WO2017038553A1 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
WO2017038553A1
WO2017038553A1 PCT/JP2016/074478 JP2016074478W WO2017038553A1 WO 2017038553 A1 WO2017038553 A1 WO 2017038553A1 JP 2016074478 W JP2016074478 W JP 2016074478W WO 2017038553 A1 WO2017038553 A1 WO 2017038553A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
type thermoelectric
conversion module
insulating substrate
conversion layer
Prior art date
Application number
PCT/JP2016/074478
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 秀幸
真二 今井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017537765A priority Critical patent/JP6564045B2/en
Publication of WO2017038553A1 publication Critical patent/WO2017038553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric conversion module in which thermoelectric conversion elements are provided on both surfaces of an insulating substrate, and more particularly to a thermoelectric conversion module that can be manufactured at a low cost by reducing manufacturing costs.
  • thermoelectric conversion materials that can convert thermal energy and electrical energy to each other are used in power generation elements that generate power by temperature difference, or thermoelectric conversion elements such as Peltier elements.
  • a thermoelectric conversion element for example, a ⁇ -type thermoelectric conversion element is known as a thermoelectric conversion element using a Bi—Te based inorganic semiconductor as a thermoelectric conversion material.
  • the ⁇ -type thermoelectric conversion element is manufactured by processing thermoelectric conversion materials into blocks, arranging them on an insulating substrate such as ceramics, and electrically connecting the blocks.
  • a thermoelectric conversion element in which an ink-like thermoelectric conversion material is formed on an insulating substrate in a coating process or a printing process has been reported.
  • thermoelectric conversion element is easy to manufacture and can be manufactured at a lower cost than the ⁇ -type thermoelectric conversion element.
  • thermoelectric conversion element having this structure it is possible to generate electric power by giving a sufficient temperature difference to the thermoelectric conversion material by generating a temperature difference on the two-dimensional plane of the insulating substrate. This point is described in Patent Document 1, for example. Since the electromotive voltage per thermoelectric conversion element is very small, the thermoelectric conversion module connects several hundred or more thermoelectric conversion elements in series to increase voltage and power generation.
  • thermoelectric conversion device of Patent Document 2 includes a strip-like flexible insulating base element, a thermoelectric conversion material member formed on the insulating base element through a gap, and adjacent thermoelectric conversions. It has the some thermoelectric conversion element provided with the wiring which connects material members alternately in an upper end part and a lower end part.
  • each thermoelectric conversion element is overlapped so that a thermoelectric conversion material member and an adjacent insulating base material element face each other, and two thermoelectric conversion elements adjacent to each other at one end of each thermoelectric conversion element Two thermoelectric conversion elements adjacent to each other at the other end of each thermoelectric conversion element by a combination shifted from the combination connected to the one end connection base material by one.
  • thermoelectric conversion materials It has the other end side connection base material connected mutually, each insulating base material element, one end side connection base material, and the other end side connection base material are united by the same insulating base material, The other end side connection base material is bent.
  • Patent Document 2 mentions BiTe-based and PbTe-based inorganic thermoelectric conversion materials as thermoelectric conversion materials.
  • Patent Document 2 describes a thermoelectric conversion module in which a plurality of insulating substrates on which a plurality of thermoelectric conversion elements made of an inorganic thermoelectric conversion material are formed are overlapped to increase the number of thermoelectric conversion elements connected in series. ing.
  • the conventional thermoelectric module configurations such as Patent Documents 1 and 2 have a problem that the configuration for increasing the number of elements is complicated and the manufacturing cost increases.
  • An object of the present invention is to provide a thermoelectric conversion module that eliminates the problems based on the above-described conventional technology, reduces manufacturing costs, and can be manufactured at low cost.
  • the present invention has a bellows-like insulating substrate in which a first part and a second part having a different direction from the first part are alternately repeated, and has an insulating property. At least one of a P-type thermoelectric conversion element and an N-type thermoelectric conversion element is provided on one surface of the first part of the substrate, and is opposite to the one surface of the second part of the insulating substrate. A P-type thermoelectric conversion element or an N-type thermoelectric conversion element having a polarity different from that of at least one of the P-type thermoelectric conversion element and the N-type thermoelectric conversion element is provided on the other surface.
  • the P-type thermoelectric conversion element has a P-type thermoelectric conversion layer and a pair of connection electrodes electrically connected to the P-type thermoelectric conversion layer.
  • the N-type thermoelectric conversion element is an N-type thermoelectric conversion element.
  • the connection electrode is to provide a thermoelectric conversion module, characterized in that it is electrically connected with the through electrode formed on the insulating substrate.
  • the first part and the second part are symmetric.
  • the first part and the second part are planar, and the insulating substrate has a triangular wave shape when viewed from the side.
  • the first part and the second part are curved, and the insulating substrate is sinusoidal when viewed from the side.
  • the through electrode is preferably provided on the P-type thermoelectric conversion layer side or the N-type thermoelectric conversion layer side with respect to the connecting portion between the first part and the second part.
  • the connection electrode on the side sandwiched between the first part and the second part at the connection part of the first part and the second part is more insulating than the other connection electrode.
  • the length in the extending direction is preferably long.
  • the P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer are preferably composed of an organic thermoelectric conversion material.
  • the P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer preferably contain carbon nanotubes.
  • the insulating substrate is a plastic substrate.
  • the insulating substrate is a polyimide substrate
  • the connection electrode is made of at least one of copper, silver, and solder
  • the through electrode is made of copper or solder.
  • the manufacturing cost can be reduced and the thermoelectric conversion module can be manufactured at low cost.
  • thermoelectric conversion apparatus which has the thermoelectric conversion module of embodiment of this invention.
  • thermoelectric conversion module of embodiment of this invention shows the other example of the thermoelectric conversion apparatus which has the thermoelectric conversion module of embodiment of this invention.
  • It is a side view of the thermoelectric conversion module of the embodiment of the present invention. It is a typical side view for demonstrating the structure of the thermoelectric conversion module of embodiment of this invention. It is a typical top view for explaining the composition of the thermoelectric conversion module of the embodiment of the present invention. It is a typical bottom view for demonstrating the structure of the thermoelectric conversion module of embodiment of this invention. It is a typical top view of a connection electrode of a thermoelectric conversion module of an embodiment of the present invention.
  • thermoelectric conversion module of embodiment of this invention It is a typical bottom view of the connection electrode of the thermoelectric conversion module of the embodiment of the present invention. It is a typical side view for demonstrating the structure of the thermoelectric conversion module of embodiment of this invention. It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order.
  • thermoelectric conversion module of embodiment of this invention It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. It is a typical side view which shows the modification of the structure of the thermoelectric conversion module of embodiment of this invention. It is a typical top view which shows the other example of the thermoelectric conversion module of embodiment of this invention. It is a typical bottom view which shows the other example of the thermoelectric conversion module of embodiment of this invention. It is a typical perspective view which shows the thermoelectric conversion module for a comparison. It is a typical side view which shows the thermoelectric conversion module for a comparison. It is a typical top view for demonstrating the thermoelectric conversion module for a comparison. It is a typical side view for demonstrating the thermoelectric conversion module for a comparison.
  • thermoelectric conversion module of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
  • “to” indicating a numerical range includes numerical values written on both sides.
  • is a numerical value ⁇ to a numerical value ⁇
  • the range of ⁇ is a range including the numerical value ⁇ and the numerical value ⁇ , and expressed by mathematical symbols, ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the angle unless otherwise specified, it means that the difference from the exact angle is within a range of less than 5 °.
  • the difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
  • “same” includes an error range generally allowed in the technical field.
  • “Symmetry”, “line symmetry”, “any” or “entire surface” includes an error range generally allowed in the technical field in addition to 100%, for example, 99% or more, The case of 95% or more, or 90% or more is included.
  • FIG. 1 is a schematic diagram showing an example of a thermoelectric conversion device having a thermoelectric conversion module according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing another example of a thermoelectric conversion device having a thermoelectric conversion module according to an embodiment of the present invention.
  • FIG. A thermoelectric conversion device 10 shown in FIG. 1 generates power by a thermoelectric conversion module 12 using a temperature difference.
  • a bellows-like thermoelectric conversion module 12 is provided on a base 14, and a heat conductive sheet 15 is provided between the thermoelectric conversion module 12 and the base 14.
  • the base 14 is for mounting the thermoelectric conversion module 12 thereon.
  • the base 14 is made of a material having a high thermal conductivity such as a metal or an alloy.
  • the base 14 is set to a relatively high temperature to cause a temperature difference in the thermoelectric conversion module 12, and the thermoelectric conversion module 12 generates power to obtain a power generation output.
  • the heat conductive sheet 15 is for promoting heat conduction from the base 14 to the thermoelectric conversion module 12.
  • a specific example of the heat conductive sheet 15 will be described later.
  • the thermoelectric conversion module 12 was arrange
  • the thermoelectric conversion module 12 is disposed on the hot plate 18 via the heat conductive sheet 15.
  • the frame 16 is made of, for example, aluminum or an aluminum alloy.
  • thermoelectric conversion module 12 The contact surface of the frame 16 with the thermoelectric conversion module 12 is electrically insulated, for example, by an insulation process such as an anodizing process.
  • the thermoelectric conversion module 12 can be used for power generation in an open state as shown in FIG. 1 or a folded state as shown in FIG.
  • FIG. 3 is a side view of the thermoelectric conversion module according to the embodiment of the present invention
  • FIG. 4 is a schematic side view for explaining the configuration of the thermoelectric conversion module according to the embodiment of the present invention
  • FIG. FIG. 6 is a schematic top view for explaining the configuration of the thermoelectric conversion module of the embodiment
  • FIG. 6 is a schematic bottom view for explaining the configuration of the thermoelectric conversion module of the embodiment of the present invention.
  • 4, 5, and 6 show the thermoelectric conversion module 12 in a state before the triangular wave shape is seen from the side.
  • the thermoelectric conversion module 12 shown in FIG. 3 includes an insulating substrate 22, a P-type thermoelectric conversion element 24, and an N-type thermoelectric conversion element 26, and has, for example, a bellows structure.
  • the insulating substrate 22 has a bellows shape in which the first portion 40 and the second portion 42 having a different direction from the first portion 40 are alternately repeated.
  • the first part 40 and the second part 42 are connected by a connecting part 44 and are symmetrical with respect to a straight line C passing through the connecting part 44.
  • the heights of the connecting portions 44 and the adjacent connecting portions 44 are alternately changed in a direction perpendicular to the horizontal line G.
  • the straight line C is a line perpendicular to the horizontal line G.
  • the first portion 40 and the second portion 42 of the insulating substrate 22 are planar and inclined at a preset angle, and the directions are different from each other, and the insulating substrate 22 has a triangular wave shape in a side view.
  • the thermoelectric conversion module 12 has a bellows structure, specifically reflects the shape of the insulating substrate 22 and has a triangular wave shape in a side view.
  • thermoelectric conversion module 12 shown in FIG. 3, mountain folding and valley folding are alternately repeated at the connecting portion 44 of the first portion 40 and the second portion 42.
  • the mountain fold portion 45 of the thermoelectric conversion module 12 is also referred to as a mountain portion 45
  • the valley fold portion 47 of the thermoelectric conversion module 12 is also referred to as a valley portion 47.
  • mountain fold is to make it convex with respect to the horizon G in a side view.
  • the valley fold is to make the horizontal line G opposite to the mountain fold, and to make it concave with respect to the horizontal line G in a side view.
  • the first part 40 and the second part 42 are not particularly limited as long as they have different orientations.
  • the first part 40 and the second part 42 may be symmetric or line symmetric. May be.
  • the first portion 40 and the second portion 42 may have the same length or different lengths, and may have the same or different angles.
  • thermoelectric conversion module 12 As shown in FIG. 3, a P-type thermoelectric conversion element 24 is provided on the surface 22 a of the first portion 40 inclined in the same direction of the insulating substrate 22. 4 and FIG. 5, the P-type thermoelectric conversion element 24 is spaced on the surface 22a of the first portion 40 of the insulating substrate 22 in the extending direction D before the triangular wave shape in the side view is shown. Is provided. As shown in FIG. 3, an N-type having a polarity different from that of the surface 22 a of the first portion 40 is formed on the back surface 22 b of the second portion 42 of the insulating substrate 22 inclined in the same direction on the side opposite to the surface 22 a.
  • the thermoelectric conversion element 26 is provided. 4 and FIG.
  • the N-type thermoelectric conversion element 26 is spaced apart in the extending direction D on the back surface 22b of the second portion 42 of the insulating substrate 22 in the state before the triangular wave shape when viewed from the side. Is provided.
  • the surface 22a of the insulating substrate 22 corresponds to one surface
  • the back surface 22b of the insulating substrate 22 corresponds to the other surface.
  • the P-type thermoelectric conversion element 24 includes a P-type thermoelectric conversion layer 30 and a pair of connection electrodes 34. Connection electrodes 34 are electrically connected to both sides of the P-type thermoelectric conversion layer 30.
  • the N-type thermoelectric conversion element 26 includes an N-type thermoelectric conversion layer 32 and a pair of connection electrodes 34. Connection electrodes 34 are electrically connected to both sides of the N-type thermoelectric conversion layer 32.
  • the connection electrode 34 of the P-type thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 adjacent to the connection electrode 34 are provided so as to partially overlap in the extending direction D of the insulating substrate 22.
  • the connection electrode 34 of the P-type thermoelectric conversion element 24 and the connection electrode 34 of the N-type thermoelectric conversion element 26 are electrically connected by a through electrode 28 that penetrates the insulating substrate 22.
  • the through electrode 28 is preferably provided closer to the P-type thermoelectric conversion layer 30 or the N-type thermoelectric conversion layer 32 than the connecting portion 44 of the first portion 40 and the second portion 42. Accordingly, the through electrode 28 is not disposed in the connecting portion 44, the bending of the through electrode 28 is avoided, and the stability of the electrical connection between the connection electrodes 34 can be ensured.
  • the through electrode 28 is formed in a through hole (not shown).
  • the number of the through electrodes 28 is not particularly limited as long as electrical connection between the connection electrodes 34 can be ensured, and at least one is sufficient. In order to ensure the stability of the electrical connection between the connection electrodes 34, a plurality of through electrodes 28 may be provided.
  • connection electrode 34 As shown in FIG. 7 to FIG. 9, of the pair of connection electrodes 34, the first portion 40 and the second portion 42 are sandwiched between the first portion 40 and the second portion 42.
  • the connection electrode 34 on the side is longer in the extending direction D of the insulating substrate 22 than the other connection electrodes 34. Thereby, the size of the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 can be matched.
  • the connection electrode 34 is not formed on the second portion 42 side from the peak of the peak portion 45, so that when the bellows is folded, the connection electrodes 34 in the peak portion 45 are connected to each other. Short circuit can be prevented.
  • the thermoelectric conversion module 12 is formed by bending along the folding line B of the insulating substrate 22 shown in FIGS.
  • the folding line B is a line passing through the connecting part 44 and corresponds to a straight line C passing through the connecting part 44.
  • the through electrode 28 is provided so as to avoid the connecting portion 44 as described above.
  • the through electrode 28 is not bent and the occurrence of poor connection or the like is suppressed, and the electrical connection between the connection electrodes 34 is suppressed. The stability of the connection is ensured.
  • thermoelectric conversion module 12 can be fixed in a state of being folded by a frame 16 and disposed on the hot plate 18 via the heat conductive sheet 15 to form the thermoelectric conversion device 10 a.
  • thermoelectric conversion module 12 by bringing the thermoelectric conversion module 12 into contact with the hot plate 18, that is, the heat source, a temperature difference is formed between the peak portion 45 and the valley portion 47 of the thermoelectric conversion module 12, and power can be generated.
  • P-type thermoelectric conversion elements 24 and N-type thermoelectric conversion elements 26 having different polarities are provided on different surfaces of the insulating substrate 22.
  • thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 do not come into contact with each other even if the first portion 40 and the second portion 42 are brought close to each other in the insulating substrate 22 by folding. Will not occur.
  • thermoelectric conversion elements do not face each other in the valley portion 47, an unnecessary short circuit between the thermoelectric conversion elements can be prevented.
  • a flexible substrate such as a plastic substrate for the insulating substrate 22
  • the thermoelectric conversion module 12 can be folded from the state shown in FIG. 1 as shown in FIG.
  • the number of P-type thermoelectric conversion elements 24 and N-type thermoelectric conversion elements 26 per unit length can be increased, and high integration can be achieved.
  • the flexibility means that the insulating substrate 22 is not destroyed when the thermoelectric conversion module 12 is folded.
  • thermoelectric conversion elements 24 and N-type thermoelectric conversion elements 26 are alternately provided on the surface 22 a of the insulating substrate 22.
  • the thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 that face each other when bent excessively. Will contact and short circuit.
  • an insulating film is introduced into the trough portion 47 to prevent a short circuit between the thermoelectric conversion elements.
  • thermoelectric conversion element needs to be insulated.
  • the introduction of the insulating film increases the cost of the thermoelectric conversion module, causes a decrease in power generation due to a decrease in temperature difference between the peak portion 45 and the valley portion 47, and further leads to an increase in the area of the thermoelectric conversion module.
  • the manufacturing cost can be reduced and the thermoelectric conversion module 12 can be manufactured at a low cost.
  • the thermoelectric conversion module 12 having a small installation area and a high power generation amount can be realized.
  • thermoelectric conversion module 12 it is preferable that all of the connecting portions 44 on one side coincide with the horizontal line G as shown in FIG. 3. Thereby, when the one side connection part 44 side is heated, the thermoelectric conversion module 12 can receive heat uniformly. Further, in the thermoelectric conversion module 12, the first part 40 and the second part 42 may not be uniform in size. For example, in the thermoelectric conversion module 12, you may make it the structure which made the center part protrude rather than others by lengthening the 1st part 40 and the 2nd part 42 of a center part. In this case, since heat dissipation improves, a temperature difference can be obtained more and power generation efficiency can be improved, it is preferable.
  • connection electrode 34 is demonstrated.
  • 10 to 15 are schematic views showing a method of manufacturing the connection electrode of the thermoelectric conversion module according to the embodiment of the present invention in the order of steps.
  • a copper substrate 50 having a copper layer 52 formed on both surfaces of the insulating substrate 22 is prepared.
  • one hole 54 reaching the insulating substrate 22 is formed in one copper layer 52 of the copper substrate 50, and, for example, a photolithography method and etching are performed at the formation position of the through hole 27. Form in combination.
  • FIG. 10 to 15 are schematic views showing a method of manufacturing the connection electrode of the thermoelectric conversion module according to the embodiment of the present invention in the order of steps.
  • a copper substrate 50 having a copper layer 52 formed on both surfaces of the insulating substrate 22 is prepared.
  • one hole 54 reaching the insulating substrate 22 is formed in one copper layer 52 of the copper substrate 50, and, for example, a photolithography method and etching are performed at the formation position of the through hole 27. Form in combination.
  • the insulating substrate 22 facing the hole 54 is etched, for example, to form a through hole 27 that penetrates the insulating substrate 22 and reaches the other copper layer 52.
  • copper through-hole plating is performed on the through-hole 27 to form the through electrode 28.
  • Through-hole plating is, for example, electroless plating and / or electrolytic plating.
  • connection electrodes 34 is formed on the copper layer 52 in which the above-described hole 54 is formed by, for example, a combination of photolithography and etching to form a P-type thermoelectric device.
  • a formation region 23 in which the conversion layer 30 is formed is obtained.
  • a pair of spaced connection electrodes 34 is patterned on the copper layer 52 on which the connection electrodes 34 are not formed, for example, by combining photolithography and etching.
  • a formation region 25 in which the thermoelectric conversion layer 32 is formed is obtained.
  • the connection electrodes 34 including the connection electrodes 34 electrically connected by the through electrodes 28 are formed on both surfaces of the insulating substrate 22.
  • a metal mask is used in the formation region 23 of the P-type thermoelectric conversion layer 30 on the surface 22a of the insulating substrate 22 (see FIGS. 7 to 9) on which the connection electrodes 34 are formed as described above.
  • the P-type thermoelectric conversion layer 30 is formed by the conventional printing method. Thereby, as shown in FIG. 5, the P-type thermoelectric conversion element 24 having the connection electrode 34 and the P-type thermoelectric conversion layer 30 is formed.
  • the N-type thermoelectric conversion layer 32 is formed in the formation region 25 of the N-type thermoelectric conversion layer 32 on the back surface 22b of the insulating substrate 22 by, for example, a printing method using a metal mask. As a result, the N-type thermoelectric conversion element 26 having the connection electrode 34 and the N-type thermoelectric conversion layer 32 is formed as shown in FIG.
  • the insulating substrate 22 is arranged such that the P-type thermoelectric conversion element 24 faces outward and the N-type thermoelectric conversion element 26 faces inward.
  • the mountain fold and the valley fold are repeatedly performed to form the thermoelectric conversion module 12 shown in FIG.
