WO2011019078A1 - High-speed manufacturing method for flexible thermoelectric generation devices - Google Patents

High-speed manufacturing method for flexible thermoelectric generation devices Download PDF

Info

Publication number
WO2011019078A1
WO2011019078A1 PCT/JP2010/063738 JP2010063738W WO2011019078A1 WO 2011019078 A1 WO2011019078 A1 WO 2011019078A1 JP 2010063738 W JP2010063738 W JP 2010063738W WO 2011019078 A1 WO2011019078 A1 WO 2011019078A1
Authority
WO
WIPO (PCT)
Prior art keywords
tape
type
rectangular
flexible
predetermined number
Prior art date
Application number
PCT/JP2010/063738
Other languages
French (fr)
Japanese (ja)
Inventor
創 馬場
純 明渡
Original Assignee
独立行政法人産業技術総合研究所
佐藤 宏司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 佐藤 宏司 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2011526790A priority Critical patent/JP5316912B2/en
Publication of WO2011019078A1 publication Critical patent/WO2011019078A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention is a device that makes it possible to generate power by effectively using exhaust heat as a heat source to convert a temperature difference into electric power.
  • piping for hot water (high temperature) or tap water (low temperature) in a home From power generation using the temperature difference between the pipe and the temperature by wrapping the device around the power source, or from the power generation using the temperature difference between the body temperature and temperature of the arm by directly winding the device around the arm.
  • the present invention relates to a high-speed manufacturing method of a flexible thermoelectric power generation device that can be widely used up to a relatively large power generation due to a temperature difference between piping and temperature by wrapping the device around a drain pipe or an exhaust pipe.
  • Patent Documents 1 to 6 show flexible thermoelectric power generation devices. These are simply a method of manufacturing a curved module using a flexible substrate, its element structure, and the material of the flexible substrate. Only the method of converting the temperature gradient in the film thickness direction of the thermoelectric conversion film into the film surface having a large electric resistance is shown, and no means for obtaining the maximum power generation amount is shown.
  • Patent Document 7 discloses a thermoelectric power generation element that considers impedance matching with an external load in order to obtain the maximum power generation amount. However, in this document, the difference between p-type and n-type characteristics is shown. In order to avoid this, only the same element (p-type only or n-type only) is realized.
  • Patent Document 10 discloses a technique for avoiding the difference in characteristics between the p-type and the n-type in the pn-type, but this is only provided with different metal electrodes for the p-type and the n-type, respectively. Therefore, it does not show an essential solution for obtaining the maximum power generation amount with the pn type.
  • Patent Document 11 shows a thermoelectric power generation device manufactured by using an AD method (aerosol deposition method), which is a thermoelectric material that is difficult to sinter or form by a conventional method. It has only been shown that thermoelectric power generation devices can be produced using the AD method.
  • AD method aerosol deposition method
  • the problem to be solved is to create a pn-type flexible thermoelectric power generation device using the AD method, and easily obtain the maximum power generation amount of the pn-type device combining the p-type and the n-type having different thermoelectric power generation characteristics. It is an object of the present invention to provide a high-speed manufacturing method of a flexible thermoelectric power generation device that can be used by being wound around a tube.
  • the present invention provides a conductive tape on a flexible tape serving as one substrate, arranged in a rectangular shape at intervals in the longitudinal direction of the flexible tape, and a p-type thermoelectric material on each rectangular conductive tape.
  • the mold element and the n-type element are all the same strip shape as the polycrystalline film, and the strip shape is formed by shifting the longitudinal direction of the strip shape by a predetermined angle from the direction perpendicular to the longitudinal direction of the flexible tape, and the flexible substrate serving as the other substrate
  • Conductive connection tapes are arranged on the tape in a rectangular shape and arranged in the longitudinal direction of the flexible tape, and the one and the other flexible tapes are bonded using the connectivity of the conductive connection tape.
  • a predetermined number of n-type elements formed on each rectangular conductive tape are formed by a predetermined number of p-type elements formed on an adjacent rectangular conductive tape and a rectangular conductive connecting tape.
  • An n-type electrically connected and having a predetermined number of p-type elements formed on each of the rectangular conductive tapes and a predetermined number of p-type elements formed on the adjacent rectangular conductive tapes adjacent to each other In a method of manufacturing a flexible thermoelectric power generation device electrically connected to an element by a rectangular conductive connecting tape and connected in series as a whole, the element of the predetermined number of p-type elements and the predetermined number of n-type elements The ratio of the numbers is selected so as to achieve impedance matching with the connected external load.
  • the polycrystalline film is a microcrystalline structure having a grain size of 100 ⁇ m or less, particularly 5 to 500 nm.
  • the high-speed manufacturing method of the flexible thermoelectric power generation device of the present invention is further characterized in that the film formation is performed using an AD method.
  • the high-speed manufacturing method of the flexible thermoelectric power generation device of the present invention is further characterized in that the rectangular conductive tape and the rectangular conductive connecting tape are made of a conductive material such as metal on the surface of an insulating flexible tape such as a resin.
  • the film formation is further provided by shifting the predetermined angle from a direction in which one of the rectangular axes is orthogonal to the longitudinal direction of the flexible tape. It is characterized by.
  • the predetermined angle is such that the longitudinal direction of the strip shape coincides with the longitudinal direction of the tube when the flexible thermoelectric power generation device is wound around a tubular heat source. Is pre-selected.
  • the high-speed manufacturing method for a flexible thermoelectric power generation device of the present invention is further characterized in that the predetermined angle is an angle arctan (P / ⁇ D) where D is the diameter of the tube and P is the winding pitch. To do.
  • a rectangular p-type element region and a rectangular n-type element region are spaced apart on a conductive tape such as a metal tape to be one electrode.
  • a conductive tape such as a metal tape to be one electrode.
  • a rectangular fin region and the other electrode 2 are set, and the one side between the adjacent rectangular p-type element region and the rectangular n-type element region Set the connection area to connect the electrodes of
  • a predetermined number of p-type thermoelectric materials are formed in a strip shape using the AD method to form a predetermined number of p-type elements, and a rectangular n-type thermoelectric
  • a predetermined number of materials are formed in a strip shape using the AD method to form a predetermined number of n-type elements, and the p
  • thermoelectric power generation device in which a predetermined number of n-type elements formed on a mold element region are electrically connected and connected in series as a whole, The ratio of the number of strip-shaped elements of the predetermined number of p-type elements and the predetermined number of n-type elements is selected so as to achieve impedance matching with a connected external load.
  • this invention is the flexible thermoelectric power generation device manufactured by the said manufacturing method, It is characterized by the above-mentioned.
  • the pore structure film can be controlled to a dense structure film, and a nanocrystal structure having a particle size of several tens of nanometers or less can be formed.
  • the pore structure is expected to have a heat insulating effect as before, but it is a dense nanocrystal body, that is, it has many grain boundaries because it is a microcrystal body while ensuring electrical conductivity,
  • mixed powders of CoSb 3 and FeSb 2 , alloy powders of Bi-Sb-Te, and ceramic thermoelectric power generation materials phonons, which are thermal conductivity factors, are likely to be scattered, and as a result, a significant decrease in thermal conductivity is expected. .
  • a film can be formed on the surface of a certain long tape substrate, and high-speed continuous production can be realized by roll-to-roll. Assuming that the particle diameter of the thermoelectric material film formed of the AD film is 20 nm and the particle diameter of the bulk thermoelectric material ceramic is 100 ⁇ m, the phonon scattering is caused by the grain boundary 50000 times and the bulk ceramic is 10 times within the range of 1 mm. Occurs.
  • the AD film formed by the AD method is expected to have a maximum thermal conductivity reduction of 1/5000 due to phonon scattering, as compared with bulk ceramics.
  • the AD method can form two or more types of powders as raw material powders by mechanical mixing by milling, the fine particle dispersed nanocomposite thermoelectric power generation film that has been used only in the conventional sintering process is also the element size. Can be formed and integrated directly on the street.
  • Non-Patent Document 1 the raw material powder particles discharged from the nozzle are pressed simultaneously with impact crushing at a maximum pressure of several GPa in the uniaxial direction, that is, the normal direction of the substrate. To solidify. Therefore, as described in Non-Patent Documents 2 and 3 and Patent Document 12, the cross-sectional structure of the formed film has a lamellar shape in which crushed particles extend in an in-plane direction with respect to the substrate. Therefore, when raw material powder particles having plate-like crystals such as Fe 2 VAl and Ca 3 Co 4 O 9 which are thermoelectric materials are used, the effect becomes more remarkable, and the formed film is disclosed in Non-Patent Document 4.
  • the same effect as a sintering process for forming an oriented bulk body using hot forging, a discharge plasma sintering method, or a hot press method can be expected. That is, a film having a cross-sectional structure oriented in the in-plane direction with respect to the substrate is obtained. Therefore, the electrical conductivity in the in-plane direction is improved, and it is effective for a sensor device using thermoelectric conversion in the in-plane direction.
  • thermoelectric element having a very low thermal conductivity can be formed on a flexible long tape base material with a desired element size and a narrow pitch.
  • thermoelectric power generation module composed of the p-type thermoelectric material and the n-type thermoelectric material having different thermoelectric power generation characteristics due to the difference in the cross-sectional area of the p-type and n-type elements.
  • This can be realized by the difference in the number of strip-shaped elements between the p-type element and the n-type element.
  • impedance matching with the external load to be connected can be substantially realized in the present invention by the difference in the number of strip-shaped elements.
  • the formed thermoelectric element is a microcrystalline structure having a particle size of 100 ⁇ m or less, particularly 5 to 500 nm, as described above. Therefore, the formed film surface can be mechanically polished, for example. It can be easily smoothed without degranulation. Therefore, in a pn-type thermoelectric power generation module composed of M p-type elements and N n-type elements, the film thickness variation among the M p-type elements, the uniformity of the film surface, and the N n-type elements Film thickness variation and film surface uniformity, and film thickness variation and film surface uniformity between p-type elements and n-type elements are ensured by post-deposition processes such as mechanical polishing. Is done.
  • the waste heat can be effectively used by winding the heat on a curved heat source such as a waste heat tube by forming a strip-like film on the surface of the flexible long tape.
  • a film is formed by shifting the longitudinal direction of the strip in advance by an angle arctan (P / ⁇ D) from the direction perpendicular to the longitudinal direction of the long tape. Since the longitudinal direction of the strip coincides with the longitudinal direction of the tube when wound, the influence of the curved surface of the tube is minimized without the strip being bent in the longitudinal direction.
  • the present invention forms a strip-like film on the surface of a flexible long tape, in particular, a metal tape or a thin metal plate, and the metal tape between the films is bent or shaped by pressing or the like.
  • the metal tape has the function of heat collecting fins, heat radiating fins, or heat transfer promoting parts that generate eddy currents, and thermoelectric elements are integrated on the metal tape without using an adhesive such as silver paste.
  • the heat collecting fins, the heat radiating fins, or the heat transfer promoting part for generating the vortex can be integrally formed from a metal tape without newly joining parts.
  • the present invention forms a strip-like film on the surface of a flexible long tape, especially a metal tape or a thin metal plate, and folds or shapes the metal tape between the films by pressing or the like.
  • the metal tape has the function of the upper electrode or lower electrode, and silver paste on the metal tape.
  • the upper electrode or the lower electrode can be integrally formed from a metal tape without preparing new parts.
  • FIG. 1 is an explanatory diagram showing the basic principle of a thermoelectric power generation device.
  • FIG. 2 is an explanatory diagram showing voltage-current characteristics (VI characteristics) of a p-type thermoelectric element and an n-type thermoelectric element having the same shape.
  • FIG. 3 shows voltage-current characteristics (VI characteristics) and voltage-power generation characteristics (VW characteristics) of conventional thermoelectric power generation devices using p-type and n-type thermoelectric elements having the same shape.
  • FIG. FIG. 4 is an explanatory view showing a conventional thermoelectric power generation device using p-type thermoelectric elements and n-type thermoelectric elements having different shapes.
  • FIG. 5 is an explanatory diagram showing voltage-current characteristics (VI characteristics) of conventional p-type thermoelectric elements and n-type thermoelectric elements having different shapes.
  • FIG. 6 is an explanatory diagram showing a thermoelectric power generation device in which the ratio of the number of p-type thermoelectric elements and n-type thermoelectric elements having the same shape is adjusted according to the present invention.
  • FIG. 7 is a diagram showing XRD profiles, film thicknesses, and electric resistance values of films formed at various gas flow rates in the AD method.
  • FIG. 8 is a diagram showing FE-SEM photographs of cross sections of films formed at various gas flow rates in the AD method.
  • FIG. 9 is a diagram showing the Vickers hardness of a film formed at various gas flow rates in the AD method.
  • FIG. 10 is a diagram showing the square value of the thermal permeability of Bi 0.5 Sb 1.5 Te 3 film and Ca 3 Co 4 O 9 film formed at various gas flow rates in the AD method.
  • FIG. 11 is a view showing an appearance photograph of a Bi 0.5 Sb 1.5 Te 3 film formed at high speed by the AD method.
  • FIG. 12 shows respective sample back surface temperature change curves in the laser flash method of the bulk sintered body formed to have the same size as the Bi 0.5 Sb 1.5 Te 3 film formed at high speed by the AD method and the AD film. It is explanatory drawing.
  • FIG. 13 is an explanatory view showing an appearance photograph of a Bi 0.5 Sb 1.5 Te 3 film having a film thickness of 1 mm or more formed at high speed by the AD method and its formation process.
  • FIG. 12 shows respective sample back surface temperature change curves in the laser flash method of the bulk sintered body formed to have the same size as the Bi 0.5 Sb 1.5 Te 3 film formed at high speed by the AD method and the AD film. It is explanatory drawing.
  • FIG. 13 is an explanatory view showing an appearance photograph of a Bi 0.5 Sb 1.5 Te 3 film having a film thickness of 1 mm or more formed at high speed by the AD method and
  • FIG. 14 is an explanatory diagram showing a method for forming oriented Ca 3 Co 4 O 9 bulk ceramics and a Ca 3 Co 4 O 9 film formed by the AD method, and SEM photographs of the respective sections.
  • FIG. 15 is an explanatory view showing that an alignment film formed by the AD method of FIG. 14 is formed on both surfaces of a base material and used as a pn-type element.
  • FIG. 16 is an explanatory view showing an embodiment of the high-speed manufacturing method of the flexible thermoelectric power generation device of the present invention.
  • FIG. 17 is an explanatory view showing that the p-type thermoelectric element and the n-type thermoelectric element are electrically connected by the conductive tape and the conductive connection tape in the high-speed manufacturing method of FIG.
  • FIG. 15 is an explanatory view showing that an alignment film formed by the AD method of FIG. 14 is formed on both surfaces of a base material and used as a pn-type element.
  • FIG. 16 is an explanatory view showing an embodiment of the high-speed
  • FIG. 18 shows a case where a flexible thermoelectric power generation device manufactured by the high-speed manufacturing method of FIG. 16 is used by being wound around a heat source pipe, and shows that the longitudinal direction of each strip-shaped element coincides with the longitudinal direction of the tube. It is explanatory drawing.
  • FIG. 19 is an explanatory view showing a film thickness profile and a result of forming an NaCo 2 O 4 thick film on an aluminum tape / polyimide tape by tilting 30 degrees with respect to the longitudinal direction of the tape by the AD method.
  • FIG. 20 is an explanatory diagram showing a case where the high-speed manufacturing method of FIG. 16 is performed by roll-to-roll.
