JP5049311B2 - Method and system for dry treatment of converter slag in copper smelting - Google Patents

Method and system for dry treatment of converter slag in copper smelting Download PDF

Info

Publication number
JP5049311B2
JP5049311B2 JP2009088257A JP2009088257A JP5049311B2 JP 5049311 B2 JP5049311 B2 JP 5049311B2 JP 2009088257 A JP2009088257 A JP 2009088257A JP 2009088257 A JP2009088257 A JP 2009088257A JP 5049311 B2 JP5049311 B2 JP 5049311B2
Authority
JP
Japan
Prior art keywords
slag
copper
reduced
furnace
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009088257A
Other languages
Japanese (ja)
Other versions
JP2010236069A (en
Inventor
崇文 佐々木
孝悦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2009088257A priority Critical patent/JP5049311B2/en
Priority to CN200910174953A priority patent/CN101851704A/en
Priority to US12/625,675 priority patent/US20100242682A1/en
Priority to CL2009002241A priority patent/CL2009002241A1/en
Publication of JP2010236069A publication Critical patent/JP2010236069A/en
Application granted granted Critical
Publication of JP5049311B2 publication Critical patent/JP5049311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0054Slag, slime, speiss, or dross treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銅製錬において転炉から排出されるスラグを乾式処理する方法及びシステムに関する。とりわけ、本発明は、銅製錬において転炉から排出されるスラグを製鉄原料に変換するための乾式処理方法及びシステムに関する。   The present invention relates to a method and system for dry-processing slag discharged from a converter in copper smelting. In particular, the present invention relates to a dry processing method and system for converting slag discharged from a converter in copper smelting into a steelmaking raw material.

銅製錬の一般的手順は以下である。原料となる銅精鉱を自溶炉で酸化反応させ、銅品位約68%のマットと、酸化鉄及び珪酸を主成分とする自溶炉スラグとを生成させ、これらを分離する。その後、マットを転炉に装入し、銅品位約99%の粗銅と珪酸系酸化鉄を主成分とする転炉スラグとを生成させ、これらを分離する。粗銅は精製炉において更に銅純度を上げたアノードに鋳造し、このアノードを電解精製し、電気銅に仕上げる。   The general procedure for copper smelting is as follows. Copper concentrate as a raw material is oxidized in a flash smelting furnace to produce a mat of about 68% copper grade and a flash slag slag mainly composed of iron oxide and silicic acid, and these are separated. Thereafter, the mat is charged into the converter to produce crude copper having a copper grade of about 99% and converter slag mainly composed of silicate iron oxide, which are separated. Crude copper is cast into an anode having a further increased copper purity in a refining furnace, and the anode is electrolytically purified to finish electrolytic copper.

一方、転炉スラグは、固化してから粉砕し、その後浮選により銅分を回収するスラグ選鉱法が主として採用されている(資源素材学会誌、「資源と素材」1993.12,Vol 109「非鉄製錬号」第954,965頁,「資源と素材」1997,12,Vol.113「リサイクリング大特集号」第996頁左欄、最終パラグラフ)。スラグ選鉱工程では、Cu品位の高いスラグ銅精鉱(約25%Cu)とCu品位の低い鉄精鉱(約0.6%Cu)に分離され、スラグ銅精鉱は自溶炉に繰り返して処理し、鉄精鉱は主にセメント原料としてリサイクルすることができる。   On the other hand, the slag beneficiation method in which converter slag is solidified and then pulverized, and then copper is recovered by flotation is mainly adopted (Journal of Resource Materials Society, “Resources and Materials” 1993.12, Vol 109 “ "Non-ferrous smelting", pages 954, 965, "Resources and materials" 1997, 12, Vol. 113 "Special issue on recycling", page 996, left column, last paragraph). In the slag beneficiation process, high-quality Cu slag copper concentrate (about 25% Cu) and low-quality Cu concentrate (about 0.6% Cu) are separated, and the slag copper concentrate is repeated in the flash furnace. Treated and iron concentrate can be recycled mainly as cement raw material.

また、溶融状態の転炉スラグ中に含まれる酸化銅及びFe34をコークス、石炭等の固体還元剤または、気体、液体の還元剤をスラグ中に吹込んで還元し、銅品位1%以下の脱銅スラグと粗銅を得るスラグの処理法が特開昭53−22115号公報に記載されている。 In addition, copper oxide and Fe 3 O 4 contained in the molten converter slag are reduced by blowing a solid reducing agent such as coke and coal or a gaseous or liquid reducing agent into the slag to reduce the copper quality to 1% or less. Japanese Patent Laid-Open No. 53-22115 discloses a method of treating copper slag and slag to obtain crude copper.