  • the mountain fold and the valley fold of the insulating substrate 22 are formed by, for example, forming the insulating substrate 22 with a pair of rollers on the surface having a mountain-shaped fold, a valley fold, and a triangular projection in a size corresponding to the pitch. It is executed by pinching.
  • thermoelectric conversion module 12 has a bellows structure and has a triangular wave shape when viewed from the side, the connecting portion between the first portion 40 and the second portion 42 is bent, but is not limited thereto.
  • FIG. 16 is a schematic side view showing a modification of the configuration of the thermoelectric conversion module according to the embodiment of the present invention.
  • the connecting portion 44 may be curved without being bent.
  • stress concentration at the connecting portion 44 when the insulating substrate 22 is folded can be avoided.
  • the first part 40 and the second part 42 may also be curved.
  • the thermoelectric conversion module 12a is sinusoidal when viewed from the side.
  • the thermoelectric conversion module 12a having a sinusoidal shape in a side view can obtain the same effect as the thermoelectric conversion module 12 described above.
  • thermoelectric conversion modules 12 and 12 a a P-type thermoelectric conversion element 24 is provided on the surface 22 a of the first portion 40 of the insulating substrate 22, and an N-type thermoelectric device is provided on the back surface 22 b of the second portion 42 of the insulating substrate 22.
  • the conversion element 26 is provided, the present invention is not limited to this.
  • an N-type thermoelectric conversion element 26 may be provided on the front surface 22 a of the first part 40
  • a P-type thermoelectric conversion element 24 may be provided on the back surface 22 b of the second part 42.
  • thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 are provided on the back surface 22b of the first part 40 of the insulating substrate 22, and the P-type thermoelectric conversion element 26 is provided on the surface 22a of the second part.
  • thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 at least a P-type thermoelectric conversion element 24 or an N-type thermoelectric conversion element 26 having a polarity different from that of the back surface 22b of the first portion 40 is provided. But you can. In this case, the back surface 22b of the first portion 40 is one surface, and the front surface 22a of the second portion 42 is the other surface.
  • FIG. 17 is a schematic top view illustrating another example of the thermoelectric conversion module according to the embodiment of the present invention
  • FIG. 18 is a schematic bottom view illustrating another example of the thermoelectric conversion module according to the embodiment of the present invention. 17 and 18, the same components as those of the thermoelectric conversion module 12 shown in FIGS. 1 and 3 to 6 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • thermoelectric conversion module 12 b Compared with the thermoelectric conversion module 12, the thermoelectric conversion module 12 b has a P-type thermoelectric conversion element 24 and an N-type thermoelectric conversion element 26 electrically in series on the surface 22 a of the first portion 40 of the insulating substrate 22.
  • the P-type thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 are connected in series by the connection electrode 34 to the back surface 22b of the insulating substrate 22 of the second part. Since it is the same structure as the thermoelectric conversion module 12 except a point, the detailed description is abbreviate
  • thermoelectric conversion module 12b the P-type thermoelectric conversion element 24, the N-type thermoelectric conversion element 26, the P-type thermoelectric conversion element 24, and the N-type thermoelectric conversion element include the first part 40 and the second part 42. 26, a P-type thermoelectric conversion element 24 and an N-type thermoelectric conversion element 26 are provided so as to be repeatedly connected in series by a connection electrode 34. As in the thermoelectric conversion module 12b, a plurality of P-type thermoelectric conversion elements 24 and a plurality of N-type thermoelectric conversion elements 26 are connected in series to provide a series compared to the thermoelectric conversion module 12. The number of connected thermoelectric conversion elements increases, and a high power generation voltage can be obtained. Also in the thermoelectric conversion module 12b, the connecting portion 44 may be curved as in the thermoelectric conversion module 12a shown in FIG. 16, and further, the first portion 40 and the second portion 42 may be curved. Good.
  • thermoelectric conversion module 12 the thermoelectric conversion module 12a, and the thermoelectric conversion module 12b have the same basic configuration, and thus the thermoelectric conversion module 12 will be described as a representative.
  • the insulating substrate 22 is formed with a P-type thermoelectric conversion element 24 and an N-type thermoelectric conversion element 26. It functions as a support for the P-type thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26. Since a voltage is generated in the thermoelectric conversion module 12, the insulating substrate 22 is required to be electrically insulating, and the insulating substrate 22 is an electrically insulating substrate. The electrical insulation required for the insulating substrate 22 is that a short circuit or the like does not occur due to the voltage generated in the thermoelectric conversion module 12. The insulating substrate 22 is appropriately selected according to the voltage generated in the thermoelectric conversion module 12.
  • the insulating substrate 22 is, for example, a plastic substrate.
  • a plastic film can be used for the plastic substrate.
  • Specific examples of usable plastic films include polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6-phthalenedicarboxy.
  • Polyester resin such as rate, polyimide, polycarbonate, polypropylene, polyethersulfone, cycloolefin polymer, polyetheretherketone (PEEK), resin such as triacetylcellulose (TAC), glass epoxy, liquid crystalline polyester film, or the like, or A sheet-like object or a plate-like object is exemplified.
  • a film made of polyimide, polyethylene terephthalate, polyethylene naphthalate, or the like is suitably used for the insulating substrate 22 in terms of thermal conductivity, heat resistance, solvent resistance, availability, and economy.
  • thermoelectric conversion material constituting the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 examples include nickel or a nickel alloy.
  • nickel alloys that generate electricity by generating a temperature difference can be used. Specific examples include nickel alloys mixed with one component or two or more components such as vanadium, chromium, silicon, aluminum, titanium, molybdenum, manganese, zinc, tin, copper, cobalt, iron, magnesium, and zirconium.
  • the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 have a nickel content of 90 atomic% or more. It is preferable that the nickel content is 95 atomic% or more, and it is particularly preferable that the nickel content is made of nickel.
  • the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 made of nickel include those having inevitable impurities.
  • thermoelectric conversion material of the P-type thermoelectric conversion layer 30 is typically chromel mainly composed of Ni and Cr, and the thermoelectric material of the N-type thermoelectric conversion layer 32 is mainly composed of Cu and Ni.
  • the constantan is typical.
  • nickel or a nickel alloy is used as the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 and nickel or a nickel alloy is used as an electrode, the P-type thermoelectric conversion layer 30 and The N-type thermoelectric conversion layer 32 and the connection electrode 34 may be integrally formed.
  • thermoelectric materials for the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 include the following materials.
  • the material composition is shown in parentheses.
  • thermoelectric conversion material used for the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 is a known thermoelectric conversion material containing an organic material as a pasteable material that can be formed by coating or printing. Various configurations using can be used.
  • a thermoelectric conversion material from which such a P-type thermoelectric conversion layer 30 and an N-type thermoelectric conversion layer 32 are obtained specifically, an organic thermoelectric conversion material such as a conductive polymer or a conductive nanocarbon material is used. Illustrated.
  • the conductive polymer include a polymer compound having a conjugated molecular structure (conjugated polymer).
  • ⁇ -conjugated polymers such as polyaniline, polyphenylene vinylene, polypyrrole, polythiophene, polyfluorene, acetylene, and polyphenylene.
  • polydioxythiophene can be preferably used.
  • Specific examples of the conductive nanocarbon material include carbon nanotubes (hereinafter also referred to as CNT), carbon nanofibers, graphite, graphene, and carbon nanoparticles. These may be used alone or in combination of two or more. Among these, CNT is preferably used for the reason that the thermoelectric characteristics are better.
  • CNT is a single-layer CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape, two-layer CNT in which two graphene sheets are concentrically wound, and a plurality of graphene sheets in a concentric circle
  • multi-walled CNTs wound in a shape In the present invention, single-walled CNTs, double-walled CNTs, and multilayered CNTs may be used alone, or two or more kinds may be used in combination. In particular, it is preferable to use single-walled CNT and double-walled CNT having excellent properties in terms of conductivity and semiconductor properties, and more preferably single-walled CNT.
  • Single-walled CNTs may be semiconducting or metallic, and both may be used in combination. When both semiconducting CNT and metallic CNT are used, the content ratio of both in the composition can be appropriately adjusted according to the use of the composition.
  • the CNT may contain a metal or the like, or may contain a molecule such as fullerene.
  • the average length of CNT is not particularly limited, and can be appropriately selected according to the use of the composition. Specifically, although it depends on the distance between the electrodes, the average length of the CNT is preferably 0.01 to 2000 ⁇ m, more preferably 0.1 to 1000 ⁇ m from the viewpoints of manufacturability, film formability, conductivity, and the like. 1 to 1000 ⁇ m is particularly preferable.
  • the diameter of the CNT is not particularly limited, but is preferably 0.4 to 100 nm, more preferably 50 nm or less, and particularly preferably 15 nm or less from the viewpoint of durability, transparency, film formability, conductivity, and the like.
  • CNTs contained in the obtained conductive composition may contain defective CNTs. Such CNT defects are preferably reduced in order to reduce the conductivity of the composition.
  • the amount of CNT defects in the composition can be estimated by the ratio G / D of the G-band and D-band of the Raman spectrum. It can be estimated that the higher the G / D ratio, the less the amount of defects, the CNT material.
  • the G / D ratio of the CNT is preferably 10 or more, and more preferably 30 or more.
  • CNTs modified or treated with CNTs can be used. Modification or treatment methods include a method of encapsulating a ferrocene derivative or nitrogen-substituted fullerene (azafullerene), a method of doping an alkali metal (such as potassium) or a metal element (such as indium) into the CNT by an ion doping method, CNT in a vacuum The method etc. which heat this are illustrated.
  • an alkali metal such as potassium
  • a metal element such as indium
  • nanocarbon such as carbon nanohorn, carbon nanocoil, carbon nanobead, graphite, graphene, and amorphous carbon may be included.
  • CNT is used for the P-type thermoelectric conversion layer or the N-type thermoelectric conversion layer, it is preferable to include a P-type dopant or an N-type dopant.
  • P-type dopant include halogens (iodine, bromine, etc.), Lewis acids (PF 5 , AsF 5, etc.), proton acids (hydrochloric acid, sulfuric acid, etc.), transition metal halides (FeCl 3 , SnCl 4 etc.), metal oxides (Molybdenum oxide, vanadium oxide, etc.), organic electron accepting substances and the like are exemplified.
  • organic electron accepting substance examples include 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-dimethyl-7,7,8,8- Tetracyanoquinodimethane such as tetracyanoquinodimethane, 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (TCNQ) derivatives, 2,3-dichloro-5,6-dicyano-p-benzoquinone, benzoquinone derivatives such as tetrafluoro-1,4-benzoquinone, etc., 5,8H-5,8-bis (dicyanomethylene) quinoxaline, Preferred examples include dipyrazino [2,3-f: 2 ′, 3′-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile.
  • organic electron-accepting substances such as TCNQ (tetracyanoquinodimethane) derivatives or benzoquinone derivatives are preferably exemplified in terms of material stability, compatibility with CNTs, and the like.
  • TCNQ tetracyanoquinodimethane
  • benzoquinone derivatives are preferably exemplified in terms of material stability, compatibility with CNTs, and the like.
  • Any of the P-type dopant and the N-type dopant may be used alone or in combination of two or more.
  • N-type dopant include (1) alkali metals such as sodium and potassium, (2) phosphines such as triphenylphosphine and ethylenebis (diphenylphosphine), and (3) polymers such as polyvinylpyrrolidone and polyethyleneimine. These materials can be used.
  • polyethylene glycol type higher alcohol ethylene oxide adducts such as phenol or naphthol
  • fatty acid ethylene oxide adducts polyhydric alcohol fatty acid ester ethylene oxide adducts, higher alkylamine ethylene oxide adducts, fatty acids Amide ethylene oxide adduct, fat and oil ethylene oxide adduct, polypropylene glycol ethylene oxide adduct, dimethylsiloxane-ethylene oxide block copolymer, dimethylsiloxane- (propylene oxide-ethylene oxide) block copolymer, etc.
  • thermoelectric conversion element a thermoelectric conversion layer obtained by dispersing the above-described thermoelectric conversion material in a resin material (binder) is also preferably used.
  • distributing a conductive nano carbon material to a resin material is illustrated more suitably.
  • a thermoelectric conversion layer in which CNT is dispersed in a resin material is particularly preferably exemplified in that high conductivity is obtained.
  • Various known non-conductive resin materials polymers
  • examples of the vinyl compound include polystyrene, polyvinyl naphthalene, polyvinyl acetate, polyvinyl phenol, polyvinyl butyral, and the like.
  • examples of the (meth) acrylate compound include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polyphenoxy (poly) ethylene glycol (meth) acrylate, polybenzyl (meth) acrylate and the like.
  • examples of the carbonate compound include bisphenol Z-type polycarbonate and bisphenol C-type polycarbonate. As the ester compound, amorphous polyester is exemplified.
  • Preferred examples include polystyrene, polyvinyl butyral, (meth) acrylate compounds, carbonate compounds, and ester compounds, and more preferred are polyvinyl butyral, polyphenoxy (poly) ethylene glycol (meth) acrylate, polybenzyl (meth) acrylate, and amorphous.
  • An example is a reactive polyester.
  • the quantity ratio of the resin material to the thermoelectric conversion material is the material used, the required thermoelectric conversion efficiency, the viscosity or solid content concentration of the solution affecting printing, etc. It may be set appropriately according to the above.
  • thermoelectric conversion layer in the thermoelectric conversion element a thermoelectric conversion layer mainly composed of CNTs and a surfactant is also preferably used.
  • the thermoelectric conversion layer By constituting the thermoelectric conversion layer with CNT and a surfactant, the thermoelectric conversion layer can be formed with a coating composition to which a surfactant is added. Therefore, the thermoelectric conversion layer can be formed with a coating composition in which CNTs are reasonably dispersed. As a result, good thermoelectric conversion performance can be obtained by the thermoelectric conversion layer containing many CNTs that are long and have few defects.
  • the surfactant a known surfactant can be used as long as it has a function of dispersing CNTs. More specifically, various surfactants can be used as long as they have a group that dissolves in water, a polar solvent, or a mixture of water and a polar solvent and adsorbs CNTs. Accordingly, the surfactant may be ionic or nonionic. The ionic surfactant may be any of cationic, anionic and amphoteric.
  • anionic surfactant examples include alkylbenzene sulfonates such as dodecylbenzene sulfonic acid, aromatic sulfonic acid surfactants such as dodecyl phenyl ether sulfonate, monosoap anionic surfactants, ether sulfates Surfactants, phosphate surfactants and carboxylic acid surfactants such as sodium deoxycholate or sodium cholate, carboxymethylcellulose and salts thereof (sodium salt, ammonium salt, etc.), ammonium polystyrene sulfonate, Examples thereof include water-soluble polymers such as polystyrene sulfonate sodium salt.
  • Examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts.
  • amphoteric surfactants include alkyl betaine surfactants and amine oxide surfactants.
  • examples of nonionic surfactants include sugar ester surfactants such as sorbitan fatty acid esters, fatty acid ester surfactants such as polyoxyethylene resin acid esters, ether surfactants such as polyoxyethylene alkyl ether, and the like. Is exemplified. Among these, ionic surfactants are preferably used, and among them, cholate or deoxycholate is preferably used.
  • the surfactant / CNT mass ratio is preferably 5 or less, and more preferably 3 or less. Setting the mass ratio of surfactant / CNT to 5 or less is preferable in that higher thermoelectric conversion performance can be obtained.
  • the thermoelectric conversion layer made of an organic material, optionally, SiO 2, TiO 2, Al 2 O 3, may have an inorganic material such as ZrO 2.
  • a thermoelectric conversion layer contains an inorganic material it is preferable that the content is 20 mass% or less, and it is more preferable that it is 10 mass% or less.
  • the thickness of the thermoelectric conversion layer, the size in the surface direction, the area ratio in the surface direction with respect to the insulating substrate, etc. are appropriately set according to the forming material of the thermoelectric conversion layer, the size of the thermoelectric conversion element, etc. do it.
  • the prepared coating composition to be the thermoelectric conversion layer is patterned and applied according to the thermoelectric conversion layer to be formed.
  • the coating composition may be applied by a known method such as a method using a mask or a printing method. After applying the coating composition, the coating composition is dried by a method according to the resin material to form a thermoelectric conversion layer. In addition, after drying a coating composition as needed, you may cure the coating composition (resin material) by ultraviolet irradiation etc. Further, the thermoelectric conversion layer may be patterned by etching or the like after applying the prepared coating composition to be the thermoelectric conversion layer on the entire surface of the insulating substrate and drying it. In order to form the thermoelectric conversion layers on both surfaces of the insulating substrate, after the printing on one side by any of the above-described methods, the film may be similarly formed on the back surface.
  • thermoelectric conversion modules 12 and 12a after patterning the P-type thermoelectric conversion layer 30 on one surface of the insulating substrate 22, the N-type thermoelectric conversion layer 32 is pattern-formed on the other surface of the insulating substrate 22. To do. The pattern formation order of the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 may be reversed. In the case of another thermoelectric conversion module 12b, the P-type thermoelectric conversion layer 30 is patterned on the surface 22a of the first portion 40 of the insulating substrate 22, and then the N-type thermoelectric conversion layer 32 is patterned.
  • thermoelectric conversion layer 30 is patterned on the back surface 22b of the second portion 42 of the insulating substrate 22, and then the N-type thermoelectric conversion layer 32 is patterned.
  • the pattern formation order of the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 may be reversed.
  • the thermoelectric conversion modules 12 and 12a can halve the pattern formation process of the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 and reduce the manufacturing cost compared to the thermoelectric conversion module 12b. be able to.
  • thermoelectric conversion layer when forming a thermoelectric conversion layer with the coating composition formed by adding CNT and a surfactant to water and dispersing (dissolving) the thermoelectric conversion layer after forming the thermoelectric conversion layer with the coating composition. It is preferable to form the thermoelectric conversion layer by immersing the conversion layer in a solvent that dissolves the surfactant, or by washing the thermoelectric conversion layer with a solvent that dissolves the surfactant and then drying. Thereby, the surfactant is removed from the thermoelectric conversion layer, and a thermoelectric conversion layer in which the surfactant / CNT mass ratio is extremely small, more preferably no surfactant is present, can be formed.
  • the thermoelectric conversion layer is preferably patterned by printing.
  • the printing method various known printing methods such as screen printing and metal mask printing can be used.
  • various known printing methods such as screen printing and metal mask printing can be used.
  • metal mask printing it is more preferable to use metal mask printing.
  • the printing conditions may be appropriately set depending on the physical properties (solid content concentration, viscosity, viscoelastic physical properties) of the coating composition to be used, the opening size of the printing plate, the number of openings, the opening shape, the printing area, and the like.
  • the attack angle of the squeegee is preferably 50 ° or less, more preferably 40 ° or less, and particularly preferably 30 ° or less.
  • the squeegee direction is preferably the same direction as the serial connection direction of the thermoelectric conversion elements.
  • the clearance is preferably 0.1 to 3.0 mm, more preferably 0.5 to 2.0 mm.
  • the printing pressure can be 0.1 to 0.5 MPa, and the squeegee push-in amount can be 0.1 to 3 mm.
  • connection electrodes 34 are formed at both ends of the thermoelectric conversion material layer pattern in the temperature difference direction, and electrically connect the plurality of thermoelectric conversion material patterns.
  • the connection electrode 34 is not particularly limited as long as it is a conductive material, and any material may be used.
  • the material constituting the connection electrode 34 is preferably a metal material such as Al, Cu, Ag, Au, Pt, Cr, Ni, or solder.
  • the connection electrode 34 is preferably made of copper from the viewpoint of conductivity or the like. Further, the connection electrode 34 may be made of a copper alloy.
  • the through electrode 28 is formed by forming the through hole 27 as described above and filling the through hole 27 with a conductive material.
  • the through electrode 28 is for electrically connecting the connection electrodes 34 on both sides of the insulating substrate 22.
  • the through electrode 28 is preferably made of copper from the viewpoint of conductivity or the like. Like the connection electrode 34, the through electrode 28 is made of copper, so that resistance loss and the like can be suppressed.
  • the through electrode 28 may be made of a copper alloy.
  • the through hole 27 can be formed by NC (numerically controlled) drilling, laser processing, chemical etching, plasma etching, or the like. For filling the through hole 27 with a conductive material, Cu plating or the like is used.
  • thermoelectric conversion device 10 shown in FIG. 1 and the thermoelectric conversion device 10a shown in FIG. 2, but are not limited thereto.
  • the end of the insulating substrate on which the thermoelectric conversion element is formed is brought into contact with a frame made of a known high thermal conductivity material such as stainless steel, copper, aluminum, aluminum alloy, etc., and the frame is brought into contact with the high temperature portion.
  • a heat flow is formed from the end portion in contact with the high temperature portion toward the opposite end portion, and power generation can be performed.
  • thermoelectric conversion module is bonded to a heat source to generate power, a heat conductive sheet, a heat conductive adhesive sheet, or a heat conductive adhesive may be used.
  • the heat conductive sheet, the heat conductive adhesive sheet, and the heat conductive adhesive used by being attached to the heating side or the cooling side of the thermoelectric conversion module are not particularly limited. Therefore, a commercially available heat conductive adhesive sheet or heat conductive adhesive can be used.