  • FIG. 19 is an explanatory view showing a case where the high-speed manufacturing method of FIG. 16 is performed by roll-to-roll.
  • FIG. 21 is an explanatory diagram showing that the p-type thermoelectric element or the n-type thermoelectric element in the roll-to-roll of FIG. 20 is integrally formed from a metal tape with a cooling fin structure and an upper electrode by a precision fine press.
  • FIG. 22 is an explanatory view showing a state where a thermoelectric power generation device in which the cooling fin structure and the upper electrode of FIG. 21 are integrally formed from a metal tape is wound around a pipe.
  • FIG. 23 is an explanatory view showing that a p-type thermoelectric element and an n-type thermoelectric element in the roll-to-roll of FIG. 20 are formed with a ⁇ -type element by a precision fine press.
  • FIG. 1 is a diagram for explaining the basic principle of a thermoelectric power generation device.
  • heat input is input from a heat source such as a factory exhaust heat pipe, and heat dissipation is performed in, for example, a normal temperature atmosphere in the atmosphere. To be made.
  • the specific resistance is 1.019 ⁇ 10 ⁇ 5 ⁇ m. Therefore, when a strip-shaped single element is 1 mm (width) ⁇ 10 mm (length) ⁇ 0.2 mm (thickness)
  • 200 ⁇ V / K, the voltage generated for a temperature difference of 1 ° C.
  • FIG. 2 is a diagram for explaining a problem when trying to obtain the maximum power generation amount in a pn-type thermoelectric power generation module composed of a p-type thermoelectric material and an n-type thermoelectric material having different thermoelectric power generation characteristics.
  • FIG. 2 shows an example of voltage-current characteristics (VI characteristics) of a p-type thermoelectric element and an n-type thermoelectric element having the same shape.
  • Ca layered oxide which is p-type material
  • the p-type material had an internal resistance of 15.8 ⁇ , an open circuit voltage of 14.07 mV, and a maximum power of 28.34 ⁇ W was obtained when the external load was 1.805 ⁇ , the electromotive voltage was 7.153 mV, and the electromotive current was 3.962 mA.
  • the n-type material had an internal resistance of 3.01 ⁇ , an open circuit voltage of 2.44 mV, and a maximum power of 2.6842 ⁇ W was obtained when the external load was 0.41286 ⁇ , the electromotive voltage was 1.2450 mV, and the electromotive current was 2.156 mA.
  • the pn-type when there is a large difference in the VI characteristics between the p-type material and the n-type material, the pn-type is more closed than the single-type (p-type in this case).
  • the value (current value corresponding to 0 V in this case) is small, and the effect of using the n-type element for improving the power generation amount is not obtained (see the VW characteristic in FIG. 3). This is because the amount of current when using as a pn type is larger than when using a single n type, and the excess current causes a loss due to a voltage drop or Peltier effect due to material resistance inside the n type element. Is causing.
  • thermoelectric power generation module composed of a p-type thermoelectric material and an n-type thermoelectric material having different thermoelectric generation characteristics as shown in FIG. 2, a p-type thermoelectric element as shown in FIG.
  • the cross-sectional area with respect to the current relative to the n-type thermoelectric element (the element on the right side in the drawing) is increased to have an irregular shape, and the effective amount of current flowing through the p-type thermoelectric element is increased as shown in FIG.
  • the increase in the cross-sectional area further deteriorates the flexibility of the originally bulky thermoelectric generator, and the fitting to the heat distribution becomes very difficult.
  • a device is configured by a single element of only n-type or p-type, a device using a single element cannot be expected to generate a large amount of power in the first place.
  • the present invention it is effective to adjust the number of p-type and n-type elements as shown in FIG.
  • the element cross-sectional area with respect to the current is adjusted to obtain the maximum power generation amount.
  • two examples on the right side are p-type thermoelectric elements and one on the left side is an n-type thermoelectric element.
  • the number of p-type and n-type elements is adjusted to obtain the maximum power generation amount, Good.
  • Each element shape of the p-type and the n-type may be the same, for example, a strip shape of 1 mm (width) ⁇ 10 mm (length) ⁇ 0.2 mm (thickness).
  • the maximum power generation amount may be obtained by adjusting the number of p-type and n-type elements using other manufacturing processes or bulk processes. Also, the number of p-type and n-type elements can be increased by using metal, alloy-based or composite-based (composite-based) film-like or bulk-like materials, or by combining them with ceramic-based film-like or bulk materials. The maximum power generation amount may be obtained by adjustment. Further, in the present invention, a conductive tape or a conductive connection tape is used for the connection between elements, but this is not limited as long as a combination of a conductive material and a connection method is used.
  • the shape is not limited to tape, and the maximum power generation amount may be obtained by adjusting the number of p-type and n-type elements using a shape capable of thermoelectric power generation.
  • the power generation performance of thermoelectric power generation using the Seebeck effect is maximized by adjusting the number of p-type and n-type elements.
  • the Peltier effect which is the reverse phenomenon of the Seebeck effect, is used. It may be used to maximize the cooling performance of the thermoelectric cooling.
  • FIG. 7 shows an XRD profile and a film thickness of a Bi 0.5 Sb 1.5 Te 3 film formed on a glass substrate at various gas flow rates in an AD method for an arbitrary time, and measurement at room temperature by a 4-terminal method.
  • the value of electrical resistance is shown.
  • the gas flow rate increases, the number of particles per unit volume in the aerosol decreases.
  • the collision speed of the particles to the substrate increases.
  • the XRD peak intensity is high and the peak half-value width is small, that is, the crystallinity is improved, although the film thickness is thinner than the other two. .
  • the value of electrical resistance is also small.
  • FIG. 8 shows the result of etching the cross section of the AD film obtained in FIG. 7 with a focused ion beam (FIB) and observing the cross section with a field emission scanning electron microscope (FE-SEM).
  • FIB focused ion beam
  • FE-SEM field emission scanning electron microscope
  • FIG. 9 shows the result of measuring the Vickers hardness of the surface of the AD film obtained in FIG. 7 at three points.
  • the Vickers hardness at other gas flow rates was about the same as that of bulk and commercial products (about 50 to 70). From the above results, when the AD method is used, it is possible to form a dense and microcrystallized element by controlling the gas flow rate, that is, to form an element having a high mechanical hardness of the film (small gas flow rate), or to have a high conductivity. An element having low thermal conductivity, that is, high thermoelectric performance can be formed (high gas flow rate).
  • b f is the thermal permeability (J / (m 2 ⁇ s 0.5 ⁇ K))
  • c is the specific heat (J / (kg ⁇ K))
  • is the density (kg / m 3 ). That is, the thermal conductivity ( ⁇ ) is proportional to the value of the square of the thermal permeability (b f 2 ).
  • the film formed by the AD method has a different film density depending on the gas flow rate. Therefore, the thermal conductivity of the AD film can be evaluated by the thermal permeability.
  • FIG. 10 shows a pulse heating nanosecond thermoreflectance method in which AD films (Bi 0.5 Sb 1.5 Te 3 film, Ca 3 Co 4 O 9 film) with various gas flow rates are formed on a quartz substrate with a Mo film.
  • AD films Bi 0.5 Sb 1.5 Te 3 film, Ca 3 Co 4 O 9 film
  • the value of the square of the thermal permeability is increased with the increase in gas flow rate regardless of the film density. Decrease, that is, thermal conductivity is reduced.
  • FIG. 13 shows an appearance photograph of a Bi 0.5 Sb 1.5 Te 3 film having a film thickness of 1 mm or more formed at high speed by the AD method and a formation process thereof. If the AD method is used, an element having a thickness of 1 mm or more can be formed. Therefore, when thermoelectric power generation is performed using a temperature difference in the film thickness direction, a temperature difference is more easily applied than a thin film thermoelectric device manufactured by a conventional method. In addition, when thermoelectric power generation is performed using the temperature difference in the in-plane direction, the cross-sectional area of the element through which current flows increases as the film thickness increases, so that the internal resistance of the element can be made smaller than the thin film thermoelectric device fabricated by the conventional method.
  • thermoelectric power generation when an element having a film thickness of 1 mm or more is formed by using the AD method, a pyramid-shaped element can be formed as shown in FIG. 13 due to the etching effect and the film forming effect of the AD film by particles in the aerosol. is there.
  • thermoelectric power generation when thermoelectric power generation is performed using a temperature difference in the film thickness direction, heat is easily transmitted by radiation heat transfer on the high temperature side surface and the low temperature side surface of the element.
  • the heat flux is stagnant at the part where the cross-sectional area is the smallest, increasing the temperature difference between the high temperature side and the low temperature side in the element, and consequently increasing the temperature difference in the film thickness direction. it can.
  • FIG. 14 shows a method of forming an oriented Ca 3 Co 4 O 9 bulk ceramic and a Ca 3 Co 4 O 9 film formed by the AD method, and SEM photographs of the respective sections.
  • the film formed by the AD method is post-annealed in an air atmosphere at 800 ° C. for 1 hour so that the cross-sectional shape becomes clearer, and it can be seen that grains tend to grow in the in-plane direction.
  • the orientation in the in-plane direction can be achieved, and at the same time, the conductivity in the in-plane direction is improved. For example, it is effective for a sensor device using a temperature difference in the in-plane direction.
  • the AD method can form a thick film directly on the base material, for example, as shown in FIG. A p-type element and an n-type element are formed on the back by AD method, and post-annealing is performed to orient the film in the in-plane direction to increase the conductivity in the in-plane direction. It is also possible to modularize by connecting with electrodes.
  • FIG. 16 shows an example of a high-speed manufacturing method for the flexible thermoelectric power generation device of the present invention.
  • the conductive tape is provided on one side of the flexible tape (the upper tape in the figure), shifted by a predetermined angle from the direction perpendicular to the longitudinal direction of the flexible tape, and arranged in a rectangular shape with a gap therebetween,
  • a predetermined number (three in the figure) of p-type thermoelectric material is formed on the conductive tape in a strip shape by the AD method from the first AD nozzle to form a predetermined number of p-type elements, and then the second A predetermined number (three in the figure) of n-type thermoelectric material is formed in a strip shape by AD method from the AD nozzles to form a predetermined number of n-type elements.
  • both the p-type thermoelectric material and the n-type thermoelectric material are formed into the same strip shape, and the longitudinal direction of the strip shape is shifted by a predetermined angle from the direction orthogonal to the longitudinal direction of the flexible tape.
  • the ratio between the number of elements and the number of n-type elements is set so that the maximum power generation amount can be obtained or impedance matching with an external load can be obtained.
  • the conductive connection tape is provided in a rectangular shape with a predetermined angle shifted from the direction orthogonal to the longitudinal direction of the flexible tape.
  • a predetermined number of n-type elements formed on a rectangular conductive tape and a predetermined number of p-type elements formed on an adjacent rectangular conductive tape are electrically connected with a rectangular conductive connecting tape, and are formed on the rectangular conductive tape by a predetermined number of pieces on the rectangular conductive tape adjacent to the p-type element on the opposite side.
  • a predetermined number of n-type elements are electrically connected with a conductive connection tape, and are bonded so as to be connected in series as a whole to obtain a tape-like flexible thermoelectric power generation device.
  • the upper figure shows an example in which the number of n-type elements is 3 with respect to 3 p-type elements, and the lower figure has 3 n-type elements with respect to 1 p-type element.
  • the ratio of the number of p-type and n-type elements may be determined in consideration of impedance matching with an external load.
  • the tape-shaped flexible thermoelectric power generation device manufactured as described above generates power by the temperature difference between the exhaust heat pipe and the atmosphere when cut out by a necessary length and wound around the exhaust heat pipe.
  • the strip-shaped p-type element and the n-type element have a strip-shaped longitudinal direction that is shifted by a predetermined angle from a direction orthogonal to the longitudinal direction of the tape in advance.
  • the longitudinal direction coincides with the longitudinal direction of the exhaust heat pipe, and the influence of bending due to the curved surface of the pipe is small.
  • the film should be formed in advance by shifting the longitudinal direction of the strip shape by an angle arctan (P / ⁇ D) from the direction perpendicular to the longitudinal direction of the flexible tape.
  • the longitudinal direction of the strip shape coincides with the longitudinal direction of the pipe.
  • FIG. 19 shows a film thickness profile and a result obtained by forming a NaCo 2 O 4 thick film on an aluminum tape (15 mm width) / polyimide tape by tilting 30 degrees with respect to the longitudinal direction of the tape by the AD method.
  • the size of the element is 5 mm, and ten elements are formed for 1 minute at 5 mm intervals without a mask.
  • the film forming speed is 120 to 200 ⁇ m / min, and corresponds to a pipe of arctan (P / ⁇ D) to ⁇ 8 mm.
  • FIG. 20 shows an example of a method for manufacturing the tape-shaped flexible thermoelectric power generation device at a high speed by roll-to-roll.
  • the conductive tape fed out from the conductive tape supply roll is laminated on the flexible tape fed out from one of the flexible tape supply rolls while being shifted by a predetermined angle from the direction perpendicular to the longitudinal direction of the flexible tape.
  • a predetermined number of p-type thermoelectric materials are formed in a strip shape by the AD method from the first AD nozzle to form a predetermined number of p-type elements, and then the n-type thermoelectric material is transferred from the second AD nozzle to the AD method.
  • To form a predetermined number of n-type elements by forming a predetermined number of strips.
  • the conductive connection tape drawn out from the conductive connection tape supply roll is laminated with a predetermined angle shifted from the direction perpendicular to the longitudinal direction of the flexible tape.
  • a predetermined number of n-type elements formed on a conductive tape and a predetermined number of p-type elements formed on an adjacent conductive tape are electrically connected by a conductive connection tape and are conductive.
  • a predetermined number of p-type elements formed on the tape and a predetermined number of n-type elements formed on the adjacent conductive tape on the opposite side are electrically connected by the conductive connection tape, and are connected in series as a whole.
  • one flexible tape and the other flexible tape are bonded together and wound on a winding roll to manufacture a flexible thermoelectric power generation device.
  • FIG. 21 shows another example of a method for producing the tape-shaped flexible thermoelectric power generation device at high speed by roll-to-roll.
  • elements are formed on the metal tape by the AD method, and then the device is punched into a desired shape with a fine precision press as shown in the middle part of the figure.
  • the fin structure was formed integrally with the portion of the metal tape (the portion serving as the lower electrode) on which the element was directly formed by bending, and the bending was performed.
  • a p-type element or an n-type element in a thermoelectric element can be electrically connected in series with the same element by joining a metal tape portion (see the upper electrode in the figure) to the film surface and cutting unnecessary portions. it can.
  • a cooling fin-integrated flexible thermoelectric power generation device By winding the device thus formed around the pipe, a cooling fin-integrated flexible thermoelectric power generation device can be formed as shown in FIG. Further, as shown in FIG. 23, a p-type element and an n-type element in a thermoelectric element are electrically connected in series by joining a bent metal tape portion (see the electrode in the figure) to the film surface. Thus, a ⁇ -type element can be formed.
  • thermoelectric elements are replaced with a predetermined number of p-type thermoelectric materials in the p-type portion, as shown in FIG.
  • a predetermined number of strip-shaped p-type elements and a predetermined number of strip-shaped p-type elements are formed by depositing a predetermined number of strip-shaped n-type thermoelectric materials on the n-type portion by the AD method.
  • a number of strip-shaped n-type elements can be electrically connected to form a ⁇ -type element.
  • the strips of p-type and n-type are all formed in the same shape, and the predetermined number of p-type and n-type may be selected in consideration of impedance matching with an external load.
  • the ratio of the number of elements of the p-type element and the n-type element is simply set so that the maximum power generation amount can be obtained, or If it is set so that impedance matching with the load can be obtained, it can be applied to any thermoelectric material simply by changing the ratio of the number of elements.