チリのCodelco社、Caletones製錬所では、溶融状態の転炉スラグ中に微粉炭を吹き込み、スラグ中のマグネタイトを還元してスラグ中の銅分を回収する方法が実用化されている(Rolando Campos andLuis Torres, CALETONES SMELTER:TWO DECADES OF TECHNOLOGICAL IMPROVEMENTS, The Paul E. Queneau International Symposium, Ontario, CANADA(1993))   At the Codelco and Caletones smelters in Chile, a method of recovering the copper content in the slag by blowing pulverized coal into the molten converter slag and reducing the magnetite in the slag has been put into practical use (Rolando Campos) andLuis Torres, CALETONES SMELTER: TWO DECADES OF TECHNOLOGICAL IMPROVEMENTS, The Paul E. Queenau International Symposium, Ontario, CANADA (1993)

特開昭53−22115号公報JP-A-53-22115

資源素材学会誌、「資源と素材」1993. 12, Vol 109「非鉄製錬号」第954, 965頁Journal of Resource Materials, “Resources and Materials”, 1993. 12, Vol 109 “Nonferrous Metals”, pages 954, 965 「資源と素材」1997,12,Vol.113「リサイクリング大特集号」第996頁左欄、最終パラグラフ“Resources and Materials” 1997, 12, Vol. 113 “Special issue on recycling”, page 996, left column, last paragraph Rolando Campos andLuis Torres, CALETONES SMELTER:TWO DECADES OF TECHNOLOGICAL IMPROVEMENTS, The Paul E. Queneau International Symposium, Ontario, CANADA(1993)Rolando Campos and Luis Torres, CALETONES SMELTER: TWO DECADES OF TECHNOLOGICAL IMPROVEMENTS, The Paul E. Queenau International Symposium, Ontario, CANADA (1993)

近年、我が国のセメント業界が縮小傾向にあり、転炉スラグを特許文献1に記載のようなスラグ選鉱法で処理して得られる鉄精鉱のリサイクル先の確保が困難となりつつあることから、転炉スラグの新たなリサイクルルートが望まれる。この点、転炉スラグは鉄分を約50質量%含んでおり、製鉄原料として利用できる可能性があるが、転炉スラグは銅分を約4質量%、亜鉛分を約2質量%含んでおり、製鉄原料として利用するには銅品位及び亜鉛品位が高すぎる。スラグ選鉱法で処理して得られる鉄精鉱であっても、銅分を約0.6質量%、亜鉛分を約2.5質量%含んでおり、やはり製鉄原料として利用するには銅品位及び亜鉛品位が高い。製鉄原料として利用するためには銅分が0.3質量%以下、亜鉛分が1質量%以下とすることが望まれる。特許文献2や特許文献3に記載の方法で転炉スラグを処理した場合も、やはり銅分及び亜鉛分の品位が高く、製鉄原料としては不適である。   In recent years, the cement industry in Japan has been shrinking, and it is becoming difficult to secure a recycling destination for iron concentrate obtained by processing converter slag by the slag beneficiation method described in Patent Document 1. A new recycling route for furnace slag is desired. In this regard, converter slag contains about 50% by mass of iron and may be used as a raw material for iron making. However, converter slag contains about 4% by mass of copper and about 2% by mass of zinc. The copper grade and the zinc grade are too high to be used as ironmaking raw materials. Even iron concentrate obtained by processing by slag beneficiation method contains about 0.6 mass% copper and about 2.5 mass% zinc. And zinc grade is high. In order to use as a raw material for iron making, it is desirable that the copper content is 0.3% by mass or less and the zinc content is 1% by mass or less. Even when the converter slag is treated by the methods described in Patent Document 2 and Patent Document 3, the grades of copper and zinc are still high and are unsuitable as iron-making raw materials.

そこで、本発明は銅製錬において転炉から排出されるスラグを製鉄原料に変換するための処理方法及びシステムを提供することを課題とする。   Then, this invention makes it a subject to provide the processing method and system for converting the slag discharged | emitted from a converter in copper smelting into a steelmaking raw material.

本発明者は、上記課題を解決するために鋭意検討した結果、亜鉛製錬に一般に適用されるスラグフューミング法を採用して還元炉でスラグから亜鉛を揮発除去する一方で銅を還元し、次いで、還元炉内で、又は還元炉に直列配列されたセットリング炉にスラグを移行した上でセットリング炉内で、銅を沈降させて還元粗銅とスラグに分離するスラグの処理方法を創作した。本方法により、転炉スラグを、銅品位及び亜鉛品位が製鉄原料として利用可能なレベルにまで低下したスラグへ変換することが可能となる。また、銅の沈降分離を還元炉ではなくセットリング炉で別途行うことで、転炉スラグの連続処理が可能となる。   As a result of diligent study to solve the above problems, the present inventor adopted a slag fuming method generally applied to zinc smelting to reduce copper while volatilizing and removing zinc from the slag in a reduction furnace, Next, a slag treatment method was created in which the slag was transferred to a settling furnace in series in the reduction furnace or in a reduction furnace, and then the copper was allowed to settle and separated into reduced crude copper and slag in the settling furnace. . This method makes it possible to convert the converter slag into slag whose copper quality and zinc quality are reduced to a level that can be used as a raw material for iron making. Moreover, continuous processing of converter slag is enabled by separately performing copper sedimentation in a settling furnace instead of a reduction furnace.

