶媒を揮発させ、正極集電体の両面に正電極材層が設けられた正極シートを作製した。正電極材ペーストの塗布は、ダイコーターを用いてプレスすることにより行った。一方、負極活物質としてのグラファイトカーボン(三菱化学(株)製品)および負極結着材としてのPVDFを適当な溶媒に分散させて負電極材ペーストを調製した。これを負極集電体(銅箔)に塗布して溶媒を揮発させることにより、負極集電体の両面に負電極材層が設けられた負極シートを作製した。なお、作製した正極シートおよび負極シートの各構成パラメータの詳細は表2に示す通りである。 Positive electrode material paste obtained by dispersing the synthesized lithium manganate (LiMn 2 O 4 ) in an appropriate solvent together with acetylene black (product of Electrochemical Industry Co., Ltd.) as a positive electrode conductive agent and PVDF as a positive electrode binder. Was prepared. This paste was applied to a positive electrode current collector (aluminum foil) to volatilize the solvent, and a positive electrode sheet having a positive electrode material layer provided on both sides of the positive electrode current collector was produced. The positive electrode material paste was applied by pressing using a die coater. On the other hand, negative electrode material paste was prepared by dispersing graphite carbon (product of Mitsubishi Chemical Corporation) as a negative electrode active material and PVDF as a negative electrode binder in an appropriate solvent. By applying this to a negative electrode current collector (copper foil) and volatilizing the solvent, a negative electrode sheet having negative electrode material layers provided on both sides of the negative electrode current collector was produced. The details of each constituent parameter of the produced positive electrode sheet and negative electrode sheet are as shown in Table 2.

Figure 2009259605
Figure 2009259605

そして、厚さ30μmのポリエチレン製セパレータシートを介してこれらの正極シートおよび負極シートを積層し、その積層体を捲回して捲回電極体を作製した。次いで、捲回電極体の軸方向両端に正極端子および負極端子をそれぞれ接続し、これを電解液とともに円筒型の電池容器(18650型セル)に収容した。電解液としては、エチレンカーボネイト(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との3:3:4(質量比)混合溶媒に約1mol/LのLiPFを溶解させたものを用いた。このようにして試験用リチウムイオン二次電池を作製した。なお、実施例1のマンガン酸リチウムを正極活物質として用いた電池を実施例1の試験用電池とし、同様に、実施例2〜4および比較例のマンガン酸リチウムを正極活物質として用いた電池を、それぞれ、実施例2〜4および比較例の試験用電池とした。 And these positive electrode sheets and negative electrode sheets were laminated | stacked through the 30-micrometer-thick polyethylene separator sheet, and the laminated body was wound, and the winding electrode body was produced. Next, a positive electrode terminal and a negative electrode terminal were respectively connected to both ends in the axial direction of the wound electrode body, and were accommodated in a cylindrical battery container (18650 type cell) together with the electrolytic solution. As an electrolytic solution, a solution obtained by dissolving about 1 mol / L LiPF 6 in a 3: 3: 4 (mass ratio) mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). Using. In this way, a test lithium ion secondary battery was produced. In addition, the battery using the lithium manganate of Example 1 as the positive electrode active material is used as the test battery of Example 1, and similarly, the battery using the lithium manganate of Examples 2 to 4 and the comparative example as the positive electrode active material. Were used as test batteries of Examples 2 to 4 and Comparative Example, respectively.

上記実施例1〜4および比較例の試験用電池に対して放電特性試験を実施し、それらの放電レート特性を評価した。上記放電特性試験の条件は、測定温度25℃で、充電終止電圧4.2Vまで1mA/cmの定電流で充電し、5分間の休止後、充電終止電圧3.0Vまで1mA/cmの定電流で放電し、その後、5分間休止することを1サイクルとし、これを3サイクル繰り返した。そして3サイクル目の放電容量を1Cと規定し、放電レート特性を測定した。その結果を図9及び図10に示す。 The discharge characteristic test was implemented with respect to the said test battery of Examples 1-4 and a comparative example, and those discharge rate characteristics were evaluated. The conditions of the discharge characteristic test were as follows: the measurement temperature was 25 ° C., the battery was charged at a constant current of 1 mA / cm 2 up to a charge end voltage of 4.2 V, and after a pause of 5 minutes, the charge end voltage of 3.0 mA was reached at 1 mA / cm 2 . Discharging at a constant current and then resting for 5 minutes was taken as 1 cycle, and this was repeated 3 cycles. And the discharge capacity of the 3rd cycle was prescribed | regulated as 1C, and the discharge rate characteristic was measured. The results are shown in FIGS.