Abstract

Disclosed is a method enabling high-speed manufacture of flexible thermoelectric generation devices by means of an AD method. The method comprises disposing pieces of conductive tape, spaced apart from each other in rectangular shapes, on a flexible tape in a line in the longitudinal direction of the flexible tape, each rectangular piece of conductive tape having a predetermined number of p-type elements and a predetermined number of n-type elements formed thereon in strips by an AD method, and the p-type elements and n-type elements all having the same strip shape as polycrystalline films and formed so as to be shifted away exactly by a predetermined angle from the orientation by which the longitudinal direction of the strip shapes perpendicularly intersects the longitudinal direction of the flexible tape; disposing pieces of conductive connection tape, spaced apart from each other in rectangular shapes, on another substrate formed by flexible tape; and attaching the first flexible tape to the other flexible tape by utilizing the connectivity of the conductive connection tape, thereby manufacturing flexible thermoelectric generation devices connected in series as a whole. The ratio of the number of p-type elements to the number of n-type elements is selected so that the impedance with respect to the external load to be connected is matched.

Description

フレキシブル熱電発電デバイスの高速製造方法High speed manufacturing method of flexible thermoelectric power generation device
 本発明は、排熱を熱源として有効利用して温度差を電力に変換して発電することを可能にするデバイスであって、例えば、家庭内の温水(高温)や水道水(低温)の配管にデバイスを巻き付けて配管と気温との温度差を利用した発電や、腕にデバイスを直接巻き付け腕の体温と気温との温度差を利用した発電などの小電力発電から、発電所や工場の配管(排水管・排気管など)にデバイスを巻き付けて配管と気温との温度差による比較的大電力発電まで幅広く利用することができるフレキシブル熱電発電デバイスの高速製造方法に関するものである。 The present invention is a device that makes it possible to generate power by effectively using exhaust heat as a heat source to convert a temperature difference into electric power. For example, piping for hot water (high temperature) or tap water (low temperature) in a home From power generation using the temperature difference between the pipe and the temperature by wrapping the device around the power source, or from the power generation using the temperature difference between the body temperature and temperature of the arm by directly winding the device around the arm The present invention relates to a high-speed manufacturing method of a flexible thermoelectric power generation device that can be widely used up to a relatively large power generation due to a temperature difference between piping and temperature by wrapping the device around a drain pipe or an exhaust pipe.
 従来、例えば、特許文献1~6には、フレキシブルな熱電発電デバイスが示されているが、これらは、単にフレキシブル基材を用いた曲面型モジュールの製造方法やその素子構造、フレキシブル基材の材質、熱電変換膜の膜厚方向の温度勾配を電気抵抗が大きな膜面内に変換する方法について示されているのみであって、最大発電量を得るための手段については示されていない。
 また、特許文献7には、最大発電量を得るために外部負荷とのインピーダンス整合を考慮した熱電発電素子が示されているが、しかし、この文献では、p型とn型の特性の違いを避けるために同一素子(p型のみあるいはn型のみ)で実現させているだけである。同一素子(p型のみあるいはn型のみ)で形成した場合には、pn型に比べて変換ロスが大きく、また、同一素子における技術は、本質的にpn型で最大発電量を得ることに利用することはできない。
 また、特許文献8、9には、最大発電量を得るためには外部負荷とのインピーダンス整合を考慮して、熱電発電素子と負荷の間に最大電力追尾制御装置(MPPT:Maximum Power Point Tracking)を別途設ける方法が示されているが、これらの文献では、熱源の温度変化や外部負荷の変動に伴うパワーロスを、制御技術によって回避するものであるから、pn型で最大発電量を得る本質的な解決手段を示したものではない。
 また、特許文献10には、pn型において、p型とn型の特性の違いを避ける技術が示されているが、しかし、これはp型、n型にそれぞれ異種金属電極を付けているだけであるから、pn型で最大発電量を得る本質的な解決手段を示したものではない。
 また、特許文献11には、AD法(エアロゾルデポジション法)を用いて製造した熱電発電デバイスが示されているが、これは従来法では焼結や成膜が難しい熱電材料であっても、AD法を用いれば熱電発電デバイスを作製することができることを示しただけにすぎない。
Conventionally, for example, Patent Documents 1 to 6 show flexible thermoelectric power generation devices. These are simply a method of manufacturing a curved module using a flexible substrate, its element structure, and the material of the flexible substrate. Only the method of converting the temperature gradient in the film thickness direction of the thermoelectric conversion film into the film surface having a large electric resistance is shown, and no means for obtaining the maximum power generation amount is shown.
Patent Document 7 discloses a thermoelectric power generation element that considers impedance matching with an external load in order to obtain the maximum power generation amount. However, in this document, the difference between p-type and n-type characteristics is shown. In order to avoid this, only the same element (p-type only or n-type only) is realized. When the same element (p-type only or n-type only) is used, the conversion loss is larger than that of the pn-type, and the technology for the same element is essentially used to obtain the maximum power generation with the pn-type. I can't do it.
Further, in Patent Documents 8 and 9, a maximum power tracking control device (MPPT: Maximum Power Point Tracking) is provided between a thermoelectric power generation element and a load in consideration of impedance matching with an external load in order to obtain the maximum power generation amount. However, in these documents, since the power loss due to the temperature change of the heat source and the fluctuation of the external load is avoided by the control technology, it is essential to obtain the maximum power generation amount with the pn type. It does not indicate a simple solution.
Patent Document 10 discloses a technique for avoiding the difference in characteristics between the p-type and the n-type in the pn-type, but this is only provided with different metal electrodes for the p-type and the n-type, respectively. Therefore, it does not show an essential solution for obtaining the maximum power generation amount with the pn type.
Further, Patent Document 11 shows a thermoelectric power generation device manufactured by using an AD method (aerosol deposition method), which is a thermoelectric material that is difficult to sinter or form by a conventional method. It has only been shown that thermoelectric power generation devices can be produced using the AD method.
特開平10-51039号公報JP-A-10-51039 特開平9-51125号公報JP-A-9-51125 特開2004-104041号公報JP 2004-104041 A 特開2008-182160号公報JP 2008-182160 A 特開2006-186255号公報JP 2006-186255 A 特開2003-133600号公報JP 2003-133600 A 特開平3-66182号公報Japanese Patent Laid-Open No. 3-66182 特開2008-22688号公報JP 2008-22688 A 特開2007-5371号公報JP 2007-5371 A 特開2001-135868号公報JP 2001-135868 A 特開2007-246326号公報JP 2007-246326 A 特開2006-298747号公報JP 2006-298747 A 特開2006-253341号公報JP 2006-253341 A
 解決しようとする問題点は、AD法を用いてpn型のフレキシブル熱電発電デバイスを作成し、熱電発電特性が異なるp型とn型とを組み合わせたpn型デバイスの最大発電量を簡単に得ることができかつ管に巻き付けて使用するのに好適なフレキシブル熱電発電デバイスの高速製造方法を提供することにある。 The problem to be solved is to create a pn-type flexible thermoelectric power generation device using the AD method, and easily obtain the maximum power generation amount of the pn-type device combining the p-type and the n-type having different thermoelectric power generation characteristics. It is an object of the present invention to provide a high-speed manufacturing method of a flexible thermoelectric power generation device that can be used by being wound around a tube.
 本発明は、一方の基板となるフレキシブルテープ上に導電性テープを、矩形状に間隔をあけてフレキシブルテープの長手方向に並べて設け、各々の矩形状の導電性テープ上には、p型熱電材料を短冊形状に所定数ずつ成膜し所定数のp型素子を形成し、次にn型熱電材料を短冊形状に所定数ずつ成膜して所定数のn型素子を形成し、かつ、p型素子及びn型素子は多結晶膜として全て同じ短冊形状であって、短冊形状の長手方向がフレキシブルテープの長手方向と直交する向きから所定角度だけずらして成膜され、他方の基板となるフレキシブルテープ上に導電性接続テープを、矩形状に間隔をあけてフレキシブルテープの長手方向に並べて設け、前記一方と他方のフレキシブルテープを前記導電性接続テープの接続性を利用して貼り合わせ、各々の矩形状の導電性テープ上に所定数ずつ形成されたn型素子が、隣接する矩形状の導電性テープ上に所定数ずつ形成されたp型素子と、矩形状の導電性接続テープにより電気的に接続され、かつ、前記各々の矩形状の導電性テープ上に所定数ずつ形成されp型素子が、逆隣りに隣接する矩形状の導電性テープ上に所定数ずつ形成されたn型素子と、矩形状の導電性接続テープにより電気的に接続され、全体として直列に接続されたフレキシブル熱電発電デバイスを製造する方法において、前記所定数のp型素子と所定数のn型素子の素子数の比を、接続される外部負荷とのインピーダンス整合をとるように選定することを特徴とする。
 また、本発明のフレキシブル熱電発電デバイスの高速製造方法は、さらに、上記多結晶膜は、100μm以下、特に5~500nmの粒径をもつ微結晶構造体であることを特徴とする。
 また、本発明のフレキシブル熱電発電デバイスの高速製造方法は、さらに、上記成膜は、AD法を用いて成膜されることを特徴とする。
 また、本発明のフレキシブル熱電発電デバイスの高速製造方法は、さらに、上記矩形状の導電性テープ及び前記矩形状の導電性接続テープは、樹脂などの絶縁性フレキシブルテープの表面に金属などの導電性層が形成されたテープ及び接続テープに限定されるものではなく、フレキシブル性があれば絶縁性テープ及び接続テープや絶縁薄板と導電性のある金属テープ及び接続テープや金属薄板などを接合・接着した複合材、導電性材料をマトリックス中に分散させた複合材、金属膜や導電性セラミックス膜が成膜された多層構造材、導電性プラスチック材などでもよい。
 また、本発明のフレキシブル熱電発電デバイスの高速製造方法は、さらに、上記成膜は、矩形状の軸の一つがフレキシブルテープの長手方向と直交する向きから前記所定角度だけずらして設けられていることを特徴とする。
 また、本発明のフレキシブル熱電発電デバイスの高速製造方法は、さらに、上記所定角度は、フレキシブル熱電発電デバイスが管状の熱源に巻き付けられたとき短冊形状の長手方向が、管の長手方向と一致するように予め選定されていることを特徴とする。
 また、本発明のフレキシブル熱電発電デバイスの高速製造方法は、さらに、上記所定角度は、前記管の直径をD、巻き付けピッチをPとしたとき、角度arctan(P/πD)であることを特徴とする。
 また、本発明のフレキシブル熱電発電デバイスの高速製造方法は、一方の電極となる金属テープなどの導電性テープ上に、矩形状のp型素子領域と矩形状のn型素子領域とを間隔をあけて導電性テープの長手方向に交互に並べて設定し、さらに、隣り合う矩形状のp型素子領域と矩形状のn型素子領域の間に、矩形状のフィン領域と、他方の電極となる2個の矩形状の電極領域と該2個の電極領域を接続する接続領域とを設定し、逆隣りに隣り合う矩形状のp型素子領域と矩形状のn型素子領域の間には前記一方の電極を接続する接続領域を設定し、
 矩形状のp型素子領域の導電性テープ上に、p型熱電材料を短冊形状に所定数ずつAD法を用いて成膜し所定数のp型素子を形成するとともに、矩形状のn型熱電材料を短冊形状に所定数ずつAD法を用いて成膜して所定数のn型素子を形成し、かつ、p型素子及びn型素子は多結晶膜として全て同じ短冊形状であって、短冊形状の長手方向が導電性テープの長手方向と直交する向きから所定角度だけずらして成膜し、
 次に、プレス機により前記各領域を残して、かつ前記各領域が導電性テープに支持されるように幅方向両端部を長手方向に残して不要部分を打ち抜き、
 次に、フィン領域を折り曲げるとともに、他方の電極となる2個の電極領域をそれぞれ矩形状のp型素子領域と矩形状のn型素子領域の成膜上面に接合するとともに、各領域が導電性テープに支持されるように幅方向両端部を長手方向に残していた領域を切断して、矩形状のp型素子領域上に所定数ずつ形成されたp型素子と、隣接する矩形状のn型素子領域上に所定数ずつ形成されたn型素子とが電気的に接続され、全体として直列に接続されたフレキシブル熱電発電デバイスを製造する方法において、
 前記所定数のp型素子と所定数のn型素子の短冊形状の素子数の比を、接続される外部負荷とのインピーダンス整合をとるように選定することを特徴とする。
 また、本発明は、上記製造方法により製造されたフレキシブル熱電発電デバイスであることを特徴とする。
The present invention provides a conductive tape on a flexible tape serving as one substrate, arranged in a rectangular shape at intervals in the longitudinal direction of the flexible tape, and a p-type thermoelectric material on each rectangular conductive tape. A predetermined number of p-type elements in a strip shape to form a predetermined number of p-type elements, and then a predetermined number of n-type thermoelectric materials are formed in a strip shape to form a predetermined number of n-type elements, and p The mold element and the n-type element are all the same strip shape as the polycrystalline film, and the strip shape is formed by shifting the longitudinal direction of the strip shape by a predetermined angle from the direction perpendicular to the longitudinal direction of the flexible tape, and the flexible substrate serving as the other substrate Conductive connection tapes are arranged on the tape in a rectangular shape and arranged in the longitudinal direction of the flexible tape, and the one and the other flexible tapes are bonded using the connectivity of the conductive connection tape. A predetermined number of n-type elements formed on each rectangular conductive tape are formed by a predetermined number of p-type elements formed on an adjacent rectangular conductive tape and a rectangular conductive connecting tape. An n-type electrically connected and having a predetermined number of p-type elements formed on each of the rectangular conductive tapes and a predetermined number of p-type elements formed on the adjacent rectangular conductive tapes adjacent to each other In a method of manufacturing a flexible thermoelectric power generation device electrically connected to an element by a rectangular conductive connecting tape and connected in series as a whole, the element of the predetermined number of p-type elements and the predetermined number of n-type elements The ratio of the numbers is selected so as to achieve impedance matching with the connected external load.
In the high-speed method for producing a flexible thermoelectric power generation device of the present invention, the polycrystalline film is a microcrystalline structure having a grain size of 100 μm or less, particularly 5 to 500 nm.
Moreover, the high-speed manufacturing method of the flexible thermoelectric power generation device of the present invention is further characterized in that the film formation is performed using an AD method.
Moreover, the high-speed manufacturing method of the flexible thermoelectric power generation device of the present invention is further characterized in that the rectangular conductive tape and the rectangular conductive connecting tape are made of a conductive material such as metal on the surface of an insulating flexible tape such as a resin. It is not limited to tapes and connecting tapes with layers, but if there is flexibility, insulating tapes and connecting tapes and insulating thin plates and conductive metal tapes and connecting tapes and thin metal plates are joined and bonded. A composite material, a composite material in which a conductive material is dispersed in a matrix, a multilayer structure material in which a metal film or a conductive ceramic film is formed, a conductive plastic material, or the like may be used.
Moreover, in the high-speed manufacturing method of the flexible thermoelectric power generation device of the present invention, the film formation is further provided by shifting the predetermined angle from a direction in which one of the rectangular axes is orthogonal to the longitudinal direction of the flexible tape. It is characterized by.
Further, in the high-speed manufacturing method of the flexible thermoelectric power generation device of the present invention, the predetermined angle is such that the longitudinal direction of the strip shape coincides with the longitudinal direction of the tube when the flexible thermoelectric power generation device is wound around a tubular heat source. Is pre-selected.
The high-speed manufacturing method for a flexible thermoelectric power generation device of the present invention is further characterized in that the predetermined angle is an angle arctan (P / πD) where D is the diameter of the tube and P is the winding pitch. To do.
In the high-speed manufacturing method of the flexible thermoelectric power generation device of the present invention, a rectangular p-type element region and a rectangular n-type element region are spaced apart on a conductive tape such as a metal tape to be one electrode. Are arranged alternately in the longitudinal direction of the conductive tape, and further, between the adjacent rectangular p-type element region and rectangular n-type element region, a rectangular fin region and the other electrode 2 A rectangular electrode region and a connection region connecting the two electrode regions are set, and the one side between the adjacent rectangular p-type element region and the rectangular n-type element region Set the connection area to connect the electrodes of
On the conductive tape in the rectangular p-type element region, a predetermined number of p-type thermoelectric materials are formed in a strip shape using the AD method to form a predetermined number of p-type elements, and a rectangular n-type thermoelectric A predetermined number of materials are formed in a strip shape using the AD method to form a predetermined number of n-type elements, and the p-type elements and the n-type elements are all the same strip shape as a polycrystalline film, Formed by shifting the longitudinal direction of the shape by a predetermined angle from the direction perpendicular to the longitudinal direction of the conductive tape,
Next, punch out unnecessary parts leaving the both ends in the longitudinal direction so that the respective areas are supported by a conductive tape, and the respective areas are supported by the conductive tape,
Next, the fin region is bent, and the two electrode regions to be the other electrodes are joined to the upper surfaces of the rectangular p-type element region and the rectangular n-type element region, and each region is electrically conductive. A region where both end portions in the width direction are left in the longitudinal direction so as to be supported by the tape is cut, and a predetermined number of p-type elements formed on the rectangular p-type element region and an adjacent rectangular n In a method of manufacturing a flexible thermoelectric power generation device in which a predetermined number of n-type elements formed on a mold element region are electrically connected and connected in series as a whole,
The ratio of the number of strip-shaped elements of the predetermined number of p-type elements and the predetermined number of n-type elements is selected so as to achieve impedance matching with a connected external load.
Moreover, this invention is the flexible thermoelectric power generation device manufactured by the said manufacturing method, It is characterized by the above-mentioned.
 本発明はAD法を用いるので、ポアな構造体膜から緻密な構造体膜に制御でき、さらに数十ナノメートル以下の粒径をもつナノ結晶体構造体を形成することも可能である。ポアな構造体は従来どおり断熱効果が期待されるが、緻密なナノ結晶体であることはすなわち、電気伝導性を確保しつつ、微結晶体であるために多くの粒界を有し、例えばCoSbとFeSbの混合粉末、Bi-Sb-Teの合金粉末やセラミックス系熱電発電材料においては熱伝導因子であるフォノンが散乱され易くなり、結果、大幅な熱伝導率の減少が期待される。