一般に、スラグフューミング法は、溶融状態のスラグを加熱還元してスラグ中のZn、Pb、As等の金属を揮発させるもので、例えば、ガス吹き込み用のランス又は炉下部に羽口を備えた還元炉を用いる。炉内に装入したスラグにランス又は羽口の先端から還元剤(例:プロパンガスや重油)と燃焼用空気を噴出させることにより、スラグ中の金属を還元・揮発する処理である。処理後のスラグは炉底部から抜き出され、揮発金属は炉頂部から回収される。   In general, the slag fuming method is a method in which molten slag is heated and reduced to volatilize metals such as Zn, Pb and As in the slag. For example, a lance for gas blowing or a tuyere at the bottom of the furnace is provided. Use a reduction furnace. In this process, the metal in the slag is reduced and volatilized by ejecting a reducing agent (eg, propane gas or heavy oil) and combustion air from the tip of the lance or tuyere into the slag charged in the furnace. The treated slag is extracted from the bottom of the furnace, and the volatile metal is recovered from the top of the furnace.

スラグフューミング法は亜鉛製錬におけるスラグ処理では一般的であるが、本発明のように銅製錬の転炉スラグ処理に適用されることは従来なかったし、その必要性もなかった。従って、本発明はスラグフューミング法を銅製錬の転炉スラグ処理に適用した点に大きな特徴がある。また、還元炉から抜き出されたスラグをセットリング炉に移送し、ここで還元銅の沈降分離及び銅回収を行う実施態様では、転炉スラグの連続処理が可能になり、実装業上極めて有利である。   Although the slag fuming method is common in slag treatment in zinc smelting, it has not been applied to the converter slag treatment in copper smelting as in the present invention, and there has been no necessity. Therefore, the present invention has a great feature in that the slag fuming method is applied to the converter slag treatment of copper smelting. Further, in the embodiment in which the slag extracted from the reduction furnace is transferred to a settling furnace, where the reduced copper is separated and recovered and recovered, the converter slag can be continuously processed, which is extremely advantageous in the packaging industry. It is.

従って、本発明は一側面において、銅製錬過程で発生する転炉スラグの処理方法であって、転炉スラグを還元炉に装入し、還元炉において、該スラグ中に含まれる亜鉛分及び銅分の加熱還元と、還元亜鉛の揮発除去とを行うことを含む方法である。   Accordingly, in one aspect, the present invention relates to a method for treating converter slag generated in a copper smelting process, wherein the converter slag is charged into a reduction furnace, and in the reduction furnace, zinc contained in the slag and copper And heating and reducing the reduced zinc.

本発明は別の一側面において、銅製錬過程で発生する転炉スラグの処理方法であって、転炉スラグを還元炉に装入し、還元炉において、該スラグ中に含まれる亜鉛分及び銅分の加熱還元と、還元亜鉛の揮発除去と、還元銅のスラグからの沈降分離とを行うことを含む方法である。   According to another aspect of the present invention, there is provided a method for treating converter slag generated in a copper smelting process, wherein the converter slag is charged into a reduction furnace, and in the reduction furnace, zinc contained in the slag and copper Heat reduction for a minute, volatilization removal of reduced zinc, and precipitation separation from reduced copper slag.

本発明は更に別の一側面において、銅製錬過程で発生する転炉スラグの処理方法であって、転炉スラグを還元炉に装入し、還元炉において、該スラグ中に含まれる亜鉛分及び銅分の加熱還元と、還元亜鉛の揮発除去とを行い、次いで、還元銅をスラグと共に還元炉からセットリング炉へ移送し、セットリング炉内で還元銅のスラグからの沈降分離を行うことを含む方法である。   In another aspect of the present invention, there is provided a method for treating converter slag generated in a copper smelting process, wherein the converter slag is charged into a reduction furnace, and in the reduction furnace, the zinc content contained in the slag and Heat reduction of the copper content and volatilization removal of the reduced zinc, and then transfer the reduced copper together with the slag from the reduction furnace to the settling furnace, and perform sedimentation separation from the reduced copper slag in the settling furnace It is the method of including.

本発明に係る方法の一実施態様においては、還元銅をスラグから沈降分離した後のスラグを破砕処理することを更に含む。   In one embodiment of the method according to the present invention, the method further includes crushing the slag after the reduced copper is settled and separated from the slag.

本発明に係る方法の別の一実施態様においては、還元炉において、スラグ中に含まれるFe34をFeOまで加熱還元することを更に含む。 In another embodiment of the method according to the present invention, the method further includes heating and reducing Fe 3 O 4 contained in the slag to FeO in a reduction furnace.

本発明に係る方法の更に別の一実施態様においては、転炉スラグを溶融状態で保持し、還元炉へ供給する転炉スラグの供給量の調節を行うための保持炉から、転炉スラグが還元炉に装入される。   In yet another embodiment of the method according to the present invention, the converter slag is held from a holding furnace for holding the converter slag in a molten state and adjusting the supply amount of the converter slag supplied to the reduction furnace. Charged into the reduction furnace.

