JP2016191120A - Non-ferrous smelting slag treatment method - Google Patents

Non-ferrous smelting slag treatment method Download PDF

Info

Publication number
JP2016191120A
JP2016191120A JP2015072099A JP2015072099A JP2016191120A JP 2016191120 A JP2016191120 A JP 2016191120A JP 2015072099 A JP2015072099 A JP 2015072099A JP 2015072099 A JP2015072099 A JP 2015072099A JP 2016191120 A JP2016191120 A JP 2016191120A
Authority
JP
Japan
Prior art keywords
slag
iron
smelting slag
mass
containing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015072099A
Other languages
Japanese (ja)
Other versions
JP6542560B2 (en
Inventor
和浩 波多野
Kazuhiro Hatano
和浩 波多野
宏太 中嶋
Kota Nakajima
宏太 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015072099A priority Critical patent/JP6542560B2/en
Publication of JP2016191120A publication Critical patent/JP2016191120A/en
Application granted granted Critical
Publication of JP6542560B2 publication Critical patent/JP6542560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a non-ferrous smelting slag treatment method for effectively removing impurities such as As from copper smelting slag without adding metallic copper.SOLUTION: A non-ferrous smelting slag treatment method includes the steps of: adding an iron-containing material and a carbon-containing material to non-ferrous smelting slag containing 0.1 to 5 mass% As in the form of a compound having one or more oxidation number and 0.5 to 5 mass% Cu in the form of a compound having one or more oxidation number as well as Fe in the form of a compound having one or more oxidation number to melt the non-ferrous smelting slag in the coexistence of the added iron-containing material and carbon-containing material in order to reduce Fe, As, and Cu contained in the slag; and removing the reduced As and Cu from the slag together with the reduced Fe by gravity separation to obtain purified slag having an As content of less than 0.05 mass% and a Cu content of less than 0.5 mass%.SELECTED DRAWING: Figure 1

Description

本発明は非鉄製錬スラグの処理方法に関し、とりわけ銅製錬スラグの処理方法に関する。   The present invention relates to a method for processing non-ferrous smelting slag, and more particularly to a method for processing copper smelting slag.

自溶炉法は現在の乾式銅製錬の主流を占める方法である。自溶炉法においては、銅精鉱はドライヤで乾燥された後、常温高酸素空気とともに自溶炉に吹き込まれると、酸化反応を起こして銅品位が60〜70質量%程度のマットと酸化鉄やケイ酸を含有するスラグが生成し、両者は比重分離される。マットは転炉に送られて銅品位99質量%程度の粗銅を得た後、電解精製により銅品位99.99質量%以上の電気銅に精製される。スラグは錬カン炉に送られて更にマットを比重分離した後、水砕処理を受けて砂又は砂利状に粉砕されて水砕スラグとして、国内外で埋め立て資材や土木資材などとして有効利用したりしている。   The flash furnace method occupies the current mainstream of dry copper smelting. In the flash smelting furnace method, after the copper concentrate is dried with a dryer and then blown into the flash smelting furnace together with room temperature and high oxygen air, an oxidation reaction occurs and the matte and iron oxide have a copper grade of about 60 to 70% by mass. And slag containing silicic acid is produced, and both are separated by specific gravity. The mat is sent to a converter to obtain crude copper having a copper grade of about 99% by mass, and then refined into electrolytic copper having a copper grade of 99.99% by mass or more by electrolytic purification. The slag is sent to a smelting furnace to further separate the specific gravity of the mat, and then subjected to a water granulation treatment and crushed into sand or gravel to be used effectively as landfill materials and civil engineering materials in Japan and overseas. doing.

銅製錬スラグを取り扱う上で問題となるのは、銅製錬スラグがAsを含有する点である。現在のところ、銅製錬スラグはバーゼル条約の規制対象からは除外されているものの、将来的に条約の規制対象に設定される可能性もあり、その場合でもスラグの輸出許可が得られるように、銅製錬スラグから効果的にAsを除去する技術が確立されることが望ましい。また、近年では世界的な銅の需要増に伴い、必ずしも優良な銅鉱山からの銅鉱石のみを使用できず、不純物濃度の高い銅鉱山からの銅鉱石も扱わざるを得なくなっており、今後もその傾向は続くと考えられることから、その観点でも、Asの除去技術を確立する必要性は高まっている。   A problem in handling copper smelting slag is that copper smelting slag contains As. At present, although copper smelting slag is excluded from the Basel Convention's scope of regulation, it may be subject to the regulation of the Convention in the future. It is desirable to establish a technique for effectively removing As from copper smelting slag. In recent years, with the global increase in demand for copper, it is not always possible to use only copper ore from high-quality copper mines, and copper ores from copper mines with high impurity concentrations must be handled. Since this tendency is expected to continue, the need to establish an As removal technique is increasing from that viewpoint.

従来、銅製錬スラグ等の非鉄製錬スラグ中には目的金属の他に有価物が混入していることから、これらをスラグから効率よく回収するための技術の開発はセットリング、ヒューミング及び浮選処理などを含めて多数なされてきた。しかしながら、これらの技術はスラグ中の目的金属及びその他の有価物をスラグから回収し、有害金属はスラグ中に残すことを目的として開発された技術であり、非鉄製錬スラグから有害金属を除去する技術は研究がそれほど進んでおらず、除去技術が確立されたとは言い難い。   Conventionally, valuable materials in addition to the target metal have been mixed in non-ferrous smelting slag such as copper smelting slag. A lot has been done, including the selection process. However, these technologies were developed for the purpose of recovering target metals and other valuable materials in the slag from the slag and leaving the harmful metals in the slag. The technology has not been studied so much, and it is difficult to say that the removal technology has been established.

本発明者の知る限り、非鉄製錬スラグからの有害金属除去を直接的な課題として取り組んだ先行技術は特開2008−95127号公報(特許文献1)に記載がある程度である。当該文献では、スラグ中に含まれる亜鉛、鉛、ヒ素等の不純物を低減させるスラグの浄化方法が提案されている。当該文献には、銅製錬スラグを所定の還元性雰囲気下、1150〜1450℃の温度で攪拌して、金属銅相を共存させてヒ素の揮発を抑えて金属銅相中で安定化させ、一方鉛及び亜鉛を揮発させることにより、これらを分離して回収する方法が記載されている。この技術は、金属状態のヒ素が金属状態の銅の親和力が強いという特性を利用するものであるので、スラグ相−金属銅相共存下を実現することを特徴とする。   As far as the present inventor is aware, the prior art that tackles the removal of harmful metals from non-ferrous smelting slag as a direct subject is described in Japanese Patent Laid-Open No. 2008-95127 (Patent Document 1) to some extent. This document proposes a slag purification method that reduces impurities such as zinc, lead, and arsenic contained in the slag. In this document, copper smelting slag is stirred at a temperature of 1150 to 1450 ° C. in a predetermined reducing atmosphere, and coexisting with the metallic copper phase to suppress volatilization of arsenic and stabilize in the metallic copper phase, A method for separating and recovering lead and zinc by volatilizing them is described. This technique utilizes the property that metallic arsenic has a strong affinity for metallic copper, and is therefore characterized by the coexistence of a slag phase and metallic copper phase.

特開2008−95127号公報JP 2008-95127 A

特開2008−95127号公報(特許文献1)に記載の技術は、スラグ中に金属銅を添加して、銅とヒ素の親和性を利用してヒ素を金属銅中に取り込むことにより、スラグからAs等の不純物を除去することを主眼としており、その除去効果も高い。しかしながら、当該技術では、スラグに金属銅を添加することから、還元処理後のスラグ中の銅濃度が高くなるという問題がある。   The technique described in Japanese Patent Application Laid-Open No. 2008-95127 (Patent Document 1) is obtained by adding metallic copper into slag and taking arsenic into metallic copper by utilizing the affinity between copper and arsenic. Its main purpose is to remove impurities such as As, and its removal effect is also high. However, in the said technique, since metallic copper is added to slag, there exists a problem that the copper concentration in the slag after a reduction process becomes high.