  • a commercially available heat conductive adhesive sheet or heat conductive adhesive can be used.
  • the heat conductive adhesive sheet for example, TC-50TXS2 manufactured by Shin-Etsu Silicone Co., Ltd., Hypersoft heat dissipation material 5580H manufactured by Sumitomo 3M Co., Ltd., BFG20A manufactured by Denki Kagaku Kogyo Co., Ltd., TR5912F manufactured by Nitto Denko Corporation and the like can be used.
  • the heat conductive adhesive sheet which consists of silicone type adhesives from a heat resistant viewpoint is preferable.
  • thermally conductive adhesive examples include Scotch Weld EW 2070 manufactured by 3M, TA-01 manufactured by Inex, TCA-4105, TCA-4210, HY-910 manufactured by Cima Electronics, and SST2 manufactured by Satsuma Research Institute. -RSMZ, SST2-RSCSZ, R3CSZ, R3MZ, etc. can be used.
  • the adhesion with the heat source is improved and the surface temperature on the heating side of the thermoelectric conversion module is increased, the cooling efficiency is improved and the cooling side of the thermoelectric conversion module is improved. Due to the effect that the surface temperature can be lowered, the power generation amount can be increased.
  • seat which consists of well-known materials, such as stainless steel, copper, aluminum, aluminum alloy, on the surface of the cooling side of a thermoelectric conversion module.
  • the radiation fin or the like the low temperature side of the thermoelectric conversion module can be more suitably cooled, and the temperature difference between the heat source side and the cooling side becomes large, which is preferable in terms of further improving thermoelectric efficiency.
  • heat radiating fins known fins such as T-Wing manufactured by Taiyo Wire Mesh Co., Ltd., FLEXCOOL manufactured by the Business Creation Laboratory, corrugated fins, offset fins, waving fins, slit fins, folding fins, and the like can be used. .
  • a folding fin having a fin height it is preferable to use a folding fin having a fin height.
  • the fin height of the heat dissipating fin is preferably 10 to 56 mm
  • the fin pitch is 2 to 10 mm
  • the plate thickness is preferably 0.1 to 0.5 mm.
  • the heat dissipating characteristics are high, the thermoelectric conversion module can be cooled, and the power generation amount is high. In this respect, it is more preferable that the fin height is 25 mm or more.
  • thermoelectric conversion module for the thermoelectric conversion apparatus using a temperature difference
  • it is not limited to this.
  • it can also be used as a cooling device that cools by energization.
  • thermoelectric conversion module will be described more specifically.
  • thermoelectric conversion layer a coating composition to be a thermoelectric conversion layer is prepared.
  • the Seebeck coefficient of the P-type thermoelectric conversion material is 50 ⁇ V / K as a result of evaluation by ZEM-3 manufactured by Advance Riko Co., Ltd.
  • Preparation of coating composition to be an N-type thermoelectric conversion layer As single-walled CNT, EC (manufactured by Meijo Nanocarbon Co., Ltd., average length of 1 ⁇ m or more of CNT) and Emulgen 350 (manufactured by Kao Co., Ltd.) so that the mass ratio is 25/75 in the ratio of CNT / Emulgen 250, Adjust to 20 ml of water. This solution is mixed for 7 minutes using a mechanical homogenizer to obtain a premix. Disperse the obtained pre-mixture using a high-speed swirling thin film dispersion method in a constant temperature layer at 10 ° C.
  • thermoelectric conversion layer a coating composition to be a thermoelectric conversion layer is prepared.
  • the Seebeck coefficient of the N-type thermoelectric conversion material is -30 ⁇ V / K as a result of evaluation by ZEM-3 manufactured by Advance Riko Co., Ltd.
  • a copper substrate 50 (see FIG. 10) is prepared by forming a 12 ⁇ m thick copper layer 52 (see FIG. 10) on both sides of a 12.5 ⁇ m thick polyimide substrate.
  • the polyimide substrate is the insulating substrate 22 (see FIG. 10).
  • one copper layer 52 of the copper substrate 50 is etched by photolithography to form a hole 54 (see FIG. 11) at the position of the through-hole forming portion.
  • the polyimide substrate is etched to form through holes 27 (see FIG. 12).
  • the through hole 27 is plated with copper through holes to form the through electrodes 28 (see FIG. 13).
  • Through-hole plating is performed by electroless plating or electrolytic plating.
  • one of the copper layers 52 (see FIG. 13) is etched by photolithography to pattern the connection electrodes 34 (see FIG. 14).
  • the other copper layer 52 (see FIG. 14) is etched by photolithography to pattern the connection electrode 34 (see FIG. 15).
  • thermoelectric conversion module substrate A P-type thermoelectric conversion layer 30 (see FIG. 5) is formed on one surface of the insulating substrate 22 (see FIG. 5) by metal mask printing.
  • metal mask printing an attack angle of 20 °, a squeegee direction is a serial connection direction of thermoelectric conversion elements, a clearance of 1.5 mm, a printing pressure of 0.3 MPa, and an indentation amount of 0.1 mm to form a coating composition pattern, Dry at 50 ° C. for 5 minutes and 120 ° C. for 5 minutes.
  • an N-type thermoelectric conversion layer 32 is formed on the other surface of the insulating substrate 22 (see FIG. 6) by metal mask printing.
  • the printing conditions are the same as for the P-type thermoelectric conversion layer.
  • sodium deoxycholate is removed from the P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer, and dried at 50 ° C. for 10 minutes and 120 ° C. for 120 minutes.
  • Each of the P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer after drying has a thickness of 10 ⁇ m.
  • thermoelectric conversion module 12 [Folding of thermoelectric conversion module] Next, the insulating substrate 22 (see FIG. 4) is repeatedly folded and folded at the position of the connection electrode 34 (see FIG. 4) to form a bellows structure. Thus, the thermoelectric conversion module 12 (refer FIG. 3) can be produced. [Folding of thermoelectric conversion module] Next, as shown in FIG. 2, the produced thermoelectric conversion module 12 having a bellows structure is folded and fixed by crimping using an aluminum frame 16 from the outside. The aluminum frame 16 has an alumite treatment on the contact surface with the thermoelectric conversion module 12. The contact surface between the thermoelectric conversion module 12 and the frame 16 is an area where the connection electrode 34 (see FIG. 3) is formed in the valley 47 (see FIG. 3).
  • a temperature difference of 20 ° C. is given between the connection electrode 34 side of one end of the thermoelectric conversion module 12 and the connection electrode 34 side of the other end, and from the connection electrodes 34 at both ends of the thermoelectric conversion module 12, Extend each lead and connect to a voltmeter.
  • a temperature difference is formed between the ridge 45 (see FIG. 3) and the trough 47 (see FIG. 3) of the thermoelectric conversion module 12 by bringing the thermoelectric conversion module 12 fixed by crimping with the aluminum frame 16 into contact with the heat source. The power generation can be confirmed by the voltmeter, and the power is generated.
  • thermoelectric conversion module 12 even if it has a bellows structure as described above, since the thermoelectric conversion elements do not face each other at the peak portion 45 and the valley portion 47, an unnecessary short circuit between the thermoelectric conversion elements can be prevented. Further, as described above, as shown in FIGS. 19 to 22, in the thermoelectric conversion module 100 in which the thermoelectric elements are produced only on one surface of the insulating substrate 22, in order to prevent short circuit between the thermoelectric conversion elements, the thermoelectric conversion is performed. The introduction of an insulating film into the trough portion 47 of the module 100 or the insulation coating of the thermoelectric conversion element is necessary, but this is not necessary in the present invention, and a thermoelectric module having a small installation area and a high power generation amount is inexpensive. Can be realized.
  • thermoelectric conversion module of the present invention has been described in detail above.
  • the present invention is not limited to the above-described embodiment, and various modifications or changes may be made without departing from the gist of the present invention. It is.

Abstract

This thermoelectric conversion module has a bellows-shaped insulating substrate that comprises alternatingly repeating first and second sections which are oriented in different directions. A P-type thermoelectric conversion element and/or an N-type thermoelectric conversion element is provided on one surface of the first sections. At least one element having a different polarity than the element on the one surface and selected from among the P-type thermoelectric conversion element and the N-type thermoelectric conversion element is provided on the other surface of the second sections that is on the opposite side thereof from the one surface. The P-type thermoelectric conversion element has a P-type thermoelectric conversion layer and one pair of connecting electrodes that is electrically connected to the P-type thermoelectric conversion layer. The N-type thermoelectric conversion element has an N-type thermoelectric conversion layer and one pair of connecting electrodes that is electrically connected to the N-type thermoelectric conversion layer. The connecting electrodes in the first and second sections are electrically connected to one another by a through-electrode formed in the insulating substrate.

Description

熱電変換モジュールThermoelectric conversion module
 本発明は、絶縁性基板の両面に熱電変換素子が設けられた熱電変換モジュールに関し、特に、製造コストを低減し、安価に作製することが可能な熱電変換モジュールに関する。 The present invention relates to a thermoelectric conversion module in which thermoelectric conversion elements are provided on both surfaces of an insulating substrate, and more particularly to a thermoelectric conversion module that can be manufactured at a low cost by reducing manufacturing costs.
 熱エネルギーと電気エネルギーを相互に変換することができる熱電変換材料が、温度差によって発電する発電素子、またはペルチェ素子のような熱電変換素子に用いられている。
 熱電変換素子としては、例えば、Bi-Te系の無機半導体を熱電変換材料として用いる熱電変換素子では、π型の熱電変換素子が知られている。π型の熱電変換素子は、熱電変換材料をブロック状に加工し、セラミックス等の絶縁性基板上に並べて、ブロック同士を電気的に接続させて作製される。
 一方で、インク状の熱電変換材料を塗布工程または印刷工程で絶縁性基板上に成膜した熱電変換素子が報告されている。この熱電変換素子は、製造が容易であり、π型熱電変換素子よりも製造コストを安くすることができる。この構造の熱電変換素子では、絶縁性基板の二次元平面上に温度差を生じさせることで、熱電変換材料に十分な温度差を与えて発電することが可能である。この点については、例えば、特許文献1に記載されている。
 熱電変換素子は、1つ当たりの起電圧が非常に小さいため、熱電変換モジュールは、数百以上の熱電変換素子を直列に接続して、電圧及び発電量を増加させる。
Thermoelectric conversion materials that can convert thermal energy and electrical energy to each other are used in power generation elements that generate power by temperature difference, or thermoelectric conversion elements such as Peltier elements.
As a thermoelectric conversion element, for example, a π-type thermoelectric conversion element is known as a thermoelectric conversion element using a Bi—Te based inorganic semiconductor as a thermoelectric conversion material. The π-type thermoelectric conversion element is manufactured by processing thermoelectric conversion materials into blocks, arranging them on an insulating substrate such as ceramics, and electrically connecting the blocks.
On the other hand, a thermoelectric conversion element in which an ink-like thermoelectric conversion material is formed on an insulating substrate in a coating process or a printing process has been reported. This thermoelectric conversion element is easy to manufacture and can be manufactured at a lower cost than the π-type thermoelectric conversion element. In the thermoelectric conversion element having this structure, it is possible to generate electric power by giving a sufficient temperature difference to the thermoelectric conversion material by generating a temperature difference on the two-dimensional plane of the insulating substrate. This point is described in Patent Document 1, for example.
Since the electromotive voltage per thermoelectric conversion element is very small, the thermoelectric conversion module connects several hundred or more thermoelectric conversion elements in series to increase voltage and power generation.
 特許文献2の熱電変換デバイスには、帯状の可撓性のある絶縁性基材要素と、絶縁性基材要素上に間隙を介して成膜された熱電変換材料部材と、互いに隣接する熱電変換材料部材同士を上端部と下端部において交互に接続する配線とを備えた複数の熱電変換要素を有する。特許文献2では、各熱電変換要素は、熱電変換材料部材と隣接する絶縁性基材要素とが対向するように重ね合わされ、各熱電変換要素の一方の端部において隣接する2個の熱電変換要素を互いに接続する一端側接続基材を有するとともに、各熱電変換要素の他方の端部において、一端側接続基材に接続する組み合わせと1個分ずれた組み合わせで隣接する2個の熱電変換要素を互いに接続する他端側接続基材を有し、各絶縁性基材要素、一端側接続基材及び他端側接続基材が同一の絶縁性基材により一体になり、一端側接続基材と他端側接続基材が撓んでいる。特許文献2には、熱電変換材料として、BiTe系、PbTe系の無機熱電変換材料が挙げられている。 The thermoelectric conversion device of Patent Document 2 includes a strip-like flexible insulating base element, a thermoelectric conversion material member formed on the insulating base element through a gap, and adjacent thermoelectric conversions. It has the some thermoelectric conversion element provided with the wiring which connects material members alternately in an upper end part and a lower end part. In Patent Document 2, each thermoelectric conversion element is overlapped so that a thermoelectric conversion material member and an adjacent insulating base material element face each other, and two thermoelectric conversion elements adjacent to each other at one end of each thermoelectric conversion element Two thermoelectric conversion elements adjacent to each other at the other end of each thermoelectric conversion element by a combination shifted from the combination connected to the one end connection base material by one. It has the other end side connection base material connected mutually, each insulating base material element, one end side connection base material, and the other end side connection base material are united by the same insulating base material, The other end side connection base material is bent. Patent Document 2 mentions BiTe-based and PbTe-based inorganic thermoelectric conversion materials as thermoelectric conversion materials.
特開2012-212838号公報JP 2012-212838 A 特開2014-33114号公報JP 2014-33114 A
 上述のように、特許文献2には、無機熱電変換材料による熱電変換素子を複数個形成した絶縁性基板を複数枚重ね合わせて、熱電変換素子の直列接続数を増やした熱電変換モジュールが記載されている。しかしながら、特許文献1、2のような従来の熱電モジュール構成は、素子数を増やすための構成が複雑であり、製造コストが増大してしまうという問題がある。 As described above, Patent Document 2 describes a thermoelectric conversion module in which a plurality of insulating substrates on which a plurality of thermoelectric conversion elements made of an inorganic thermoelectric conversion material are formed are overlapped to increase the number of thermoelectric conversion elements connected in series. ing. However, the conventional thermoelectric module configurations such as Patent Documents 1 and 2 have a problem that the configuration for increasing the number of elements is complicated and the manufacturing cost increases.
 本発明の目的は、前述の従来技術に基づく問題点を解消し、製造コストを低減し、安価に作製することが可能な熱電変換モジュールを提供することにある。 An object of the present invention is to provide a thermoelectric conversion module that eliminates the problems based on the above-described conventional technology, reduces manufacturing costs, and can be manufactured at low cost.
 上述の目的を達成するために、本発明は、第1の部と、第1の部と向きが異なる第2の部とが交互に繰り返された蛇腹状の絶縁性基板を有し、絶縁性基板の第1の部の一方の面に、P型の熱電変換素子およびN型の熱電変換素子のうち、少なくとも一方が設けられ、絶縁性基板の第2の部の、一方の面とは反対側の他方の面に、P型の熱電変換素子およびN型の熱電変換素子のうち、少なくとも、一方の面とは違う極性のP型の熱電変換素子またはN型の熱電変換素子が設けられており、P型の熱電変換素子は、P型の熱電変換層とP型の熱電変換層に電気的に接続された1対の接続電極を有し、N型の熱電変換素子は、N型の熱電変換層とN型の熱電変換層に電気的に接続された1対の接続電極を有し、第1の部の接続電極と第2の部の接続電極とは絶縁性基板に形成された貫通電極で電気的に接続されていることを特徴とする熱電変換モジュールを提供するものである。 In order to achieve the above-mentioned object, the present invention has a bellows-like insulating substrate in which a first part and a second part having a different direction from the first part are alternately repeated, and has an insulating property. At least one of a P-type thermoelectric conversion element and an N-type thermoelectric conversion element is provided on one surface of the first part of the substrate, and is opposite to the one surface of the second part of the insulating substrate. A P-type thermoelectric conversion element or an N-type thermoelectric conversion element having a polarity different from that of at least one of the P-type thermoelectric conversion element and the N-type thermoelectric conversion element is provided on the other surface. The P-type thermoelectric conversion element has a P-type thermoelectric conversion layer and a pair of connection electrodes electrically connected to the P-type thermoelectric conversion layer. The N-type thermoelectric conversion element is an N-type thermoelectric conversion element. A pair of connection electrodes electrically connected to the thermoelectric conversion layer and the N-type thermoelectric conversion layer, the connection electrode of the first part and the connection part of the second part; The connection electrode is to provide a thermoelectric conversion module, characterized in that it is electrically connected with the through electrode formed on the insulating substrate.
 例えば、第1の部と、第2の部とは対称である。
 例えば、第1の部と第2の部は平面状であり、絶縁性基板は側面視三角波状である。また、例えば、第1の部と第2の部は曲面状であり、絶縁性基板は側面視正弦波状である。
 貫通電極は、第1の部と第2の部の連結部よりもP型の熱電変換層またはN型の熱電変換層側に設けられていることが好ましい。
 1対の接続電極のうち、第1の部と第2の部の連結部で、第1の部と第2の部で挟まれる側の接続電極は、他の接続電極よりも、絶縁性基板の延在方向の長さが長いことが好ましい。
For example, the first part and the second part are symmetric.
For example, the first part and the second part are planar, and the insulating substrate has a triangular wave shape when viewed from the side. In addition, for example, the first part and the second part are curved, and the insulating substrate is sinusoidal when viewed from the side.
The through electrode is preferably provided on the P-type thermoelectric conversion layer side or the N-type thermoelectric conversion layer side with respect to the connecting portion between the first part and the second part.
Of the pair of connection electrodes, the connection electrode on the side sandwiched between the first part and the second part at the connection part of the first part and the second part is more insulating than the other connection electrode. The length in the extending direction is preferably long.
 P型の熱電変換層およびN型の熱電変換層は、有機系熱電変換材料で構成されることが好ましい。
 P型の熱電変換層およびN型の熱電変換層は、カーボンナノチューブを含有することが好ましい。
 例えば、絶縁性基板は、プラスチック基板である。
 また、例えば、絶縁性基板はポリイミド基板であり、接続電極は銅、銀および半田のうち少なくとも1つで構成され、貫通電極は銅または半田で構成される。
The P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer are preferably composed of an organic thermoelectric conversion material.
The P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer preferably contain carbon nanotubes.
For example, the insulating substrate is a plastic substrate.
For example, the insulating substrate is a polyimide substrate, the connection electrode is made of at least one of copper, silver, and solder, and the through electrode is made of copper or solder.
 本発明によれば、製造コストを低減し、安価に熱電変換モジュールを作製することができる。 According to the present invention, the manufacturing cost can be reduced and the thermoelectric conversion module can be manufactured at low cost.
本発明の実施形態の熱電変換モジュールを有する熱電変換装置の一例を示す模式図である。It is a schematic diagram which shows an example of the thermoelectric conversion apparatus which has the thermoelectric conversion module of embodiment of this invention. 本発明の実施形態の熱電変換モジュールを有する熱電変換装置の他の例を示す模式図である。It is a schematic diagram which shows the other example of the thermoelectric conversion apparatus which has the thermoelectric conversion module of embodiment of this invention. 本発明の実施形態の熱電変換モジュールの側面図である。It is a side view of the thermoelectric conversion module of the embodiment of the present invention. 本発明の実施形態の熱電変換モジュールの構成を説明するための模式的側面図である。It is a typical side view for demonstrating the structure of the thermoelectric conversion module of embodiment of this invention. 本発明の実施形態の熱電変換モジュールの構成を説明するための模式的上面図である。It is a typical top view for explaining the composition of the thermoelectric conversion module of the embodiment of the present invention. 本発明の実施形態の熱電変換モジュールの構成を説明するための模式的下面図である。It is a typical bottom view for demonstrating the structure of the thermoelectric conversion module of embodiment of this invention. 本発明の実施形態の熱電変換モジュールの接続電極の模式的上面図である。It is a typical top view of a connection electrode of a thermoelectric conversion module of an embodiment of the present invention. 本発明の実施形態の熱電変換モジュールの接続電極の模式的下面図である。It is a typical bottom view of the connection electrode of the thermoelectric conversion module of the embodiment of the present invention. 本発明の実施形態の熱電変換モジュールの構成を説明するための模式的側面図である。It is a typical side view for demonstrating the structure of the thermoelectric conversion module of embodiment of this invention. 本発明の実施形態の熱電変換モジュールの接続電極の製造方法を工程順に示す模式図である。It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. 本発明の実施形態の熱電変換モジュールの接続電極の製造方法を工程順に示す模式図である。It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. 本発明の実施形態の熱電変換モジュールの接続電極の製造方法を工程順に示す模式図である。It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. 本発明の実施形態の熱電変換モジュールの接続電極の製造方法を工程順に示す模式図である。It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. 本発明の実施形態の熱電変換モジュールの接続電極の製造方法を工程順に示す模式図である。It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. 本発明の実施形態の熱電変換モジュールの接続電極の製造方法を工程順に示す模式図である。It is a schematic diagram which shows the manufacturing method of the connection electrode of the thermoelectric conversion module of embodiment of this invention in process order. 本発明の実施形態の熱電変換モジュールの構成の変形例を示す模式的側面図である。It is a typical side view which shows the modification of the structure of the thermoelectric conversion module of embodiment of this invention. 本発明の実施形態の熱電変換モジュールの他の例を示す模式的上面図である。It is a typical top view which shows the other example of the thermoelectric conversion module of embodiment of this invention. 本発明の実施形態の熱電変換モジュールの他の例を示す模式的下面図である。It is a typical bottom view which shows the other example of the thermoelectric conversion module of embodiment of this invention. 比較のための熱電変換モジュールを示す模式的斜視図である。It is a typical perspective view which shows the thermoelectric conversion module for a comparison. 比較のための熱電変換モジュールを示す模式的側面図である。It is a typical side view which shows the thermoelectric conversion module for a comparison. 比較のための熱電変換モジュールを説明するための模式的上面図である。It is a typical top view for demonstrating the thermoelectric conversion module for a comparison. 比較のための熱電変換モジュールを説明するための模式的側面図である。It is a typical side view for demonstrating the thermoelectric conversion module for a comparison.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の熱電変換モジュールを詳細に説明する。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 角度については、特に記載がなければ、厳密な角度との差異が5°未満の範囲内であることを意味する。厳密な角度との差異は、4°未満であることが好ましく、3°未満であることがより好ましい。
 また、「同一」とは、技術分野で一般的に許容される誤差範囲を含むものとする。また、「対称」、「線対称」、「いずれも」または「全面」等は、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば、99%以上、95%以上、または90%以上である場合を含むものとする。
Hereinafter, a thermoelectric conversion module of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
In the following, “to” indicating a numerical range includes numerical values written on both sides. For example, when ε is a numerical value α to a numerical value β, the range of ε is a range including the numerical value α and the numerical value β, and expressed by mathematical symbols, α ≦ ε ≦ β.