本発明は更に別の一側面において、
銅製錬過程で発生する転炉スラグの処理システムであって、
転炉スラグ中に含まれる亜鉛分及び銅分を加熱還元するための還元炉と、
揮発した還元亜鉛を除去するために還元炉に設けられた排気手段と、
沈降分離した還元銅を還元炉から抜き取るための抜取手段と、
を備えたシステムである。
In another aspect of the present invention,
A processing system for converter slag generated in the copper smelting process,
A reduction furnace for heating and reducing zinc and copper contained in the converter slag;
An exhaust means provided in the reduction furnace to remove the volatilized reduced zinc;
Extraction means for extracting the reduced copper that has settled and separated from the reduction furnace;
It is a system equipped with.

本発明に係るシステムの一実施態様においては、スラグの破砕処理手段と、還元炉から排出されたスラグをスラグの破砕処理手段へ移送するための移送手段を更に備える。   In one embodiment of the system according to the present invention, a slag crushing means and a transfer means for transferring the slag discharged from the reduction furnace to the slag crushing means are further provided.

本発明は更に別の一側面において、銅製錬過程で発生する転炉スラグの処理システムであって、
転炉スラグ中に含まれる亜鉛分及び銅分を加熱還元するための還元炉と、
揮発した還元亜鉛を除去するために還元炉に設けられた排気手段と、
還元銅をスラグから沈降分離するためのセットリング炉と、
還元炉から排出されたスラグをセットリング炉へ移送するための移送手段と、
沈降分離した還元銅をセットリング炉から抜き取るための抜取手段と、
を備えたシステムである。
In yet another aspect, the present invention is a system for treating converter slag generated in a copper smelting process,
A reduction furnace for heating and reducing zinc and copper contained in the converter slag;
An exhaust means provided in the reduction furnace to remove the volatilized reduced zinc;
A settling furnace for settling and separating reduced copper from slag;
Transfer means for transferring slag discharged from the reduction furnace to the settling furnace;
Extraction means for extracting the reduced copper that has settled and separated from the settling furnace;
It is a system equipped with.

本発明に係るシステムの一実施態様においては、スラグの破砕処理手段と、セットリング炉から排出されたスラグをスラグの破砕処理手段へ移送するための移送手段を更に備える。   In one embodiment of the system according to the present invention, a slag crushing means and a transfer means for transferring the slag discharged from the settling furnace to the slag crushing means are further provided.

本発明に係るシステムの更に別の一実施態様においては、転炉スラグを溶融状態で保持し、還元炉へ供給する転炉スラグの供給量の調節を行うための保持炉と、保持炉から排出された転炉スラグを還元炉に移送するための移送手段とを更に備える。   In yet another embodiment of the system according to the present invention, the converter slag is held in a molten state, and a holding furnace for adjusting the supply amount of the converter slag supplied to the reduction furnace, and the discharge from the holding furnace. And a transfer means for transferring the converted converter slag to the reduction furnace.

本発明によれば、転炉スラグを、銅品位及び亜鉛品位が製鉄原料として利用可能なレベルにまで低下したスラグへ連続的に変換することが可能となる。また、スラグからの銅回収効率を高めることも可能となる。   According to the present invention, it is possible to continuously convert converter slag into slag whose copper quality and zinc quality are reduced to a level that can be used as an iron-making raw material. It is also possible to increase the efficiency of copper recovery from slag.

転炉スラグの連続処理システムの一発明例を示す。1 shows an example of an invention of a continuous processing system for converter slag. 転炉スラグのバッチ処理システムの一発明例を示す。1 shows an example of an invention of a batch processing system for converter slag.

以下に、本発明に係る転炉スラグの処理方法及びシステムの実施形態を、図1及び図2を参照しながら説明する。   Hereinafter, an embodiment of a method and system for treating converter slag according to the present invention will be described with reference to FIGS. 1 and 2.

一般に、銅製錬工程において転炉から排出されるスラグの組成は、鉄分(主にFe34やFeOとして):50〜60質量%、ケイ素分(主にSiO2として):20〜25質量%、銅分(主にCuSあるいはCu2OやCuOとして):3〜5質量%、亜鉛分(主にZnOとして):3〜6質量%、アルミニウム分(主にAl23として):1〜3質量%である。
従って、本発明において、「転炉スラグ」とは、実際に銅製錬における転炉から排出されるスラグのみならず、銅製錬における転炉スラグと同様の組成を有するスラグも指す。例えば、銅製錬の自溶炉スラグ中には原料鉱石及び溶剤の珪酸鉱に由来するAl23が3〜5%程度含まれており、製鉄原料として利用するにはアルミナ(Al23)品位が高すぎる。しかしながら、原料鉱石及び珪酸鉱中のアルミナ品位が低く、自溶炉スラグ中のアルミナ品位が低い場合には本発明を適用することができる。
In general, the composition of the slag discharged from the converter in the copper smelting process is as follows: iron content (mainly as Fe 3 O 4 or FeO): 50 to 60 mass%, silicon content (mainly as SiO 2 ): 20 to 25 mass %, Copper content (mainly as CuS or Cu 2 O or CuO): 3 to 5% by mass, zinc content (mainly as ZnO): 3 to 6% by mass, aluminum content (mainly as Al 2 O 3 ): It is 1-3 mass%.
Therefore, in the present invention, “converter slag” refers not only to slag actually discharged from a converter in copper smelting but also to slag having the same composition as converter slag in copper smelting. For example, the slag of copper smelting contains about 3 to 5% of Al 2 O 3 derived from raw ores and silicate ore as a solvent, and alumina (Al 2 O 3) is used as a raw material for iron making. ) The quality is too high. However, the present invention can be applied when the alumina grade in the raw ore and silicate ore is low and the alumina grade in the flash slag is low.