また、特開2008−95127号公報(特許文献1)には、処理されたスラグをセメント用材等多岐な用途で利用できる旨が記載されているが、処理されたスラグを製鉄原料として使用することは記載されていない。非鉄製錬スラグ中には比較的高濃度の鉄分が含まれていることが多いため、不純物除去後のスラグが、製鉄原料として利用可能な組成であると非鉄製錬スラグの新規用途として大きな展望が開けるはずである。ところが、As、Zn及びPb等の不純物が低減されても還元処理後のスラグ中の銅濃度が高くなると、製鉄原料としては利用が難しくなるため、特開2008−95127号公報(特許文献1)の技術は使えない。   Japanese Patent Application Laid-Open No. 2008-95127 (Patent Document 1) describes that the treated slag can be used in various applications such as cement materials, but the treated slag is used as a raw material for iron making. Is not listed. Nonferrous smelting slag often contains a relatively high concentration of iron, so if the slag after removing impurities has a composition that can be used as a raw material for ironmaking, it has a great prospect as a new application for nonferrous smelting slag. Should open. However, even if impurities such as As, Zn, and Pb are reduced, if the copper concentration in the slag after the reduction treatment is increased, it becomes difficult to use as an iron-making raw material, and therefore, JP 2008-95127 A (Patent Document 1). The technology cannot be used.

本発明は上記事情に鑑みてなされたものであり、金属銅を添加することなく、銅製錬スラグから効果的にAs等の不純物を除去するための非鉄製錬スラグの処理方法を提供することを主たる課題とする。また、本発明は好ましくは、製鉄原料として利用可能な組成に変換するための非鉄製錬スラグの処理方法を提供することを更なる課題とする。   This invention is made | formed in view of the said situation, and provides the processing method of the nonferrous smelting slag for removing impurities, such as As, effectively from copper smelting slag, without adding metallic copper. Let it be the main issue. Moreover, this invention preferably makes it the further subject to provide the processing method of the nonferrous smelting slag for converting into the composition which can be utilized as a steelmaking raw material.

本発明者は上記課題を解決するために鋭意検討したところ、以下のような知見を得た。(1)銅製錬スラグに、銅を添加することなく、コークス等の炭素含有材料を添加し、所定温度で加熱処理すると、スラグ中のAs等の不純物の他、スラグ中の鉄分が還元し、鉄を中心とした金属相へ不純物金属が移行するため、加熱処理後に比重分離することによりこれらの不純物の除去が可能であることが分かった。ただし、この場合は加熱処理後のスラグ中の鉄品位が低下しすぎてスラグ粘度が上昇し、比重分離性が悪いため長時間を要することも分かった。このため、比重分離の際に高温が必要となりエネルギー消費量が増大する。
(2)炭素含有材料に加えて鉄含有材料を添加すると、As等の不純物を除去する効果に加えて加熱処理によりスラグ中の鉄分が鉄の単体に還元してスラグの粘度が上昇するという弊害を抑制することができる。しかも加熱処理後のスラグ中の銅濃度は低く抑えることができることが分かった。更に、添加するのが鉄含有材料であるため、回収されたスラグを製鉄原料として利用する際にも害を及ぼすことはない。
The present inventor has intensively studied to solve the above problems, and has obtained the following knowledge. (1) Adding a carbon-containing material such as coke to copper smelting slag without adding copper and heat-treating it at a predetermined temperature, iron in the slag is reduced in addition to impurities such as As in the slag, Since the impurity metal migrates to the metal phase centered on iron, it was found that these impurities could be removed by specific gravity separation after the heat treatment. However, in this case, it was also found that the iron quality in the slag after the heat treatment is too low, the slag viscosity is increased, and the specific gravity separation is poor, so that a long time is required. For this reason, high temperature is required in the specific gravity separation, and the energy consumption increases.
(2) When iron-containing material is added in addition to carbon-containing material, in addition to the effect of removing impurities such as As, the iron content in the slag is reduced to simple iron by heat treatment and the viscosity of the slag increases. Can be suppressed. And it turned out that the copper concentration in the slag after heat processing can be restrained low. Furthermore, since the iron-containing material is added, there is no harm when the recovered slag is used as a raw material for iron making.

本発明は上記知見に基づいて完成したものであり、一側面において、酸化数が1以上の化合物の形態にあるFeの他に、酸化数が1以上の化合物の形態にあるAsを0.1〜5質量%及び酸化数が1以上の化合物の形態にあるCuを0.5〜5質量%含有する非鉄製錬スラグに対して鉄含有材料及び炭素含有材料を添加し、添加した鉄含有材料及び炭素含有材料の共存下で非鉄製錬スラグを溶融処理し、当該スラグ中に含まれるFe、As及びCuを還元する工程と、次いで、比重分離により前記スラグから還元されたAs及びCuを還元されたFeと共に除去し、As含有量が0.05質量%未満、Cu含有量が0.5質量%未満である浄化スラグを得る工程とを含む非鉄製錬スラグの処理方法である。   The present invention has been completed based on the above findings. In one aspect, in addition to Fe in the form of a compound having an oxidation number of 1 or more, As in the form of a compound having an oxidation number of 1 or more is 0.1. Iron-containing material and carbon-containing material are added to non-ferrous smelting slag containing 0.5 to 5% by mass of Cu in the form of a compound having a mass of 1 to 5% by mass and an oxidation number of 1 or more, and the added iron-containing material And non-ferrous smelting slag in the presence of carbon-containing material, reducing Fe, As and Cu contained in the slag, and then reducing As and Cu reduced from the slag by specific gravity separation And a process for obtaining purified slag having an As content of less than 0.05% by mass and a Cu content of less than 0.5% by mass.

本発明に係る非鉄製錬スラグの処理方法の一実施形態においては、鉄含有材料が金属鉄である。   In one embodiment of the method for processing non-ferrous smelting slag according to the present invention, the iron-containing material is metallic iron.

本発明に係る非鉄製錬スラグの処理方法の別の一実施形態においては、浄化スラグ中のFe含有量が溶融処理前の非鉄製錬スラグ中のFe含有量と比較して同一であるか又は高い。   In another embodiment of the method for treating non-ferrous smelting slag according to the present invention, the Fe content in the purified slag is the same as the Fe content in the non-ferrous smelting slag before the melting treatment, or high.

本発明に係る非鉄製錬スラグの処理方法の更に別の一実施形態においては、鉄含有材料は非鉄製錬スラグ100質量部に対して、1〜20質量部の鉄分が添加されるように添加される。   In yet another embodiment of the non-ferrous smelting slag treatment method according to the present invention, the iron-containing material is added so that 1 to 20 parts by mass of iron is added to 100 parts by mass of the non-ferrous smelting slag. Is done.

本発明に係る非鉄製錬スラグの処理方法の更に別の一実施形態においては、炭素含有材料及び金属鉄として銑鉄が添加される。   In yet another embodiment of the method for treating non-ferrous smelting slag according to the present invention, pig iron is added as a carbon-containing material and metallic iron.

本発明に係る非鉄製錬スラグの処理方法の更に別の一実施形態においては、非鉄製錬スラグは酸化数が1以上の化合物の形態にあるFeを20〜60質量%含有する。   In still another embodiment of the method for treating non-ferrous smelting slag according to the present invention, the non-ferrous smelting slag contains 20 to 60% by mass of Fe in the form of a compound having an oxidation number of 1 or more.