Regarding the angle, unless otherwise specified, it means that the difference from the exact angle is within a range of less than 5 °. The difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
In addition, “same” includes an error range generally allowed in the technical field. “Symmetry”, “line symmetry”, “any” or “entire surface” includes an error range generally allowed in the technical field in addition to 100%, for example, 99% or more, The case of 95% or more, or 90% or more is included.
 図1は本発明の実施形態の熱電変換モジュールを有する熱電変換装置の一例を示す模式図であり、図2は本発明の実施形態の熱電変換モジュールを有する熱電変換装置の他の例を示す模式図である。
 図1に示す熱電変換装置10は、温度差を利用して熱電変換モジュール12で発電するものである。熱電変換装置10は、蛇腹状の熱電変換モジュール12が基台14上に設けられており、熱電変換モジュール12と基台14との間には熱伝導シート15が設けられている。
FIG. 1 is a schematic diagram showing an example of a thermoelectric conversion device having a thermoelectric conversion module according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing another example of a thermoelectric conversion device having a thermoelectric conversion module according to an embodiment of the present invention. FIG.
A thermoelectric conversion device 10 shown in FIG. 1 generates power by a thermoelectric conversion module 12 using a temperature difference. In the thermoelectric conversion device 10, a bellows-like thermoelectric conversion module 12 is provided on a base 14, and a heat conductive sheet 15 is provided between the thermoelectric conversion module 12 and the base 14.
 基台14は熱電変換モジュール12が載置されるものである。基台14は、例えば、金属または合金等の熱伝導率が高いもので構成される。例えば、基台14を相対的に高温にして、熱電変換モジュール12に温度差を生じさせて、熱電変換モジュール12で発電させ、発電出力を得る。 The base 14 is for mounting the thermoelectric conversion module 12 thereon. The base 14 is made of a material having a high thermal conductivity such as a metal or an alloy. For example, the base 14 is set to a relatively high temperature to cause a temperature difference in the thermoelectric conversion module 12, and the thermoelectric conversion module 12 generates power to obtain a power generation output.
 熱伝導シート15は、基台14から熱電変換モジュール12への熱伝導を促進させるためのものである。熱伝導シート15の具体例については、後に説明する。
 なお、熱電変換モジュール12は、図1では基台14上に配置したが、これに限定されるものではなく、例えば、円筒の表面等の曲面上に配置してもよい。
 また、図2に示す熱電変換装置10aのように、熱電変換モジュール12を折り畳み、フレーム16で挟み込む形態でもよい。熱電変換装置10aでは、熱電変換モジュール12は熱伝導シート15を介してホットプレート18上に配置されている。フレーム16は、例えば、アルミニウムまたはアルミニウム合金で構成される。フレーム16の熱電変換モジュール12との接触面は、例えば、陽極酸化処理等の絶縁処理により、電気的に絶縁状態にされている。
 熱電変換モジュール12は、図1に示すように開いた状態でも、図2に示すように、折り畳み閉じた状態でも発電に利用することができる。
The heat conductive sheet 15 is for promoting heat conduction from the base 14 to the thermoelectric conversion module 12. A specific example of the heat conductive sheet 15 will be described later.
In addition, although the thermoelectric conversion module 12 was arrange | positioned on the base 14 in FIG. 1, it is not limited to this, For example, you may arrange | position on curved surfaces, such as the surface of a cylinder.
Moreover, the form which folds the thermoelectric conversion module 12 and pinches | interposes with the flame | frame 16 like the thermoelectric conversion apparatus 10a shown in FIG. In the thermoelectric conversion device 10 a, the thermoelectric conversion module 12 is disposed on the hot plate 18 via the heat conductive sheet 15. The frame 16 is made of, for example, aluminum or an aluminum alloy. The contact surface of the frame 16 with the thermoelectric conversion module 12 is electrically insulated, for example, by an insulation process such as an anodizing process.
The thermoelectric conversion module 12 can be used for power generation in an open state as shown in FIG. 1 or a folded state as shown in FIG.
 以下、熱電変換モジュール12について説明する。
 図3は本発明の実施形態の熱電変換モジュールの側面図であり、図4は本発明の実施形態の熱電変換モジュールの構成を説明するための模式的側面図であり、図5は本発明の実施形態の熱電変換モジュールの構成を説明するための模式的上面図であり、図6は本発明の実施形態の熱電変換モジュールの構成を説明するための模式的下面図である。図4、図5および図6は側面視三角波状にする前の状態の熱電変換モジュール12を示す。
Hereinafter, the thermoelectric conversion module 12 will be described.
FIG. 3 is a side view of the thermoelectric conversion module according to the embodiment of the present invention, FIG. 4 is a schematic side view for explaining the configuration of the thermoelectric conversion module according to the embodiment of the present invention, and FIG. FIG. 6 is a schematic top view for explaining the configuration of the thermoelectric conversion module of the embodiment, and FIG. 6 is a schematic bottom view for explaining the configuration of the thermoelectric conversion module of the embodiment of the present invention. 4, 5, and 6 show the thermoelectric conversion module 12 in a state before the triangular wave shape is seen from the side.
 図3に示す熱電変換モジュール12は、絶縁性基板22と、P型の熱電変換素子24と、N型の熱電変換素子26とを有し、例えば、蛇腹構造である。
 絶縁性基板22は、第1の部40と、第1の部40と向きが異なる第2の部42とが交互に繰り返された蛇腹状のものである。
 第1の部40と第2の部42とは連結部44で連結されており、連結部44を通る直線Cに対して線対称である。連結部44と隣接する連結部44とは、水平線Gに対して垂直な方向で、その高さが交互に変わる。
 なお、直線Cは水平線Gに対して垂直な線である。例えば、絶縁性基板22の第1の部40と第2の部42とは予め設定された角度、傾斜した平面状のもので、互いに向きが異なり、絶縁性基板22は側面視三角波状である。熱電変換モジュール12は、蛇腹構造であり、具体的には絶縁性基板22の形状を反映しており、側面視三角波状である。
The thermoelectric conversion module 12 shown in FIG. 3 includes an insulating substrate 22, a P-type thermoelectric conversion element 24, and an N-type thermoelectric conversion element 26, and has, for example, a bellows structure.
The insulating substrate 22 has a bellows shape in which the first portion 40 and the second portion 42 having a different direction from the first portion 40 are alternately repeated.
The first part 40 and the second part 42 are connected by a connecting part 44 and are symmetrical with respect to a straight line C passing through the connecting part 44. The heights of the connecting portions 44 and the adjacent connecting portions 44 are alternately changed in a direction perpendicular to the horizontal line G.
The straight line C is a line perpendicular to the horizontal line G. For example, the first portion 40 and the second portion 42 of the insulating substrate 22 are planar and inclined at a preset angle, and the directions are different from each other, and the insulating substrate 22 has a triangular wave shape in a side view. . The thermoelectric conversion module 12 has a bellows structure, specifically reflects the shape of the insulating substrate 22 and has a triangular wave shape in a side view.
 図3に示す熱電変換モジュール12は、より具体的には、第1の部40および第2の部42の連結部44で山折りと谷折りが交互に繰り返されたものである。熱電変換モジュール12の山折り部分45のことを山部45ともいい、熱電変換モジュール12の谷折り部分47のことを谷部47ともいう。
 ここで、山折りとは、側面視で水平線Gに対して凸の状態にすることである。谷折りとは、水平線Gに対して山折りの反対にすることであり、側面視で水平線Gに対して凹の状態にすることである。
 第1の部40と第2の部42とは、向きが異なれば特に限定されるものではなく、第1の部40と第2の部42とは対称であってもよく、線対称であってもよい。また、第1の部40と第2の部42とは長さが同じでも異なっていてもよく、角度も同じでも異なっていてもよい。
More specifically, in the thermoelectric conversion module 12 shown in FIG. 3, mountain folding and valley folding are alternately repeated at the connecting portion 44 of the first portion 40 and the second portion 42. The mountain fold portion 45 of the thermoelectric conversion module 12 is also referred to as a mountain portion 45, and the valley fold portion 47 of the thermoelectric conversion module 12 is also referred to as a valley portion 47.
Here, mountain fold is to make it convex with respect to the horizon G in a side view. The valley fold is to make the horizontal line G opposite to the mountain fold, and to make it concave with respect to the horizontal line G in a side view.
The first part 40 and the second part 42 are not particularly limited as long as they have different orientations. The first part 40 and the second part 42 may be symmetric or line symmetric. May be. Further, the first portion 40 and the second portion 42 may have the same length or different lengths, and may have the same or different angles.
 熱電変換モジュール12では、図3に示すように絶縁性基板22の、同じ向きに傾いた第1の部40の表面22aにP型の熱電変換素子24が設けられている。図4および図5に示す側面視三角波状にする前の状態では、絶縁性基板22の第1の部40の表面22aに、延在方向Dにおいて間隔をあけてP型の熱電変換素子24が設けられている。
 図3に示すように絶縁性基板22の、同じ向きに傾いた第2の部42の、表面22aとは反対側の裏面22bに、第1の部40の表面22aとは違う極性のN型の熱電変換素子26が設けられている。図4および図6に示す側面視三角波状にする前の状態では、絶縁性基板22の第2の部42の裏面22bに、延在方向Dにおいて間隔をあけてN型の熱電変換素子26が設けられている。
 この場合、絶縁性基板22の表面22aが一方の面に相当し、絶縁性基板22の裏面22bが他方の面に相当する。
In the thermoelectric conversion module 12, as shown in FIG. 3, a P-type thermoelectric conversion element 24 is provided on the surface 22 a of the first portion 40 inclined in the same direction of the insulating substrate 22. 4 and FIG. 5, the P-type thermoelectric conversion element 24 is spaced on the surface 22a of the first portion 40 of the insulating substrate 22 in the extending direction D before the triangular wave shape in the side view is shown. Is provided.
As shown in FIG. 3, an N-type having a polarity different from that of the surface 22 a of the first portion 40 is formed on the back surface 22 b of the second portion 42 of the insulating substrate 22 inclined in the same direction on the side opposite to the surface 22 a. The thermoelectric conversion element 26 is provided. 4 and FIG. 6, the N-type thermoelectric conversion element 26 is spaced apart in the extending direction D on the back surface 22b of the second portion 42 of the insulating substrate 22 in the state before the triangular wave shape when viewed from the side. Is provided.
In this case, the surface 22a of the insulating substrate 22 corresponds to one surface, and the back surface 22b of the insulating substrate 22 corresponds to the other surface.
 P型の熱電変換素子24は、P型の熱電変換層30と、一対の接続電極34とを有する。P型の熱電変換層30の両側に接続電極34が電気的に接続されている。
 N型の熱電変換素子26は、N型の熱電変換層32と、一対の接続電極34とを有する。N型の熱電変換層32の両側に接続電極34が電気的に接続されている。
 P型の熱電変換素子24の接続電極34と、これに隣接するN型の熱電変換素子26とは、絶縁性基板22の延在方向Dにおいて接続電極34が一部重ねて設けられている。P型の熱電変換素子24の接続電極34とN型の熱電変換素子26の接続電極34とは、絶縁性基板22を貫通する貫通電極28で電気的に接続されている。
The P-type thermoelectric conversion element 24 includes a P-type thermoelectric conversion layer 30 and a pair of connection electrodes 34. Connection electrodes 34 are electrically connected to both sides of the P-type thermoelectric conversion layer 30.
The N-type thermoelectric conversion element 26 includes an N-type thermoelectric conversion layer 32 and a pair of connection electrodes 34. Connection electrodes 34 are electrically connected to both sides of the N-type thermoelectric conversion layer 32.
The connection electrode 34 of the P-type thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 adjacent to the connection electrode 34 are provided so as to partially overlap in the extending direction D of the insulating substrate 22. The connection electrode 34 of the P-type thermoelectric conversion element 24 and the connection electrode 34 of the N-type thermoelectric conversion element 26 are electrically connected by a through electrode 28 that penetrates the insulating substrate 22.
 貫通電極28は、第1の部40と第2の部42の連結部44よりも、P型の熱電変換層30またはN型の熱電変換層32側に設けられていることが好ましい。これにより、貫通電極28が連結部44に配置されることがなく、貫通電極28が曲げられることが回避され、接続電極34同士の電気的接続の安定性を確保することができる。
 なお、貫通電極28は、スルーホール(図示せず)内に形成されるものである。貫通電極28の数は、接続電極34同士の電気的接続を確保することができれば、その数は、特に限定されるものではなく、少なくとも1つあればよい。接続電極34同士の電気的接続の安定性を確保するために貫通電極28は複数あってもよい。
The through electrode 28 is preferably provided closer to the P-type thermoelectric conversion layer 30 or the N-type thermoelectric conversion layer 32 than the connecting portion 44 of the first portion 40 and the second portion 42. Accordingly, the through electrode 28 is not disposed in the connecting portion 44, the bending of the through electrode 28 is avoided, and the stability of the electrical connection between the connection electrodes 34 can be ensured.
The through electrode 28 is formed in a through hole (not shown). The number of the through electrodes 28 is not particularly limited as long as electrical connection between the connection electrodes 34 can be ensured, and at least one is sufficient. In order to ensure the stability of the electrical connection between the connection electrodes 34, a plurality of through electrodes 28 may be provided.
 図7~図9に示すように、1対の接続電極34のうち、第1の部40と第2の部42の連結部44で、第1の部40と第2の部42で挟まれる側の接続電極34は、他の接続電極34よりも、絶縁性基板22の延在方向Dの長さが長い。これにより、P型の熱電変換層30とN型の熱電変換層32の大きさを合わせることができる。
 絶縁性基板22の蛇腹構造の形成時に、接続電極34が山部45の山の頂点から第2の部42側に形成されないため、蛇腹を折りたたんだ際に、山部45における接続電極34同士の短絡を防ぐことができる。
As shown in FIG. 7 to FIG. 9, of the pair of connection electrodes 34, the first portion 40 and the second portion 42 are sandwiched between the first portion 40 and the second portion 42. The connection electrode 34 on the side is longer in the extending direction D of the insulating substrate 22 than the other connection electrodes 34. Thereby, the size of the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 can be matched.
When the bellows structure of the insulating substrate 22 is formed, the connection electrode 34 is not formed on the second portion 42 side from the peak of the peak portion 45, so that when the bellows is folded, the connection electrodes 34 in the peak portion 45 are connected to each other. Short circuit can be prevented.
 熱電変換モジュール12は、図7~図9に示す絶縁性基板22の折曲線Bで、折り曲げることにより形成される。折曲線Bは連結部44を通る線であり、連結部44を通る直線Cに対応する。貫通電極28は上述のように連結部44を避けて設けられており、熱電変換モジュール12では、貫通電極28が折り曲げられることはなく、接続不良等の発生が抑制され、接続電極34同士の電気的接続の安定性が確保される。 The thermoelectric conversion module 12 is formed by bending along the folding line B of the insulating substrate 22 shown in FIGS. The folding line B is a line passing through the connecting part 44 and corresponds to a straight line C passing through the connecting part 44. The through electrode 28 is provided so as to avoid the connecting portion 44 as described above. In the thermoelectric conversion module 12, the through electrode 28 is not bent and the occurrence of poor connection or the like is suppressed, and the electrical connection between the connection electrodes 34 is suppressed. The stability of the connection is ensured.
 熱電変換モジュール12は、例えば、図2に示すように、フレーム16で折り畳んだ状態で固定し、熱伝導シート15を介してホットプレート18上に配置して熱電変換装置10aとすることができる。この場合、ホットプレート18、すなわち、熱源に熱電変換モジュール12を接触させることで、熱電変換モジュール12の山部45と谷部47間に温度差が形成され、発電することができる。
 熱電変換モジュール12では、極性が異なるP型の熱電変換素子24とN型の熱電変換素子26とが絶縁性基板22の異なる面に設けられている。このため、折り畳んで絶縁性基板22において、第1の部40と第2の部42を近接させてもP型の熱電変換素子24とN型の熱電変換素子26とが接触することがなく短絡が発生することがない。このように、谷部47において、熱電変換素子同士が向かい合うことがないため、熱電変換素子間の不要な短絡を防止することができる。
 また、絶縁性基板22に、プラスチック基板等の可撓性を有する基板を用いることにより、熱電変換モジュール12は、図1に示す状態から図2に示すように折り畳むことができる。これにより、単位長さ当りのP型の熱電変換素子24とN型の熱電変換素子26の数を多くすることができ、高集積化が可能となる。
 ここで、可撓性とは、熱電変換モジュール12を折り畳んだ際に、絶縁性基板22が破壊されないことをいう。
For example, as shown in FIG. 2, the thermoelectric conversion module 12 can be fixed in a state of being folded by a frame 16 and disposed on the hot plate 18 via the heat conductive sheet 15 to form the thermoelectric conversion device 10 a. In this case, by bringing the thermoelectric conversion module 12 into contact with the hot plate 18, that is, the heat source, a temperature difference is formed between the peak portion 45 and the valley portion 47 of the thermoelectric conversion module 12, and power can be generated.
In the thermoelectric conversion module 12, P-type thermoelectric conversion elements 24 and N-type thermoelectric conversion elements 26 having different polarities are provided on different surfaces of the insulating substrate 22. Therefore, the P-type thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 do not come into contact with each other even if the first portion 40 and the second portion 42 are brought close to each other in the insulating substrate 22 by folding. Will not occur. Thus, since the thermoelectric conversion elements do not face each other in the valley portion 47, an unnecessary short circuit between the thermoelectric conversion elements can be prevented.
Further, by using a flexible substrate such as a plastic substrate for the insulating substrate 22, the thermoelectric conversion module 12 can be folded from the state shown in FIG. 1 as shown in FIG. As a result, the number of P-type thermoelectric conversion elements 24 and N-type thermoelectric conversion elements 26 per unit length can be increased, and high integration can be achieved.
Here, the flexibility means that the insulating substrate 22 is not destroyed when the thermoelectric conversion module 12 is folded.
 ここで、図19~図22に示す熱電変換モジュール100のように、絶縁性基板22の表面22aにP型の熱電変換素子24とN型の熱電変換素子26を交互に設け、図19および図20に示すように、熱電変換モジュール12と同様に山折りと谷折りを交互に行い、蛇腹構造とした場合、折り曲げ過ぎると、向い合うP型の熱電変換素子24とN型の熱電変換素子26とが接触して短絡してしまう。
 熱電変換モジュール100のように、絶縁性基板22の片面のみに、熱電変換素子を設けて蛇腹構造とした場合、熱電変換素子間の短絡を防止するために、谷部47に絶縁性フィルムを導入したり、熱電変換素子を絶縁コートしたりする必要が生じる。絶縁性フィルムの導入は、熱電変換モジュールのコストを増加させ、山部45と谷部47間の温度差の低下による発電量の低下を引き起こし、さらには熱電変換モジュール面積の増加に繋がる。しかしながら、熱電変換モジュール12では、このような短絡の発生を、上述のように抑制することができるため、製造コストを低減し、安価に熱電変換モジュール12を作製することができる。しかも、低設置面積で、高い発電量を持つ熱電変換モジュール12を実現することができる。
Here, like the thermoelectric conversion module 100 shown in FIGS. 19 to 22, P-type thermoelectric conversion elements 24 and N-type thermoelectric conversion elements 26 are alternately provided on the surface 22 a of the insulating substrate 22. As shown in FIG. 20, in the same manner as in the thermoelectric conversion module 12, when the mountain fold and the valley fold are alternately performed to form a bellows structure, the P-type thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 that face each other when bent excessively. Will contact and short circuit.