連続処理システム
まず、転炉スラグを連続処理するシステムについて説明する。図1を参照すると、転炉(図示せず)から1250〜1330℃の溶融状態で受入樋1に流入したスラグは、溶融状態を保ったまま保持炉2へ導入される。保持炉2へのスラグの導入は溶融状態でなくてもよく、例えば、ホッパーで粒状のスラグを受け入れ、それを保持炉2に導入することもできる。保持炉2に導入されたスラグは溶融状態が維持される。保持炉2は還元炉4へのスラグの供給量を調節するための役割を果たす。例えば、還元炉4に常に一定流量のスラグを供給することでスラグ処理システムの安定的な連続操業を支援する。
Continuous processing system First, a system for continuously processing converter slag will be described. Referring to FIG. 1, the slag that has flowed from the converter (not shown) into the receiving trough 1 in a molten state at 1250 to 1330 ° C. is introduced into the holding furnace 2 while maintaining the molten state. The introduction of the slag to the holding furnace 2 may not be in a molten state. For example, granular slag can be received by a hopper and introduced into the holding furnace 2. The slag introduced into the holding furnace 2 is maintained in a molten state. The holding furnace 2 serves to adjust the amount of slag supplied to the reduction furnace 4. For example, stable continuous operation of the slag treatment system is supported by always supplying a constant flow rate of slag to the reduction furnace 4.

保持炉2を出たスラグは溶融状態でスラグ樋3を通って還元炉4に装入される。還元炉4では、スラグ中の亜鉛分及び銅分その他の金属成分が還元される。また、スラグ中にはマグネタイト(Fe34)もかなりの量で含まれるが、これがFeOに還元されることで、スラグの粘性を下げることができる。スラグの粘性が下がると、スラグ中に懸垂している還元銅が沈降分離しやすくなり、次工程での銅の回収率が高まる。 The slag exiting the holding furnace 2 is charged into the reduction furnace 4 through the slag tank 3 in a molten state. In the reduction furnace 4, zinc content, copper content and other metal components in the slag are reduced. In addition, magnetite (Fe 3 O 4 ) is contained in a considerable amount in the slag, but when this is reduced to FeO, the viscosity of the slag can be lowered. When the viscosity of the slag is lowered, the reduced copper suspended in the slag is easily settled and separated, and the copper recovery rate in the next process is increased.

還元剤としては、限定的ではないが、コークス及び石炭などの固体炭素質還元剤、水素及び炭化水素(メタン、エタン、プロパン、ブタンなど)などの気体還元剤、石油及び重油などの液体還元剤が挙げられる。典型的にはLPGを使用することができる。還元剤は、還元炉4内に装入したスラグに炉頂部から挿入したランス6の先端から燃焼用空気と共に噴出させる上吹き込み方法が好ましい。これにより、還元炉4内で溶融しているスラグが強攪拌され、スラグと還元剤の反応効率を高めることが可能となる。ランスの先端はスラグ内に浸漬してもよい。還元剤の供給は炉底部に設けた羽口を利用することもできる。また、還元剤の導入流量や還元時間を増大させることで、還元反応効率を高めることができる。すなわち、スラグ中の亜鉛品位や銅品位を低下させることができる。   Examples of the reducing agent include, but are not limited to, solid carbonaceous reducing agents such as coke and coal, gaseous reducing agents such as hydrogen and hydrocarbons (such as methane, ethane, propane, and butane), and liquid reducing agents such as petroleum and heavy oil. Is mentioned. Typically, LPG can be used. An upper blowing method in which the reducing agent is jetted together with combustion air from the tip of the lance 6 inserted from the top of the furnace into the slag charged in the reduction furnace 4 is preferable. Thereby, the slag melt | dissolved in the reduction furnace 4 is stirred strongly, and it becomes possible to raise the reaction efficiency of slag and a reducing agent. The tip of the lance may be immersed in the slag. A tuyere provided at the bottom of the furnace can also be used to supply the reducing agent. Further, the reduction reaction efficiency can be increased by increasing the flow rate of the reducing agent and the reduction time. That is, the zinc quality and the copper quality in the slag can be reduced.