本発明に係る非鉄製錬スラグの処理方法の更に別の一実施形態においては、Cuの除去率が40%以上である。   In another embodiment of the processing method of the nonferrous smelting slag concerning this invention, the removal rate of Cu is 40% or more.

本発明に係る非鉄製錬スラグの処理方法の更に別の一実施形態においては、炭素含有材料は非鉄製錬スラグ100質量部に対して、1〜20質量部の炭素分が添加されるように添加される。   In yet another embodiment of the method for treating non-ferrous smelting slag according to the present invention, the carbon-containing material is added such that 1 to 20 parts by mass of carbon is added to 100 parts by mass of non-ferrous smelting slag. Added.

本発明に係る非鉄製錬スラグの処理方法の更に別の一実施形態においては、非鉄製錬スラグが銅製錬スラグである。   In still another embodiment of the method for treating non-ferrous smelting slag according to the present invention, the non-ferrous smelting slag is copper smelting slag.

本発明に係る非鉄製錬スラグの処理方法の更に別の一実施形態においては、非鉄製錬スラグがPb及びZnの少なくとも一方を更に含有し、前記溶融処理時にこれらを揮発除去することを含む。   In still another embodiment of the method for treating non-ferrous smelting slag according to the present invention, the non-ferrous smelting slag further contains at least one of Pb and Zn, and includes volatilizing and removing these during the melting treatment.

本発明は別の一側面において、本発明に係る非鉄製錬スラグの処理方法を含む製鉄原料の製造方法である。   In another aspect, the present invention is a method for producing a steelmaking raw material, including the method for treating nonferrous smelting slag according to the present invention.

本発明によれば、金属銅を添加しなくても、スラグ中のAs等の不純物を除去可能となる。また、鉄含有材料を添加することでスラグ粘度の上昇を抑制できる。これにより、比重分離の効率が向上し、それによって不純物除去性能が向上するため、銅製錬スラグの製鉄原料として適用が容易となる。このことは、銅製錬スラグの経済的価値が上昇することを意味し、乾式銅製錬において大きなコストメリットをもたらすことになる。これまで銅製錬スラグは需要が限られており、工場内で山積みにされることも多かったが、当該技術によれば銅製錬スラグの有効活用が進展すると考えられ、環境保護・資源保護にも大いに役立つと考えられる。   According to the present invention, impurities such as As in slag can be removed without adding metallic copper. Moreover, the increase in slag viscosity can be suppressed by adding an iron-containing material. Thereby, the efficiency of the specific gravity separation is improved, and thereby the impurity removal performance is improved. Therefore, the application as a steelmaking raw material for the copper smelting slag is facilitated. This means that the economic value of the copper smelting slag is increased, which brings a great cost merit in the dry copper smelting. Until now, demand for copper smelting slag has been limited, and it has often been piled up in factories. However, according to this technology, it is thought that effective use of copper smelting slag will progress, and environmental protection and resource protection will be promoted. I think it will be very useful.

本発明に係る非鉄製錬スラグの処理方法の一例に係るフローチャートである。It is a flowchart concerning an example of a processing method of nonferrous smelting slag concerning the present invention.

以下、本発明に係る非鉄製錬スラグの処理方法の一例に係るフローチャートを示した図1に沿って、本発明の実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 showing a flowchart according to an example of a method for processing non-ferrous smelting slag according to the present invention.

(1.非鉄製錬スラグ)
本発明の処理対象は非鉄製錬スラグである。非鉄製錬スラグとしては、典型的には自溶炉や錬カン炉等の銅の溶錬炉から発生するスラグに代表される銅製錬スラグが挙げられる。銅製錬スラグとしては水砕後のスラグでもよいが、冷却した後に再度加熱するのはエネルギーロスとなることから、溶錬炉から排出された溶湯状態にあるスラグをその状態で溶融処理のための加熱炉内に導入し、使用することが好ましい。非鉄製錬スラグとしては、その他、鉛製錬や亜鉛精錬の過程で生じるスラグも挙げられる。本発明が処理対象とする非鉄製錬スラグは一般にAs及びCuを不純物として含有する。これらは通常は酸化数が1以上である化合物の形態、典型的には酸化物及び/又は硫化物の形態で存在している。Asの含有量については典型的には0.1〜5質量%、より典型的には0.1〜1質量%、更により典型的には0.1〜0.5質量%である。Cuの含有量については典型的には0.5〜5質量%、より典型的には0.55〜2質量%、更により典型的には0.6〜1.2質量%である。
(1. Non-ferrous smelting slag)
The processing target of the present invention is non-ferrous smelting slag. Non-ferrous smelting slag typically includes copper smelting slag typified by slag generated from a copper smelting furnace such as a flash smelting furnace or a smelting furnace. Copper smelting slag may be slag after granulation, but heating again after cooling will result in energy loss, so the slag in the molten state discharged from the smelting furnace will be used for melting treatment in that state. It is preferable to introduce and use in a heating furnace. Other non-ferrous smelting slag includes slag generated in the process of lead smelting and zinc refining. The non-ferrous smelting slag to be treated by the present invention generally contains As and Cu as impurities. These usually exist in the form of compounds having an oxidation number of 1 or more, typically in the form of oxides and / or sulfides. The content of As is typically 0.1 to 5% by mass, more typically 0.1 to 1% by mass, and even more typically 0.1 to 0.5% by mass. The content of Cu is typically 0.5 to 5% by mass, more typically 0.55 to 2% by mass, and even more typically 0.6 to 1.2% by mass.

本発明が処理対象とする非鉄製錬スラグは典型的にはFe及びSiをそれぞれ20質量%以上含有する。これらは通常は酸化数が1以上である化合物の形態、典型的には酸化物の形態で存在しており、非鉄製錬スラグの主成分となっていることが多い。Feの含有量についてはより典型的には20〜60質量%、更により典型的には30〜50質量%、最も典型的には35〜45質量%である。Siの含有量についてはより典型的には20〜60質量%、更により典型的には25〜50質量%、最も典型的には30〜40質量%である。   The non-ferrous smelting slag to be treated by the present invention typically contains 20% by mass or more of Fe and Si, respectively. These usually exist in the form of a compound having an oxidation number of 1 or more, typically in the form of an oxide, and are often the main component of non-ferrous smelting slag. The Fe content is more typically 20-60% by weight, even more typically 30-50% by weight, and most typically 35-45% by weight. The content of Si is more typically 20 to 60% by mass, even more typically 25 to 50% by mass, and most typically 30 to 40% by mass.

本発明が処理対象とする非鉄製錬スラグはその他、S、Pb、Zn、Ca、Al、P及びMo等の不純物を含有し得る。これらの不純物も酸化数が1以上の化合物の形態にあることが一般的であり、酸化物の形態にあるのが典型的である。これらの内、Al以外の不純物は含有量はそれぞれ2質量%以下であるのが典型的であり、1質量%以下であるのがより典型的である。Alの含有量については典型的には1〜10質量%、より典型的には1〜5質量%である。   In addition, the non-ferrous smelting slag to be treated by the present invention may contain impurities such as S, Pb, Zn, Ca, Al, P, and Mo. These impurities are also generally in the form of a compound having an oxidation number of 1 or more, and are typically in the form of an oxide. Of these, the content of impurities other than Al is typically 2% by mass or less, and more typically 1% by mass or less. The content of Al is typically 1 to 10% by mass, more typically 1 to 5% by mass.