When the thermoelectric conversion element is provided on only one surface of the insulating substrate 22 as in the thermoelectric conversion module 100 to form a bellows structure, an insulating film is introduced into the trough portion 47 to prevent a short circuit between the thermoelectric conversion elements. Or a thermoelectric conversion element needs to be insulated. The introduction of the insulating film increases the cost of the thermoelectric conversion module, causes a decrease in power generation due to a decrease in temperature difference between the peak portion 45 and the valley portion 47, and further leads to an increase in the area of the thermoelectric conversion module. However, in the thermoelectric conversion module 12, since the occurrence of such a short circuit can be suppressed as described above, the manufacturing cost can be reduced and the thermoelectric conversion module 12 can be manufactured at a low cost. Moreover, the thermoelectric conversion module 12 having a small installation area and a high power generation amount can be realized.
 熱電変換モジュール12では、図3に示すように、一方の側の連結部44を全て水平線Gに一致させることが好ましい。これにより、一方の側の連結部44側を高温した場合、熱電変換モジュール12が均一に熱を受けることができる。
 また、熱電変換モジュール12は、第1の部40と第2の部42は大きさが均一でなくてもよい。例えば、熱電変換モジュール12において、中央部の第1の部40と第2の部42を長くすることで、中央部を他のよりも突出させた構成にしてもよい。この場合、放熱性が向上し、より温度差を得ることができ、発電効率を向上させることができるため、好ましい。
In the thermoelectric conversion module 12, it is preferable that all of the connecting portions 44 on one side coincide with the horizontal line G as shown in FIG. 3. Thereby, when the one side connection part 44 side is heated, the thermoelectric conversion module 12 can receive heat uniformly.
Further, in the thermoelectric conversion module 12, the first part 40 and the second part 42 may not be uniform in size. For example, in the thermoelectric conversion module 12, you may make it the structure which made the center part protrude rather than others by lengthening the 1st part 40 and the 2nd part 42 of a center part. In this case, since heat dissipation improves, a temperature difference can be obtained more and power generation efficiency can be improved, it is preferable.
 次に、熱電変換モジュール12の製造方法について説明する。
 まず、接続電極34の製造方法について説明する。
 図10~図15は本発明の実施形態の熱電変換モジュールの接続電極の製造方法を工程順に示す模式図である。
 図10に示すように、絶縁性基板22の両面に銅層52が形成された銅基板50を用意する。
 次に、図11に示すように、銅基板50の一方の銅層52に、絶縁性基板22に達する穴54を、1つ、スルーホール27の形成位置に、例えば、フォトリソグラフィー法とエッチングを組み合わせて形成する。
 次に、図12に示すように、穴54を臨む絶縁性基板22を、例えば、エッチングして、絶縁性基板22を貫通し、他方の銅層52に達するスルーホール27を形成する。
 次に、図13に示すように、スルーホール27に、例えば、銅のスルーホールメッキを施し、貫通電極28を形成する。スルーホールメッキは、例えば、無電解メッキおよび/または電解メッキである。
Next, the manufacturing method of the thermoelectric conversion module 12 is demonstrated.
First, a method for manufacturing the connection electrode 34 will be described.
10 to 15 are schematic views showing a method of manufacturing the connection electrode of the thermoelectric conversion module according to the embodiment of the present invention in the order of steps.
As shown in FIG. 10, a copper substrate 50 having a copper layer 52 formed on both surfaces of the insulating substrate 22 is prepared.
Next, as shown in FIG. 11, one hole 54 reaching the insulating substrate 22 is formed in one copper layer 52 of the copper substrate 50, and, for example, a photolithography method and etching are performed at the formation position of the through hole 27. Form in combination.
Next, as shown in FIG. 12, the insulating substrate 22 facing the hole 54 is etched, for example, to form a through hole 27 that penetrates the insulating substrate 22 and reaches the other copper layer 52.
Next, as shown in FIG. 13, for example, copper through-hole plating is performed on the through-hole 27 to form the through electrode 28. Through-hole plating is, for example, electroless plating and / or electrolytic plating.
 次に、図14に示すように、上述の穴54を形成した銅層52に、例えば、フォトリソグラフィー法とエッチングを組み合わせて、1対の離間した接続電極34をパターン形成し、P型の熱電変換層30が形成される形成領域23を得る。
 次に、接続電極34を形成していない銅層52に、例えば、フォトリソグラフィー法とエッチングを組み合わせて、図15に示すように、1対の離間した接続電極34をパターン形成し、N型の熱電変換層32が形成される形成領域25を得る。これにより、図7~図9に示すように絶縁性基板22の両面に、貫通電極28で電気的に接続された接続電極34を含む、接続電極34が形成される。
Next, as shown in FIG. 14, a pair of spaced connection electrodes 34 is formed on the copper layer 52 in which the above-described hole 54 is formed by, for example, a combination of photolithography and etching to form a P-type thermoelectric device. A formation region 23 in which the conversion layer 30 is formed is obtained.
Next, as shown in FIG. 15, a pair of spaced connection electrodes 34 is patterned on the copper layer 52 on which the connection electrodes 34 are not formed, for example, by combining photolithography and etching. A formation region 25 in which the thermoelectric conversion layer 32 is formed is obtained. As a result, as shown in FIGS. 7 to 9, the connection electrodes 34 including the connection electrodes 34 electrically connected by the through electrodes 28 are formed on both surfaces of the insulating substrate 22.
 次に、上述のようにして接続電極34が形成された絶縁性基板22(図7~図9参照)の表面22aのP型の熱電変換層30の形成領域23に、例えば、メタルマスクを用いた印刷法により、P型の熱電変換層30を形成する。これにより、図5に示すように接続電極34とP型の熱電変換層30とを有するP型の熱電変換素子24が形成される。
 次に、絶縁性基板22の裏面22bのN型の熱電変換層32の形成領域25に、例えば、メタルマスクを用いた印刷法により、N型の熱電変換層32を形成する。これにより、図6に示すように接続電極34とN型の熱電変換層32とを有するN型の熱電変換素子26が形成される。
Next, for example, a metal mask is used in the formation region 23 of the P-type thermoelectric conversion layer 30 on the surface 22a of the insulating substrate 22 (see FIGS. 7 to 9) on which the connection electrodes 34 are formed as described above. The P-type thermoelectric conversion layer 30 is formed by the conventional printing method. Thereby, as shown in FIG. 5, the P-type thermoelectric conversion element 24 having the connection electrode 34 and the P-type thermoelectric conversion layer 30 is formed.
Next, the N-type thermoelectric conversion layer 32 is formed in the formation region 25 of the N-type thermoelectric conversion layer 32 on the back surface 22b of the insulating substrate 22 by, for example, a printing method using a metal mask. As a result, the N-type thermoelectric conversion element 26 having the connection electrode 34 and the N-type thermoelectric conversion layer 32 is formed as shown in FIG.
 次に、図7~図9に示す絶縁性基板22の折曲線Bで、P型の熱電変換素子24が外側を向き、N型の熱電変換素子26が内側を向くように絶縁性基板22に対して山折りと谷折りを繰り返し行い、図3に示す熱電変換モジュール12を形成する。
 絶縁性基板22の山折りと谷折りは、例えば、表面に、山折りと谷折りとピッチに対応した大きさの断面視三角形状の突起が形成された1対のローラで絶縁性基板22を挟み込むことで実行される。
Next, in the folding line B of the insulating substrate 22 shown in FIGS. 7 to 9, the insulating substrate 22 is arranged such that the P-type thermoelectric conversion element 24 faces outward and the N-type thermoelectric conversion element 26 faces inward. On the other hand, the mountain fold and the valley fold are repeatedly performed to form the thermoelectric conversion module 12 shown in FIG.
The mountain fold and the valley fold of the insulating substrate 22 are formed by, for example, forming the insulating substrate 22 with a pair of rollers on the surface having a mountain-shaped fold, a valley fold, and a triangular projection in a size corresponding to the pitch. It is executed by pinching.
 熱電変換モジュール12は蛇腹構造で、側面視三角波状であり、第1の部40と第2の部42の連結部分を折り曲げているが、これに限定されるものではない。
 ここで、図16は本発明の実施形態の熱電変換モジュールの構成の変形例を示す模式的側面図である。
 図16に示すように連結部44を折り曲げることなく曲面状としてもよい。連結部44を曲面状にした場合、絶縁性基板22を折り畳んだ際の連結部44での応力集中を避けることができる。また、第1の部40および第2の部42も、曲面状としてもよい。この場合、熱電変換モジュール12aは側面視正弦波状となる。なお、側面視正弦波状の熱電変換モジュール12aも上述の熱電変換モジュール12と同様の効果を得ることができる。
Although the thermoelectric conversion module 12 has a bellows structure and has a triangular wave shape when viewed from the side, the connecting portion between the first portion 40 and the second portion 42 is bent, but is not limited thereto.
Here, FIG. 16 is a schematic side view showing a modification of the configuration of the thermoelectric conversion module according to the embodiment of the present invention.
As shown in FIG. 16, the connecting portion 44 may be curved without being bent. When the connecting portion 44 is curved, stress concentration at the connecting portion 44 when the insulating substrate 22 is folded can be avoided. The first part 40 and the second part 42 may also be curved. In this case, the thermoelectric conversion module 12a is sinusoidal when viewed from the side. In addition, the thermoelectric conversion module 12a having a sinusoidal shape in a side view can obtain the same effect as the thermoelectric conversion module 12 described above.
 熱電変換モジュール12、12aでは、絶縁性基板22の第1の部40の表面22aにP型の熱電変換素子24を設け、絶縁性基板22の第2の部42の裏面22bにN型の熱電変換素子26を設ける構成としたが、これに限定されるものではない。例えば、第1の部40の表面22aにN型の熱電変換素子26を設け、第2の部42の裏面22bにP型の熱電変換素子24を設ける構成でもよい。
 また、絶縁性基板22の第1の部40の裏面22bに、P型の熱電変換素子24およびN型の熱電変換素子26のうち、少なくとも一方を設け、第2の部の表面22aに、P型の熱電変換素子24およびN型の熱電変換素子26のうち、少なくとも、第1の部40の裏面22bとは違う極性のP型の熱電変換素子24またはN型の熱電変換素子26を設ける構成でもよい。この場合、第1の部40の裏面22bが一方の面であり、第2の部42の表面22aが他方の面である。
In the thermoelectric conversion modules 12 and 12 a, a P-type thermoelectric conversion element 24 is provided on the surface 22 a of the first portion 40 of the insulating substrate 22, and an N-type thermoelectric device is provided on the back surface 22 b of the second portion 42 of the insulating substrate 22. Although the conversion element 26 is provided, the present invention is not limited to this. For example, an N-type thermoelectric conversion element 26 may be provided on the front surface 22 a of the first part 40, and a P-type thermoelectric conversion element 24 may be provided on the back surface 22 b of the second part 42.
Further, at least one of the P-type thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 is provided on the back surface 22b of the first part 40 of the insulating substrate 22, and the P-type thermoelectric conversion element 26 is provided on the surface 22a of the second part. Of the thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26, at least a P-type thermoelectric conversion element 24 or an N-type thermoelectric conversion element 26 having a polarity different from that of the back surface 22b of the first portion 40 is provided. But you can. In this case, the back surface 22b of the first portion 40 is one surface, and the front surface 22a of the second portion 42 is the other surface.
 次に、本発明の実施形態の他の熱電変換モジュールについて説明する。
 図17は本発明の実施形態の熱電変換モジュールの他の例を示す模式的上面図であり、図18は本発明の実施形態の熱電変換モジュールの他の例を示す模式的下面図である。
 図17および図18おいて、図1および図3~図6に示す熱電変換モジュール12と同一構成物には同一符号を付して、その詳細な説明は省略する。
Next, another thermoelectric conversion module according to the embodiment of the present invention will be described.
FIG. 17 is a schematic top view illustrating another example of the thermoelectric conversion module according to the embodiment of the present invention, and FIG. 18 is a schematic bottom view illustrating another example of the thermoelectric conversion module according to the embodiment of the present invention.
17 and 18, the same components as those of the thermoelectric conversion module 12 shown in FIGS. 1 and 3 to 6 are denoted by the same reference numerals, and detailed description thereof is omitted.
 熱電変換モジュール12bは、熱電変換モジュール12と比して、絶縁性基板22の第1の部40の表面22aに、P型の熱電変換素子24とN型の熱電変換素子26が電気的に直列に接続されている点、第2の部の絶縁性基板22の裏面22bに、P型の熱電変換素子24とN型の熱電変換素子26が接続電極34で直列に接続されている点が異なる点以外は、熱電変換モジュール12と同様の構成であるため、その詳細な説明は省略する。 Compared with the thermoelectric conversion module 12, the thermoelectric conversion module 12 b has a P-type thermoelectric conversion element 24 and an N-type thermoelectric conversion element 26 electrically in series on the surface 22 a of the first portion 40 of the insulating substrate 22. The P-type thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26 are connected in series by the connection electrode 34 to the back surface 22b of the insulating substrate 22 of the second part. Since it is the same structure as the thermoelectric conversion module 12 except a point, the detailed description is abbreviate | omitted.
 熱電変換モジュール12bでは、第1の部40と第2の部42とで、P型の熱電変換素子24、N型の熱電変換素子26、P型の熱電変換素子24、N型の熱電変換素子26と、P型の熱電変換素子24とN型の熱電変換素子26とが繰り返し接続電極34で直列に接続されるように設けられている。
 熱電変換モジュール12bのように、複数のP型の熱電変換素子24と複数のN型の熱電変換素子26を直列に接続させて設ける構成とすることで、熱電変換モジュール12に比して、直列接続された熱電変換素子数が増え、高い発電電圧を得ることができる。
 また、熱電変換モジュール12bにおいても、図16に示す熱電変換モジュール12aのように連結部44を曲面状にしてもよく、さらには第1の部40、第2の部42を曲面状にしてもよい。
In the thermoelectric conversion module 12b, the P-type thermoelectric conversion element 24, the N-type thermoelectric conversion element 26, the P-type thermoelectric conversion element 24, and the N-type thermoelectric conversion element include the first part 40 and the second part 42. 26, a P-type thermoelectric conversion element 24 and an N-type thermoelectric conversion element 26 are provided so as to be repeatedly connected in series by a connection electrode 34.
As in the thermoelectric conversion module 12b, a plurality of P-type thermoelectric conversion elements 24 and a plurality of N-type thermoelectric conversion elements 26 are connected in series to provide a series compared to the thermoelectric conversion module 12. The number of connected thermoelectric conversion elements increases, and a high power generation voltage can be obtained.
Also in the thermoelectric conversion module 12b, the connecting portion 44 may be curved as in the thermoelectric conversion module 12a shown in FIG. 16, and further, the first portion 40 and the second portion 42 may be curved. Good.
 以下、上述の熱電変換モジュール12、12a、12bの構成部材について、より詳細に説明する。
 なお、熱電変換モジュール12、熱電変換モジュール12a、熱電変換モジュール12bは、基本的な構成は同じであるため、熱電変換モジュール12を代表にして説明する。
 絶縁性基板22は、P型の熱電変換素子24およびN型の熱電変換素子26が形成されるものである。P型の熱電変換素子24およびN型の熱電変換素子26の支持体として機能する。熱電変換モジュール12は電圧が生じるので、絶縁性基板22には電気的絶縁性が要求され、絶縁性基板22には電気的に絶縁性を有する基板が用いられる。絶縁性基板22に要求される電気的絶縁性は、熱電変換モジュール12で発生する電圧により短絡等が生じないことである。絶縁性基板22については熱電変換モジュール12で発生する電圧に応じたものが適宜選択される。
Hereinafter, the constituent members of the thermoelectric conversion modules 12, 12a, and 12b will be described in more detail.
Note that the thermoelectric conversion module 12, the thermoelectric conversion module 12a, and the thermoelectric conversion module 12b have the same basic configuration, and thus the thermoelectric conversion module 12 will be described as a representative.
The insulating substrate 22 is formed with a P-type thermoelectric conversion element 24 and an N-type thermoelectric conversion element 26. It functions as a support for the P-type thermoelectric conversion element 24 and the N-type thermoelectric conversion element 26. Since a voltage is generated in the thermoelectric conversion module 12, the insulating substrate 22 is required to be electrically insulating, and the insulating substrate 22 is an electrically insulating substrate. The electrical insulation required for the insulating substrate 22 is that a short circuit or the like does not occur due to the voltage generated in the thermoelectric conversion module 12. The insulating substrate 22 is appropriately selected according to the voltage generated in the thermoelectric conversion module 12.
 絶縁性基板22は、例えば、プラスチック基板である。プラスチック基板には、プラスチックフィルムを利用することができる。
 利用可能なプラスチックフィルムとしては、具体的には、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-フタレンジカルボキシレート等のポリエステル樹脂、ポリイミド、ポリカーボネート、ポリプロピレン、ポリエーテルスルホン、シクロオレフィンポリマー、ポリエーテルエーテルケトン(PEEK)、トリアセチルセルロース(TAC)等の樹脂、ガラスエポキシ、液晶性ポリエステル等からなるフィルム、またはシート状物もしくは板状物等が例示される。
 中でも、熱伝導率、耐熱性、耐溶剤性、入手の容易性および経済性等の点で、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート等からなるフィルムは、絶縁性基板22に好適に利用される。
The insulating substrate 22 is, for example, a plastic substrate. A plastic film can be used for the plastic substrate.
Specific examples of usable plastic films include polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6-phthalenedicarboxy. Polyester resin such as rate, polyimide, polycarbonate, polypropylene, polyethersulfone, cycloolefin polymer, polyetheretherketone (PEEK), resin such as triacetylcellulose (TAC), glass epoxy, liquid crystalline polyester film, or the like, or A sheet-like object or a plate-like object is exemplified.
Among these, a film made of polyimide, polyethylene terephthalate, polyethylene naphthalate, or the like is suitably used for the insulating substrate 22 in terms of thermal conductivity, heat resistance, solvent resistance, availability, and economy.
 以下、P型の熱電変換層30とN型の熱電変換層32について説明する。
 P型の熱電変換層30とN型の熱電変換層32を構成する熱電変換材料としては、例えば、ニッケルまたはニッケル合金がある。
 ニッケル合金は、温度差を生じることで発電するニッケル合金が、各種、利用可能である。具体的には、バナジウム、クロム、シリコン、アルミニウム、チタン、モリブデン、マンガン、亜鉛、錫、銅、コバルト、鉄、マグネシウム、ジルコニウムなどの1成分、または2成分以上と混合したニッケル合金等が例示される。
 P型の熱電変換層30とN型の熱電変換層32にニッケルまたはニッケル合金を用いる場合、P型の熱電変換層30とN型の熱電変換層32は、ニッケルの含有量が90原子%以上であるのが好ましく、ニッケルの含有量が95原子%以上であるのがより好ましく、ニッケルからなるのが特に好ましい。ニッケルからなるP型の熱電変換層30とN型の熱電変換層32とは、不可避的不純物を有するものも含む。
Hereinafter, the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 will be described.
Examples of the thermoelectric conversion material constituting the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 include nickel or a nickel alloy.
Various nickel alloys that generate electricity by generating a temperature difference can be used. Specific examples include nickel alloys mixed with one component or two or more components such as vanadium, chromium, silicon, aluminum, titanium, molybdenum, manganese, zinc, tin, copper, cobalt, iron, magnesium, and zirconium. The
When nickel or a nickel alloy is used for the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32, the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 have a nickel content of 90 atomic% or more. It is preferable that the nickel content is 95 atomic% or more, and it is particularly preferable that the nickel content is made of nickel. The P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 made of nickel include those having inevitable impurities.
 P型の熱電変換層30の熱電変換材料としては、NiとCrを主成分とするクロメルが典型的なものであり、N型の熱電変換層32の熱電材料としてはCuとNiを主成分とするコンスタンタンが典型的なものである。
 また、P型の熱電変換層30とN型の熱電変換層32としてニッケルまたはニッケル合金を用いる場合であって、電極としてもニッケルまたはニッケル合金を用いる場合には、P型の熱電変換層30とN型の熱電変換層32と接続電極34とを一体的に形成してもよい。
The thermoelectric conversion material of the P-type thermoelectric conversion layer 30 is typically chromel mainly composed of Ni and Cr, and the thermoelectric material of the N-type thermoelectric conversion layer 32 is mainly composed of Cu and Ni. The constantan is typical.
Further, when nickel or a nickel alloy is used as the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 and nickel or a nickel alloy is used as an electrode, the P-type thermoelectric conversion layer 30 and The N-type thermoelectric conversion layer 32 and the connection electrode 34 may be integrally formed.