 すなわち、従来法では不可能であった高密度(電気的伝導率が高く)、多結晶膜(フォノン散乱を助長させ熱伝導率を下げた)で厚みのある短冊形状をポリイミド等の柔軟性のある長尺テープ基材表面に成膜でき、ロールツーロールでの高速連続作製が実現できる。AD膜で形成した熱電材料膜の粒径を20nm、バルクの熱電材料セラミックスの粒径を100μmと仮定すると、1mmの範囲内でAD膜は50000回、バルクセラミックスは10回の粒界によるフォノン散乱が生じる。フォノンによる熱伝導率(κ)は角振動数を持つフォノンの熱容量への寄与をc、フォノンの群速度をν、フォノンの平均自由行程をl(英子文字のエルに添え字のP)とすると、
  κ=(1/3)×cν
で表され、AD法で成膜したAD膜はバルクセラミックスに比べ、フォノン散乱による最大1/5000の熱伝導率の低減が期待される。また、AD法は2種類以上の粉末をミル処理による機械的な混合によって原料粉末として成膜することができるので、従来焼結プロセスでしか用いられなかった微粒子分散ナノコンポジット熱電発電膜も素子寸法通りに直接形成および集積化できる。
Since the present invention uses the AD method, the pore structure film can be controlled to a dense structure film, and a nanocrystal structure having a particle size of several tens of nanometers or less can be formed. The pore structure is expected to have a heat insulating effect as before, but it is a dense nanocrystal body, that is, it has many grain boundaries because it is a microcrystal body while ensuring electrical conductivity, In mixed powders of CoSb 3 and FeSb 2 , alloy powders of Bi-Sb-Te, and ceramic thermoelectric power generation materials, phonons, which are thermal conductivity factors, are likely to be scattered, and as a result, a significant decrease in thermal conductivity is expected. .
In other words, a high-density (high electrical conductivity), a polycrystalline film (enhanced phonon scattering and reduced thermal conductivity), which is impossible with the conventional method, is formed into a flexible strip such as polyimide. A film can be formed on the surface of a certain long tape substrate, and high-speed continuous production can be realized by roll-to-roll. Assuming that the particle diameter of the thermoelectric material film formed of the AD film is 20 nm and the particle diameter of the bulk thermoelectric material ceramic is 100 μm, the phonon scattering is caused by the grain boundary 50000 times and the bulk ceramic is 10 times within the range of 1 mm. Occurs. The thermal conductivity (κ P ) by phonons is defined as the contribution to the heat capacity of a phonon having an angular frequency c, the group velocity of phonons ν P , and the mean free path of phonons l P (the letter P in the subscript P )
κ P = (1/3) × cν P l P
The AD film formed by the AD method is expected to have a maximum thermal conductivity reduction of 1/5000 due to phonon scattering, as compared with bulk ceramics. In addition, since the AD method can form two or more types of powders as raw material powders by mechanical mixing by milling, the fine particle dispersed nanocomposite thermoelectric power generation film that has been used only in the conventional sintering process is also the element size. Can be formed and integrated directly on the street.
 また、一般的にAD法は非特許文献1に記載されているように、ノズルから吐出した原料粉末粒子が1軸方向、すなわち基板の法線方向に最大数GPaの圧力で衝撃破砕と同時に押しつけられて固化する。そのため、非特許文献2、3や特許文献12に記載されているように、形成された膜の断面構造は、破砕した粒子が基板に対して面内方向に伸びたラメラ状の形態を有する。そのため、熱電材料であるFeVAlやCaCoのような板状結晶を有する原料粉末粒子を用いた場合、その効果はさらに顕著となり、形成された膜は、非特許文献4に記載されているようにホットフォージングや放電プラズマ焼結法、ホットプレス法を用いて配向したバルク体を形成する焼結プロセスと同じ効果が期待できる。すなわち、基板に対して面内方向に配向した断面構造を有する膜が得られる。よって、面内方向の電気伝導性が改善され、面内方向の熱電変換を利用したセンサデバイス等に有効である。 In general, in the AD method, as described in Non-Patent Document 1, the raw material powder particles discharged from the nozzle are pressed simultaneously with impact crushing at a maximum pressure of several GPa in the uniaxial direction, that is, the normal direction of the substrate. To solidify. Therefore, as described in Non-Patent Documents 2 and 3 and Patent Document 12, the cross-sectional structure of the formed film has a lamellar shape in which crushed particles extend in an in-plane direction with respect to the substrate. Therefore, when raw material powder particles having plate-like crystals such as Fe 2 VAl and Ca 3 Co 4 O 9 which are thermoelectric materials are used, the effect becomes more remarkable, and the formed film is disclosed in Non-Patent Document 4. As described, the same effect as a sintering process for forming an oriented bulk body using hot forging, a discharge plasma sintering method, or a hot press method can be expected. That is, a film having a cross-sectional structure oriented in the in-plane direction with respect to the substrate is obtained. Therefore, the electrical conductivity in the in-plane direction is improved, and it is effective for a sensor device using thermoelectric conversion in the in-plane direction.
 また、AD法を用いれば、熱伝導率が非常に小さな短冊形状の熱電素子を所望の素子寸法かつ狭ピッチで柔軟性のある長尺テープ基材上に形成できるので、従来、pn型において、熱電発電特性が異なるp型熱電材料とn型熱電材料から構成される熱電発電モジュールの最大発電量をp型とn型の素子断面積の違いにより実現させていたことに変えて、本発明では、p型素子とn型素子の短冊形状の素子数の違いによって実現できる。さらに、接続する外部負荷とのインピーダンス整合も、本発明では、短冊形状の素子数の違いによって実質的に実現できる。
 また、AD法を用いれば、形成された熱電素子は前述したように100μm以下、特に5~500nmの粒径をもつ微結晶構造体であるため、成膜された膜表面は、たとえば機械研磨で脱粒することなく簡単に平滑にすることができる。そのため、M個のp型素子とN個のn型素子からなるpn型熱電発電モジュールにおいて、M個のp型素子間の膜厚のばらつきや膜表面の均一性や、N個のn型素子間の膜厚のばらつきや膜表面の均一性、p型素子とn型素子の間の膜厚のばらつきや膜表面の均一性は、成膜後の後工程で、たとえば機械研磨することで確保される。
In addition, if the AD method is used, a strip-shaped thermoelectric element having a very low thermal conductivity can be formed on a flexible long tape base material with a desired element size and a narrow pitch. In the present invention, instead of realizing the maximum power generation amount of the thermoelectric power generation module composed of the p-type thermoelectric material and the n-type thermoelectric material having different thermoelectric power generation characteristics due to the difference in the cross-sectional area of the p-type and n-type elements, This can be realized by the difference in the number of strip-shaped elements between the p-type element and the n-type element. Furthermore, impedance matching with the external load to be connected can be substantially realized in the present invention by the difference in the number of strip-shaped elements.
If the AD method is used, the formed thermoelectric element is a microcrystalline structure having a particle size of 100 μm or less, particularly 5 to 500 nm, as described above. Therefore, the formed film surface can be mechanically polished, for example. It can be easily smoothed without degranulation. Therefore, in a pn-type thermoelectric power generation module composed of M p-type elements and N n-type elements, the film thickness variation among the M p-type elements, the uniformity of the film surface, and the N n-type elements Film thickness variation and film surface uniformity, and film thickness variation and film surface uniformity between p-type elements and n-type elements are ensured by post-deposition processes such as mechanical polishing. Is done.
 また、本発明は、柔軟性のある長尺テープ表面に短冊形状に成膜することにより、廃熱管など曲面のある熱源に対して、巻き付けて、廃熱を有効利用することが可能である。直径Dの管に、ピッチPで巻き付けるには、予め短冊の長手方向を、長尺テープの長手方向と直交する向きから角度arctan(P/πD)だけずらして成膜しておけば、管に巻き付けたときに短冊の長手方向が管の長手方向と一致するので短冊が長手方向に曲げられることなく管の曲面の影響が最小になる。 Further, in the present invention, the waste heat can be effectively used by winding the heat on a curved heat source such as a waste heat tube by forming a strip-like film on the surface of the flexible long tape. In order to wind a pipe having a diameter D at a pitch P, a film is formed by shifting the longitudinal direction of the strip in advance by an angle arctan (P / πD) from the direction perpendicular to the longitudinal direction of the long tape. Since the longitudinal direction of the strip coincides with the longitudinal direction of the tube when wound, the influence of the curved surface of the tube is minimized without the strip being bent in the longitudinal direction.
 また、本発明は、柔軟性のある長尺テープ、特に金属テープや金属薄板の表面に短冊形状に成膜し、膜と膜の間の金属テープに対してプレス加工などによる折り曲げや形状付与を施すことにより、金属テープが集熱フィンや放熱フィン、あるいは渦流を発生させる伝熱促進部の機能を持つようになり、金属テープ上に銀ペーストなどの接着剤を使わずに熱電素子を集積することができるばかりでなく、集熱フィンや放熱フィン、あるいは渦流を発生させる伝熱促進部も新たに部品を接合することなく、金属テープから一体成型することができる。
 また、本発明は、柔軟性のある長尺テープ、特に金属テープや金属薄板の表面上に短冊形状に成膜し、膜と膜の間の金属テープに対してプレス加工などによる折り曲げや形状付与、特に熱が伝わりにくいようにパンチング加工やメッシュ加工を施し、成膜した膜表面に接合することにより、金属テープが上部電極、あるいは下部電極の機能を持つようになり、金属テープ上に銀ペーストなどの接着剤を使わずに熱電素子を集積することができるばかりでなく、上部電極、あるいは下部電極も新たに部品を準備することなく、金属テープから一体成型することができる。
In addition, the present invention forms a strip-like film on the surface of a flexible long tape, in particular, a metal tape or a thin metal plate, and the metal tape between the films is bent or shaped by pressing or the like. By applying, the metal tape has the function of heat collecting fins, heat radiating fins, or heat transfer promoting parts that generate eddy currents, and thermoelectric elements are integrated on the metal tape without using an adhesive such as silver paste. In addition, the heat collecting fins, the heat radiating fins, or the heat transfer promoting part for generating the vortex can be integrally formed from a metal tape without newly joining parts.
In addition, the present invention forms a strip-like film on the surface of a flexible long tape, especially a metal tape or a thin metal plate, and folds or shapes the metal tape between the films by pressing or the like. In particular, by applying punching or mesh processing so that heat is not easily transmitted, and bonding to the film surface, the metal tape has the function of the upper electrode or lower electrode, and silver paste on the metal tape In addition to being able to integrate thermoelectric elements without using an adhesive such as, the upper electrode or the lower electrode can be integrally formed from a metal tape without preparing new parts.
図1は、熱電発電デバイスの基本原理を示した説明図である。FIG. 1 is an explanatory diagram showing the basic principle of a thermoelectric power generation device. 図2は、それぞれ同じ形状を持つp型熱電素子とn型熱電素子の電圧-電流特性(V-I特性)を示した説明図である。FIG. 2 is an explanatory diagram showing voltage-current characteristics (VI characteristics) of a p-type thermoelectric element and an n-type thermoelectric element having the same shape. 図3は、従来の、それぞれ同じ形状を持つp型熱電素子とn型熱電素子による熱電発電デバイスの電圧-電流特性(V-I特性)と電圧-発電量特性(V-W特性)を示した説明図である。FIG. 3 shows voltage-current characteristics (VI characteristics) and voltage-power generation characteristics (VW characteristics) of conventional thermoelectric power generation devices using p-type and n-type thermoelectric elements having the same shape. FIG. 図4は、従来の、それぞれ異なる形状を持つp型熱電素子とn型熱電素子による熱電発電デバイスを示した説明図である。FIG. 4 is an explanatory view showing a conventional thermoelectric power generation device using p-type thermoelectric elements and n-type thermoelectric elements having different shapes. 図5は、従来の、それぞれ異なる形状を持つp型熱電素子とn型熱電素子の電圧-電流特性(V-I特性)を示した説明図である。FIG. 5 is an explanatory diagram showing voltage-current characteristics (VI characteristics) of conventional p-type thermoelectric elements and n-type thermoelectric elements having different shapes. 図6は、本発明の、同じ形状を持つp型熱電素子とn型熱電素子の素子数の比を調整した熱電発電デバイスを示した説明図である。FIG. 6 is an explanatory diagram showing a thermoelectric power generation device in which the ratio of the number of p-type thermoelectric elements and n-type thermoelectric elements having the same shape is adjusted according to the present invention. 図7は、AD法において種々のガス流量で形成した膜のXRDプロファイルと膜厚、電気抵抗の値を示した図である。FIG. 7 is a diagram showing XRD profiles, film thicknesses, and electric resistance values of films formed at various gas flow rates in the AD method. 図8は、AD法において種々のガス流量で形成した膜の断面のFE-SEM写真を示した図である。FIG. 8 is a diagram showing FE-SEM photographs of cross sections of films formed at various gas flow rates in the AD method. 図9は、AD法において種々のガス流量で形成した膜のビッカース硬さを示した図である。FIG. 9 is a diagram showing the Vickers hardness of a film formed at various gas flow rates in the AD method. 図10は、AD法において種々のガス流量で形成したBi0.5Sb1.5Te膜とCaCo膜の熱浸透率の二乗の値を示した図である。FIG. 10 is a diagram showing the square value of the thermal permeability of Bi 0.5 Sb 1.5 Te 3 film and Ca 3 Co 4 O 9 film formed at various gas flow rates in the AD method. 図11は、AD法で高速形成したBi0.5Sb1.5Te膜の外観写真を示した図である。FIG. 11 is a view showing an appearance photograph of a Bi 0.5 Sb 1.5 Te 3 film formed at high speed by the AD method. 図12は、AD法で高速形成したBi0.5Sb1.5Te膜およびAD膜と同じ大きさに形成したバルク焼結体のレーザーフラッシュ法におけるそれぞれの試料裏面温度変化曲線を示した説明図である。FIG. 12 shows respective sample back surface temperature change curves in the laser flash method of the bulk sintered body formed to have the same size as the Bi 0.5 Sb 1.5 Te 3 film formed at high speed by the AD method and the AD film. It is explanatory drawing. 図13は、AD法で高速形成した膜厚が1mm以上のBi0.5Sb1.5Te膜の外観写真とその形成プロセスを示した説明図である。FIG. 13 is an explanatory view showing an appearance photograph of a Bi 0.5 Sb 1.5 Te 3 film having a film thickness of 1 mm or more formed at high speed by the AD method and its formation process. 図14は、配向したCaCoバルクセラミックスとAD法で成膜したCaCo膜の形成方法とそれぞれの断面のSEM写真を示した説明図である。FIG. 14 is an explanatory diagram showing a method for forming oriented Ca 3 Co 4 O 9 bulk ceramics and a Ca 3 Co 4 O 9 film formed by the AD method, and SEM photographs of the respective sections. 図15は、図14のAD法で形成した配向膜を基材の両面に形成してpn型の素子として用いられることを示した説明図である。FIG. 15 is an explanatory view showing that an alignment film formed by the AD method of FIG. 14 is formed on both surfaces of a base material and used as a pn-type element. 図16は、本発明のフレキシブル熱電発電デバイスの高速製造方法の一実施例を示した説明図である。FIG. 16 is an explanatory view showing an embodiment of the high-speed manufacturing method of the flexible thermoelectric power generation device of the present invention. 図17は、図16の高速製造方法における、p型熱電素子とn型熱電素子とが導電性テープ及び導電性接続テープにより電気的に接続されることを示した説明図である。FIG. 17 is an explanatory view showing that the p-type thermoelectric element and the n-type thermoelectric element are electrically connected by the conductive tape and the conductive connection tape in the high-speed manufacturing method of FIG. 図18は、図16の高速製造方法により製造したフレキシブル熱電発電デバイスを熱源パイプに巻き付けて用いる場合を示しており、短冊形状の各素子の長手方向が管の長手方向と一致する様子を示した説明図である。FIG. 18 shows a case where a flexible thermoelectric power generation device manufactured by the high-speed manufacturing method of FIG. 16 is used by being wound around a heat source pipe, and shows that the longitudinal direction of each strip-shaped element coincides with the longitudinal direction of the tube. It is explanatory drawing. 図19は、アルミテープ/ポリイミドテープ上にAD法でNaCo厚膜をテープの長手方向に対して30度傾けて成膜した結果と膜厚プロファイルを示した説明図である。FIG. 19 is an explanatory view showing a film thickness profile and a result of forming an NaCo 2 O 4 thick film on an aluminum tape / polyimide tape by tilting 30 degrees with respect to the longitudinal direction of the tape by the AD method. 図20は、図16の高速製造方法を、ロールツーロールで行う場合を示した説明図である。FIG. 20 is an explanatory diagram showing a case where the high-speed manufacturing method of FIG. 16 is performed by roll-to-roll. 図21は、図20のロールツーロールにおける、p型熱電素子あるいはn型熱電素子が精密微細プレス機によって冷却フィン構造と上部電極が金属テープから一体形成されることを示した説明図である。FIG. 21 is an explanatory diagram showing that the p-type thermoelectric element or the n-type thermoelectric element in the roll-to-roll of FIG. 20 is integrally formed from a metal tape with a cooling fin structure and an upper electrode by a precision fine press. 図22は、図21の冷却フィン構造と上部電極が金属テープから一体形成された熱電発電デバイスを配管に巻きつけた様子を示した説明図である。FIG. 22 is an explanatory view showing a state where a thermoelectric power generation device in which the cooling fin structure and the upper electrode of FIG. 21 are integrally formed from a metal tape is wound around a pipe. 図23は、図20のロールツーロールにおける、p型熱電素子とn型熱電素子が精密微細プレス機によってπ型素子が形成されることを示した説明図である。FIG. 23 is an explanatory view showing that a p-type thermoelectric element and an n-type thermoelectric element in the roll-to-roll of FIG. 20 are formed with a π-type element by a precision fine press.
 図1は、熱電発電デバイスの基本原理を説明する図であって、図1において、熱入力は、例えば、工場の排熱管などの熱源から入力され、放熱は、例えば、大気中の常温雰囲気中になされる。熱入力側と放熱側の温度差をΔT、p型熱電材料のゼーベック係数をS、n型熱電材料のゼーベック係数をSとすると、発電する起電力Vは、
  V=(S-S)ΔT
となり、Rをデバイスの内部抵抗、Rを外部負荷とすると、流れる電流Iは、
  I=V/(R+R)
   =(S-S)ΔT/(R+R)
   =(S-S)ΔT/{R(1+m)}  (ここで、m=R/R)
となり、発電力Pは、
  P=I
   ={(S-SΔT/R}×{m/(1+m)
となる。
FIG. 1 is a diagram for explaining the basic principle of a thermoelectric power generation device. In FIG. 1, heat input is input from a heat source such as a factory exhaust heat pipe, and heat dissipation is performed in, for example, a normal temperature atmosphere in the atmosphere. To be made. When the temperature difference between the heat input side and the heat radiating side [Delta] T, the Seebeck coefficient of the p-type thermoelectric material S p, the Seebeck coefficient of the n-type thermoelectric material and S n, to the electromotive force V power generation,
V = (S p −S n ) ΔT
When R is the internal resistance of the device and R L is the external load, the flowing current I is
I = V / (R L + R)
= (S p -S n ) ΔT / (R L + R)
= (S p -S n ) ΔT / {R (1 + m)} (where m = R L / R)
The generated power P is
P = I 2 R L
= {(S p −S n ) 2 ΔT 2 / R} × {m / (1 + m) 2 }
It becomes.
例えば、BiTe熱電材料の場合、比抵抗は1.019×10-5Ωmであるから、短冊形状の単一素子を1mm(幅)×10mm(長さ)×0.2mm(厚さ)とすると、デバイスの抵抗Rは、
R=1.019×10-5×(0.2×10-3)/(10×10-3×1×10-3