(2.溶融処理)
非鉄製錬スラグに含まれるCu及びAs等の不純物を効果的に除去するために、非鉄製錬スラグに鉄含有材料及び炭素含有材料を添加して、添加した鉄含有材料及び炭素含有材料の共存下で非鉄製錬スラグを溶融処理し、当該スラグ中に含まれる酸化数が1以上の化合物の形態にあるAs及びCu等の不純物を単体のAs及びCu等に還元する工程を実施することが好ましい。理論によって本発明が限定されることを意図するものではないが、溶融処理時には非鉄製錬スラグ中に存在する単体の鉄が上記Cu及びAs等の不純物を取り込むと考えられる。単体の鉄は、当初から非鉄製錬スラグ中に含まれている又は非鉄製錬スラグに添加した酸化数が1以上の化合物の形態にあるFeが溶融処理時に還元されることで生成する場合、及び、当初から非鉄製錬スラグ中に含まれている又は添加した鉄含有材料中に含まれる単体の鉄の場合が挙げられる。
(2. Melting process)
In order to effectively remove impurities such as Cu and As contained in non-ferrous smelting slag, iron-containing material and carbon-containing material are added to non-ferrous smelting slag, and the added iron-containing material and carbon-containing material coexist The non-ferrous smelting slag is melt-processed below, and the step of reducing impurities such as As and Cu in the form of a compound having an oxidation number of 1 or more contained in the slag to simple As and Cu, etc. preferable. Although it is not intended that the present invention be limited by theory, it is considered that single iron existing in the non-ferrous smelting slag takes in impurities such as Cu and As during the melting process. When the single iron is produced by reducing Fe during the melting process, which is contained in the nonferrous smelting slag from the beginning or in the form of a compound having an oxidation number of 1 or more added to the nonferrous smelting slag, And the case of the single-piece | unit iron contained in the iron-containing material contained in the non-ferrous smelting slag from the beginning, or added.

炭素含有材料としては、限定的ではないが、コークス、熱分解炭素、カーボンブラック、炭素繊維、ガラス状炭素、石炭、木炭、黒鉛、グラファイト及びダイヤモンド等の単体炭素の他、銑鉄、鋳鉄、鋼、セメンタイト(Fe3C)等の炭素含有鉄が挙げられ、経済的な理由、また不純物の持込量を低減する理由からコークス、銑鉄が好ましく、コークスと銑鉄を併用することがより好ましい。銑鉄は後述する金属鉄の原料としても利用できるため好都合である。炭素含有材料は1種類を添加してもよく、2種類以上を組み合わせて添加してもよい。 Examples of carbon-containing materials include, but are not limited to, coke, pyrolytic carbon, carbon black, carbon fiber, glassy carbon, simple carbon such as coal, charcoal, graphite, graphite and diamond, pig iron, cast iron, steel, Examples include carbon-containing iron such as cementite (Fe 3 C). Coke and pig iron are preferable for economical reasons and the amount of impurities brought in is reduced, and coke and pig iron are more preferably used in combination. Pig iron is advantageous because it can also be used as a raw material for metallic iron described later. One type of carbon-containing material may be added, or two or more types may be added in combination.

溶融処理時に留意すべきことは、主たる還元対象であるFeの他、As、Cu及びその他の不純物が十分に還元し、また、余計な不純物がスラグ中に混入しない条件で溶融処理を行うということである。この観点から留意すべき溶融処理時の主なパラメータは還元剤、反応温度(還元反応を実施するときのスラグの保持温度)、昇温速度、反応時間及び雰囲気である。   What should be noted during the melting process is that the melting process is performed under the condition that As, Cu and other impurities are sufficiently reduced in addition to Fe, which is the main reduction target, and no extra impurities are mixed into the slag. It is. From this point of view, the main parameters during the melting treatment are the reducing agent, the reaction temperature (slag retention temperature when carrying out the reduction reaction), the rate of temperature rise, the reaction time, and the atmosphere.

本発明においては還元剤として炭素含有材料を使用することから、スラグの不純物を有意に増加させるおそれが極めて少ないと考えられる。炭素含有材料は添加量を多くすることでAsやCu等の不純物の除去効果が高まるという効果が得られる。具体的には、炭素含有材料は非鉄製錬スラグ100質量部に対して、2質量部以上の炭素分が添加されるように添加することが好ましく、3質量部以上の炭素分が添加されるように添加することがより好ましく、5質量部以上の炭素分が添加されるように添加することが更により好ましい。また、粘度上昇を予防するという観点からは、炭素含有材料は、非鉄製錬スラグ100質量部に対して、20質量部以下の炭素分が添加されるように添加することが好ましく、15質量部以下の炭素分が添加されるように添加することがより好ましく、10質量部以下の炭素分が添加されるように添加することが更により好ましい。   In the present invention, since a carbon-containing material is used as a reducing agent, it is considered that there is very little risk of significantly increasing slag impurities. The effect of removing impurities such as As and Cu is increased by increasing the amount of carbon-containing material added. Specifically, the carbon-containing material is preferably added so that 2 parts by mass or more of carbon is added to 100 parts by mass of non-ferrous smelting slag, and 3 parts by mass or more of carbon is added. More preferably, it is more preferable to add so that 5 mass parts or more of carbon content may be added. Further, from the viewpoint of preventing an increase in viscosity, the carbon-containing material is preferably added so that a carbon content of 20 parts by mass or less is added to 100 parts by mass of the nonferrous smelting slag, and 15 parts by mass. It is more preferable to add so that the following carbon content is added, and it is still more preferable to add so that 10 mass parts or less of carbon content may be added.

反応温度は、処理対象となるスラグの物性にもよるが、例えば銅製錬スラグの場合は、スラグの粘性を低くして攪拌しやすくする観点から1200℃以上とすることが好ましく、1250℃以上とすることがより好ましい。また、炉体保護や経済性の観点から1500℃以下とすることが好ましく、1400℃以下とすることがより好ましい。   The reaction temperature depends on the physical properties of the slag to be treated. For example, in the case of copper smelted slag, it is preferably 1200 ° C. or higher from the viewpoint of lowering the viscosity of the slag and facilitating stirring. More preferably. Moreover, it is preferable to set it as 1500 degrees C or less from a viewpoint of furnace protection or economical efficiency, and it is more preferable to set it as 1400 degrees C or less.

As及びCu等の不純物の還元反応を十分に進行させる観点から、反応時間を十分に長い時間確保することが望ましい。具体的には、反応時間は30分以上が好ましく、40分以上がより好ましい。但し、一方で反応時間に比例して大きな設備容量が必要となる為、反応時間は120分以下が好ましく、60分以下がより好ましい。なお、ここでいう「反応時間」はスラグが所定の反応温度に到達してから冷却を開始するまでの時間を指す。   From the viewpoint of sufficiently proceeding the reduction reaction of impurities such as As and Cu, it is desirable to secure a sufficiently long reaction time. Specifically, the reaction time is preferably 30 minutes or more, and more preferably 40 minutes or more. However, on the other hand, since a large capacity is required in proportion to the reaction time, the reaction time is preferably 120 minutes or less, more preferably 60 minutes or less. Here, the “reaction time” refers to the time from when the slag reaches a predetermined reaction temperature until the start of cooling.

溶融処理は、所望の還元反応が効率よく進行するように、不活性雰囲気又は還元性雰囲気で実施することが好ましい。不活性雰囲気としては、窒素、希ガス(アルゴン、ネオン、ヘリウム等)が好ましく、還元性雰囲気としては不純物混入のおそれの少ない水素、一酸化炭素、LPG、LNG等の炭化水素ガスが好ましい。   The melting treatment is preferably performed in an inert atmosphere or a reducing atmosphere so that the desired reduction reaction proceeds efficiently. The inert atmosphere is preferably nitrogen or a rare gas (argon, neon, helium, etc.), and the reducing atmosphere is preferably a hydrocarbon gas such as hydrogen, carbon monoxide, LPG, or LNG, which is less likely to be mixed with impurities.