図9に示すように、最小の細孔体積となる比較例(細孔体積比:0.19)の電池では放電レートが大きくなると急激な容量低下が生じたのに対し、細孔体積を大きくした実施例1〜4の電池では放電レートを変えたときの容量低下は小さくなることが分かった。特に実施例2〜4の電池では放電レート30Cの場合でも高容量をフラットに維持しており、図10に示すように、比容量が80%に低下する放電レート(電流値)を20Cから30Cに向上できることが分かった。これは、細孔体積を大きくすることにより二次粒子内部に埋設した一次粒子(正極活物質粒子)にも上記細孔を介して電解液を供給することができるからである。このことから二次粒子中の細孔体積を増加することにより電池のハイレート特性を改善できることが確認された。従って、ハイレート特性を向上させる観点からは上記細孔体積比は0.3を超える値がよく、さらに好ましくは0.33以上である。細孔体積比を0.33以上とすることにより、図10に示すように、比容量が80%に低下する放電レート(電流値)を30Cの大電流にすることができる。   As shown in FIG. 9, in the battery of the comparative example having a minimum pore volume (pore volume ratio: 0.19), the capacity decreased rapidly when the discharge rate increased, whereas the pore volume increased. In the batteries of Examples 1 to 4, it was found that the capacity decrease when the discharge rate was changed was small. In particular, in the batteries of Examples 2 to 4, the high capacity was kept flat even at the discharge rate of 30C. As shown in FIG. 10, the discharge rate (current value) at which the specific capacity was reduced to 80% was changed from 20C to 30C. It was found that it can be improved. This is because the electrolyte solution can be supplied to the primary particles (positive electrode active material particles) embedded in the secondary particles by increasing the pore volume through the pores. From this, it was confirmed that the high rate characteristics of the battery can be improved by increasing the pore volume in the secondary particles. Therefore, from the viewpoint of improving the high rate characteristics, the pore volume ratio is preferably a value exceeding 0.3, more preferably 0.33 or more. By setting the pore volume ratio to 0.33 or more, as shown in FIG. 10, the discharge rate (current value) at which the specific capacity decreases to 80% can be set to a large current of 30C.

また、図9および図10に示すように、放電レート特性は、実施例2(細孔体積比:0.33)のときに最良となり、さらに細孔体積を増加した実施例3(細孔体積比:0.35)及び実施例4(細孔体積比:0.36)ではレート特性が低下しはじめることが分かった。これは細孔体積が大きくなりすぎると、正極活物質粒子間の導通が確保できずに正極活物質(マンガン酸リチウム)の実効的な電子伝導性が損なわれるためと考えられる。従って、正極活物質の伝導性低下を抑制する観点からは上記細孔体積比は0.4未満であればよく、さらに好ましくは0.36以下である。細孔体積比を0.36以下とすることにより、図10に示すように、比容量が80%に低下する放電レート(電流値)を30Cの大電流にすることができる。   Further, as shown in FIGS. 9 and 10, the discharge rate characteristics were the best in Example 2 (pore volume ratio: 0.33), and Example 3 (pore volume) was further increased. In the ratio: 0.35) and in Example 4 (pore volume ratio: 0.36), it was found that the rate characteristics began to decrease. This is presumably because if the pore volume becomes too large, conduction between the positive electrode active material particles cannot be ensured, and the effective electronic conductivity of the positive electrode active material (lithium manganate) is impaired. Therefore, from the viewpoint of suppressing the decrease in conductivity of the positive electrode active material, the pore volume ratio may be less than 0.4, and more preferably 0.36 or less. By setting the pore volume ratio to 0.36 or less, as shown in FIG. 10, the discharge rate (current value) at which the specific capacity decreases to 80% can be set to a large current of 30C.