=2.04×10-4Ω
となり、BiTeのゼーベック係数を、おおよそ|S|=200μV/Kとすると、1℃の温度差(温度差の値は、摂氏と絶対温度とでかわらない)に対して発生する電圧は、V=200μVとなる。
 上記短冊形状の単一素子を1万個ならべると、発生する電圧はV=200μV×10000=2Vとなり、このときの内部抵抗Rは、各デバイスの接触抵抗を無視すると、R=2.04×10-4Ω×10000=2.04Ωとなる。起電力2V、内部抵抗2.04Ωの電源に最適な外部負荷は2.04Ωであるから、流れる電流は、I=2/(2.04+2.04)=0.5Aとなり、外部負荷による最大仕事量はW=2V×0.5A=1Wである。なお、幅1mmの短冊形状を10000個並べると、素子間の間隔を無視すれば10mの長さになる。
For example, in the case of a BiTe thermoelectric material, the specific resistance is 1.019 × 10 −5 Ωm. Therefore, when a strip-shaped single element is 1 mm (width) × 10 mm (length) × 0.2 mm (thickness) The resistance R of the device is
R = 1.019 × 10 −5 × (0.2 × 10 −3 ) / (10 × 10 −3 × 1 × 10 −3 )
= 2.04 × 10 -4 Ω
Assuming that the BiTe Seebeck coefficient is approximately | S | = 200 μV / K, the voltage generated for a temperature difference of 1 ° C. (the value of the temperature difference does not change between Celsius and absolute temperature) is V = 200 μV.
If 10,000 strip-shaped single elements are arranged, the generated voltage is V = 200 μV × 10000 = 2 V, and the internal resistance R at this time is R = 2.04 ×, if the contact resistance of each device is ignored. 10 −4 Ω × 10000 = 2.04Ω. The optimum external load for a power source with an electromotive force of 2V and an internal resistance of 2.04Ω is 2.04Ω, so the current flowing is I = 2 / (2.04 + 2.04) = 0.5A, which is the maximum work by the external load. The amount is W = 2V × 0.5A = 1W. If 10,000 strips with a width of 1 mm are arranged, the length becomes 10 m if the distance between the elements is ignored.
 図2は、熱電発電特性が異なるp型熱電材料とn型熱電材料から構成されるpn型熱電発電モジュールにおいて、最大発電量を得ようとした場合の問題点を説明する図である。図2はそれぞれ同じ形状を持つp型熱電素子とn型熱電素子の電圧-電流特性(V-I特性)の例を示している。p型熱電素子とn型熱電素子がそれぞれ単独で存在するとき、最大電力はそれぞれの特性線の中点(p型は(Vp1,Ip1)、n型は(Vn1,In1))で得られるので、最大電力の値Qp-max、Qn-maxは、
  Qp-max=Vp1p1
  Qn-max=Vn1n1
である。
 しかし、両素子の最大電力が得られる電流値は異なっているため(Ip1≠In1)、p型熱電素子とn型熱電素子を組み合わせて図1のpn型として用いる場合、両素子に共通の電流(Ip2=In2)を流して得られる最大発電量は、
  Q=Vp2p2
  Q=Vn2n2
の和となるため、素子が単独で存在した場合の最大発電量から期待される値(Qp-max+Qn-max)よりも小さくなってしまう。すなわち、
  Q+Q<Qp-max+Qn-max
である。
 上記を確かめるべくp型材料であるCa層状酸化物と、n型材料であるLaペロブスカイト酸化物、それぞれのバルクセラミックスを用意し、バルクセラミックスの両端に最大100℃程度の温度差を設けて最大電力を計測した。その結果、p型材料において内部抵抗15.8Ω、開放電圧14.07mVであり、外部負荷1.805Ω、起電圧7.153mV、起電流3.962mAのとき最大電力28.34μWが得られた。また、n型材料において内部抵抗3.01Ω、開放電圧2.44mVであり、外部負荷0.41286Ω、起電圧1.2450mV、起電流2.156mAのとき最大電力2.6842μWが得られた。すなわち、p型とn型を直列接続した場合、28.34μW+2.6842μW=31.024μWの発電量が期待される。しかし、実際にはpn型において内部抵抗18.8Ω、開放電圧16.53mVであり、外部負荷2.401Ω、起電圧8.2580mV、起電流3.435mAのとき最大電力28.366μWが得られ、期待される最大発電量より小さくなってしまう(図3参照)。
 ちなみに、図3に示したようにp型材料とn型材料のV-I特性に大きな差がある場合、単一型(この場合p型)で用いるよりもpn型として用いた方が閉電流値(この場合0Vに相当する電流値)が小さくなっており、発電量向上のためにn型素子を用いた効果が得られていない(図3のV-W特性参照)。これはpn型として用いた場合の電流量がn型単一で用いた場合よりも電流量が多いため、その過剰電流量がn型素子の内部で材料抵抗による電圧降下やペルチェ効果によって損失を引き起こしている。すなわち、pn型で上記損失をできるだけ抑制しながら最大発電量を得るためには、pn型を用いて外部負荷に対してインピーダンス整合をとると同時に、p型素子とn型素子のゼーベック効果による電流量をできるだけ同じ量にする必要がある。
 そこで、従来一般には、図2に示したように熱電発電特性が異なるp型熱電材料とn型熱電材料から構成されるpn型熱電発電モジュールにおいて、図4に示したように、p型熱電素子(図面中で面積の大きい右側の素子)のn型熱電素子に対する相対的な電流に対する断面積を増加させて異形とし、図5に示すようにp型熱電素子に流れる実効的な電流量を増やしてIp1=In1となるようにすることが行われていた。しかし、断面積の増加は元々バルキーな熱電発電素子のフレキシビリティーをさらに悪化させるし、熱分布へのフィッティングも非常に困難となる。なお、n型あるいはp型のみの単一素子でデバイスを構成することも考えられているが、単一素子を用いたデバイスではそもそも大きな発電量が期待できない。
FIG. 2 is a diagram for explaining a problem when trying to obtain the maximum power generation amount in a pn-type thermoelectric power generation module composed of a p-type thermoelectric material and an n-type thermoelectric material having different thermoelectric power generation characteristics. FIG. 2 shows an example of voltage-current characteristics (VI characteristics) of a p-type thermoelectric element and an n-type thermoelectric element having the same shape. When a p-type thermoelectric element and an n-type thermoelectric element are present independently, the maximum power is the midpoint of each characteristic line (p-type is (V p1 , I p1 ), n-type is (V n1 , I n1 )) Therefore, the maximum power values Q p-max and Q n-max are
Q p-max = V p1 I p1
Q n−max = V n1 I n1
It is.
However, since the current values for obtaining the maximum power of both elements are different (I p1 ≠ I n1 ), when the p-type thermoelectric element and the n-type thermoelectric element are used in combination as the pn-type in FIG. The maximum power generation amount obtained by flowing the current (I p2 = I n2 ) is
Q p = V p2 I p2
Q n = V n2 I n2
Therefore, the value is smaller than a value (Q p−max + Q n−max ) expected from the maximum power generation amount when the element exists alone. That is,
Q p + Q n <Q p -max + Q n-max
It is.
In order to confirm the above, prepare Ca layered oxide, which is p-type material, and La perovskite oxide, which is n-type material, and bulk ceramics, respectively. Was measured. As a result, the p-type material had an internal resistance of 15.8Ω, an open circuit voltage of 14.07 mV, and a maximum power of 28.34 μW was obtained when the external load was 1.805Ω, the electromotive voltage was 7.153 mV, and the electromotive current was 3.962 mA. The n-type material had an internal resistance of 3.01Ω, an open circuit voltage of 2.44 mV, and a maximum power of 2.6842 μW was obtained when the external load was 0.41286Ω, the electromotive voltage was 1.2450 mV, and the electromotive current was 2.156 mA. That is, when p-type and n-type are connected in series, a power generation amount of 28.34 μW + 2.6842 μW = 31.024 μW is expected. However, in actuality, in the pn type, the internal resistance is 18.8Ω, the open circuit voltage is 16.53 mV, and the maximum power of 28.366 μW is obtained when the external load is 2.401Ω, the electromotive voltage is 8.2580 mV, and the electromotive current is 3.435 mA. It becomes smaller than the expected maximum power generation amount (see FIG. 3).
Incidentally, as shown in FIG. 3, when there is a large difference in the VI characteristics between the p-type material and the n-type material, the pn-type is more closed than the single-type (p-type in this case). The value (current value corresponding to 0 V in this case) is small, and the effect of using the n-type element for improving the power generation amount is not obtained (see the VW characteristic in FIG. 3). This is because the amount of current when using as a pn type is larger than when using a single n type, and the excess current causes a loss due to a voltage drop or Peltier effect due to material resistance inside the n type element. Is causing. That is, in order to obtain the maximum power generation amount while suppressing the loss as much as possible with the pn type, the impedance matching with the external load is performed using the pn type, and at the same time, the current due to the Seebeck effect of the p type element and the n type element. The amount should be as much as possible.
Therefore, in general, in a pn-type thermoelectric power generation module composed of a p-type thermoelectric material and an n-type thermoelectric material having different thermoelectric generation characteristics as shown in FIG. 2, a p-type thermoelectric element as shown in FIG. The cross-sectional area with respect to the current relative to the n-type thermoelectric element (the element on the right side in the drawing) is increased to have an irregular shape, and the effective amount of current flowing through the p-type thermoelectric element is increased as shown in FIG. Thus, I p1 = I n1 has been performed. However, the increase in the cross-sectional area further deteriorates the flexibility of the originally bulky thermoelectric generator, and the fitting to the heat distribution becomes very difficult. In addition, although it is also considered that a device is configured by a single element of only n-type or p-type, a device using a single element cannot be expected to generate a large amount of power in the first place.
 本発明では、AD法の寸法精度良く、緻密な厚膜が高速に作れるという特徴を最大限に活用し、図6に示したように、p型とn型の素子数を調整することによって実効的に電流に対する素子断面積を調整し、最大発電量を得るものである。図面中では右側の2個をp型熱電素子、左側の1個をn型熱電素子とした例で示したが、最大発電量が得られるようにp型とn型の素子数を調整すればよい。p型及びn型の一つ一つの素子形状は同一とし、例えば、短冊形状の1mm(幅)×10mm(長さ)×0.2mm(厚さ)などとすればよい。また、本発明ではAD法を用いているが、他の製造プロセスやバルクプロセスを用いて、p型とn型の素子数を調整することによって最大発電量を得ても良い。また、金属や合金系やコンポジット系(複合材料系)の膜状あるいはバルク状材料を用いたり、それらとセラミックス系の膜状あるいはバルク材料を組み合わせて用いて、p型とn型の素子数を調整することによって最大発電量を得ても良い。また、本発明では素子間の接続には導電性テープや導電性接続テープを用いているが、導電性がある材料と接続方法を組み合わせて用いればその限りではない。また、形状はテープに限らず、熱電発電できる形状を用いて、p型とn型の素子数を調整することによって最大発電量を得ても良い。また、本発明ではp型とn型の素子数を調整することによって、ゼーベック効果を用いた熱電発電の発電性能の最大化を行っているが、ゼーベック効果の逆の現象であるペルチェ効果を用いた熱電冷却の冷却性能の最大化に使用しても良い。 In the present invention, it is effective to adjust the number of p-type and n-type elements as shown in FIG. In other words, the element cross-sectional area with respect to the current is adjusted to obtain the maximum power generation amount. In the drawing, two examples on the right side are p-type thermoelectric elements and one on the left side is an n-type thermoelectric element. However, if the number of p-type and n-type elements is adjusted to obtain the maximum power generation amount, Good. Each element shape of the p-type and the n-type may be the same, for example, a strip shape of 1 mm (width) × 10 mm (length) × 0.2 mm (thickness). Further, although the AD method is used in the present invention, the maximum power generation amount may be obtained by adjusting the number of p-type and n-type elements using other manufacturing processes or bulk processes. Also, the number of p-type and n-type elements can be increased by using metal, alloy-based or composite-based (composite-based) film-like or bulk-like materials, or by combining them with ceramic-based film-like or bulk materials. The maximum power generation amount may be obtained by adjustment. Further, in the present invention, a conductive tape or a conductive connection tape is used for the connection between elements, but this is not limited as long as a combination of a conductive material and a connection method is used. The shape is not limited to tape, and the maximum power generation amount may be obtained by adjusting the number of p-type and n-type elements using a shape capable of thermoelectric power generation. In the present invention, the power generation performance of thermoelectric power generation using the Seebeck effect is maximized by adjusting the number of p-type and n-type elements. However, the Peltier effect, which is the reverse phenomenon of the Seebeck effect, is used. It may be used to maximize the cooling performance of the thermoelectric cooling.
(実施例1)
 図7はAD法において種々のガス流量で任意の時間、ガラス基板上に成膜したBi0.5Sb1.5Te膜のXRDプロファイルと膜厚、及び4端子法で室温にて計測した電気抵抗の値を示している。ガス流量が増えるとエアロゾル中の単位体積当たりの粒子は減るが、ガス流量の増加とともに加速されるので、粒子の基板への衝突速度は増加する。その結果、ガス流量が最も多いHe+N=2+8LMにおいて、膜厚が他の2つより薄いにもかかわらず、XRDのピーク強度が高く、ピークの半値幅も小さく、すなわち結晶性が向上している。また、電気抵抗の値も小さくなっていることが分かる。図8は図7で得られたAD膜の断面を集束イオンビーム(FIB)でエッチング加工し、電界放射型走査電子顕微鏡(FE-SEM)で断面観察した結果である。その結果、ガス流量が最も少ないHe=1LMではポアが認められず、緻密な膜構造であることが分かる。一方、ガス流量が最も多いHe+N=2+8LMでは多数のポアが確認された。ポアの存在は熱伝導率を低減させる効果がある。すなわちガス流量を多くすることで導電率は高く、熱伝導率は低い素子形成をすることができる。ちなみに、温度T(K)における熱電性能は無次元性能指数ZTで評価され、ZT>1が実用化の目安と言われており、材料のゼーベック係数S(V/K)、電気伝導度σ(/(Ω・cm))、熱伝導率λ(W/(cm・K))を用いてZT=(Sσ/λ)Tで表される。すなわち、電気抵抗が低く、熱伝導率が低い材料設計を行えば、高い熱電性能が得られる。図9は図7で得られたAD膜の表面のビッカース硬さを3か所測定した結果である。ガス流量が最も少ないHe=1LMでは膜中心部より端部でビッカース硬さのわずかな上昇傾向が認められた。一方、ガス流量が最も多いHe+N=2+8LMでは膜端部より膜中心部でビッカース硬さのわずかな上昇傾向が認められた。これはガス流量によってAD法におけるノズルから噴出する流速分布が変化しているためである。また、ガス流量が最も少ないHe=1LMにおいて最も高いビッカース硬さ(100~110Hv程度)を示した。これは、ホールペッチの法則から微結晶化により膜の硬度が向上したためである。一方、それ以外のガス流量におけるビッカース硬さはバルクや市販品と同程度(50~70程度)であった。以上の結果から、AD法を用いると、ガス流量を制御することで緻密で微結晶化した、すなわち膜の機械的硬さが高い素子を形成したり(少ないガス流量)、導電率が高く、熱伝導率が低い、即ち熱電性能が高い素子を形成したり(多いガス流量)することができる。
Example 1
FIG. 7 shows an XRD profile and a film thickness of a Bi 0.5 Sb 1.5 Te 3 film formed on a glass substrate at various gas flow rates in an AD method for an arbitrary time, and measurement at room temperature by a 4-terminal method. The value of electrical resistance is shown. As the gas flow rate increases, the number of particles per unit volume in the aerosol decreases. However, since the gas flow rate increases, the collision speed of the particles to the substrate increases. As a result, at He + N 2 = 2 + 8LM with the highest gas flow rate, the XRD peak intensity is high and the peak half-value width is small, that is, the crystallinity is improved, although the film thickness is thinner than the other two. . Moreover, it turns out that the value of electrical resistance is also small. FIG. 8 shows the result of etching the cross section of the AD film obtained in FIG. 7 with a focused ion beam (FIB) and observing the cross section with a field emission scanning electron microscope (FE-SEM). As a result, pores are not recognized at He = 1LM with the smallest gas flow rate, and it can be seen that the film structure is dense. On the other hand, a large number of pores were confirmed at He + N 2 = 2 + 8LM with the highest gas flow rate. The presence of pores has the effect of reducing thermal conductivity. That is, by increasing the gas flow rate, it is possible to form an element with high conductivity and low thermal conductivity. Incidentally, the thermoelectric performance at the temperature T (K) is evaluated by a dimensionless figure of merit ZT, and ZT> 1 is said to be a standard for practical use, and the Seebeck coefficient S (V / K) of the material, electrical conductivity σ ( / (Ω · cm)) and thermal conductivity λ (W / (cm · K)), ZT = (S 2 σ / λ) T. That is, high thermoelectric performance can be obtained by designing a material with low electrical resistance and low thermal conductivity. FIG. 9 shows the result of measuring the Vickers hardness of the surface of the AD film obtained in FIG. 7 at three points. At He = 1LM with the smallest gas flow rate, a slight increase in Vickers hardness was observed at the edge from the center of the film. On the other hand, with He + N 2 = 2 + 8LM having the highest gas flow rate, a slight increase in Vickers hardness was observed at the center of the film rather than at the end of the film. This is because the flow velocity distribution ejected from the nozzle in the AD method changes depending on the gas flow rate. Further, the highest Vickers hardness (about 100 to 110 Hv) was shown at He = 1 LM with the smallest gas flow rate. This is because the hardness of the film has been improved by microcrystallization from Hall Petch's law. On the other hand, the Vickers hardness at other gas flow rates was about the same as that of bulk and commercial products (about 50 to 70). From the above results, when the AD method is used, it is possible to form a dense and microcrystallized element by controlling the gas flow rate, that is, to form an element having a high mechanical hardness of the film (small gas flow rate), or to have a high conductivity. An element having low thermal conductivity, that is, high thermoelectric performance can be formed (high gas flow rate).
(実施例2)
 熱伝導率λ(W/(m・K))はλ=b /(c・ρ)で表せる。ここでbは熱浸透率(J/(m・s0.5・K))、cは比熱(J/(kg・K))、ρは密度(kg/m)である。すなわち、熱伝導率(λ)は熱浸透率の二乗(b )の値に比例する。AD法で形成した膜は図8に示したように、ガス流量によって膜密度が異なるため、AD膜の熱伝導率は熱浸透率によって評価することができる。図10は種々のガス流量のAD膜(Bi0.5Sb1.5Te膜、CaCo膜)をMo膜付き石英基板上に形成し、パルス加熱ナノ秒サーモリフレクタンス法で裏面加熱/裏面測温の条件で熱浸透率の二乗を評価した結果である。その結果、Bi0.5Sb1.5Te膜とCaCo膜、いずれの膜においても、ガス流量の増加に伴って膜密度に関係なく、熱浸透率の二乗の値が減少、すなわち、熱伝導率が低下している。
(Example 2)
The thermal conductivity λ (W / (m · K)) can be expressed by λ = b f 2 / (c · ρ). Here, b f is the thermal permeability (J / (m 2 · s 0.5 · K)), c is the specific heat (J / (kg · K)), and ρ is the density (kg / m 3 ). That is, the thermal conductivity (λ) is proportional to the value of the square of the thermal permeability (b f 2 ). As shown in FIG. 8, the film formed by the AD method has a different film density depending on the gas flow rate. Therefore, the thermal conductivity of the AD film can be evaluated by the thermal permeability. FIG. 10 shows a pulse heating nanosecond thermoreflectance method in which AD films (Bi 0.5 Sb 1.5 Te 3 film, Ca 3 Co 4 O 9 film) with various gas flow rates are formed on a quartz substrate with a Mo film. This is the result of evaluating the square of the thermal permeability under the conditions of back surface heating / back surface temperature measurement. As a result, in both the Bi 0.5 Sb 1.5 Te 3 film and the Ca 3 Co 4 O 9 film, the value of the square of the thermal permeability is increased with the increase in gas flow rate regardless of the film density. Decrease, that is, thermal conductivity is reduced.
(実施例3)