溶融処理時には、スラグ中に含まれている酸化数が1以上の化合物の形態にあるFeが単体の鉄に還元されると、この鉄がメタル相に移行することによってスラグ中の鉄分が減ってスラグの粘度が上昇する。粘度の上昇はその後の比重分離効率を悪化させる。しかしながら、本発明に係る非鉄製錬スラグの処理方法においては、鉄含有材料を添加して補充するため、スラグ中の鉄分の還元が抑制されて、スラグ粘度が低下するのを防止することができる。また、金属鉄中にAsやCu等の不純物が固溶などによって濃縮するという効果が得られることから、鉄含有材料を添加するというのはスラグからの不純物除去に対しても有効である。特に、浄化スラグを製鉄原料として利用することを考える場合、炭素含有材料のみを添加した場合にはスラグ中のFe濃度が有意に低下してしまうことから、鉄含有材料を添加することが好ましい。   At the time of melting treatment, when Fe in the form of a compound having an oxidation number of 1 or more contained in slag is reduced to simple iron, the iron content in the slag is reduced by the transfer of this iron to the metal phase. The slag viscosity increases. The increase in viscosity deteriorates the subsequent specific gravity separation efficiency. However, in the processing method for non-ferrous smelting slag according to the present invention, since iron-containing material is added and supplemented, reduction of iron in the slag can be suppressed and slag viscosity can be prevented from decreasing. . In addition, since an effect of concentrating impurities such as As and Cu in the metallic iron by solid solution or the like is obtained, the addition of the iron-containing material is also effective for removing impurities from the slag. In particular, when considering using purified slag as an iron-making raw material, it is preferable to add an iron-containing material because the Fe concentration in the slag is significantly reduced when only the carbon-containing material is added.

鉄含有材料としては、特に制限はないが、金属鉄、酸化鉄、及び硫化鉄が挙げられる。これらの中でも、浄化スラグ中の不純物を少なくするという観点からは、金属鉄及び酸化鉄が好ましく、酸化鉄の場合は融点が高く高温での溶融処理が必要となると考えられることから、金属鉄が好ましい。ここでいう金属鉄には純鉄(炭素含有量0.0218質量%まで)、鋼(炭素含有量0.0218質量%を超えて2.14質量%まで)及び銑鉄(炭素含有量2.14質量%を超えて6.67質量%まで)が含まれるが、炭素含有材料としての機能も果たすことができる点で、銑鉄が好ましい。本発明においては、銑鉄よりも炭素含有濃度の高い鉄炭素合金も金属鉄の定義に含めることとし、このような鉄炭素合金を使用することも可能である。   Although there is no restriction | limiting in particular as an iron containing material, Metallic iron, iron oxide, and iron sulfide are mentioned. Among these, from the viewpoint of reducing impurities in the purification slag, metallic iron and iron oxide are preferable. In the case of iron oxide, it is considered that the melting point is high and a melting treatment at high temperature is required. preferable. The metallic iron here includes pure iron (carbon content up to 0.0218 mass%), steel (carbon content exceeding 0.0218 mass% up to 2.14 mass%) and pig iron (carbon content 2.14 mass%). Pigmented iron is preferred in that it can also function as a carbon-containing material. In the present invention, an iron-carbon alloy having a higher carbon-containing concentration than pig iron is also included in the definition of metallic iron, and such an iron-carbon alloy can be used.

添加する鉄含有材料は多い方がAsやCu等の不純物の除去効果が大きくなることから、非鉄製錬スラグ100質量部に対して、1質量部以上の鉄分が添加されるように鉄含有材料を添加することが好ましく、3質量部以上の鉄分が添加されるように鉄含有材料を添加することがより好ましく、5質量部以上の鉄分が添加されるように鉄含有材料を添加することが更により好ましい。但し、次工程で不純物を含有した金属鉄を処理する為、処理量の低減の観点からは、非鉄製錬スラグ100質量部に対して、20質量部以下の鉄分が添加されるように鉄含有材料を添加することが好ましく、15質量部以下の鉄分が添加されるように鉄含有材料を添加することがより好ましく、10質量部以下の鉄分が添加されるように鉄含有材料を添加することが更により好ましい。なお、「鉄分」というのは鉄含有材料中のFe元素のことであり、炭素等の鉄以外の成分は除くとする趣旨である。   Since the effect of removing impurities such as As and Cu increases as the amount of iron-containing material added increases, the iron-containing material is added so that one part by mass or more of iron is added to 100 parts by mass of non-ferrous smelting slag. Preferably, the iron-containing material is added so that 3 parts by mass or more of iron is added, and the iron-containing material is added so that 5 parts by mass or more of iron is added. Even more preferred. However, in order to process metallic iron containing impurities in the next step, from the viewpoint of reducing the processing amount, iron content is added so that 20 mass parts or less of iron content is added to 100 mass parts of nonferrous smelting slag. The material is preferably added, more preferably the iron-containing material is added so that 15 parts by mass or less of iron is added, and the iron-containing material is added so that 10 parts by mass or less of iron is added Is even more preferred. The term “iron” refers to the Fe element in the iron-containing material, and is intended to exclude components other than iron such as carbon.

溶融処理の際は、溶融スラグを撹拌することが好ましい。還元反応を速やかに進行させるとともに、溶融スラグ内の温度分布の均一化を図るためである。攪拌方法としては特に制限はないが、攪拌機を利用した機械攪拌の他、ランスを利用したガス攪拌が挙げられる。攪拌用のガスとしては水素や一酸化炭素等の還元性ガスのほか、アルゴンなどの不活性ガスを使用することができる。   During the melting process, it is preferable to stir the molten slag. This is because the reduction reaction proceeds promptly and the temperature distribution in the molten slag is made uniform. Although there is no restriction | limiting in particular as a stirring method, In addition to the mechanical stirring using a stirrer, the gas stirring using a lance is mentioned. As the gas for stirring, in addition to a reducing gas such as hydrogen or carbon monoxide, an inert gas such as argon can be used.

(比重分離)
還元反応が十分に進展した後の溶融スラグからは、還元されたAs及びCuを含めてスラグよりも比重の大きな不純物を比重分離によりスラグから除去することで、浄化スラグを回収することができる。比重分離の方法としては沈降分離及び遠心分離が挙げられる。なお、As及びCu等の不純物はすべてが溶融スラグ中に残るわけではなく、溶融処理時に一部は揮発して除去され得る。特に、ZnやPbは揮発により除去される割合が多い。
(Specific gravity separation)
From the molten slag after the reduction reaction has sufficiently progressed, the purified slag can be recovered by removing impurities having higher specific gravity than the slag including reduced As and Cu from the slag by specific gravity separation. Specific gravity separation methods include sedimentation separation and centrifugation. It should be noted that not all impurities such as As and Cu remain in the molten slag, and some can be volatilized and removed during the melting process. In particular, Zn and Pb are often removed by volatilization.

沈降分離(セトリング)を行う場合、静置時間は還元されたAs、Cu及びその他の不純物を含む鉄と浄化スラグとの分離効率に関係する。静置時間は長い方が高い分離効率が得られるので10分以上とすることが好ましく、30分以上とすることがより好ましい。また、一方で静置時間に比例して大きな設備容量が必要となる為、120分以下とすることが好ましく、60分以下とすることがより好ましい。なお、ここでいう「静置時間」は反応終了後〜分離回収を行うまでの時間を指す。遠心分離の場合は沈降分離よりも短時間で高い分離効率が得られるという利点があるが、実装業上は安全性及び経済性の観点から沈降分離が好ましい。また、比重分離後は、溶融スラグと還元されたAs、Cu及びその他の不純物を含む鉄は軽層と重層に分かれるが、取り出しが容易である、スラグが溶融状態にあるうちに両者を分離回収することが好ましい。分離回収する方法としては、重層を下部から取り出す方法や、軽層を上部から取り出す方法が挙げられるが、これらに限定されるものではない。   When sedimentation separation (settling) is performed, the standing time is related to the separation efficiency between the iron containing purified As, Cu and other impurities and the purified slag. The longer the standing time, the higher the separation efficiency is obtained, so that it is preferably 10 minutes or more, and more preferably 30 minutes or more. On the other hand, since a large installation capacity is required in proportion to the standing time, it is preferably 120 minutes or less, and more preferably 60 minutes or less. The “standing time” here refers to the time from the end of the reaction to the time when separation and collection are performed. In the case of centrifugal separation, there is an advantage that higher separation efficiency can be obtained in a shorter time than sedimentation separation, but sedimentation separation is preferable from the viewpoint of safety and economy in the packaging industry. In addition, after separation by specific gravity, molten slag and reduced iron containing As, Cu and other impurities are separated into a light layer and a multilayer, but they can be easily taken out and separated and recovered while the slag is in a molten state. It is preferable to do. Examples of the separation and recovery method include, but are not limited to, a method of taking out the multilayer from the lower part and a method of taking out the light layer from the upper part.