なお、上記放電レートを大きくしたときの容量低下は、正極の内部抵抗による電圧損失に起因すると考えられる。そこで、上記実施例1〜4および比較例の試験用電池に対してIV抵抗測定およびインピーダンス測定を調べた。その結果を図11および図12に示す。図11から明らかなように、細孔体積の増加に伴いIV抵抗が低減することが分かった。また、インピーダンス測定結果をコールコールプロット解析(図示せず)した結果、低減した抵抗は正極−電解液界面抵抗であることが分かった。そして、この正極−電解液界面抵抗は、図11に示すように細孔体積の増加に伴い低減することが分かった。このことより、二次粒子中の細孔体積を増加させると電解液と正極活物質との反応面積(接触面積)が増大し、それゆえにIV抵抗を低減できることが確認された。   In addition, it is thought that the capacity | capacitance fall when the said discharge rate is enlarged originates in the voltage loss by the internal resistance of a positive electrode. Therefore, IV resistance measurement and impedance measurement were examined on the test batteries of Examples 1 to 4 and the comparative example. The results are shown in FIG. 11 and FIG. As is clear from FIG. 11, it was found that the IV resistance decreases as the pore volume increases. Further, as a result of Cole-Cole plot analysis (not shown) of the impedance measurement result, it was found that the reduced resistance was the positive electrode-electrolyte interface resistance. And it turned out that this positive electrode-electrolyte interface resistance reduces with the increase in pore volume, as shown in FIG. From this, it was confirmed that when the pore volume in the secondary particles is increased, the reaction area (contact area) between the electrolytic solution and the positive electrode active material is increased, and hence the IV resistance can be reduced.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、電池の種類は上述したリチウムイオン二次電池に限られず、電極体構成材料や電解質が異なる種々の内容の電池、例えばニッケル水素電池、ニッケルカドミウム電池であってもよい。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, the type of the battery is not limited to the above-described lithium ion secondary battery, but may be a battery having various contents with different electrode body constituent materials and electrolytes, such as a nickel hydrogen battery and a nickel cadmium battery.

なお、本実施形態に係る正極活物質を用いた正極を備えた電池は、上述したようにハイレート特性及び出力特性に優れているため、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。すなわち、上記電池を単電池として所定の方向に配列し、当該単電池をその配列方向に拘束することによって組電池を構築し、かかる組電池を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供することができる。   In addition, since the battery provided with the positive electrode using the positive electrode active material according to the present embodiment is excellent in the high rate characteristic and the output characteristic as described above, the power source for a motor (electric motor) mounted on a vehicle such as an automobile is particularly preferable. Can be suitably used. That is, a battery (typically an automobile, in particular a hybrid), in which the battery is arranged as a single battery in a predetermined direction, an assembled battery is constructed by restraining the single battery in the arrangement direction, and the assembled battery is used as a power source. An automobile equipped with an electric motor such as an automobile, an electric automobile, and a fuel cell automobile) can be provided.

本実施形態に係る正極活物質の構成を模式的に示した外観模式図。The external appearance schematic diagram which showed typically the structure of the positive electrode active material which concerns on this embodiment. 正極活物質の製造フローを示す図。The figure which shows the manufacture flow of a positive electrode active material. 正極活物質の製造工程を模式的に示す工程図。Process drawing which shows the manufacturing process of a positive electrode active material typically. 正極活物質の製造工程を模式的に示す工程図。Process drawing which shows the manufacturing process of a positive electrode active material typically. 正極活物質の製造工程を模式的に示す工程図。Process drawing which shows the manufacturing process of a positive electrode active material typically. 走査型電子顕微鏡(SEM)による表面観察図(比較例)。The surface observation figure by a scanning electron microscope (SEM) (comparative example). 走査型電子顕微鏡(SEM)による断面観察図(比較例)。The cross-sectional observation figure by a scanning electron microscope (SEM) (comparative example). 走査型電子顕微鏡(SEM)による表面観察図(実施例1)。The surface observation figure by a scanning electron microscope (SEM) (Example 1). 走査型電子顕微鏡(SEM)による断面観察図(実施例1)。Sectional observation with a scanning electron microscope (SEM) (Example 1). 走査型電子顕微鏡(SEM)による表面観察図(実施例2)。The surface observation figure by a scanning electron microscope (SEM) (Example 2). 走査型電子顕微鏡(SEM)による断面観察図(実施例2)。Sectional observation with a scanning electron microscope (SEM) (Example 2). 走査型電子顕微鏡(SEM)による表面観察図(実施例3)。The surface observation figure by a scanning electron microscope (SEM) (Example 3). 走査型電子顕微鏡(SEM)による断面観察図(実施例3)。Sectional observation with a scanning electron microscope (SEM) (Example 3). 走査型電子顕微鏡(SEM)による表面観察図(実施例4)。Surface observation drawing by scanning electron microscope (SEM) (Example 4). 走査型電子顕微鏡(SEM)による断面観察図(実施例4)。Sectional observation drawing by scanning electron microscope (SEM) (Example 4). 放電レート測定結果を示す図。The figure which shows a discharge rate measurement result. 放電レート特性の細孔体積による変化を示す図。The figure which shows the change by the pore volume of a discharge rate characteristic. IV特性の細孔体積による変化を示す図。The figure which shows the change by the pore volume of IV characteristic. 正極−電解液界面抵抗の細孔体積による変化を示す図。The figure which shows the change by the pore volume of positive electrode-electrolyte interface resistance.