 図11はAD法で高速形成したBi0.5Sb1.5Te膜の外観写真、図12は、AD法で形成して基板から剥がして直方体に加工したBi0.5Sb1.5Te膜と同じ大きさに形成したバルク焼結体のレーザーフラッシュ法におけるそれぞれの試料裏面温度変化曲線を示している。熱拡散率α(m/s)は温度変化曲線から求まり、示差走査熱容量測定から求めた比熱容量c(J/(kg・K))と、試料の重量測定と体積測定から求めた密度ρ(kg/m)の積(λ=α・c・ρ)から、熱伝導率λ(W/(m・K))が見積もられる。その結果、バルク焼結体が1.0W/mKであったのに対し、AD膜はそれより80%小さい0.2W/mKの熱伝導率が得られている。
(Example 3)
Figure 11 Bi 0.5 Sb 1.5 Te 3 film appearance photograph, Figure 12 which is a high speed is formed by the AD method is, Bi 0.5 Sb 1.5 was processed into a rectangular parallelepiped peeled off the substrate formed by the AD method It shows the each sample back surface temperature change curve in Te 3 film was formed in the same size as the laser flash method of bulk sintered body. The thermal diffusivity α (m 2 / s) is obtained from the temperature change curve, the specific heat capacity c (J / (kg · K)) obtained from the differential scanning heat capacity measurement, and the density ρ obtained from the weight measurement and volume measurement of the sample. From the product (λ = α · c · ρ) of (kg / m 3 ), the thermal conductivity λ (W / (m · K)) is estimated. As a result, the bulk sintered body was 1.0 W / mK, whereas the AD film had a thermal conductivity of 0.2 W / mK which was 80% smaller than that.
(実施例4)
 図13はAD法で高速形成した膜厚が1mm以上のBi0.5Sb1.5Te膜の外観写真とその形成プロセスを示している。AD法を用いれば、膜厚が1mm以上の素子形成が可能である。そのため、膜厚方向の温度差を利用して熱電発電する場合、従来法で作製した薄膜熱電デバイスより温度差が付け易い。また、面内方向の温度差を利用して熱電発電する場合、厚膜化とともに電流が流れる素子断面積が増えるため、従来法で作製した薄膜熱電デバイスより素子の内部抵抗を小さくすることができ、熱電発電の性能指数の劣化を抑制することができる。
 また、AD法を用いて膜厚が1mm以上の素子形成を行うと、エアロゾル中の粒子によるAD膜のエッチング効果と成膜効果により、図13に示したようにピラミッド状の素子形成が可能である。この場合、特許文献13に記載されているように、膜厚方向の温度差を利用して熱電発電する場合、素子の高温側表面と低温側表面において輻射伝熱によって熱が伝わりやすくなることを防止するだけでなく、断面積が最も小さくなる部分において、熱流束が滞り、素子内の高温側と低温側の温度差を大きくして、結果的に膜厚方向の温度差を大きくすることができる。
Example 4
FIG. 13 shows an appearance photograph of a Bi 0.5 Sb 1.5 Te 3 film having a film thickness of 1 mm or more formed at high speed by the AD method and a formation process thereof. If the AD method is used, an element having a thickness of 1 mm or more can be formed. Therefore, when thermoelectric power generation is performed using a temperature difference in the film thickness direction, a temperature difference is more easily applied than a thin film thermoelectric device manufactured by a conventional method. In addition, when thermoelectric power generation is performed using the temperature difference in the in-plane direction, the cross-sectional area of the element through which current flows increases as the film thickness increases, so that the internal resistance of the element can be made smaller than the thin film thermoelectric device fabricated by the conventional method. In addition, deterioration of the performance index of thermoelectric power generation can be suppressed.
Further, when an element having a film thickness of 1 mm or more is formed by using the AD method, a pyramid-shaped element can be formed as shown in FIG. 13 due to the etching effect and the film forming effect of the AD film by particles in the aerosol. is there. In this case, as described in Patent Document 13, when thermoelectric power generation is performed using a temperature difference in the film thickness direction, heat is easily transmitted by radiation heat transfer on the high temperature side surface and the low temperature side surface of the element. In addition to preventing, the heat flux is stagnant at the part where the cross-sectional area is the smallest, increasing the temperature difference between the high temperature side and the low temperature side in the element, and consequently increasing the temperature difference in the film thickness direction. it can.
(実施例5)
 図14は配向したCaCoバルクセラミックスとAD法で成膜したCaCo膜の形成方法とそれぞれの断面のSEM写真を示している。AD法で成膜した膜は、その断面形態がより明確になるように800℃、1時間の大気雰囲気でポストアニーリングを施しており、面内方向に粒成長している傾向がうかがえる。すなわち、面内方向に配向化することが可能になると同時に面内方向の導電率が向上し、たとえば面内方向の温度差を利用したセンサデバイスに有効である。また、AD法は基材に直接に厚膜を形成することができるため、たとえば図15に一例を示したように電気的に絶縁された断熱性の高いセラミックスやガラス、プラスチック基材の表と裏にそれぞれp型素子とn型素子をAD法で形成し、ポストアニーリングを施すことで面内方向に配向させて面内方向の導電性を高め、それを1対のpn型素子としてそれぞれを電極で接続してモジュール化することも可能である。
(Example 5)
FIG. 14 shows a method of forming an oriented Ca 3 Co 4 O 9 bulk ceramic and a Ca 3 Co 4 O 9 film formed by the AD method, and SEM photographs of the respective sections. The film formed by the AD method is post-annealed in an air atmosphere at 800 ° C. for 1 hour so that the cross-sectional shape becomes clearer, and it can be seen that grains tend to grow in the in-plane direction. In other words, the orientation in the in-plane direction can be achieved, and at the same time, the conductivity in the in-plane direction is improved. For example, it is effective for a sensor device using a temperature difference in the in-plane direction. Further, since the AD method can form a thick film directly on the base material, for example, as shown in FIG. A p-type element and an n-type element are formed on the back by AD method, and post-annealing is performed to orient the film in the in-plane direction to increase the conductivity in the in-plane direction. It is also possible to modularize by connecting with electrodes.
(実施例6)
 図16に本発明のフレキシブル熱電発電デバイスの高速製造方法の一例を示す。
 図16において、一方の基板となるフレキシブルテープ(図中上側のテープ)上に導電性テープを、フレキシブルテープの長手方向と直交する向きから所定角度だけずらして矩形状に間隔を開けて並べて設け、当該導電性テープ上に第1のADノズルからp型熱電材料をAD法にて短冊形状に所定数(図では3個)ずつ成膜し所定数のp型素子を形成し、次に第2のADノズルからn型熱電材料をAD法にて短冊形状に所定数(図では3個)ずつ成膜して所定数のn型素子を形成する。このとき、p型熱電材料及びn型熱電材料とも全て同一の短冊形状に成膜し、短冊形状の長手方向がフレキシブルテープの長手方向と直交する向きから所定角度だけずらしてあり、また、p型素子の数とn型素子の数の割合は、最大発電量が得られるように、あるいは、外部負荷とのインピーダンスマッチングが得られるように設定する。他方の基板となるフレキシブルテープ(図中下側のテープ)上に導電性接続テープを、フレキシブルテープの長手方向と直交する向きから所定角度だけずらして矩形状に間隔を開けて並べて設ける。次に、双方のフレキシブルテープを前記導電性接続テープの接続性を利用して貼り合わせる。この貼り合わせるとき、図16に示すように、矩形状の導電性テープ上に所定数ずつ形成されたn型素子と、隣接する矩形状の導電性テープ上に所定数ずつ形成されたp型素子とが、矩形状の導電性接続テープで電気的に接続され、かつ、矩形状の導電性テープ上に所定数ずつ形成されp型素子と、逆隣で隣接する矩形状の導電性テープ上に所定数ずつ形成されたn型素子とが、導電性接続テープで電気的に接続され、全体として直列に接続されるように貼り合わせて、テープ状のフレキシブル熱電発電デバイスとする。図17においては、上側の図にp型素子数3に対してn型素子数も3とした例を示し、下側の図に、p型素子数1に対してn型素子数3とした例を示してあるが、p型とn型の素子数の比は、外部負荷とのインピーダンスマッチングを考慮して決めればよい。
(Example 6)
FIG. 16 shows an example of a high-speed manufacturing method for the flexible thermoelectric power generation device of the present invention.
In FIG. 16, the conductive tape is provided on one side of the flexible tape (the upper tape in the figure), shifted by a predetermined angle from the direction perpendicular to the longitudinal direction of the flexible tape, and arranged in a rectangular shape with a gap therebetween, A predetermined number (three in the figure) of p-type thermoelectric material is formed on the conductive tape in a strip shape by the AD method from the first AD nozzle to form a predetermined number of p-type elements, and then the second A predetermined number (three in the figure) of n-type thermoelectric material is formed in a strip shape by AD method from the AD nozzles to form a predetermined number of n-type elements. At this time, both the p-type thermoelectric material and the n-type thermoelectric material are formed into the same strip shape, and the longitudinal direction of the strip shape is shifted by a predetermined angle from the direction orthogonal to the longitudinal direction of the flexible tape. The ratio between the number of elements and the number of n-type elements is set so that the maximum power generation amount can be obtained or impedance matching with an external load can be obtained. On the flexible tape (the lower tape in the figure) serving as the other substrate, the conductive connection tape is provided in a rectangular shape with a predetermined angle shifted from the direction orthogonal to the longitudinal direction of the flexible tape. Next, both flexible tapes are bonded together using the connectivity of the conductive connection tape. When bonding, as shown in FIG. 16, a predetermined number of n-type elements formed on a rectangular conductive tape and a predetermined number of p-type elements formed on an adjacent rectangular conductive tape Are electrically connected with a rectangular conductive connecting tape, and are formed on the rectangular conductive tape by a predetermined number of pieces on the rectangular conductive tape adjacent to the p-type element on the opposite side. A predetermined number of n-type elements are electrically connected with a conductive connection tape, and are bonded so as to be connected in series as a whole to obtain a tape-like flexible thermoelectric power generation device. In FIG. 17, the upper figure shows an example in which the number of n-type elements is 3 with respect to 3 p-type elements, and the lower figure has 3 n-type elements with respect to 1 p-type element. Although an example is shown, the ratio of the number of p-type and n-type elements may be determined in consideration of impedance matching with an external load.
(実施例7)
 上記のように製造されたテープ状のフレキシブル熱電発電デバイスは、図18に示すように、必要な長さだけ切り取って排熱管に巻き付けて用いると、排熱管と大気との温度差により発電することができる。短冊形状のp型素子及びn型素子は、巻き付けたときに短冊形状の長手方向が、予めテープの長手方向と直交する向きから所定角度ずらしてあるので、排熱管に巻き付けたときに短冊形状の長手方向が排熱管の長手方向と一致することとなり、管の曲面による曲げの影響が少ない。例えば、直径Dの管に、ピッチPで巻き付ける場合には、予め短冊形状の長手方向を、フレキシブルテープの長手方向と直交する向きから角度arctan(P/πD)だけずらして成膜しておけば、排熱管に巻き付けたときに短冊形状の長手方向が管の長手方向と一致する。図19はアルミテープ(15mm幅)/ポリイミドテープ上にAD法でNaCo厚膜をテープの長手方向に対して30度傾けて成膜した結果と膜厚プロファイルを示している。素子の大きさは5mmであり、マスクレスで10個の素子を5mm間隔でそれぞれ1分間成膜している。成膜速度は120~200μm/minであり、arctan(P/πD)からφ8mmの配管に対応している。
(Example 7)
As shown in FIG. 18, the tape-shaped flexible thermoelectric power generation device manufactured as described above generates power by the temperature difference between the exhaust heat pipe and the atmosphere when cut out by a necessary length and wound around the exhaust heat pipe. Can do. The strip-shaped p-type element and the n-type element have a strip-shaped longitudinal direction that is shifted by a predetermined angle from a direction orthogonal to the longitudinal direction of the tape in advance. The longitudinal direction coincides with the longitudinal direction of the exhaust heat pipe, and the influence of bending due to the curved surface of the pipe is small. For example, in the case of winding around a pipe having a diameter D at a pitch P, the film should be formed in advance by shifting the longitudinal direction of the strip shape by an angle arctan (P / πD) from the direction perpendicular to the longitudinal direction of the flexible tape. When wound around the exhaust heat pipe, the longitudinal direction of the strip shape coincides with the longitudinal direction of the pipe. FIG. 19 shows a film thickness profile and a result obtained by forming a NaCo 2 O 4 thick film on an aluminum tape (15 mm width) / polyimide tape by tilting 30 degrees with respect to the longitudinal direction of the tape by the AD method. The size of the element is 5 mm, and ten elements are formed for 1 minute at 5 mm intervals without a mask. The film forming speed is 120 to 200 μm / min, and corresponds to a pipe of arctan (P / πD) to φ8 mm.
 (実施例8)
 図20は、上記のテープ状のフレキシブル熱電発電デバイスをロールツーロールで高速に製造する方法の一例を示す。一方のフレキシブルテープ供給ロールから繰り出したフレキシブルテープに、導電性テープ供給ロールから繰り出した導電性テープをフレキシブルテープの長手方向と直交する向きから所定角度だけずらして積層し、積層された導電性テープ上に第1のADノズルからp型熱電材料をAD法にて短冊形状に所定数ずつ成膜し所定数のp型素子を形成し、次に第2のADノズルからn型熱電材料をAD法にて短冊形状に所定数ずつ成膜して所定数のn型素子を形成する。他方のフレキシブルテープ供給ロールから繰り出したフレキシブルテープに、導電性接続テープ供給ロールから繰り出された導電性接続テープをフレキシブルテープの長手方向と直交する向きから所定角度だけずらして積層する。導電性テープ上に所定数ずつ形成されたn型素子と、隣接する導電性テープ上に所定数ずつ形成されたp型素子とが、導電性接続テープで電気的に接続され、かつ、導電性テープ上に所定数ずつ形成されp型素子と、逆隣で隣接する導電性テープ上に所定数ずつ形成されたn型素子とが、導電性接続テープで電気的に接続され、全体として直列に接続されるように、一方のフレキシブルテープと他方のフレキシブルテープ貼り合わせて巻き取りロールに巻き取り、フレキシブル熱電発電デバイスを製造する。
(Example 8)
FIG. 20 shows an example of a method for manufacturing the tape-shaped flexible thermoelectric power generation device at a high speed by roll-to-roll. The conductive tape fed out from the conductive tape supply roll is laminated on the flexible tape fed out from one of the flexible tape supply rolls while being shifted by a predetermined angle from the direction perpendicular to the longitudinal direction of the flexible tape. Next, a predetermined number of p-type thermoelectric materials are formed in a strip shape by the AD method from the first AD nozzle to form a predetermined number of p-type elements, and then the n-type thermoelectric material is transferred from the second AD nozzle to the AD method. To form a predetermined number of n-type elements by forming a predetermined number of strips. On the flexible tape drawn out from the other flexible tape supply roll, the conductive connection tape drawn out from the conductive connection tape supply roll is laminated with a predetermined angle shifted from the direction perpendicular to the longitudinal direction of the flexible tape. A predetermined number of n-type elements formed on a conductive tape and a predetermined number of p-type elements formed on an adjacent conductive tape are electrically connected by a conductive connection tape and are conductive. A predetermined number of p-type elements formed on the tape and a predetermined number of n-type elements formed on the adjacent conductive tape on the opposite side are electrically connected by the conductive connection tape, and are connected in series as a whole. In order to be connected, one flexible tape and the other flexible tape are bonded together and wound on a winding roll to manufacture a flexible thermoelectric power generation device.
(実施例9)
 上記のテープ状のフレキシブル熱電発電デバイスをロールツーロールで高速に製造する方法の他の一例を図21に示す。まず、同図上段に示すように、金属テープ上にAD法で素子を形成し、次に、同図中段に示すように微細精密プレス機でデバイスを所望の形状に打ち抜く。次に、同図下段に示すように、折り曲げ加工を施すことで素子が直接形成された金属テープの部位(下部電極となる部位)と一体でフィン構造を形成し、また、折り曲げ加工を施した金属テープの部位(図中の上部電極参照)を膜表面に接合し、不要部分を切断することにより、熱電素子におけるp型素子、あるいはn型素子を電気的に同一素子で直列接続することができる。このようにして形成したデバイスを配管に巻きつけることにより、図22に示すように冷却フィン一体型のフレキシブル熱電発電デバイスが形成できる。
 また、図23に示すように、折り曲げ加工を施した金属テープの部位(図中の電極参照)を膜表面に接合することで、熱電素子におけるp型素子とn型素子を電気的に直列接続してπ型素子を形成することができる。なお、図23において、p型およびn型の熱電素子として示された部分には、実施例6における図16に図示したものと同様に、p型の部分にはp型熱電材料を所定数ずつの短冊形状にAD法で成膜し、n型の部分にn型熱電材料を所定数ずつの短冊形状にAD法で成膜しておくことにより、所定数の短冊形状のp型素子と所定数の短冊形状のn型素子を電気的に接続してπ型素子を形成することができる。この場合、p型とn型での短冊形状は全て同じ形状に成膜するものとし、p型とn型での前記所定数は、外部負荷とのインピーダンス整合を考慮して選定すればよい。
Example 9
FIG. 21 shows another example of a method for producing the tape-shaped flexible thermoelectric power generation device at high speed by roll-to-roll. First, as shown in the upper part of the figure, elements are formed on the metal tape by the AD method, and then the device is punched into a desired shape with a fine precision press as shown in the middle part of the figure. Next, as shown in the lower part of the figure, the fin structure was formed integrally with the portion of the metal tape (the portion serving as the lower electrode) on which the element was directly formed by bending, and the bending was performed. A p-type element or an n-type element in a thermoelectric element can be electrically connected in series with the same element by joining a metal tape portion (see the upper electrode in the figure) to the film surface and cutting unnecessary portions. it can. By winding the device thus formed around the pipe, a cooling fin-integrated flexible thermoelectric power generation device can be formed as shown in FIG.
Further, as shown in FIG. 23, a p-type element and an n-type element in a thermoelectric element are electrically connected in series by joining a bent metal tape portion (see the electrode in the figure) to the film surface. Thus, a π-type element can be formed. In FIG. 23, the portions shown as the p-type and n-type thermoelectric elements are replaced with a predetermined number of p-type thermoelectric materials in the p-type portion, as shown in FIG. A predetermined number of strip-shaped p-type elements and a predetermined number of strip-shaped p-type elements are formed by depositing a predetermined number of strip-shaped n-type thermoelectric materials on the n-type portion by the AD method. A number of strip-shaped n-type elements can be electrically connected to form a π-type element. In this case, the strips of p-type and n-type are all formed in the same shape, and the predetermined number of p-type and n-type may be selected in consideration of impedance matching with an external load.
 p型素子とn型素子は同じ短冊形状にAD法を用いて成膜されるので、単にp型素子とn型素子の素子数の割合を、最大発電量が得られるように、あるいは、外部負荷とのインピーダンスマッチングが得られるように設定すれば、どのような熱電材料に対しても素子数の割合を変更するだけで適用できる。 Since the p-type element and the n-type element are formed in the same strip shape using the AD method, the ratio of the number of elements of the p-type element and the n-type element is simply set so that the maximum power generation amount can be obtained, or If it is set so that impedance matching with the load can be obtained, it can be applied to any thermoelectric material simply by changing the ratio of the number of elements.