 P型の熱電変換層30とN型の熱電変換層32のその他の熱電材料としては、例えば、以下の材料がある。なお、括弧内が材料組成を示す。BiTe系(BiTe、SbTe、BiSe及びこれらの化合物)、PbTe系(PbTe、SnTe、AgSbTe、GeTe及びこれらの化合物)、Si-Ge系(Si、Ge、SiGe)、シリサイド系(FeSi、MnSi、CrSi)、スクッテルダイト系(MX、若しくはRM12と記載される化合物、ここでM=Co、Rh、Irを表し、X=As、P、Sbを表し、R=La、Yb、Ceを表す)、遷移金属酸化物系(NaCoO、CaCoO、ZnInO、SrTiO、BiSrCoO、PbSrCoO、CaBiCoO、BaBiCoO)、亜鉛アンチモン系(ZnSb)、ホウ素化合物(CeB、BaB、SrB、CaB、MgB、VB、NiB、CuB、LiB)、クラスター固体(Bクラスター、Siクラスター、Cクラスター、AlRe、AlReSi)、酸化亜鉛系(ZnO)などが挙げられる。また、成膜法は任意であり、スパッタリング法、蒸着法、CVD法、メッキ法またはエアロゾルデポジッション法等の成膜方法を用いることができる。 Examples of other thermoelectric materials for the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 include the following materials. The material composition is shown in parentheses. BiTe system (BiTe, SbTe, BiSe and their compounds), PbTe system (PbTe, SnTe, AgSbTe, GeTe and their compounds), Si-Ge system (Si, Ge, SiGe), Silicide system (FeSi, MnSi, CrSi) ), A skutterudite system (MX 3 or RM 4 X 12 , where M = Co, Rh, Ir represents, X = As, P, Sb, R = La, Yb, Ce Transition metal oxides (NaCoO, CaCoO, ZnInO, SrTiO, BiSrCoO, PbSrCoO, CaBiCoO, BaBiCoO), zinc antimony (ZnSb), boron compounds (CeB, BaB, SrB, CaB, MgB, VB, NiB) , CuB, LiB), cluster solid (B cluster, Si) Raster, C cluster, AlRe, AlReSi), and the like zinc oxide based (ZnO). The film formation method is arbitrary, and a film formation method such as a sputtering method, a vapor deposition method, a CVD method, a plating method, or an aerosol deposition method can be used.
 また、P型の熱電変換層30とN型の熱電変換層32に用いられる熱電変換材料には、塗布または印刷で膜形成可能なペースト化可能な材料として、有機材料を含む公知の熱電変換材料を用いる各種の構成が利用可能である。
 このようなP型の熱電変換層30とN型の熱電変換層32が得られる熱電変換材料としては、具体的には、導電性高分子または導電性ナノ炭素材料等の有機系熱電変換材料が例示される。
 導電性高分子としては、共役系の分子構造を有する高分子化合物(共役系高分子)が例示される。具体的には、ポリアニリン、ポリフェニレンビニレン、ポリピロール、ポリチオフェン、ポリフルオレン、アセチレン、ポリフェニレン等の公知のπ共役高分子等が例示される。特に、ポリジオキシチオフェンは、好適に使用できる。
 導電性ナノ炭素材料としては、具体的には、カーボンナノチューブ(以下、CNTともいう)、カーボンナノファイバー、グラファイト、グラフェン、カーボンナノ粒子等が例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、熱電特性がより良好となる理由から、CNTが好ましく利用される。
The thermoelectric conversion material used for the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 is a known thermoelectric conversion material containing an organic material as a pasteable material that can be formed by coating or printing. Various configurations using can be used.
As a thermoelectric conversion material from which such a P-type thermoelectric conversion layer 30 and an N-type thermoelectric conversion layer 32 are obtained, specifically, an organic thermoelectric conversion material such as a conductive polymer or a conductive nanocarbon material is used. Illustrated.
Examples of the conductive polymer include a polymer compound having a conjugated molecular structure (conjugated polymer). Specific examples include known π-conjugated polymers such as polyaniline, polyphenylene vinylene, polypyrrole, polythiophene, polyfluorene, acetylene, and polyphenylene. In particular, polydioxythiophene can be preferably used.
Specific examples of the conductive nanocarbon material include carbon nanotubes (hereinafter also referred to as CNT), carbon nanofibers, graphite, graphene, and carbon nanoparticles. These may be used alone or in combination of two or more. Among these, CNT is preferably used for the reason that the thermoelectric characteristics are better.
 CNTには、1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT、2枚のグラフェン・シートが同心円状に巻かれた2層CNT、および複数のグラフェン・シートが同心円状に巻かれた多層CNTがある。本発明においては、単層CNT、2層CNT、多層CNTを各々単独で用いてもよく、2種以上を併せて用いてもよい。特に、導電性および半導体特性において優れた性質を持つ単層CNTおよび2層CNTを用いることが好ましく、単層CNTを用いることがより好ましい。
 単層CNTは、半導体性のものであっても、金属性のものであってもよく、両者を併せて用いてもよい。半導体性CNTと金属性CNTとを両方を用いる場合、組成物中の両者の含有比率は、組成物の用途に応じて適宜調整することができる。また、CNTには金属等が内包されていてもよく、フラーレン等の分子が内包されたものを用いてもよい。
CNT is a single-layer CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape, two-layer CNT in which two graphene sheets are concentrically wound, and a plurality of graphene sheets in a concentric circle There are multi-walled CNTs wound in a shape. In the present invention, single-walled CNTs, double-walled CNTs, and multilayered CNTs may be used alone, or two or more kinds may be used in combination. In particular, it is preferable to use single-walled CNT and double-walled CNT having excellent properties in terms of conductivity and semiconductor properties, and more preferably single-walled CNT.
Single-walled CNTs may be semiconducting or metallic, and both may be used in combination. When both semiconducting CNT and metallic CNT are used, the content ratio of both in the composition can be appropriately adjusted according to the use of the composition. The CNT may contain a metal or the like, or may contain a molecule such as fullerene.
 CNTの平均長さは特に限定されず、組成物の用途に応じて適宜選択することができる。具体的には、電極間距離にもよるが、製造容易性、成膜性、導電性等の観点から、CNTの平均長さが0.01~2000μmが好ましく、0.1~1000μmがより好ましく、1~1000μmが特に好ましい。
 また、CNTの直径は特に限定されないが、耐久性、透明性、成膜性、導電性等の観点から、0.4~100nmが好ましく、50nm以下がより好ましく、15nm以下が特に好ましい。
 特に、単層CNTを用いる場合には、0.5~2.2nmが好ましく、は1.0~2.2nmがより好ましく、1.5~2.0nmが特に好ましい。
 得られた導電性組成物中に含まれるCNTには、欠陥のあるCNTが含まれていることがある。このようなCNTの欠陥は、組成物の導電性を低下させるため、低減化することが好ましい。組成物中のCNTの欠陥の量は、ラマンスペクトルのG-バンドとD-バンドの比率G/Dで見積もることができる。G/D比が高いほど欠陥の量が少ないCNT材料であると推定できる。CNTは、組成物のG/D比が10以上であるのが好ましく、30以上であるのがより好ましい。
The average length of CNT is not particularly limited, and can be appropriately selected according to the use of the composition. Specifically, although it depends on the distance between the electrodes, the average length of the CNT is preferably 0.01 to 2000 μm, more preferably 0.1 to 1000 μm from the viewpoints of manufacturability, film formability, conductivity, and the like. 1 to 1000 μm is particularly preferable.
The diameter of the CNT is not particularly limited, but is preferably 0.4 to 100 nm, more preferably 50 nm or less, and particularly preferably 15 nm or less from the viewpoint of durability, transparency, film formability, conductivity, and the like.
In particular, when single-walled CNTs are used, 0.5 to 2.2 nm is preferable, 1.0 to 2.2 nm is more preferable, and 1.5 to 2.0 nm is particularly preferable.
CNTs contained in the obtained conductive composition may contain defective CNTs. Such CNT defects are preferably reduced in order to reduce the conductivity of the composition. The amount of CNT defects in the composition can be estimated by the ratio G / D of the G-band and D-band of the Raman spectrum. It can be estimated that the higher the G / D ratio, the less the amount of defects, the CNT material. The G / D ratio of the CNT is preferably 10 or more, and more preferably 30 or more.
 また、CNTを修飾または処理したCNTも利用可能である。修飾または処理方法としては、フェロセン誘導体または窒素置換フラーレン(アザフラーレン)を内包する方法、イオンドーピング法によりアルカリ金属(カリウム等)または金属元素(インジウム等)をCNTにドープする方法、真空中でCNTを加熱する方法等が例示される。
 また、CNTを利用する場合には、単層CNTおよび多層CNTの他に、カーボンナノホーン、カーボンナノコイル、カーボンナノビーズ、グラファイト、グラフェン、アモルファスカーボン等のナノカーボンが含まれてもよい。
 P型の熱電変換層またはN型の熱電変換層にCNTを利用する場合、P型ドーパントまたはN型ドーパントを含むことが好ましい。
Also, CNTs modified or treated with CNTs can be used. Modification or treatment methods include a method of encapsulating a ferrocene derivative or nitrogen-substituted fullerene (azafullerene), a method of doping an alkali metal (such as potassium) or a metal element (such as indium) into the CNT by an ion doping method, CNT in a vacuum The method etc. which heat this are illustrated.
When CNT is used, in addition to single-walled CNT and multi-walled CNT, nanocarbon such as carbon nanohorn, carbon nanocoil, carbon nanobead, graphite, graphene, and amorphous carbon may be included.
When CNT is used for the P-type thermoelectric conversion layer or the N-type thermoelectric conversion layer, it is preferable to include a P-type dopant or an N-type dopant.
(P型ドーパント)
 P型ドーパントとしては、ハロゲン(ヨウ素、臭素等)、ルイス酸(PF5、AsF5等)、プロトン酸(塩酸、硫酸等)、遷移金属ハロゲン化物(FeCl3、SnCl4等)、金属酸化物(酸化モリブデン、酸化バナジウム等)、有機の電子受容性物質等が例示される。有機の電子受容性物質としては、例えば、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジメチル-7,7,8,8-テトラシアノキノジメタン、2-フルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン等のテトラシアノキノジメタン(TCNQ)誘導体、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン、テトラフルオロ-1,4-ベンゾキノン等のベンゾキノン誘導体等、5,8H-5,8-ビス(ジシアノメチレン)キノキサリン、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル等が好適に例示される。
 中でも、材料の安定性、CNTとの相溶性等の点で、TCNQ(テトラシアノキノジメタン)誘導体またはベンゾキノン誘導体等の有機の電子受容性物質は好適に例示される。
 P型ドーパントおよびN型ドーパントは、いずれも単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(P-type dopant)
P-type dopants include halogens (iodine, bromine, etc.), Lewis acids (PF 5 , AsF 5, etc.), proton acids (hydrochloric acid, sulfuric acid, etc.), transition metal halides (FeCl 3 , SnCl 4 etc.), metal oxides (Molybdenum oxide, vanadium oxide, etc.), organic electron accepting substances and the like are exemplified. Examples of the organic electron accepting substance include 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-dimethyl-7,7,8,8- Tetracyanoquinodimethane such as tetracyanoquinodimethane, 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (TCNQ) derivatives, 2,3-dichloro-5,6-dicyano-p-benzoquinone, benzoquinone derivatives such as tetrafluoro-1,4-benzoquinone, etc., 5,8H-5,8-bis (dicyanomethylene) quinoxaline, Preferred examples include dipyrazino [2,3-f: 2 ′, 3′-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile.
Among them, organic electron-accepting substances such as TCNQ (tetracyanoquinodimethane) derivatives or benzoquinone derivatives are preferably exemplified in terms of material stability, compatibility with CNTs, and the like.
Any of the P-type dopant and the N-type dopant may be used alone or in combination of two or more.
(N型ドーパント)
 N型ドーパントとしては、(1)ナトリウム、カリウム等のアルカリ金属、(2)トリフェニルホスフィン、エチレンビス(ジフェニルホスフィン)等のホスフィン類、(3)ポリビニルピロリドン、ポリエチレンイミン等のポリマー類等の公知の材料を用いることができる。また、例えば、ポリエチレングリコール型の高級アルコールエチレンオキサイド付加物、フェノールまたはナフトール等のエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪酸アミドエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物、ジメチルシロキサン-エチレンオキサイドブロックコポリマー、ジメチルシロキサン-(プロピレンオキサイド-エチレンオキサイド)ブロックコポリマー等、または多価アルコール型のグリセロールの脂肪酸エステル、ペンタエリスリトールの脂肪酸エステル、ソルビトールおよびソルビタンの脂肪酸エステル、ショ糖の脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミン類の脂肪酸アミド等が挙げられる。また、アセチレングリコール系とアセチレンアルコール系のオキシエチレン付加物、フッ素系、シリコーン系等の界面活性剤も同様に使用することができる。なお、市販品を使用することもできる。
(N-type dopant)
Known N-type dopants include (1) alkali metals such as sodium and potassium, (2) phosphines such as triphenylphosphine and ethylenebis (diphenylphosphine), and (3) polymers such as polyvinylpyrrolidone and polyethyleneimine. These materials can be used. Also, for example, polyethylene glycol type higher alcohol ethylene oxide adducts, ethylene oxide adducts such as phenol or naphthol, fatty acid ethylene oxide adducts, polyhydric alcohol fatty acid ester ethylene oxide adducts, higher alkylamine ethylene oxide adducts, fatty acids Amide ethylene oxide adduct, fat and oil ethylene oxide adduct, polypropylene glycol ethylene oxide adduct, dimethylsiloxane-ethylene oxide block copolymer, dimethylsiloxane- (propylene oxide-ethylene oxide) block copolymer, etc., or polyhydric alcohol type glycerol Fatty acid ester, fatty acid ester of pentaerythritol, fatty acid ester of sorbitol and sorbitan Fatty acid esters of sucrose, alkyl ethers of polyhydric alcohols, fatty acid amides of alkanolamines. Also, acetylene glycol-based and acetylene alcohol-based oxyethylene adducts, fluorine-based and silicone-based surfactants can be used in the same manner. Commercial products can also be used.
 熱電変換素子においては、樹脂材料(バインダ)に、前述のような熱電変換材料を分散してなる熱電変換層も好適に利用される。
 中でも、樹脂材料に導電性ナノ炭素材料を分散してなる熱電変換層は、より好適に例示される。その中でも、高い導電性が得られる等の点で、樹脂材料にCNTを分散してなる熱電変換層は、特に好適に例示される。
 樹脂材料は、公知の各種の非導電性の樹脂材料(ポリマー)が利用可能である。
 具体的には、ビニル化合物、(メタ)アクリレート化合物、カーボネート化合物、エステル化合物、エポキシ化合物、シロキサン化合物、ゼラチン等の公知の各種の樹脂材料が利用可能である。
In the thermoelectric conversion element, a thermoelectric conversion layer obtained by dispersing the above-described thermoelectric conversion material in a resin material (binder) is also preferably used.
Especially, the thermoelectric conversion layer formed by disperse | distributing a conductive nano carbon material to a resin material is illustrated more suitably. Among these, a thermoelectric conversion layer in which CNT is dispersed in a resin material is particularly preferably exemplified in that high conductivity is obtained.
Various known non-conductive resin materials (polymers) can be used as the resin material.
Specifically, various known resin materials such as vinyl compounds, (meth) acrylate compounds, carbonate compounds, ester compounds, epoxy compounds, siloxane compounds, and gelatin can be used.
 より具体的には、ビニル化合物としては、ポリスチレン、ポリビニルナフタレン、ポリ酢酸ビニル、ポリビニルフェノール、ポリビニルブチラール等が例示される。(メタ)アクリレート化合物としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリフェノキシ(ポリ)エチレングリコール(メタ)アクリレート、ポリベンジル(メタ)アクリレート等が例示される。カーボネート化合物としては、ビスフェノールZ型ポリカーボネート、ビスフェノールC型ポリカーボネート等が例示される。エステル化合物としては、非晶性ポリエステルが例示される。 More specifically, examples of the vinyl compound include polystyrene, polyvinyl naphthalene, polyvinyl acetate, polyvinyl phenol, polyvinyl butyral, and the like. Examples of the (meth) acrylate compound include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polyphenoxy (poly) ethylene glycol (meth) acrylate, polybenzyl (meth) acrylate and the like. Examples of the carbonate compound include bisphenol Z-type polycarbonate and bisphenol C-type polycarbonate. As the ester compound, amorphous polyester is exemplified.
 好ましくは、ポリスチレン、ポリビニルブチラール、(メタ)アクリレート化合物、カーボネート化合物、エステル化合物が例示され、より好ましくは、ポリビニルブチラール、ポリフェノキシ(ポリ)エチレングリコール(メタ)アクリレート、ポリベンジル(メタ)アクリレート、非晶性ポリエステルが例示される。
 樹脂材料に熱電変換材料を分散してなる熱電変換層において、樹脂材料と熱電変換材料との量比は、用いる材料、要求される熱電変換効率、印刷に影響する溶液の粘度または固形分濃度等に応じて、適宜設定すればよい。
 また、熱電変換素子における熱電変換層の別の構成として、主にCNTと界面活性剤とからなる熱電変換層も好適に利用される。
 熱電変換層をCNTと界面活性剤とで構成することにより、熱電変換層を界面活性剤を添加した塗布組成物で形成できる。そのため、熱電変換層の形成を、CNTを無理なく分散した塗布組成物で行うことができる。その結果、長くて欠陥が少ないCNTを多く含む熱電変換層によって、良好な熱電変換性能が得られる。
Preferred examples include polystyrene, polyvinyl butyral, (meth) acrylate compounds, carbonate compounds, and ester compounds, and more preferred are polyvinyl butyral, polyphenoxy (poly) ethylene glycol (meth) acrylate, polybenzyl (meth) acrylate, and amorphous. An example is a reactive polyester.
In the thermoelectric conversion layer in which the thermoelectric conversion material is dispersed in the resin material, the quantity ratio of the resin material to the thermoelectric conversion material is the material used, the required thermoelectric conversion efficiency, the viscosity or solid content concentration of the solution affecting printing, etc. It may be set appropriately according to the above.
As another configuration of the thermoelectric conversion layer in the thermoelectric conversion element, a thermoelectric conversion layer mainly composed of CNTs and a surfactant is also preferably used.
By constituting the thermoelectric conversion layer with CNT and a surfactant, the thermoelectric conversion layer can be formed with a coating composition to which a surfactant is added. Therefore, the thermoelectric conversion layer can be formed with a coating composition in which CNTs are reasonably dispersed. As a result, good thermoelectric conversion performance can be obtained by the thermoelectric conversion layer containing many CNTs that are long and have few defects.
 界面活性剤は、CNTを分散させる機能を有するものであれば、公知の界面活性剤を使用することができる。より具体的には、界面活性剤は、水、極性溶媒、水と極性溶媒との混合物に溶解し、CNTを吸着する基を有するものであれば、各種の界面活性剤が利用可能である。
 従って、界面活性剤は、イオン性でも非イオン性でもよい。また、イオン性の界面活性剤は、カチオン性、アニオン性および両性のいずれでもよい。
 一例として、アニオン性界面活性剤としては、ドデシルベンゼンスルホン酸等のアルキルベンゼンスルホン酸塩、ドデシルフェニルエーテルスルホン酸塩等の芳香族スルホン酸系界面活性剤、モノソープ系アニオン性界面活性剤、エーテルサルフェート系界面活性剤、フォスフェート系界面活性剤およびでデオキシコール酸ナトリウムまたはコール酸ナトリウム等のカルボン酸系界面活性剤、カルボキシメチルセルロースおよびその塩(ナトリウム塩、アンモニウム塩等)、ポリスチレンスルホン酸アンモニウム塩、ポリスチレンスルホン酸ナトリウム塩等の水溶性ポリマー等が例示される。
As the surfactant, a known surfactant can be used as long as it has a function of dispersing CNTs. More specifically, various surfactants can be used as long as they have a group that dissolves in water, a polar solvent, or a mixture of water and a polar solvent and adsorbs CNTs.
Accordingly, the surfactant may be ionic or nonionic. The ionic surfactant may be any of cationic, anionic and amphoteric.
Examples of the anionic surfactant include alkylbenzene sulfonates such as dodecylbenzene sulfonic acid, aromatic sulfonic acid surfactants such as dodecyl phenyl ether sulfonate, monosoap anionic surfactants, ether sulfates Surfactants, phosphate surfactants and carboxylic acid surfactants such as sodium deoxycholate or sodium cholate, carboxymethylcellulose and salts thereof (sodium salt, ammonium salt, etc.), ammonium polystyrene sulfonate, Examples thereof include water-soluble polymers such as polystyrene sulfonate sodium salt.