符号の説明Explanation of symbols

10 一次粒子(正極活物質粒子)
12 原材料
20 二次粒子
22 混合物
30 細孔
40 樹脂材
100 正極活物質
10 Primary particles (positive electrode active material particles)
12 Raw material 20 Secondary particle 22 Mixture 30 Pore 40 Resin material 100 Positive electrode active material

Claims (11)

正極活物質を構成するための原材料に樹脂材を添加して混合する混合工程と、
前記混合した混合物を焼成し、前記正極活物質を含む一次粒子が相互に凝集してなる二次粒子が形成される焼成工程と
を包含し、
前記焼成工程において、前記混合した樹脂材を焼失させることにより前記凝集した一次粒子間に細孔を形成することを特徴とする、二次電池の正極活物質を製造する方法。
A mixing step of adding and mixing a resin material to the raw material for constituting the positive electrode active material;
Firing the mixed mixture, and forming a secondary particle formed by agglomerating primary particles containing the positive electrode active material with each other, and
A method for producing a positive electrode active material of a secondary battery, wherein in the firing step, pores are formed between the aggregated primary particles by burning out the mixed resin material.
前記混合工程において、前記二次粒子の全体積に占める前記細孔の体積比が所定値となるように前記樹脂材の添加量を調整する、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein, in the mixing step, the amount of the resin material added is adjusted so that a volume ratio of the pores occupying the total volume of the secondary particles becomes a predetermined value. 前記細孔体積比は、0.3よりも大きく且つ0.4よりも小さい値に設定される、請求項2に記載の製造方法。   The manufacturing method according to claim 2, wherein the pore volume ratio is set to a value larger than 0.3 and smaller than 0.4. 前記樹脂材は粒子状であり、
前記混合工程では、前記粒子状樹脂材を前記原材料中に均一に分散するように混合する、請求項1から3の何れか一つに記載の製造方法。
The resin material is particulate,
The manufacturing method according to any one of claims 1 to 3, wherein in the mixing step, the particulate resin material is mixed so as to be uniformly dispersed in the raw material.
前記焼成工程は、
前記混合物を前記樹脂材が焼失可能な温度域で焼成し、前記原材料間に介在する前記樹脂材を焼失させる第1焼成工程と、
前記第1焼成工程よりもさらに高温で焼成し、前記混合物中の原材料同士が反応して前記正極活物質の二次粒子が形成される第2焼成工程と
を含む、請求項1から4の何れか一つに記載の製造方法。
The firing step includes
Firing the mixture in a temperature range where the resin material can be burnt down, and burning out the resin material interposed between the raw materials;
5. A second firing step in which firing is performed at a higher temperature than in the first firing step, and raw materials in the mixture react to form secondary particles of the positive electrode active material. The manufacturing method as described in any one.
前記正極活物質は、少なくともリチウム及びマンガンを含むリチウムマンガン複合酸化物からなる、請求項1から5の何れか一つに記載の製造方法。   The said positive electrode active material consists of lithium manganese complex oxide containing at least lithium and manganese, The manufacturing method as described in any one of Claim 1 to 5. 正極活物質粒子を含む一次粒子と、
前記一次粒子が相互に凝集してなる二次粒子と
を備え、
前記二次粒子の内部であって前記凝集した一次粒子間には、細孔が形成されており、前記二次粒子の全体積に占める該細孔の体積比が0.3よりも大きく且つ0.4よりも小さいことを特徴とする、電池用正極活物質。
Primary particles including positive electrode active material particles;
Secondary particles formed by agglomerating the primary particles with each other,
Inside the secondary particles and between the aggregated primary particles, pores are formed, and the volume ratio of the pores to the total volume of the secondary particles is larger than 0.3 and 0 A positive electrode active material for a battery, characterized by being smaller than .4.
前記細孔は、前記二次粒子の内部に均一に分布するように形成されている、請求項7に記載の電池用正極活物質。   The positive electrode active material for a battery according to claim 7, wherein the pores are formed so as to be uniformly distributed inside the secondary particles. 前記正極活物質は、少なくともリチウム及びマンガンを含むリチウムマンガン複合酸化物からなる、請求項7または8に記載の電池用正極活物質。   The positive electrode active material for a battery according to claim 7 or 8, wherein the positive electrode active material comprises a lithium manganese composite oxide containing at least lithium and manganese. 請求項7から9の何れか一つに記載の電池用正極活物質を正極に用いた二次電池。   The secondary battery using the positive electrode active material for batteries as described in any one of Claim 7 to 9 for a positive electrode. 請求項10に記載の二次電池を備えた車両。   A vehicle comprising the secondary battery according to claim 10.
JP2008107360A 2008-04-17 2008-04-17 Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance Withdrawn JP2009259605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107360A JP2009259605A (en) 2008-04-17 2008-04-17 Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107360A JP2009259605A (en) 2008-04-17 2008-04-17 Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance

Publications (1)

Publication Number Publication Date
JP2009259605A true JP2009259605A (en) 2009-11-05

Family

ID=41386779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107360A Withdrawn JP2009259605A (en) 2008-04-17 2008-04-17 Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance

Country Status (1)

Country Link
JP (1) JP2009259605A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067982A1 (en) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 Active material particles and use of same
WO2012029803A1 (en) * 2010-08-31 2012-03-08 日本碍子株式会社 Positive-electrode active material for lithium secondary battery
JP2012178244A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
WO2013084851A1 (en) * 2011-12-05 2013-06-13 トヨタ自動車株式会社 Lithium ion secondary battery
WO2014077231A1 (en) * 2012-11-13 2014-05-22 戸田工業株式会社 Lithium-manganate-particle powder for use in non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP2014143038A (en) * 2013-01-23 2014-08-07 Toray Ind Inc Composite particle of positive electrode active material and conductive carbon
US8821765B2 (en) 2010-08-31 2014-09-02 Ngk Insulators, Ltd. Cathode active material for lithium secondary battery
KR20160041004A (en) * 2014-10-06 2016-04-15 히타치 긴조쿠 가부시키가이샤 Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
WO2018043653A1 (en) 2016-08-31 2018-03-08 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN109935767A (en) * 2017-12-19 2019-06-25 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
JP2019110068A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP2019110069A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP2019110067A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
US10388944B2 (en) 2014-10-06 2019-08-20 Hitachi Metals, Ltd. Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
WO2020026310A1 (en) * 2018-07-30 2020-02-06 株式会社 東芝 Electrode, non-aqueous electrolyte battery, and battery pack
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
WO2022191202A1 (en) * 2021-03-10 2022-09-15 茂 佐野 Positive electrode and storage battery