本発明に係る非鉄製錬スラグの処理方法によって得られた浄化スラグは、As含有量が好ましくは0.05質量%以下であり、より好ましくは0.02質量%以下であり、更により好ましくは0.01質量%以下である。また、浄化スラグはCu含有量が好ましくは0.5質量%以下であり、より好ましくは0.4質量%以下であり、更により好ましくは0.2質量%以下である。   The purified slag obtained by the non-ferrous smelting slag treatment method according to the present invention has an As content of preferably 0.05% by mass or less, more preferably 0.02% by mass or less, and even more preferably. 0.01% by mass or less. The purified slag preferably has a Cu content of 0.5% by mass or less, more preferably 0.4% by mass or less, and still more preferably 0.2% by mass or less.

本発明に係る非鉄製錬スラグの処理方法により達成可能なCuの除去率は、好ましくは40%以上であり、より好ましくは50%以上であり、更により好ましくは60%以上であり、更により好ましくは70%以上であり、更により好ましくは80%以上であり、更により好ましくは90%以上であり、更により好ましくは95%以上であり、例えば40〜99%である。当該除去率は次式によって計算される。
Cuの除去率(%)={1―(浄化スラグ中のCu濃度/溶融処理前の非鉄製錬スラグ中のCu濃度)}×100
The Cu removal rate achievable by the non-ferrous smelting slag treatment method according to the present invention is preferably 40% or more, more preferably 50% or more, still more preferably 60% or more, and even more. Preferably it is 70% or more, still more preferably 80% or more, still more preferably 90% or more, still more preferably 95% or more, for example, 40 to 99%. The removal rate is calculated by the following equation.
Cu removal rate (%) = {1- (Cu concentration in purified slag / Cu concentration in non-ferrous smelted slag before melting)} × 100

溶融処理時には、スラグ中に含まれている酸化数が1以上の化合物の形態にあるFeが単体の鉄に還元されると、スラグの粘度が上昇する。粘度の上昇はその後の比重分離効率を悪化させる。しかしながら、本発明に係る非鉄製錬スラグの処理方法においては、鉄含有材料を添加して補充するため、スラグ粘度が低下するのを防止することができる。このため、本発明に係る非鉄製錬スラグの処理方法によれば、浄化スラグ中のFe含有量が溶融処理前の非鉄製錬スラグ中のFe含有量と比較して同一であるか又は高いのが通常である。必要に応じて、Fe含有量が溶融処理前の非鉄製錬スラグに比べて4質量%以上上昇した浄化スラグを得ることができ、5質量%以上上昇した浄化スラグを得ることができ、例えば4〜6質量%上昇した浄化スラグを得ることができる。また、当該浄化スラグは製鉄原料として利用することも可能である。浄化スラグ中の鉄含有量は例えば42質量%以上とすることができ、43質量%以上とすることもでき、44質量%以上とすることもでき、例えば42〜46質量%とすることができる。従って、本発明は一側面においては、非鉄製錬スラグの処理方法を含む製鉄原料の製造方法を提供していると言える。   At the time of melting treatment, when Fe in the form of a compound having an oxidation number of 1 or more contained in slag is reduced to simple iron, the viscosity of slag increases. The increase in viscosity deteriorates the subsequent specific gravity separation efficiency. However, in the method for processing non-ferrous smelting slag according to the present invention, the iron-containing material is added and supplemented, so that the slag viscosity can be prevented from decreasing. For this reason, according to the processing method of the nonferrous smelting slag according to the present invention, the Fe content in the purified slag is the same as or higher than the Fe content in the nonferrous smelting slag before the melting treatment. Is normal. If necessary, it is possible to obtain a purified slag having an Fe content increased by 4% by mass or more compared to the non-ferrous smelted slag before the melting treatment, and a purified slag having an increased content of 5% by mass or more can be obtained. Purified slag having an increase of ˜6% by mass can be obtained. Moreover, the said purification | cleaning slag can also be utilized as an iron-making raw material. The iron content in the purification slag can be, for example, 42% by mass or more, can be 43% by mass or more, can be 44% by mass or more, and can be, for example, 42-46% by mass. . Therefore, it can be said that this invention has provided the manufacturing method of the iron-making raw material containing the processing method of nonferrous smelting slag in one side.

本発明に係る非鉄製錬スラグの処理方法によって得られた典型的な浄化スラグは、As等の有害金属の不純物の含有量が極めて少ないため、製鉄原料以外にも、埋め立て資材や土木資材として有用である。   The typical purification slag obtained by the non-ferrous smelting slag processing method according to the present invention has a very low content of impurities such as As and other harmful metals, so that it is useful as a landfill material or civil engineering material in addition to iron production materials. It is.

比重分離によって浄化スラグと分離されたAs等の有害金属を含む重層中には、Cu及びFe等の有価金属が単体金属の形態で混入していることが多い。そのため、これらの有価金属を分離回収することが好ましい。分離回収の方法としては、電解採取を行う方法の他、自溶炉へ繰り返して、銅の製錬プロセスの中で回収する方法が考えられる。   Valuable metals such as Cu and Fe are often mixed in the form of a single metal in a multilayer containing harmful metals such as As separated from purified slag by specific gravity separation. Therefore, it is preferable to separate and recover these valuable metals. As a method of separation and recovery, in addition to a method of performing electrowinning, a method of repeatedly collecting in a flash smelting furnace and recovering in a copper smelting process is conceivable.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれらに限定されるものではない。なお、実施例に記載する元素分析結果は、ICP−AES(株式会社日立ハイテクノロジーズ(旧SII)社製 型式SPS4000)による分析に基づく。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these. The elemental analysis results described in the examples are based on analysis by ICP-AES (model SPS4000 manufactured by Hitachi High-Technologies Corporation (former SII)).

黄銅鉱精鉱を主原料とし、自溶炉工程を経て生成したスラグから、錬カン炉で更にマットと比重分離した。その後、当該スラグに対して水砕処理を行って水砕スラグを得た。当該水砕スラグの元素分析結果を表1に示す。表1の元素のうち、Cu、Fe、Pb、Zn、Sb、As、Cr、Ca、Si、Al、Cd、Na、Mo、Re及びPは酸化数が1以上の化合物の形態(主に酸化物及び硫化物)として存在していると考えられる。   Using brassite concentrate as the main raw material, the slag generated through the flash smelting furnace process was further separated from the mat and specific gravity in the smelting furnace. Then, the granulation process was performed with respect to the said slag, and the granulated slag was obtained. Table 1 shows the results of elemental analysis of the granulated slag. Of the elements in Table 1, Cu, Fe, Pb, Zn, Sb, As, Cr, Ca, Si, Al, Cd, Na, Mo, Re, and P are in the form of a compound having an oxidation number of 1 or more (mainly oxidation) And sulfides).