 カチオン性界面活性剤としては、アルキルアミン塩、第四級アンモニウム塩等が例示される。両性界面活性剤としては、アルキルベタイン系界面活性剤、アミンオキサイド系界面活性剤等が例示される。
 さらに、非イオン性界面活性剤としては、ソルビタン脂肪酸エステル等の糖エステル系界面活性剤、ポリオキシエチレン樹脂酸エステルどの脂肪酸エステル系界面活性剤、ポリオキシエチレンアルキルエーテル等のエーテル系界面活性剤等が例示される。
 中でも、イオン性の界面活性剤は好適に利用され、その中でも、コール酸塩またはデオキシコール酸塩は好適に利用される。
Examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts. Examples of amphoteric surfactants include alkyl betaine surfactants and amine oxide surfactants.
In addition, examples of nonionic surfactants include sugar ester surfactants such as sorbitan fatty acid esters, fatty acid ester surfactants such as polyoxyethylene resin acid esters, ether surfactants such as polyoxyethylene alkyl ether, and the like. Is exemplified.
Among these, ionic surfactants are preferably used, and among them, cholate or deoxycholate is preferably used.
 この熱電変換層においては、界面活性剤/CNTの質量比が5以下であるのが好ましく、3以下であるのがより好ましい。
 界面活性剤/CNTの質量比を5以下とすることにより、より高い熱電変換性能が得られる等の点で好ましい。
 なお、有機材料からなる熱電変換層は、必要に応じて、SiO2、TiO2、Al23、ZrO2等の無機材料を有してもよい。
 なお、熱電変換層が、無機材料を含有する場合には、その含有量は20質量%以下であるのが好ましく、10質量%以下であるのがより好ましい。
 熱電変換素子において、熱電変換層の厚さ、面方向の大きさ、絶縁性基板に対する面方向の面積率等は、熱電変換層の形成材料、熱電変換素子の大きさ等に応じて、適宜設定すればよい。
In this thermoelectric conversion layer, the surfactant / CNT mass ratio is preferably 5 or less, and more preferably 3 or less.
Setting the mass ratio of surfactant / CNT to 5 or less is preferable in that higher thermoelectric conversion performance can be obtained.
Incidentally, the thermoelectric conversion layer made of an organic material, optionally, SiO 2, TiO 2, Al 2 O 3, may have an inorganic material such as ZrO 2.
In addition, when a thermoelectric conversion layer contains an inorganic material, it is preferable that the content is 20 mass% or less, and it is more preferable that it is 10 mass% or less.
In the thermoelectric conversion element, the thickness of the thermoelectric conversion layer, the size in the surface direction, the area ratio in the surface direction with respect to the insulating substrate, etc. are appropriately set according to the forming material of the thermoelectric conversion layer, the size of the thermoelectric conversion element, etc. do it.
 次に、熱電材料層の形成方法について説明する。
 調製した熱電変換層となる塗布組成物を、形成する熱電変換層に応じてパターンニングして塗布する。この塗布組成物の塗布は、マスクを使う方法、印刷法等、公知の方法で行えばよい。
 塗布組成物を塗布したら、樹脂材料に応じた方法で塗布組成物を乾燥して、熱電変換層を形成する。なお、必要に応じて、塗布組成物を乾燥した後に、紫外線照射等による塗布組成物(樹脂材料)の硬化を行ってもよい。
 また、絶縁性基板表面全面に、調製した熱電変換層となる塗布組成物を塗布し、乾燥した後、エッチング等によって、熱電変換層をパターン形成してもよい。
 絶縁性基板両面に熱電変換層を成膜するには、上述のいずれかの方法により片面の印刷後、裏面に同じように成膜すれば良い。
Next, a method for forming the thermoelectric material layer will be described.
The prepared coating composition to be the thermoelectric conversion layer is patterned and applied according to the thermoelectric conversion layer to be formed. The coating composition may be applied by a known method such as a method using a mask or a printing method.
After applying the coating composition, the coating composition is dried by a method according to the resin material to form a thermoelectric conversion layer. In addition, after drying a coating composition as needed, you may cure the coating composition (resin material) by ultraviolet irradiation etc.
Further, the thermoelectric conversion layer may be patterned by etching or the like after applying the prepared coating composition to be the thermoelectric conversion layer on the entire surface of the insulating substrate and drying it.
In order to form the thermoelectric conversion layers on both surfaces of the insulating substrate, after the printing on one side by any of the above-described methods, the film may be similarly formed on the back surface.
 熱電変換モジュール12、12aの場合は、絶縁性基板22の一方の面にP型の熱電変換層30をパターン形成後、絶縁性基板22の他方の面にN型の熱電変換層32をパターン形成する。なお、P型の熱電変換層30とN型の熱電変換層32のパターン形成順は、逆であってもよい。
 他の熱電変換モジュール12bの場合、絶縁性基板22の第1の部40の表面22aにP型の熱電変換層30をパターン形成し、その後N型の熱電変換層32をパターン形成する。
 次に、絶縁性基板22の第2の部42の裏面22bにP型の熱電変換層30をパターン形成し、その後N型の熱電変換層32をパターン形成する。なお、P型の熱電変換層30とN型の熱電変換層32のパターン形成順は、逆であってもよい。
 熱電変換モジュール12、12aは、熱電変換モジュール12bに比べて、P型の熱電変換層30とN型の熱電変換層32のパターン形成工程を半分にすることが可能であり、製造コストを削減することができる。
In the case of the thermoelectric conversion modules 12 and 12a, after patterning the P-type thermoelectric conversion layer 30 on one surface of the insulating substrate 22, the N-type thermoelectric conversion layer 32 is pattern-formed on the other surface of the insulating substrate 22. To do. The pattern formation order of the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 may be reversed.
In the case of another thermoelectric conversion module 12b, the P-type thermoelectric conversion layer 30 is patterned on the surface 22a of the first portion 40 of the insulating substrate 22, and then the N-type thermoelectric conversion layer 32 is patterned.
Next, the P-type thermoelectric conversion layer 30 is patterned on the back surface 22b of the second portion 42 of the insulating substrate 22, and then the N-type thermoelectric conversion layer 32 is patterned. The pattern formation order of the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 may be reversed.
The thermoelectric conversion modules 12 and 12a can halve the pattern formation process of the P-type thermoelectric conversion layer 30 and the N-type thermoelectric conversion layer 32 and reduce the manufacturing cost compared to the thermoelectric conversion module 12b. be able to.
 なお、水に、CNTと界面活性剤とを添加して、分散(溶解)してなる塗布組成物によって熱電変換層を形成する場合には、塗布組成物によって熱電変換層を形成した後、熱電変換層を界面活性剤を溶解する溶剤に浸漬するか、または熱電変換層を界面活性剤を溶解する溶剤で洗浄し、その後、乾燥することで、熱電変換層を形成するのが好ましい。これにより、熱電変換層から界面活性剤を除去して、界面活性剤/CNTの質量比が極めて小さい、より好ましくは界面活性剤が存在しない、熱電変換層を形成できる。熱電変換層は、印刷によってパターン形成することが好ましい。 In addition, when forming a thermoelectric conversion layer with the coating composition formed by adding CNT and a surfactant to water and dispersing (dissolving) the thermoelectric conversion layer after forming the thermoelectric conversion layer with the coating composition. It is preferable to form the thermoelectric conversion layer by immersing the conversion layer in a solvent that dissolves the surfactant, or by washing the thermoelectric conversion layer with a solvent that dissolves the surfactant and then drying. Thereby, the surfactant is removed from the thermoelectric conversion layer, and a thermoelectric conversion layer in which the surfactant / CNT mass ratio is extremely small, more preferably no surfactant is present, can be formed. The thermoelectric conversion layer is preferably patterned by printing.
 印刷方法は、スクリーン印刷、メタルマスク印刷等の公知の各種の印刷法が利用可能である。なお、CNTを含有する塗布組成物を用いて熱電変換層をパターン形成する場合は、メタルマスク印刷を用いるのがより好ましい。印刷条件は、用いる塗布組成物の物性(固形分濃度、粘度、粘弾性物性)、印刷版の開口サイズ、開口数、開口形状、印刷面積等により、適宜設定すればよい。具体的には、スキージのアタック角度は、50°以下が好ましく、40°以下がより好ましく、30°以下が特に好ましい。スキージは、斜め研磨スキージ、剣スキージ、角スキージ、平スキージ、メタルスキージ等を使用することができる。スキージ方向(印刷方向)は、熱電変換素子の直列接続方向と同方向とするのが好ましい。クリアランスは0.1~3.0mmが好ましく、0.5~2.0mmがより好ましい。印圧は0.1~0.5MPa、スキージ押し込み量は0.1~3mmで行うことができる。このような条件で印刷することにより、膜厚が1μm以上のCNTを含有する熱電変換層パターンを好適に形成することができる。 As the printing method, various known printing methods such as screen printing and metal mask printing can be used. In addition, when pattern-forming a thermoelectric conversion layer using the coating composition containing CNT, it is more preferable to use metal mask printing. The printing conditions may be appropriately set depending on the physical properties (solid content concentration, viscosity, viscoelastic physical properties) of the coating composition to be used, the opening size of the printing plate, the number of openings, the opening shape, the printing area, and the like. Specifically, the attack angle of the squeegee is preferably 50 ° or less, more preferably 40 ° or less, and particularly preferably 30 ° or less. As the squeegee, an oblique polishing squeegee, a sword squeegee, a square squeegee, a flat squeegee, a metal squeegee or the like can be used. The squeegee direction (printing direction) is preferably the same direction as the serial connection direction of the thermoelectric conversion elements. The clearance is preferably 0.1 to 3.0 mm, more preferably 0.5 to 2.0 mm. The printing pressure can be 0.1 to 0.5 MPa, and the squeegee push-in amount can be 0.1 to 3 mm. By printing under such conditions, a thermoelectric conversion layer pattern containing CNTs having a film thickness of 1 μm or more can be suitably formed.
 接続電極34は、熱電変換材料層のパターンの温度差方向の両端に形成し、複数の熱電変換材料パターン間を電気的に接続する。接続電極34は、導電性材料であれば、特に限定されるものではなく、いずれの材料を用いてもよい。接続電極34を構成する材料としては、Al、Cu、Ag、Au、Pt、Cr、Ni、半田といった金属材料が好ましい。導電性等の観点から接続電極34は、銅で構成することが好ましい。また、接続電極34は、銅合金で構成してもよい。 The connection electrodes 34 are formed at both ends of the thermoelectric conversion material layer pattern in the temperature difference direction, and electrically connect the plurality of thermoelectric conversion material patterns. The connection electrode 34 is not particularly limited as long as it is a conductive material, and any material may be used. The material constituting the connection electrode 34 is preferably a metal material such as Al, Cu, Ag, Au, Pt, Cr, Ni, or solder. The connection electrode 34 is preferably made of copper from the viewpoint of conductivity or the like. Further, the connection electrode 34 may be made of a copper alloy.
 貫通電極28は、上述のようにスルーホール27を形成して、スルーホール27内を導電性材料で充填することにより形成されるものである。貫通電極28は絶縁性基板22の両面になる接続電極34を電気的に接続するものである。
 導電性等の観点から貫通電極28は、銅で構成することが好ましい。貫通電極28を接続電極34と同じく銅で構成することで、抵抗損失等を抑制することができる。また、貫通電極28は、銅合金で構成してもよい。
 スルーホール27は、NC(numerically controlled)ドリリング、レーザー加工、化学エッチング、プラズマエッチング法等により形成できる。スルーホール27内の導電性材料による充填には、Cuメッキ等が用いられる。
The through electrode 28 is formed by forming the through hole 27 as described above and filling the through hole 27 with a conductive material. The through electrode 28 is for electrically connecting the connection electrodes 34 on both sides of the insulating substrate 22.
The through electrode 28 is preferably made of copper from the viewpoint of conductivity or the like. Like the connection electrode 34, the through electrode 28 is made of copper, so that resistance loss and the like can be suppressed. The through electrode 28 may be made of a copper alloy.
The through hole 27 can be formed by NC (numerically controlled) drilling, laser processing, chemical etching, plasma etching, or the like. For filling the through hole 27 with a conductive material, Cu plating or the like is used.
(使用形態)
 使用形態としては、図1に示す熱電変換装置10および図2に示す熱電変換装置10aがあるが、これに限定されるものではない。
 熱電変換モジュールは、ステンレス、銅、アルミニウム、アルミニウム合金等の公知の高熱伝導性材料からなるフレームに、熱電変換素子を形成した絶縁性基板の端部を接触させ、フレームを高温部に接触させることで、高温部に接触した端部から、反対側の端部方向に熱流が形成され、発電を行うことができる。反対側の端部にも、ステンレス、銅、アルミニウム、アルミニウム合金等の公知の高熱伝導性材料からなるフレームを接触させ、さらにフレームに放熱フィンを取り付けることで、絶縁性基板の両端の温度差を大きくすることができ、発電量を向上することができる。
 熱電変換モジュールを熱源に接着し、発電する際には、熱伝導シート、熱伝導接着シートまたは熱伝導性接着剤を用いてもよい。
(Usage form)
Examples of usage include the thermoelectric conversion device 10 shown in FIG. 1 and the thermoelectric conversion device 10a shown in FIG. 2, but are not limited thereto.
In the thermoelectric conversion module, the end of the insulating substrate on which the thermoelectric conversion element is formed is brought into contact with a frame made of a known high thermal conductivity material such as stainless steel, copper, aluminum, aluminum alloy, etc., and the frame is brought into contact with the high temperature portion. Thus, a heat flow is formed from the end portion in contact with the high temperature portion toward the opposite end portion, and power generation can be performed. A frame made of a known high thermal conductivity material such as stainless steel, copper, aluminum, aluminum alloy or the like is also brought into contact with the opposite end, and a heat radiating fin is attached to the frame, so that the temperature difference between both ends of the insulating substrate can be reduced. It can be increased and the amount of power generation can be improved.
When the thermoelectric conversion module is bonded to a heat source to generate power, a heat conductive sheet, a heat conductive adhesive sheet, or a heat conductive adhesive may be used.
 熱電変換モジュールの加熱側または冷却側に貼付して用いられる熱伝導シート、熱伝導接着シートおよび熱伝導性接着剤は特に限定されるものではない。従って、市販されている熱伝導接着シートまたは熱伝導性接着剤を用いることができる。熱伝導接着シートとしては、例えば、信越シリコーン社製のTC-50TXS2、住友スリーエム社製のハイパーソフト放熱材 5580H、電気化学工業社製のBFG20A、日東電工社製のTR5912F等を用いることができる。なお、耐熱性の観点から、シリコーン系粘着剤からなる熱伝導接着シートが好ましい。熱伝導性接着剤としては、例えば、スリーエム社製のスコッチ・ウェルドEW2070、アイネックス社製のTA-01、シーマ電子社製のTCA-4105、TCA-4210、HY-910、薩摩総研社製のSST2-RSMZ、SST2-RSCSZ、R3CSZ、R3MZ等を用いることができる。 The heat conductive sheet, the heat conductive adhesive sheet, and the heat conductive adhesive used by being attached to the heating side or the cooling side of the thermoelectric conversion module are not particularly limited. Therefore, a commercially available heat conductive adhesive sheet or heat conductive adhesive can be used. As the heat conductive adhesive sheet, for example, TC-50TXS2 manufactured by Shin-Etsu Silicone Co., Ltd., Hypersoft heat dissipation material 5580H manufactured by Sumitomo 3M Co., Ltd., BFG20A manufactured by Denki Kagaku Kogyo Co., Ltd., TR5912F manufactured by Nitto Denko Corporation and the like can be used. In addition, the heat conductive adhesive sheet which consists of silicone type adhesives from a heat resistant viewpoint is preferable. Examples of the thermally conductive adhesive include Scotch Weld EW 2070 manufactured by 3M, TA-01 manufactured by Inex, TCA-4105, TCA-4210, HY-910 manufactured by Cima Electronics, and SST2 manufactured by Satsuma Research Institute. -RSMZ, SST2-RSCSZ, R3CSZ, R3MZ, etc. can be used.
 熱伝導接着シートまたは熱伝導性接着剤を用いることで、熱源との密着性が向上して熱電変換モジュールの加熱側の表面温度が高くなる、冷却効率が向上して熱電変換モジュールの冷却側の表面温度を低くできる等の効果により、発電量を高くすることができる。
 さらに、熱電変換モジュールの冷却側の表面には、ステンレス、銅、アルミニウム、アルミニウム合金等の公知の材料からなる放熱フィン(ヒートシンク)または放熱シートを設けてもよい。放熱フィン等を用いることで、熱電変換モジュールの低温側をより好適に冷却することができ、熱源側と冷却側との温度差が大きくなり、熱電効率がより向上する点で好ましい。
By using the heat conductive adhesive sheet or the heat conductive adhesive, the adhesion with the heat source is improved and the surface temperature on the heating side of the thermoelectric conversion module is increased, the cooling efficiency is improved and the cooling side of the thermoelectric conversion module is improved. Due to the effect that the surface temperature can be lowered, the power generation amount can be increased.
Furthermore, you may provide the radiation fin (heat sink) or heat radiation sheet | seat which consists of well-known materials, such as stainless steel, copper, aluminum, aluminum alloy, on the surface of the cooling side of a thermoelectric conversion module. By using a radiation fin or the like, the low temperature side of the thermoelectric conversion module can be more suitably cooled, and the temperature difference between the heat source side and the cooling side becomes large, which is preferable in terms of further improving thermoelectric efficiency.
 放熱フィンとしては、太陽金網社製のT-Wing、事業創造研究所製のFLEXCOOL、コルゲートフィン、オフセットフィン、ウェービングフィン、スリットフィン、フォールディングフィン等の各種フィン等の公知のフィンを用いることができる。特に、フィン高さのあるフォールディングフィンを用いるのが好ましい。
 放熱フィンのフィン高さとしては10~56mm、フィンピッチとしては2~10mm、板厚としては0.1~0.5mmが好ましく、放熱特性が高く、熱電変換モジュールの冷却ができ発電量が高くなる点で、フィン高さが25mm以上であるのがより好ましい。また、フィンのフレキシブル性が高い、軽量である等の点で、板厚0.1~0.3mmのアルミニウム製を用いるのが好ましい。
 また、放熱シートとしては、パナソニック社製のPSGグラファイトシート、沖電線社製のクールスタッフ、セラミッション社製のセラックα等の公知の放熱シートを用いることができる。
 なお、熱電変換モジュールを、温度差を利用した熱電変換装置に用いた例について説明したが、これに限定されるものではない。例えば、通電によって冷却する冷却装置として利用することもできる。
As the heat radiating fins, known fins such as T-Wing manufactured by Taiyo Wire Mesh Co., Ltd., FLEXCOOL manufactured by the Business Creation Laboratory, corrugated fins, offset fins, waving fins, slit fins, folding fins, and the like can be used. . In particular, it is preferable to use a folding fin having a fin height.
The fin height of the heat dissipating fin is preferably 10 to 56 mm, the fin pitch is 2 to 10 mm, and the plate thickness is preferably 0.1 to 0.5 mm. The heat dissipating characteristics are high, the thermoelectric conversion module can be cooled, and the power generation amount is high. In this respect, it is more preferable that the fin height is 25 mm or more. In addition, it is preferable to use aluminum having a plate thickness of 0.1 to 0.3 mm from the viewpoint of high fin flexibility and light weight.
As the heat dissipation sheet, a known heat dissipation sheet such as a PSG graphite sheet manufactured by Panasonic Corporation, a cool staff manufactured by Oki Electric Cable Co., or a shellac α manufactured by Ceramission Corporation can be used.
In addition, although the example which used the thermoelectric conversion module for the thermoelectric conversion apparatus using a temperature difference was demonstrated, it is not limited to this. For example, it can also be used as a cooling device that cools by energization.
 以下、熱電変換モジュールについて、より具体的に説明する。 Hereinafter, the thermoelectric conversion module will be described more specifically.
[P型の熱電変換層となる塗布組成物の調製]
 単層CNTとしてEC(名城ナノカーボン社製、CNTの平均長さ1μm以上)と、デオキシコール酸ナトリウムとを、質量比がCNT/デオキシコール酸ナトリウムの比で25/75となるように、20mlの水に加えて調整する。
 この溶液を、メカニカルホモジナイザーを用いて、7分間混合して予備混合物を得る。
 得られた予備混合物を、薄膜旋回型高速ミキサーを用いて、10℃の恒温層中、周速10m/秒で2分間、次いで周速40m/秒で5分間、高速旋回薄膜分散法で分散処理して、熱電変換層となる塗布組成物を調製する。
 P型熱電変換材料のゼーベック係数は、アドバンス理工株式会社製ZEM-3により評価した結果50μV/Kである。
[Preparation of coating composition for P-type thermoelectric conversion layer]
20 ml of EC (manufactured by Meijo Nanocarbon Co., Ltd., average CNT length of 1 μm or more) and sodium deoxycholate as single-walled CNTs so that the mass ratio is 25/75 as the ratio of CNT / sodium deoxycholate Adjust in addition to the water.
This solution is mixed for 7 minutes using a mechanical homogenizer to obtain a premix.