Claims (8)

  1.  一方の基板となるフレキシブルテープ上に導電性テープを、矩形状に間隔をあけてフレキシブルテープの長手方向に並べて設け、
     各々の矩形状の導電性テープ上には、p型熱電材料を短冊形状に所定数ずつ成膜し所定数のp型素子を形成し、次にn型熱電材料を短冊形状に所定数ずつ成膜して所定数のn型素子を形成し、かつ、p型素子及びn型素子は多結晶膜として全て同じ短冊形状であって、短冊形状の長手方向がフレキシブルテープの長手方向と直交する向きから所定角度だけずらして成膜され、
     他方の基板となるフレキシブルテープ上に導電性接続テープを、矩形状に間隔をあけてフレキシブルテープの長手方向に並べて設け、
     前記一方と他方のフレキシブルテープを前記導電性接続テープの接続性を利用して貼り合わせ、各々の矩形状の導電性テープ上に所定数ずつ形成されたn型素子が、隣接する矩形状の導電性テープ上に所定数ずつ形成されたp型素子と、矩形状の導電性接続テープにより電気的に接続され、かつ、前記各々の矩形状の導電性テープ上に所定数ずつ形成されp型素子が、逆隣りに隣接する矩形状の導電性テープ上に所定数ずつ形成されたn型素子と、矩形状の導電性接続テープにより電気的に接続され、全体として直列に接続されたフレキシブル熱電発電デバイスを製造する方法において、
     前記所定数のp型素子と所定数のn型素子の素子数の比を、接続される外部負荷とのインピーダンス整合をとるように選定することを特徴とするフレキシブル熱電発電デバイスの高速製造方法。
    Conductive tape is provided on the flexible tape to be one of the substrates, arranged in the longitudinal direction of the flexible tape with a rectangular interval,
    On each rectangular conductive tape, a predetermined number of p-type thermoelectric materials are formed in a strip shape to form a predetermined number of p-type elements, and then a predetermined number of n-type thermoelectric materials are formed in a strip shape. The p-type element and the n-type element are all the same strip shape as a polycrystalline film, and the longitudinal direction of the strip shape is perpendicular to the longitudinal direction of the flexible tape. The film is shifted by a predetermined angle from
    Conductive connection tape on the flexible tape to be the other substrate, arranged in the longitudinal direction of the flexible tape with a rectangular interval,
    The one and the other flexible tapes are bonded together using the connectivity of the conductive connection tape, and a predetermined number of n-type elements formed on each rectangular conductive tape are connected to adjacent rectangular conductive tapes. A p-type element that is electrically connected by a rectangular conductive connecting tape and a predetermined number of p-type elements formed on the rectangular tape, and is formed on each rectangular conductive tape. Are electrically connected by a rectangular conductive connecting tape and a series of flexible thermoelectric generators that are connected in series as a whole. In a method of manufacturing a device,
    A method for high-speed production of a flexible thermoelectric power generation device, wherein the ratio of the number of elements of the predetermined number of p-type elements and the predetermined number of n-type elements is selected so as to achieve impedance matching with a connected external load.
  2.  前記多結晶膜は、100μm以下、特に5~500nmの粒径をもつ微結晶構造体であることを特徴とする請求項1に記載のフレキシブル熱電発電デバイスの高速製造方法。 2. The method for high-speed production of a flexible thermoelectric power generation device according to claim 1, wherein the polycrystalline film is a microcrystalline structure having a grain size of 100 μm or less, particularly 5 to 500 nm.
  3.  前記成膜は、AD法を用いて成膜されることを特徴とする請求項1又は2に記載のフレキシブル熱電発電デバイスの高速製造方法。 The high-speed manufacturing method for a flexible thermoelectric power generation device according to claim 1, wherein the film formation is performed using an AD method.
  4.  前記矩形状の導電性テープ及び前記矩形状の導電性接続テープは、矩形状の軸の一つがフレキシブルテープの長手方向と直交する向きから前記所定角度だけずらして設けられていることを特徴とする請求項1ないし3のいずれか1項に記載のフレキシブル熱電発電デバイスの高速製造方法。 The rectangular conductive tape and the rectangular conductive connection tape are provided such that one of the rectangular shafts is shifted from the direction perpendicular to the longitudinal direction of the flexible tape by the predetermined angle. The high-speed manufacturing method of the flexible thermoelectric power generation device of any one of Claim 1 thru | or 3.
  5.  前記所定角度は、フレキシブル熱電発電デバイスが管状の熱源に巻き付けられたとき短冊形状の長手方向が、管の長手方向と一致するように予め選定されていることを特徴とする請求項1ないし4のいずれか1項に記載のフレキシブル熱電発電デバイスの高速製造方法。 The predetermined angle is selected in advance so that the longitudinal direction of the strip shape coincides with the longitudinal direction of the tube when the flexible thermoelectric power generation device is wound around a tubular heat source. The high-speed manufacturing method of the flexible thermoelectric power generation device of any one of Claims 1.
  6.  前記所定角度は、前記管の直径をD、巻き付けピッチをPとしたとき、角度arctan(P/πD)であることを特徴とする請求項5に記載のフレキシブル熱電発電デバイスの高速製造方法。 The high speed manufacturing method for a flexible thermoelectric power generation device according to claim 5, wherein the predetermined angle is an angle arctan (P / πD) where D is a diameter of the tube and P is a winding pitch.
  7.  一方の電極となる導電性テープ上に、矩形状のp型素子領域と矩形状のn型素子領域とを間隔をあけて導電性テープの長手方向に交互に並べて設定し、さらに、隣り合う矩形状のp型素子領域と矩形状のn型素子領域の間に、矩形状のフィン領域と、他方の電極となる2個の矩形状の電極領域と該2個の電極領域を接続する接続領域とを設定し、逆隣りに隣り合う矩形状のp型素子領域と矩形状のn型素子領域の間には前記一方の電極を接続する接続領域を設定し、
     矩形状のp型素子領域の導電性テープ上に、p型熱電材料を短冊形状に所定数ずつAD法を用いて成膜し所定数のp型素子を形成するとともに、矩形状のn型熱電材料を短冊形状に所定数ずつAD法を用いて成膜して所定数のn型素子を形成し、かつ、p型素子及びn型素子は多結晶膜として全て同じ短冊形状であって、短冊形状の長手方向が導電性テープの長手方向と直交する向きから所定角度だけずらして成膜し、
     次に、プレス機により前記各領域を残して、かつ前記各領域が導電性テープに支持されるように幅方向両端部を長手方向に残して不要部分を打ち抜き、
     次に、フィン領域を折り曲げるとともに、他方の電極となる2個の電極領域をそれぞれ矩形状のp型素子領域と矩形状のn型素子領域の成膜上面に接合するとともに、各領域が導電性テープに支持されるように幅方向両端部を長手方向に残していた領域を切断して、矩形状のp型素子領域上に所定数ずつ形成されたp型素子と、隣接する矩形状のn型素子領域上に所定数ずつ形成されたn型素子とが電気的に接続され、全体として直列に接続されたフレキシブル熱電発電デバイスを製造する方法において、
     前記所定数のp型素子と所定数のn型素子の短冊形状の素子数の比を、接続される外部負荷とのインピーダンス整合をとるように選定することを特徴とするフレキシブル熱電発電デバイスの高速製造方法。
    On the conductive tape to be one electrode, rectangular p-type element regions and rectangular n-type element regions are alternately arranged in the longitudinal direction of the conductive tape with an interval between them. Between the shaped p-type element region and the rectangular n-type element region, a rectangular fin region, two rectangular electrode regions to be the other electrode, and a connection region connecting the two electrode regions And a connection region for connecting the one electrode between the rectangular p-type element region and the rectangular n-type element region adjacent to each other in reverse,
    On the conductive tape in the rectangular p-type element region, a predetermined number of p-type thermoelectric materials are formed in a strip shape using the AD method to form a predetermined number of p-type elements, and a rectangular n-type thermoelectric A predetermined number of materials are formed in a strip shape using the AD method to form a predetermined number of n-type elements, and the p-type elements and the n-type elements are all the same strip shape as a polycrystalline film, Formed by shifting the longitudinal direction of the shape by a predetermined angle from the direction perpendicular to the longitudinal direction of the conductive tape,
    Next, punch out unnecessary parts leaving the both ends in the longitudinal direction so that the respective areas are supported by a conductive tape, and the respective areas are supported by the conductive tape,
    Next, the fin region is bent, and the two electrode regions to be the other electrodes are joined to the upper surfaces of the rectangular p-type element region and the rectangular n-type element region, and each region is electrically conductive. A region where both ends in the width direction are left in the longitudinal direction so as to be supported by the tape is cut, and a predetermined number of p-type elements formed on the rectangular p-type element region, and adjacent rectangular n In a method of manufacturing a flexible thermoelectric power generation device in which a predetermined number of n-type elements formed on a mold element region are electrically connected and connected in series as a whole,
    The ratio of the predetermined number of p-type elements to the predetermined number of n-type elements is selected so as to achieve impedance matching with a connected external load. Production method.
  8.  請求項1ないし7のいずれか1項に記載のフレキシブル熱電発電デバイスの高速製造方法により製造されたフレキシブル熱電発電デバイス。 A flexible thermoelectric power generation device manufactured by the high-speed manufacturing method for a flexible thermoelectric power generation device according to any one of claims 1 to 7.
PCT/JP2010/063738 2009-08-13 2010-08-13 High-speed manufacturing method for flexible thermoelectric generation devices WO2011019078A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011526790A JP5316912B2 (en) 2009-08-13 2010-08-13 High speed manufacturing method of flexible thermoelectric power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009187741 2009-08-13
JP2009-187741 2009-08-13