還元炉4では、例えば、還元剤としてプロパンを使用した場合、以下のような還元反応が起きる。
10Cu2O + C38 → 20Cu + 3CO2 + 4H2
10ZnO + C38 → 10Zn + 3CO2 + 4H2
10Fe34 + C38 → 30FeO + 3CO2 + 4H2
In the reduction furnace 4, for example, when propane is used as the reducing agent, the following reduction reaction occurs.
10Cu 2 O + C 3 H 8 → 20Cu + 3CO 2 + 4H 2 O
10ZnO + C 3 H 8 → 10Zn + 3CO 2 + 4H 2 O
10Fe 3 O 4 + C 3 H 8 → 30FeO + 3CO 2 + 4H 2 O

還元された亜鉛はスラグ相から揮発し、他の揮発成分あるいは微細なスラグ粒子と共にスラグフューミングとして煙突6から排出される。煙道の途中にはバグフィルター7が設置されており、これによって亜鉛は回収することができる。また、排ガス温度を低下させる目的で、煙道に冷却水を噴霧したり、水冷塔(図示せず)を設置したりすることもできる。還元亜鉛は煙突6への移動途中で空気等によって酸化し、酸化亜鉛として回収することもできる。スラグフューミングダスト中には鉛も含まれるのが通常である。   The reduced zinc volatilizes from the slag phase and is discharged from the chimney 6 as slag fuming together with other volatile components or fine slag particles. A bag filter 7 is installed in the middle of the flue so that zinc can be recovered. Further, for the purpose of lowering the exhaust gas temperature, cooling water can be sprayed on the flue, or a water cooling tower (not shown) can be installed. The reduced zinc can be oxidized by air or the like during the movement to the chimney 6 and recovered as zinc oxide. The slag fuming dust usually contains lead.

還元反応後、還元銅を含むスラグは還元炉4から排出されると溶体樋8を通って溶融状態のままセットリング炉9へ導入される。還元銅はここでスラグとの比重差によって沈降分離する。沈降分離を還元炉4で行わず、セットリング炉9を別に設けて行うことにより、連続操業が可能となる。沈降分離の時間を長くすることで沈降分離の効率を高め、スラグ中の銅品位を低下させることができる。逆に言えば、銅の回収効率を高めることができる。   After the reduction reaction, when the slag containing reduced copper is discharged from the reduction furnace 4, the slag is introduced into the setling furnace 9 through the solution tub 8 in a molten state. Here, the reduced copper separates and settles due to the specific gravity difference with the slag. If the settling furnace 9 is provided separately without performing the sedimentation separation in the reduction furnace 4, continuous operation becomes possible. By increasing the time for sedimentation separation, the efficiency of sedimentation separation can be increased, and the copper quality in the slag can be reduced. In other words, the copper recovery efficiency can be increased.

沈降分離後、還元銅は粗銅樋10を通って抜き出される。還元銅は60〜80質量%の銅品位を有することができ、転炉に繰り返すことができる。一方、還元銅が分離されたスラグはスラグ樋11を通ってスラグ破砕設備12へと移送され、利用しやすい適度な粒度に破砕される。破砕設備としては、限定的ではないが、例えば、水砕機、破砕機、摩砕機等の組み合わせなどが挙げられる。   After sedimentation and separation, the reduced copper is extracted through the crude copper trough 10. Reduced copper can have a copper grade of 60-80% by weight and can be repeated to the converter. On the other hand, the slag from which the reduced copper has been separated is transferred to the slag crushing equipment 12 through the slag trough 11 and crushed to an appropriate particle size that is easy to use. Examples of the crushing equipment include, but are not limited to, a combination of a water crusher, a crusher, a grinder, and the like.

以上の工程を経ることで、スラグ中の銅品位を0.3質量%以下に、亜鉛品位を1%以下に低下させることが可能である。そのため、本発明によって処理されたスラグは製鉄原料として利用可能である。   By passing through the above process, it is possible to reduce the copper quality in slag to 0.3 mass% or less and the zinc quality to 1% or less. Therefore, the slag processed by this invention can be utilized as an iron-making raw material.

本実施形態では、転炉スラグを連続処理することができる。そのため、システムの連続運転中は、炉内での還元反応及び還元亜鉛の揮発除去、セットリング炉での還元銅の沈降分離、スラグ破砕設備でのスラグの破砕処理は同時進行することができる。   In this embodiment, the converter slag can be continuously processed. Therefore, during the continuous operation of the system, the reduction reaction in the furnace and the volatilization and removal of the reduced zinc, the precipitation separation of the reduced copper in the settling furnace, and the slag crushing process in the slag crushing equipment can proceed simultaneously.

バッチ処理システム
次に、転炉スラグをバッチ処理するシステムについて説明する。図2を参照すると、転炉(図示せず)から1250〜1330℃の溶融状態で受入樋1に流入したスラグは、溶融状態を保ったまま還元炉4に装入される。還元炉4では、スラグ中の亜鉛分及び銅分その他の金属成分が還元される。使用可能な還元剤や還元炉4内での還元反応は連続処理システムの場合と同様である。還元された亜鉛の回収についても連続処理システムの場合と同様である。
Batch Processing System Next, a system for batch-processing converter slag will be described. Referring to FIG. 2, the slag that has flowed from the converter (not shown) into the receiving trough 1 in a molten state at 1250 to 1330 ° C. is charged into the reducing furnace 4 while maintaining the molten state. In the reduction furnace 4, zinc content, copper content and other metal components in the slag are reduced. Usable reducing agents and the reduction reaction in the reduction furnace 4 are the same as in the case of the continuous processing system. The recovery of the reduced zinc is the same as in the case of the continuous processing system.