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119092A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Active material particles, and use of same
US9391318B2 (en) 2009-12-02 2016-07-12 Toyota Jidosha Kabushiki Kaisha Active material particles for a lithium secondary battery
WO2011067982A1 (en) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 Active material particles and use of same
US8486564B2 (en) 2009-12-02 2013-07-16 Toyota Jidosha Kabushiki Kaisha Method of producing active material particles with lithium transition metal oxide secondary particles
JPWO2012029803A1 (en) * 2010-08-31 2013-10-31 日本碍子株式会社 Cathode active material for lithium secondary battery
WO2012029803A1 (en) * 2010-08-31 2012-03-08 日本碍子株式会社 Positive-electrode active material for lithium secondary battery
CN103098270A (en) * 2010-08-31 2013-05-08 日本碍子株式会社 Positive-electrode active material for lithium secondary battery
US8821765B2 (en) 2010-08-31 2014-09-02 Ngk Insulators, Ltd. Cathode active material for lithium secondary battery
JP2012178244A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2013118156A (en) * 2011-12-05 2013-06-13 Toyota Motor Corp Lithium ion secondary battery
US9831497B2 (en) 2011-12-05 2017-11-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing active material particles
WO2013084851A1 (en) * 2011-12-05 2013-06-13 トヨタ自動車株式会社 Lithium ion secondary battery
US9577254B2 (en) 2011-12-05 2017-02-21 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
JPWO2014077231A1 (en) * 2012-11-13 2017-01-05 戸田工業株式会社 Non-aqueous electrolyte secondary battery lithium manganate particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
CN104781962A (en) * 2012-11-13 2015-07-15 户田工业株式会社 Lithium-manganate-particle powder for use in non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
TWI572561B (en) * 2012-11-13 2017-03-01 Toda Kogyo Corp Lithium manganate particles for nonaqueous electrolyte storage batteries and methods for producing the same, and nonaqueous electrolyte batteries
WO2014077231A1 (en) * 2012-11-13 2014-05-22 戸田工業株式会社 Lithium-manganate-particle powder for use in non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP2014143038A (en) * 2013-01-23 2014-08-07 Toray Ind Inc Composite particle of positive electrode active material and conductive carbon
KR20160041004A (en) * 2014-10-06 2016-04-15 히타치 긴조쿠 가부시키가이샤 Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
KR101888552B1 (en) * 2014-10-06 2018-08-16 히타치 긴조쿠 가부시키가이샤 Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
US10388944B2 (en) 2014-10-06 2019-08-20 Hitachi Metals, Ltd. Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
KR20190040219A (en) * 2016-08-31 2019-04-17 스미또모 가가꾸 가부시끼가이샤 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
WO2018043653A1 (en) 2016-08-31 2018-03-08 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
KR102436594B1 (en) * 2016-08-31 2022-08-25 스미또모 가가꾸 가부시끼가이샤 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
US11417879B2 (en) 2016-08-31 2022-08-16 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2018045759A (en) * 2016-08-31 2018-03-22 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN109935767B (en) * 2017-12-19 2022-09-13 住友化学株式会社 Non-aqueous electrolyte secondary battery
US10741815B2 (en) 2017-12-19 2020-08-11 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP2019110070A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
CN109935767A (en) * 2017-12-19 2019-06-25 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP2019110069A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP2019110067A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP2019110068A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP7024090B2 (en) 2018-07-30 2022-02-22 株式会社東芝 Electrodes, non-aqueous electrolyte batteries and battery packs
JPWO2020026310A1 (en) * 2018-07-30 2021-05-20 株式会社東芝 Electrodes, non-aqueous electrolyte batteries and battery packs
WO2020026310A1 (en) * 2018-07-30 2020-02-06 株式会社 東芝 Electrode, non-aqueous electrolyte battery, and battery pack
WO2022191202A1 (en) * 2021-03-10 2022-09-15 茂 佐野 Positive electrode and storage battery

Similar Documents

Publication Publication Date Title
JP2009259605A (en) Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance
JP5251401B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4740409B2 (en) Lithium secondary battery for electric vehicle or hybrid vehicle
JP5175826B2 (en) Active material particles and use thereof
KR101539843B1 (en) Anode Active Material of High Density and Methode for Preparation of The Same
KR20190065963A (en) Positive active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including positive active material
JP5389620B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
CN108155357B (en) Nickel-based active material for lithium secondary battery, method for preparing same, and lithium secondary battery including positive electrode including same
US20160276664A1 (en) Positive electrode active material for lithium ion secondary batteries, method for producing same and lithium ion secondary battery
JP2010211925A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP6284040B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
KR101966494B1 (en) Lithium ion secondary battery
JP4740415B2 (en) Lithium secondary battery for electric or hybrid vehicles
JP5674056B2 (en) Positive electrode active material, method for producing the same, and lithium secondary battery using the same
JPWO2018179934A1 (en) Anode material and non-aqueous electrolyte secondary battery
US20200203725A1 (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2023015188A (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
JP2013051086A (en) Electrode material for secondary battery, and method of manufacturing the same
CN106558725B (en) Lithium ion secondary battery
JP3503688B2 (en) Lithium secondary battery
CN112242509B (en) Nonaqueous electrolyte secondary battery
CN113711382A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN108807865B (en) Positive electrode active material, method for producing same, and lithium ion secondary battery
JP5708964B2 (en) Lithium secondary battery and manufacturing method thereof
JP2023021107A (en) Positive active material, method for preparing the same, and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705