Disperse the obtained pre-mixture using a high-speed swirling thin film dispersion method in a constant temperature layer at 10 ° C. for 2 minutes at a peripheral speed of 10 m / sec and then at a peripheral speed of 40 m / sec for 5 minutes using a thin-film swirling high-speed mixer. Then, a coating composition to be a thermoelectric conversion layer is prepared.
The Seebeck coefficient of the P-type thermoelectric conversion material is 50 μV / K as a result of evaluation by ZEM-3 manufactured by Advance Riko Co., Ltd.
[N型の熱電変換層となる塗布組成物の調製]
 単層CNTとしてEC(名城ナノカーボン社製、CNTの平均長さ1μm以上)と、エマルゲン350(花王社製)とを、質量比がCNT/エマルゲン250の比で25/75となるように、20mlの水に加えて調整する。
 この溶液を、メカニカルホモジナイザーを用いて、7分間混合して予備混合物を得る。
 得られた予備混合物を、薄膜旋回型高速ミキサーを用いて、10℃の恒温層中、周速10m/秒で2分間、次いで周速40m/秒で5分間、高速旋回薄膜分散法で分散処理して、熱電変換層となる塗布組成物を調製する。
 N型熱電変換材料のゼーベック係数は、アドバンス理工株式会社製ZEM-3により評価した結果-30μV/Kである。
[Preparation of coating composition to be an N-type thermoelectric conversion layer]
As single-walled CNT, EC (manufactured by Meijo Nanocarbon Co., Ltd., average length of 1 μm or more of CNT) and Emulgen 350 (manufactured by Kao Co., Ltd.) so that the mass ratio is 25/75 in the ratio of CNT / Emulgen 250, Adjust to 20 ml of water.
This solution is mixed for 7 minutes using a mechanical homogenizer to obtain a premix.
Disperse the obtained pre-mixture using a high-speed swirling thin film dispersion method in a constant temperature layer at 10 ° C. for 2 minutes at a peripheral speed of 10 m / sec and then at a peripheral speed of 40 m / sec for 5 minutes using a thin-film swirling high-speed mixer. Then, a coating composition to be a thermoelectric conversion layer is prepared.
The Seebeck coefficient of the N-type thermoelectric conversion material is -30 μV / K as a result of evaluation by ZEM-3 manufactured by Advance Riko Co., Ltd.
[絶縁性基板]
 12.5μm厚のポリイミド基板の両面に12μm厚の銅層52(図10参照)を形成した、銅基板50(図10参照)を用意する。ポリイミド基板が絶縁性基板22(図10参照)である。
 次に、銅基板50の一方の銅層52をフォトリソグラフィー法によりエッチングして、スルーホール形成部の位置に穴54(図11参照)を形成する。次に、ポリイミド基板をエッチングしてスルーホール27(図12参照)を形成する。次に、スルーホール27に銅のスルーホールメッキを施し、貫通電極28(図13参照)を形成する。スルーホールメッキは、無電解メッキ、および電解メッキによって行う。
 次に、一方の銅層52(図13参照)をフォトリソグラフィー法によりエッチングして、接続電極34(図14参照)をパターン形成する。次に、他方の銅層52(図14参照)をフォトリソグラフィー法によりエッチングして、接続電極34(図15参照)をパターン形成する。
[Insulating substrate]
A copper substrate 50 (see FIG. 10) is prepared by forming a 12 μm thick copper layer 52 (see FIG. 10) on both sides of a 12.5 μm thick polyimide substrate. The polyimide substrate is the insulating substrate 22 (see FIG. 10).
Next, one copper layer 52 of the copper substrate 50 is etched by photolithography to form a hole 54 (see FIG. 11) at the position of the through-hole forming portion. Next, the polyimide substrate is etched to form through holes 27 (see FIG. 12). Next, the through hole 27 is plated with copper through holes to form the through electrodes 28 (see FIG. 13). Through-hole plating is performed by electroless plating or electrolytic plating.
Next, one of the copper layers 52 (see FIG. 13) is etched by photolithography to pattern the connection electrodes 34 (see FIG. 14). Next, the other copper layer 52 (see FIG. 14) is etched by photolithography to pattern the connection electrode 34 (see FIG. 15).
[熱電変換モジュール基板の作製]
 絶縁性基板22(図5参照)の一方の面に、メタルマスク印刷によってP型の熱電変換層30(図5参照)を形成する。
 メタルマスク印刷によって、アタック角度20°、スキージ方向は熱電変換素子の直列接続方向、クリアランス1.5mm、印圧0.3MPa、押込み量0.1mmの条件で、塗布組成物のパターンを形成し、50℃で5分間、120℃で5分間乾燥する。
 次いで、絶縁性基板22(図6参照)のもう一方の面にメタルマスク印刷によってN型の熱電変換層32(図6参照)を形成する。印刷条件は、P型の熱電変換層と同じである。
 次いで、エタノールに1時間浸漬させることで、P型の熱電変換層およびN型の熱電変換層からデオキシコール酸ナトリウムを除去し、50℃で10分間、120℃で120分間乾燥させる。乾燥後のP型の熱電変換層およびN型の熱電変換層は、それぞれ膜厚が10μmである。
[Production of thermoelectric conversion module substrate]
A P-type thermoelectric conversion layer 30 (see FIG. 5) is formed on one surface of the insulating substrate 22 (see FIG. 5) by metal mask printing.
By metal mask printing, an attack angle of 20 °, a squeegee direction is a serial connection direction of thermoelectric conversion elements, a clearance of 1.5 mm, a printing pressure of 0.3 MPa, and an indentation amount of 0.1 mm to form a coating composition pattern, Dry at 50 ° C. for 5 minutes and 120 ° C. for 5 minutes.
Next, an N-type thermoelectric conversion layer 32 (see FIG. 6) is formed on the other surface of the insulating substrate 22 (see FIG. 6) by metal mask printing. The printing conditions are the same as for the P-type thermoelectric conversion layer.
Next, by immersing in ethanol for 1 hour, sodium deoxycholate is removed from the P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer, and dried at 50 ° C. for 10 minutes and 120 ° C. for 120 minutes. Each of the P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer after drying has a thickness of 10 μm.
[熱電変換モジュールの折り込み]
 次に、絶縁性基板22(図4参照)を、接続電極34(図4参照)の位置で、山折りと谷折りを繰り返し、折込みを入れ蛇腹構造とする。このようにして、熱電変換モジュール12(図3参照)を作製することができる。
[熱電変換モジュールの折り畳み]
 次に、図2に示すように、作製した蛇腹構造の熱電変換モジュール12を折り畳み、外側からアルミニウム製のフレーム16を用いて圧着固定する。アルミニウム製のフレーム16は熱電変換モジュール12との接触面をアルマイト処理してある。熱電変換モジュール12とフレーム16との接触面は谷部47(図3参照)の接続電極34(図3参照)の形成エリアである。
[Folding of thermoelectric conversion module]
Next, the insulating substrate 22 (see FIG. 4) is repeatedly folded and folded at the position of the connection electrode 34 (see FIG. 4) to form a bellows structure. Thus, the thermoelectric conversion module 12 (refer FIG. 3) can be produced.
[Folding of thermoelectric conversion module]
Next, as shown in FIG. 2, the produced thermoelectric conversion module 12 having a bellows structure is folded and fixed by crimping using an aluminum frame 16 from the outside. The aluminum frame 16 has an alumite treatment on the contact surface with the thermoelectric conversion module 12. The contact surface between the thermoelectric conversion module 12 and the frame 16 is an area where the connection electrode 34 (see FIG. 3) is formed in the valley 47 (see FIG. 3).
 熱電変換モジュール12の一方の端部の接続電極34側と、もう一方の端部の接続電極34側間に20℃の温度差を与えて、熱電変換モジュール12の両端にある接続電極34から、それぞれリード線を延ばし、電圧計に接続する。
 アルミニウム製のフレーム16で圧着固定した熱電変換モジュール12を熱源に接触させることで、熱電変換モジュール12の山部45(図3参照)と谷部47(図3参照)の間に温度差が形成され、電圧計により発電を確認することができ、発電している。
A temperature difference of 20 ° C. is given between the connection electrode 34 side of one end of the thermoelectric conversion module 12 and the connection electrode 34 side of the other end, and from the connection electrodes 34 at both ends of the thermoelectric conversion module 12, Extend each lead and connect to a voltmeter.
A temperature difference is formed between the ridge 45 (see FIG. 3) and the trough 47 (see FIG. 3) of the thermoelectric conversion module 12 by bringing the thermoelectric conversion module 12 fixed by crimping with the aluminum frame 16 into contact with the heat source. The power generation can be confirmed by the voltmeter, and the power is generated.
 熱電変換モジュール12では、上述のように蛇腹構造としても、山部45および谷部47において熱電変換素子同士が向かい合うことがないため、熱電変換素子間の不要な短絡を防止することができる。
 また、上述のように図19~図22に示すように、絶縁性基板22の片面のみに熱電素子が作製された熱電変換モジュール100では、熱電変換素子間の短絡を防止するために、熱電変換モジュール100の谷部47への絶縁性フィルムの導入、または熱電変換素子の絶縁コートが必要になるが、本発明では不要であり、安価に、低設置面積で、高い発電量を持つ熱電モジュールを実現することができる。
In the thermoelectric conversion module 12, even if it has a bellows structure as described above, since the thermoelectric conversion elements do not face each other at the peak portion 45 and the valley portion 47, an unnecessary short circuit between the thermoelectric conversion elements can be prevented.
Further, as described above, as shown in FIGS. 19 to 22, in the thermoelectric conversion module 100 in which the thermoelectric elements are produced only on one surface of the insulating substrate 22, in order to prevent short circuit between the thermoelectric conversion elements, the thermoelectric conversion is performed. The introduction of an insulating film into the trough portion 47 of the module 100 or the insulation coating of the thermoelectric conversion element is necessary, but this is not necessary in the present invention, and a thermoelectric module having a small installation area and a high power generation amount is inexpensive. Can be realized.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の熱電変換モジュールについて詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. The thermoelectric conversion module of the present invention has been described in detail above. However, the present invention is not limited to the above-described embodiment, and various modifications or changes may be made without departing from the gist of the present invention. It is.
 10、10a 熱電変換装置
 12、12a、12b 熱電変換モジュール
 14 基台
 15 熱伝導シート
 16 フレーム
 18 ホットプレート
 22 絶縁性基板
 22a 表面
 22b 裏面
 23 形成領域
 24 P型の熱電変換素子
 25 形成領域
 26 N型の熱電変換素子
 27 スルーホール
 28 貫通電極
 30 P型の熱電変換層
 32 N型の熱電変換層
 34 接続電極
 40 第1の部
 42 第2の部
 44 連結部
 45 山折り部分(山部)
 47 谷折り部分(谷部)
 50 銅基板
 52 銅層
 54 穴
 100 熱電変換モジュール
 B 折曲線
 D 延在方向
 G 水平線
DESCRIPTION OF SYMBOLS 10, 10a Thermoelectric conversion device 12, 12a, 12b Thermoelectric conversion module 14 Base 15 Thermal conductive sheet 16 Frame 18 Hot plate 22 Insulating substrate 22a Front surface 22b Back surface 23 Formation area 24 P type thermoelectric conversion element 25 Formation area 26 N type Thermoelectric conversion element 27 Through hole 28 Through electrode 30 P-type thermoelectric conversion layer 32 N-type thermoelectric conversion layer 34 Connection electrode 40 First part 42 Second part 44 Connecting part 45 Mountain folded part (mountain part)
47 Valley fold (valley)
50 Copper substrate 52 Copper layer 54 Hole 100 Thermoelectric conversion module B Folding curve D Extension direction G Horizontal line

Claims (10)

  1.  第1の部と、前記第1の部と向きが異なる第2の部とが交互に繰り返された蛇腹状の絶縁性基板を有し、
     前記絶縁性基板の前記第1の部の一方の面に、P型の熱電変換素子およびN型の熱電変換素子のうち、少なくとも一方が設けられ、
     前記絶縁性基板の前記第2の部の、前記一方の面とは反対側の他方の面に、前記P型の熱電変換素子および前記N型の熱電変換素子のうち、少なくとも、前記一方の面とは違う極性の前記P型の熱電変換素子または前記N型の熱電変換素子が設けられており、
     前記P型の熱電変換素子は、P型の熱電変換層と前記P型の熱電変換層に電気的に接続された1対の接続電極を有し、
     前記N型の熱電変換素子は、N型の熱電変換層と前記N型の熱電変換層に電気的に接続された1対の接続電極を有し、
     前記第1の部の前記接続電極と前記第2の部の前記接続電極とは前記絶縁性基板に形成された貫通電極で電気的に接続されていることを特徴とする熱電変換モジュール。
    Having a bellows-like insulating substrate in which a first part and a second part having a different direction from the first part are alternately repeated;
    At least one of a P-type thermoelectric conversion element and an N-type thermoelectric conversion element is provided on one surface of the first part of the insulating substrate,
    At least one of the P-type thermoelectric conversion element and the N-type thermoelectric conversion element on the other surface of the second portion of the insulating substrate opposite to the one surface. The P-type thermoelectric conversion element or the N-type thermoelectric conversion element having a different polarity from the other is provided,
    The P-type thermoelectric conversion element has a P-type thermoelectric conversion layer and a pair of connection electrodes electrically connected to the P-type thermoelectric conversion layer,
    The N-type thermoelectric conversion element has an N-type thermoelectric conversion layer and a pair of connection electrodes electrically connected to the N-type thermoelectric conversion layer,
    The thermoelectric conversion module, wherein the connection electrode of the first part and the connection electrode of the second part are electrically connected by a through electrode formed on the insulating substrate.
  2.  前記第1の部と、前記第2の部とは対称である請求項1に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1, wherein the first part and the second part are symmetrical.
  3.  前記第1の部と前記第2の部は平面状であり、前記絶縁性基板は側面視三角波状である請求項1または2に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1 or 2, wherein the first part and the second part are planar, and the insulating substrate has a triangular wave shape in a side view.
  4.  第1の部と第2の部は曲面状であり、前記絶縁性基板は側面視正弦波状である請求項1または2に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1 or 2, wherein the first part and the second part are curved, and the insulating substrate is sinusoidal in a side view.
  5.  前記貫通電極は、前記第1の部と前記第2の部の連結部よりも、前記第1の部側または前記第2の部側に設けられている請求項1~4のいずれか1項に記載の熱電変換モジュール。 5. The penetrating electrode is provided on either the first part side or the second part side of the connecting part between the first part and the second part. The thermoelectric conversion module described in 1.
  6.  前記1対の接続電極のうち、前記第1の部と前記第2の部の連結部で、前記第1の部と前記第2の部で挟まれる側の接続電極は、他の接続電極よりも、前記絶縁性基板の延在方向の長さが長い請求項1~5のいずれか1項に記載の熱電変換モジュール。 Of the pair of connection electrodes, the connection electrode on the side sandwiched between the first part and the second part at the connection part of the first part and the second part is more than the other connection electrode. 6. The thermoelectric conversion module according to claim 1, wherein the insulating substrate has a long length in the extending direction.
  7.  前記P型の熱電変換層および前記N型の熱電変換層は、有機系熱電変換材料で構成される請求項1~6のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 6, wherein the P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer are made of an organic thermoelectric conversion material.
  8.  前記P型の熱電変換層および前記N型の熱電変換層は、カーボンナノチューブを含有する請求項1~7のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 7, wherein the P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer contain carbon nanotubes.
  9.  前記絶縁性基板は、プラスチック基板である請求項1~8のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 8, wherein the insulating substrate is a plastic substrate.
  10.  前記絶縁性基板はポリイミド基板であり、前記接続電極は銅、銀および半田のうち少なくとも1つで構成され、前記貫通電極は銅または半田で構成される請求項1~8のいずれか1項に記載の熱電変換モジュール。 9. The insulating substrate according to claim 1, wherein the insulating substrate is a polyimide substrate, the connection electrode is made of at least one of copper, silver, and solder, and the through electrode is made of copper or solder. The thermoelectric conversion module as described.
PCT/JP2016/074478 2015-08-31 2016-08-23 Thermoelectric conversion module WO2017038553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537765A JP6564045B2 (en) 2015-08-31 2016-08-23 Thermoelectric conversion module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015170254 2015-08-31
JP2015-170254 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038553A1 true WO2017038553A1 (en) 2017-03-09

Family

ID=58188763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074478 WO2017038553A1 (en) 2015-08-31 2016-08-23 Thermoelectric conversion module

Country Status (2)

Country Link
JP (1) JP6564045B2 (en)
WO (1) WO2017038553A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204926A (en) * 2018-05-25 2019-11-28 日本ゼオン株式会社 Thermoelectric conversion module and power generating system
JP2019204927A (en) * 2018-05-25 2019-11-28 日本ゼオン株式会社 Thermoelectric conversion module and power generation system
KR20210022377A (en) * 2019-08-20 2021-03-03 한국화학연구원 The method for preparation of transparent thermoelectric materials and transparent and flexible thermoelectric generators using the same
WO2022044838A1 (en) * 2020-08-31 2022-03-03 日本ゼオン株式会社 Holding jig, and thermoelectric conversion device
WO2022092039A1 (en) * 2020-10-30 2022-05-05 日本ゼオン株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281666A (en) * 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2008130718A (en) * 2006-11-20 2008-06-05 Tokai Rika Co Ltd Thermoelectric conversion device and manufacturing method thereof
JP2008192970A (en) * 2007-02-07 2008-08-21 Tokai Rika Co Ltd Thermoelectric conversion device and method for manufacturing the same
JP2008205129A (en) * 2007-02-19 2008-09-04 Tokai Rika Co Ltd Circuit block and manufacturing method thereof
US20110220162A1 (en) * 2010-03-15 2011-09-15 Siivola Edward P Thermoelectric (TE) Devices/Structures Including Thermoelectric Elements with Exposed Major Surfaces
JP2012080059A (en) * 2010-03-08 2012-04-19 Fujitsu Ltd Thermoelectric power generation device
WO2013114854A1 (en) * 2012-02-03 2013-08-08 日本電気株式会社 Organic thermoelectric power generating element and production method therefor
US20140318591A1 (en) * 2013-04-26 2014-10-30 Eastman Chemical Company Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281666A (en) * 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2008130718A (en) * 2006-11-20 2008-06-05 Tokai Rika Co Ltd Thermoelectric conversion device and manufacturing method thereof
JP2008192970A (en) * 2007-02-07 2008-08-21 Tokai Rika Co Ltd Thermoelectric conversion device and method for manufacturing the same
JP2008205129A (en) * 2007-02-19 2008-09-04 Tokai Rika Co Ltd Circuit block and manufacturing method thereof
JP2012080059A (en) * 2010-03-08 2012-04-19 Fujitsu Ltd Thermoelectric power generation device
US20110220162A1 (en) * 2010-03-15 2011-09-15 Siivola Edward P Thermoelectric (TE) Devices/Structures Including Thermoelectric Elements with Exposed Major Surfaces
WO2013114854A1 (en) * 2012-02-03 2013-08-08 日本電気株式会社 Organic thermoelectric power generating element and production method therefor
US20140318591A1 (en) * 2013-04-26 2014-10-30 Eastman Chemical Company Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204926A (en) * 2018-05-25 2019-11-28 日本ゼオン株式会社 Thermoelectric conversion module and power generating system
JP2019204927A (en) * 2018-05-25 2019-11-28 日本ゼオン株式会社 Thermoelectric conversion module and power generation system
KR20210022377A (en) * 2019-08-20 2021-03-03 한국화학연구원 The method for preparation of transparent thermoelectric materials and transparent and flexible thermoelectric generators using the same
KR102296386B1 (en) * 2019-08-20 2021-08-31 한국화학연구원 The method for preparation of transparent thermoelectric materials and transparent and flexible thermoelectric generators using the same
WO2022044838A1 (en) * 2020-08-31 2022-03-03 日本ゼオン株式会社 Holding jig, and thermoelectric conversion device
WO2022092039A1 (en) * 2020-10-30 2022-05-05 日本ゼオン株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Also Published As

Publication number Publication date
JP6564045B2 (en) 2019-08-21
JPWO2017038553A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6417050B2 (en) Thermoelectric conversion module
JP6564045B2 (en) Thermoelectric conversion module
JP6600012B2 (en) Thermoelectric conversion device
JP6488017B2 (en) Thermoelectric conversion module, thermoelectric conversion module manufacturing method, and heat conductive substrate
JP6247771B2 (en) Thermoelectric conversion element and thermoelectric conversion module
WO2017038525A1 (en) Thermoelectric conversion device
US20180183360A1 (en) Thermoelectric conversion module
JP6659836B2 (en) Thermoelectric conversion module
JP6463510B2 (en) Thermoelectric conversion module
JP6510045B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6405446B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6505585B2 (en) Thermoelectric conversion element
US20200052180A1 (en) Thermoelectric conversion module
US10439124B2 (en) Thermoelectric conversion module, heat conductive laminate, and method of producing thermoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841585

Country of ref document: EP

Kind code of ref document: A1