Publications (1)

Publication Number Publication Date
WO2011019078A1 true WO2011019078A1 (en) 2011-02-17

Family

ID=43586252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063738 WO2011019078A1 (en) 2009-08-13 2010-08-13 High-speed manufacturing method for flexible thermoelectric generation devices

Country Status (2)

Country Link
JP (1) JP5316912B2 (en)
WO (1) WO2011019078A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027312A (en) * 2011-07-25 2013-02-04 Boeing Co:The Thermoelectric power generation from power feeder
WO2013069347A1 (en) * 2011-11-08 2013-05-16 富士通株式会社 Thermoelectric conversion element and method for manufacturing same
WO2013170992A1 (en) * 2012-05-16 2013-11-21 Siemens Aktiengesellschaft Thermoelectric generator pipe and method for producing the generator pipe
EP2742541A4 (en) * 2011-08-11 2015-08-05 Purdue Research Foundation Nanocrystal coated flexible substrates with improved thermoelectric efficiency
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
JP2016207766A (en) * 2015-04-20 2016-12-08 積水化学工業株式会社 Thermoelectric conversion device and manufacturing method therefor
CN109478589A (en) * 2016-06-23 2019-03-15 3M创新有限公司 Thermoelectricity band

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856990B1 (en) * 2016-03-21 2018-05-15 서울시립대학교 산학협력단 Organic thermoelectric module and thereof manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366182A (en) * 1989-08-04 1991-03-20 Hitachi Ltd Thermoelectric conversion device
JPH1098216A (en) * 1996-09-20 1998-04-14 Seiko Epson Corp Manufacturing method of thermoelectric generating device
JP2001250991A (en) * 2000-03-07 2001-09-14 Toto Ltd Thermoelement member and manufacturing method thereof
JP2007005371A (en) * 2005-06-21 2007-01-11 Toyota Motor Corp Thermoelectric generator
JP2007246326A (en) * 2006-03-15 2007-09-27 Nec Corp Composite structure, its producing method, and thermoelectric conversion element using the composite structure
JP2009218015A (en) * 2008-03-07 2009-09-24 Yazaki Corp Power cable

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121679B2 (en) * 1998-11-18 2008-07-23 株式会社小松製作所 Temperature controller and manufacturing method thereof
CA2549826C (en) * 2003-12-02 2014-04-08 Battelle Memorial Institute Thermoelectric devices and applications for the same
JP2006100346A (en) * 2004-09-28 2006-04-13 Katsutoshi Ono Thermoelectric conversion system and method of manufacturing thermoelectric panel therefor
DE102009009586A1 (en) * 2009-02-19 2010-08-26 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366182A (en) * 1989-08-04 1991-03-20 Hitachi Ltd Thermoelectric conversion device
JPH1098216A (en) * 1996-09-20 1998-04-14 Seiko Epson Corp Manufacturing method of thermoelectric generating device
JP2001250991A (en) * 2000-03-07 2001-09-14 Toto Ltd Thermoelement member and manufacturing method thereof
JP2007005371A (en) * 2005-06-21 2007-01-11 Toyota Motor Corp Thermoelectric generator
JP2007246326A (en) * 2006-03-15 2007-09-27 Nec Corp Composite structure, its producing method, and thermoelectric conversion element using the composite structure
JP2009218015A (en) * 2008-03-07 2009-09-24 Yazaki Corp Power cable

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027312A (en) * 2011-07-25 2013-02-04 Boeing Co:The Thermoelectric power generation from power feeder
EP2742541A4 (en) * 2011-08-11 2015-08-05 Purdue Research Foundation Nanocrystal coated flexible substrates with improved thermoelectric efficiency
WO2013069347A1 (en) * 2011-11-08 2013-05-16 富士通株式会社 Thermoelectric conversion element and method for manufacturing same
JPWO2013069347A1 (en) * 2011-11-08 2015-04-02 富士通株式会社 Thermoelectric conversion element and manufacturing method thereof
US9601680B2 (en) 2011-11-08 2017-03-21 Fujitsu Limited Thermoelectric conversion element and method for manufacturing same
WO2013170992A1 (en) * 2012-05-16 2013-11-21 Siemens Aktiengesellschaft Thermoelectric generator pipe and method for producing the generator pipe
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
JP2016207766A (en) * 2015-04-20 2016-12-08 積水化学工業株式会社 Thermoelectric conversion device and manufacturing method therefor
CN109478589A (en) * 2016-06-23 2019-03-15 3M创新有限公司 Thermoelectricity band
JP2019525454A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Thermoelectric tape

Also Published As

Publication number Publication date
JPWO2011019078A1 (en) 2013-01-17
JP5316912B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5316912B2 (en) High speed manufacturing method of flexible thermoelectric power generation device
CN101969095B (en) Quasi one-dimensional nano structural thermoelectric material, device and preparation method thereof
US9219215B1 (en) Nanostructures having high performance thermoelectric properties
EP1193774B1 (en) Thermoelectric material and method for manufacturing the same
US9461227B2 (en) Thermoelectric material including nano-inclusions, thermoelectric module and thermoelectric apparatus including the same
US20120247527A1 (en) Electrode structures for arrays of nanostructures and methods thereof
KR20140103764A (en) Heterogeneous laminate comprising graphene, preparing method thereof, thermoelectric material, thermoelectric module and thermoelectric apparatus comprising same
KR20120086190A (en) Thermoelectric Device using Bulk Material of Nano Structure and Thermoelectric Module having The Same, and Method of Manufacture The Same
Dashevsky et al. Investigating the performance of bismuth-antimony telluride
Baba et al. Formation and characterization of polyethylene terephthalate-based (Bi0. 15Sb0. 85) 2Te3 thermoelectric modules with CoSb3 adhesion layer by aerosol deposition
WO2005083808A1 (en) Thermoelectric conversion device, cooling method using same, and power generating method
Saini et al. On-chip thermoelectric module comprised of oxide thin film legs
JP2011035117A (en) Thermoelectric conversion material
Park et al. Thermoelectric characterization and fabrication of nanostructured p-type Bi0. 5Sb1. 5Te3 and n-type Bi2Te3 thin film thermoelectric energy generator with an in-plane planar structure
KR101801367B1 (en) Method of manufacturing thermoelectric element
CN105051925B (en) High-efficiency thermal electrical switching device
Zhang et al. The investigation of thermal properties on multilayer Sb2Te3/Au thermoelectric material system with ultra-thin Au interlayers
CN101969096B (en) Nanostructured thermoelectric material and device and production method thereof
JP5540289B2 (en) Method for manufacturing thermoelectric power generation device
JP2018142564A5 (en)
KR101468991B1 (en) Thermoelectric material, method of manufacturing the same, thermoelectric device having the same
JP5218285B2 (en) Thermoelectric conversion material
Kodaira et al. Design and power generation of tilted Cu/Fe2V (Al0. 9Si0. 1) multilayers via the transverse thermoelectric effect
Merten et al. Production of polycrystalline Bi2Te3 nanostructures and the effect of annealing on their electrical conductivity
Werner et al. From Thermoelectric Powder Directly to Thermoelectric Generators: Flexible Bi2Te3 Films on Polymer Sheets Prepared by the Powder Aerosol Deposition Method at Room Temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011526790

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808261

Country of ref document: EP

Kind code of ref document: A1