還元反応後、還元銅は還元炉4内で沈降分離する。沈降分離後、還元銅は粗銅樋10を通って抜き出される。一方、還元銅が分離されたスラグはスラグ樋11を通ってスラグ破砕設備12へと移送され、利用しやすい適度な粒度に破砕される。処理スラグは製鉄原料として利用可能である。還元炉は並列に複数基設置してもよい。   After the reduction reaction, the reduced copper is settled and separated in the reduction furnace 4. After sedimentation and separation, the reduced copper is extracted through the crude copper trough 10. On the other hand, the slag from which the reduced copper has been separated is transferred to the slag crushing equipment 12 through the slag trough 11 and crushed to an appropriate particle size that is easy to use. The treated slag can be used as a raw material for iron making. A plurality of reduction furnaces may be installed in parallel.

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。   Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.

試験1(るつぼ試験)
銅製錬の転炉から排出されたスラグ1.1kgを窒素雰囲気中でるつぼに入れ、1250℃に加熱してスラグを溶融した。次いで、るつぼにプロパンガスを8.25L/hr、空気を8.25L/hrで1時間吹き込み、スラグ中の銅、亜鉛及びマグネタイト(Fe34)の還元反応を行った。反応中、生成した還元亜鉛はるつぼの開口部から自然に揮発除去された。その後、生成した還元銅をセットリングして、スラグから分離した。
試験前後での、転炉スラグ中の銅品位及び亜鉛品位の変化を表1に示す。
Test 1 (Crucible test)
1.1 kg of slag discharged from a copper smelting converter was placed in a crucible in a nitrogen atmosphere and heated to 1250 ° C. to melt the slag. Next, propane gas was blown into the crucible at 8.25 L / hr and air at 8.25 L / hr for 1 hour to carry out a reduction reaction of copper, zinc and magnetite (Fe 3 O 4 ) in the slag. During the reaction, the produced reduced zinc was volatilized and removed spontaneously from the opening of the crucible. Thereafter, the produced reduced copper was set and separated from the slag.
Table 1 shows changes in copper quality and zinc quality in the converter slag before and after the test.

Figure 0005049311
Figure 0005049311

試験2(模擬実装業試験1)
上記のるつぼ試験結果からみて、図1に記載のシステムを構築して一定の条件で連続操業したときに想定される処理結果の計算結果を表2に記載する。模擬操業条件は以下とした。
還元炉寸法:φ3m×8m(56m3
溶湯温度:1250℃
還元時間:1時間
還元剤:LPG(436kg/hr)+空気(3,178Nm3/hr)
セットリング時間:1時間
Test 2 (Simulation mounting industry test 1)
In view of the above crucible test results, Table 2 shows the calculation results of the processing results assumed when the system shown in FIG. 1 is constructed and continuously operated under certain conditions. The simulated operating conditions were as follows.
Reduction furnace dimensions: φ3m × 8m (56m 3 )
Molten metal temperature: 1250 ° C
Reduction time: 1 hour Reducing agent: LPG (436 kg / hr) + air (3,178 Nm 3 / hr)
Settling time: 1 hour

Figure 0005049311
Figure 0005049311

試験3(模擬実装業試験2)
上記のるつぼ試験結果からみて、図1に記載のシステムを構築して別の条件で連続操業したときに想定される処理結果の計算結果を表3に記載する。模擬操業条件は以下とした。
還元炉寸法:φ3m×8m(56m3
溶湯温度:1250℃
還元時間:1時間
還元剤:重油(605kg/hr)+空気(3,883Nm3/hr)
セットリング時間:1時間
Test 3 (Simulation mounting industry test 2)
In view of the above crucible test results, Table 3 shows calculation results of processing results assumed when the system shown in FIG. 1 is constructed and continuously operated under different conditions. The simulated operating conditions were as follows.
Reduction furnace dimensions: φ3m × 8m (56m 3 )
Molten metal temperature: 1250 ° C
Reduction time: 1 hour Reducing agent: heavy oil (605 kg / hr) + air (3,883 Nm 3 / hr)
Settling time: 1 hour

Figure 0005049311
Figure 0005049311

1 受入樋
2 保持炉
3 スラグ樋
4 還元炉
5 ランス
6 煙突
7 バグフィルター
8 溶体樋
9 セットリング炉
10 粗銅樋
11 スラグ樋
12 スラグ破砕設備
DESCRIPTION OF SYMBOLS 1 Receiving jar 2 Holding furnace 3 Slag jar 4 Reduction furnace 5 Lance 6 Chimney 7 Bag filter 8 Solution jar 9 Settling furnace 10 Crude copper jar 11 Slag jar 12 Slag crushing equipment

Claims (6)