(単位:質量%、但し、Au及びAgのみg/t) (Unit:% by mass, but Au and Ag only g / t)

上記水砕スラグをSUS製るつぼ内で大気雰囲気下として、試験番号に応じて表2に記載の条件で攪拌機を用いて攪拌しながら溶融処理した。表2中、「反応温度」は炉内で還元反応を行ったときの保持温度であり、「反応時間」はスラグが反応温度に到達してから冷却を開始するまでの時間であり、「静置時間」は撹拌を停止した後、冷却を開始するまでの時間であり、「自溶炉スラグ」はるつぼに投入した水砕スラグの重量であり、「添加物」は添加時点におけるるつぼ内に投入した添加物の種類と重量(但し、水素については反応時間にわたって溶融スラグ内に吹き込んだ流量である。)を指す。表2中、「炉冷」とあるのは攪拌終了と同時に冷却を開始したために静置時間は0であったことを指す。   The granulated slag was melted in an SUS crucible under an atmospheric atmosphere while stirring using a stirrer under the conditions shown in Table 2 according to the test number. In Table 2, “reaction temperature” is the holding temperature when the reduction reaction is carried out in the furnace, and “reaction time” is the time from when the slag reaches the reaction temperature until the start of cooling. The `` placement time '' is the time from when stirring is stopped until cooling starts, `` self-fluxing furnace slag '' is the weight of granulated slag charged into the crucible, and `` additive '' is in the crucible at the time of addition. It refers to the type and weight of the additive added (however, for hydrogen, the flow rate blown into the molten slag over the reaction time). In Table 2, “furnace cooling” indicates that the standing time was 0 because cooling was started simultaneously with the end of stirring.

上記溶融処理によってCu、Fe、As等の還元された金属はスラグよりも比重が大きく、下層として沈降分離した。PbとZnの大部分は揮発除去された。炉冷後、ルツボから内容物を取り出すと、スラグ層とメタル層に2相分離していた為、スラグ層を破砕して、メタルを分離回収する事が出来た。ただし、参考例1についてはスラグ中にメタルが分散し、分離する事が出来なかった。分離回収後の浄化スラグを再び元素分析したところ、表3に示す結果が得られた。また、下層(還元金属等)と上層(浄化スラグ)中のそれぞれのFeの濃度からFeの分配率を算出した結果を表4に示す。なお、浄化スラグ中のこれらの元素の内、Si、Fe、Pb、Zn、Ca、Al、Moは酸化物として存在していると考えられる。   The reduced metal such as Cu, Fe, As and the like by the above melting treatment has a specific gravity larger than that of slag, and settled and separated as a lower layer. Most of Pb and Zn were volatilized and removed. When the contents were taken out from the crucible after furnace cooling, the slag layer and metal layer were separated into two phases, so the slag layer was crushed and the metal could be separated and recovered. However, in Reference Example 1, the metal was dispersed in the slag and could not be separated. When elemental analysis of the purified slag after separation and recovery was performed again, the results shown in Table 3 were obtained. Table 4 shows the results of calculating the Fe distribution ratio from the respective Fe concentrations in the lower layer (reduced metal or the like) and the upper layer (purified slag). Of these elements in the purification slag, Si, Fe, Pb, Zn, Ca, Al, and Mo are considered to exist as oxides.

<考察>
参考例1は1300℃で添加剤としてコークスのみを添加した例である。この場合、処理後のスラグ中にメタルが存在している事を確認できたが、スラグ中にメタルが分散しており、メタルとスラグを分ける事が出来なかった。これは、スラグ中のFeが減少した事でスラグの粘度が上昇した為と考えられる。
参考例2、発明例及び比較例は何れもAs、Pb及びZn等の不純物濃度を低減することができたが、幾つかの観点で異なる結果が得られた。
参考例2は1450℃で添加剤としてコークスのみを添加した例である。この場合、処理後のスラグ中のCu濃度は低く抑制できたが、Fe濃度も低下した。また、比重分離に高温を要した。
発明例1〜3は添加剤として銑鉄を添加した例である。この場合、処理後のスラグ中のCu濃度は低く抑制できた一方で、Fe濃度が上昇した。また、銑鉄の添加量を増やしていくにつれて、スラグ中のCu濃度が低下した。
比較例1は添加剤として銅、電解鉄、H2、CaF2を添加した例である。この場合、スラグ中の銅濃度が発明例に比べて高かった。
<Discussion>
Reference Example 1 is an example in which only coke was added as an additive at 1300 ° C. In this case, it was confirmed that metal was present in the treated slag, but the metal was dispersed in the slag, and the metal and slag could not be separated. This is thought to be because the viscosity of the slag increased due to a decrease in Fe in the slag.
Although all of Reference Example 2, Invention Example and Comparative Example were able to reduce the concentration of impurities such as As, Pb and Zn, different results were obtained from several viewpoints.
Reference Example 2 is an example in which only coke was added as an additive at 1450 ° C. In this case, the Cu concentration in the slag after the treatment could be suppressed low, but the Fe concentration also decreased. Moreover, high temperature was required for specific gravity separation.
Inventive Examples 1 to 3 are examples in which pig iron is added as an additive. In this case, while the Cu concentration in the slag after the treatment could be suppressed low, the Fe concentration increased. Moreover, Cu concentration in slag fell as the addition amount of pig iron increased.
Comparative Example 1 is an example in which copper, electrolytic iron, H 2 and CaF 2 were added as additives. In this case, the copper concentration in the slag was higher than that of the inventive example.

Claims (11)

酸化数が1以上の化合物の形態にあるFeの他に、酸化数が1以上の化合物の形態にあるAsを0.1〜5質量%及び酸化数が1以上の化合物の形態にあるCuを0.5〜5質量%含有する非鉄製錬スラグに対して鉄含有材料及び炭素含有材料を添加し、添加した鉄含有材料及び炭素含有材料の共存下で非鉄製錬スラグを溶融処理し、当該スラグ中に含まれるFe、As及びCuを還元する工程と、次いで、比重分離により前記スラグから還元されたAs及びCuを還元されたFeと共に除去し、As含有量が0.05質量%未満、Cu含有量が0.5質量%未満である浄化スラグを得る工程とを含む非鉄製錬スラグの処理方法。   In addition to Fe in the form of a compound having an oxidation number of 1 or more, 0.1 to 5% by mass of As in the form of a compound having an oxidation number of 1 or more and Cu in the form of a compound having an oxidation number of 1 or more The iron-containing material and the carbon-containing material are added to the non-ferrous smelting slag containing 0.5 to 5% by mass, the non-ferrous smelting slag is melt-treated in the presence of the added iron-containing material and the carbon-containing material, The step of reducing Fe, As and Cu contained in the slag, and then removing As and Cu reduced from the slag together with the reduced Fe by specific gravity separation, the As content is less than 0.05% by mass, And a process for obtaining purified slag having a Cu content of less than 0.5% by mass. 鉄含有材料が金属鉄である請求項1に記載の非鉄製錬スラグの処理方法。   The method for treating non-ferrous smelting slag according to claim 1, wherein the iron-containing material is metallic iron. 浄化スラグ中のFe含有量が溶融処理前の非鉄製錬スラグ中のFe含有量と比較して同一であるか又は高い請求項2に記載の非鉄製錬スラグの処理方法。   The method for treating non-ferrous smelting slag according to claim 2, wherein the Fe content in the purified slag is the same as or higher than the Fe content in the non-ferrous smelting slag before melting treatment. 鉄含有材料は非鉄製錬スラグ100質量部に対して、1〜20質量部の鉄分が添加されるように添加される請求項1〜3の何れか一項記載の非鉄製錬スラグの処理方法。   The processing method of nonferrous smelting slag according to any one of claims 1 to 3, wherein the iron-containing material is added so that 1 to 20 parts by mass of iron is added to 100 parts by mass of nonferrous smelting slag. . 炭素含有材料及び金属鉄として銑鉄が添加される請求項1〜4の何れか一項記載の非鉄製錬スラグの処理方法。   The processing method of the nonferrous smelting slag as described in any one of Claims 1-4 in which pig iron is added as a carbon containing material and metallic iron. 非鉄製錬スラグは酸化数が1以上の化合物の形態にあるFeを20〜60質量%含有する請求項1〜5の何れか一項記載の非鉄製錬スラグの処理方法。   The nonferrous smelting slag treatment method according to any one of claims 1 to 5, wherein the nonferrous smelting slag contains 20 to 60 mass% of Fe in the form of a compound having an oxidation number of 1 or more. Cuの除去率が40%以上である請求項1〜6の何れか一項記載の非鉄製錬スラグの処理方法。   The removal rate of Cu is 40% or more, The processing method of the nonferrous smelting slag as described in any one of Claims 1-6. 炭素含有材料は非鉄製錬スラグ100質量部に対して、1〜20質量部の炭素分が添加されるように添加される請求項1〜7の何れか一項記載の非鉄製錬スラグの処理方法。   The non-ferrous smelting slag treatment according to any one of claims 1 to 7, wherein the carbon-containing material is added so that 1 to 20 parts by mass of carbon is added to 100 parts by mass of the non-ferrous smelting slag. Method. 非鉄製錬スラグが銅製錬スラグである請求項1〜8の何れか一項に記載の非鉄製錬スラグの処理方法。   The method for treating nonferrous smelting slag according to any one of claims 1 to 8, wherein the nonferrous smelting slag is copper smelting slag. 非鉄製錬スラグがPb及びZnの少なくとも一方を更に含有し、前記溶融処理時にこれらを揮発除去することを含む請求項1〜9の何れか一項記載の非鉄製錬スラグの処理方法。   The processing method of the nonferrous smelting slag as described in any one of Claims 1-9 including the nonferrous smelting slag further containing at least one of Pb and Zn, and volatilizing and removing these at the time of the said melting process. 請求項1〜10の何れか一項に記載の非鉄製錬スラグの処理方法を含む製鉄原料の製造方法。   The manufacturing method of the iron-making raw material containing the processing method of the nonferrous smelting slag as described in any one of Claims 1-10.
JP2015072099A 2015-03-31 2015-03-31 Method of treating non-ferrous smelting slag Active JP6542560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072099A JP6542560B2 (en) 2015-03-31 2015-03-31 Method of treating non-ferrous smelting slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072099A JP6542560B2 (en) 2015-03-31 2015-03-31 Method of treating non-ferrous smelting slag

Publications (2)

Publication Number Publication Date
JP2016191120A true JP2016191120A (en) 2016-11-10
JP6542560B2 JP6542560B2 (en) 2019-07-10

Family

ID=57246284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072099A Active JP6542560B2 (en) 2015-03-31 2015-03-31 Method of treating non-ferrous smelting slag

Country Status (1)

Country Link
JP (1) JP6542560B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226617A (en) * 2020-08-31 2021-01-15 宁波住铁精密机械有限公司 Copper smelting method for improving stability
CN113061736A (en) * 2021-03-30 2021-07-02 攀钢集团攀枝花钢铁研究院有限公司 Method for separating potassium, lead and iron from sintering machine head ash

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110107A (en) * 1977-06-16 1978-08-29 The United States Of America As Represented By The Secretary Of The Interior Process for reducing molten furnace slags by carbon injection
JPS61104013A (en) * 1984-10-23 1986-05-22 Iwate Seitetsu Kk Method for recovering iron contained in molten steel slag
WO2005068669A1 (en) * 2004-01-19 2005-07-28 Sumitomo Metal Mining Co., Ltd. Method of slag fuming
JP2006327909A (en) * 2005-05-30 2006-12-07 Nikko Kinzoku Kk Treating method for copper refining slag
US20070283785A1 (en) * 2005-12-09 2007-12-13 Archana Agrawal Process for recovery of iron from copper slag
JP2008095127A (en) * 2006-10-06 2008-04-24 Sumitomo Metal Mining Co Ltd Method for purifying slag in smelting furnace for smelting copper
JP2012067375A (en) * 2010-09-27 2012-04-05 Pan Pacific Copper Co Ltd Dry processing method and system for converter slag in copper smelting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110107A (en) * 1977-06-16 1978-08-29 The United States Of America As Represented By The Secretary Of The Interior Process for reducing molten furnace slags by carbon injection
JPS61104013A (en) * 1984-10-23 1986-05-22 Iwate Seitetsu Kk Method for recovering iron contained in molten steel slag
WO2005068669A1 (en) * 2004-01-19 2005-07-28 Sumitomo Metal Mining Co., Ltd. Method of slag fuming
JP2006327909A (en) * 2005-05-30 2006-12-07 Nikko Kinzoku Kk Treating method for copper refining slag
US20070283785A1 (en) * 2005-12-09 2007-12-13 Archana Agrawal Process for recovery of iron from copper slag
JP2008095127A (en) * 2006-10-06 2008-04-24 Sumitomo Metal Mining Co Ltd Method for purifying slag in smelting furnace for smelting copper
JP2012067375A (en) * 2010-09-27 2012-04-05 Pan Pacific Copper Co Ltd Dry processing method and system for converter slag in copper smelting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226617A (en) * 2020-08-31 2021-01-15 宁波住铁精密机械有限公司 Copper smelting method for improving stability
CN113061736A (en) * 2021-03-30 2021-07-02 攀钢集团攀枝花钢铁研究院有限公司 Method for separating potassium, lead and iron from sintering machine head ash
CN113061736B (en) * 2021-03-30 2022-03-22 攀钢集团攀枝花钢铁研究院有限公司 Method for separating potassium, lead and iron from sintering machine head ash

Also Published As

Publication number Publication date
JP6542560B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP5049311B2 (en) Method and system for dry treatment of converter slag in copper smelting
TWI398528B (en) Recovery of residues containing copper and other valuable metals
JP4967576B2 (en) Method for purifying copper smelting furnace slag
JP2012067375A (en) Dry processing method and system for converter slag in copper smelting
JP2012092417A (en) Treatment method of converter slag, and method for smelting copper
JP2016191128A (en) Copper smelting slag treatment method
US8500845B2 (en) Process for refining lead bullion
KR102613147B1 (en) Improved process for the production of crude solder
Barakat The pyrometallurgical processing of galvanizing zinc ash and flue dust
JP6516264B2 (en) Method of treating copper smelting slag
JP6542560B2 (en) Method of treating non-ferrous smelting slag
JP2012082505A (en) Method for treating converter slag and method for smelting copper
CN107312931B (en) Method that is a kind of while recycling noble metal and prepare HIGH-PURITY SILICON
JP4525453B2 (en) Slag fuming method
US3091524A (en) Metallurgical process
KR102566654B1 (en) Methods for recovering metals from cobalt containing materials
JP5726618B2 (en) Method for treating tin-containing copper
JP4274069B2 (en) Reuse method of copper alloy and mat obtained by slag fuming method
JP2009167469A (en) Method for treating copper-containing dross
KR100642964B1 (en) Method for smelting treatment of fine granular material containing water and iron in copper ps converter
JP5678470B2 (en) Treatment method of copper removal slag
JP6466869B2 (en) Operation method of copper smelting furnace
US4021235A (en) Operating method for slag cleaning furnace in copper refining
JPS6342335A (en) Treatment of slag concentrate of copper converter
JP2016191115A (en) Method of treating copper smelting slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190613

R150 Certificate of patent or registration of utility model

Ref document number: 6542560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250