銅製錬過程で発生する転炉スラグの処理方法であって、転炉スラグを還元炉に装入し、還元炉において、該スラグ中に含まれる亜鉛分及び銅分の加熱還元と、還元亜鉛の揮発除去とを行い、
前記スラグ中の銅品位を0.3質量%以下、かつ、亜鉛の品位を1質量%以下まで低下させる方法。
A method for treating converter slag generated in a copper smelting process, wherein the converter slag is charged into a reduction furnace, and in the reduction furnace, the zinc and copper contained in the slag are heated and reduced, and the reduced zinc and volatilization removal have line,
A method of reducing the copper quality in the slag to 0.3% by mass or less and the quality of zinc to 1% by mass or less .
銅製錬過程で発生する転炉スラグの処理方法であって、転炉スラグを還元炉に装入し、還元炉において、該スラグ中に含まれる亜鉛分及び銅分の加熱還元と、還元亜鉛の揮発除去と、還元銅のスラグからの沈降分離とを行うことを含む方法。   A method for treating converter slag generated in a copper smelting process, wherein the converter slag is charged into a reduction furnace, and in the reduction furnace, the zinc and copper contained in the slag are heated and reduced, and the reduced zinc Performing a volatilization removal and settling separation of reduced copper from the slag. 銅製錬過程で発生する転炉スラグの処理方法であって、転炉スラグを還元炉に装入し、還元炉において、該スラグ中に含まれる亜鉛分及び銅分の加熱還元と、還元亜鉛の揮発除去とを行い、次いで、還元銅をスラグと共に還元炉からセットリング炉へ移送し、セットリング炉内で還元銅のスラグからの沈降分離を行うことを含む方法。   A method for treating converter slag generated in a copper smelting process, wherein the converter slag is charged into a reduction furnace, and in the reduction furnace, the zinc and copper contained in the slag are heated and reduced, and the reduced zinc Performing volatilization and then transferring the reduced copper together with the slag from the reduction furnace to the settling furnace and performing settling separation of the reduced copper from the slag in the settling furnace. 還元銅をスラグから沈降分離した後のスラグを破砕処理することを更に含む請求項1又は2記載の方法。   The method according to claim 1 or 2, further comprising crushing the slag after the reduced copper is settled and separated from the slag. 還元炉において、スラグ中に含まれるFe34をFeOまで加熱還元する請求項1〜3何れか一項記載の方法。 The method according to any one of claims 1 to 3, wherein Fe 3 O 4 contained in the slag is heated and reduced to FeO in a reduction furnace. 転炉スラグを溶融状態で保持し、還元炉へ供給する転炉スラグの供給量の調節を行うための保持炉から、転炉スラグが還元炉に装入される請求項1〜5何れか一項記載の方法。   The converter slag is charged into the reduction furnace from a holding furnace for holding the converter slag in a molten state and adjusting the supply amount of the converter slag supplied to the reduction furnace. The method described in the paragraph.
JP2009088257A 2009-03-31 2009-03-31 Method and system for dry treatment of converter slag in copper smelting Active JP5049311B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009088257A JP5049311B2 (en) 2009-03-31 2009-03-31 Method and system for dry treatment of converter slag in copper smelting
CN200910174953A CN101851704A (en) 2009-03-31 2009-11-03 Method and system of dry processing of converter slag in copper smelting
US12/625,675 US20100242682A1 (en) 2009-03-31 2009-11-25 Method and system of dry processing of converter slag in copper smelting
CL2009002241A CL2009002241A1 (en) 2009-03-31 2009-12-31 Method and system for the processing of converter slag produced in the smelting of copper comprising slag feeding in a reduction furnace, reduction of zinc and copper by heating and removal of reduced zinc through volatization in the furnace of reduction.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088257A JP5049311B2 (en) 2009-03-31 2009-03-31 Method and system for dry treatment of converter slag in copper smelting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011207893A Division JP2012012707A (en) 2011-09-22 2011-09-22 Dry-type treating method and system for converter slag in copper refining

Publications (2)

Publication Number Publication Date
JP2010236069A JP2010236069A (en) 2010-10-21
JP5049311B2 true JP5049311B2 (en) 2012-10-17

Family

ID=42782509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088257A Active JP5049311B2 (en) 2009-03-31 2009-03-31 Method and system for dry treatment of converter slag in copper smelting

Country Status (4)

Country Link
US (1) US20100242682A1 (en)
JP (1) JP5049311B2 (en)
CN (1) CN101851704A (en)
CL (1) CL2009002241A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI124912B (en) * 2012-04-16 2015-03-31 Outotec Oyj A method for treating metallurgical slags of non-ferrous metals
CN103334014B (en) * 2013-07-23 2016-01-27 阳谷祥光铜业有限公司 The method of Copper making molten slag dilution
DE102014010442A1 (en) * 2014-07-11 2016-01-14 Aurubis Ag Method and device for processing iron silicate stone
JP7137467B2 (en) * 2015-04-03 2022-09-14 アウルビス ベーアセ Modified slag produced during non-ferrous metal production
CN104946899B (en) * 2015-06-03 2017-02-22 青海西豫有色金属有限公司 Edge transmission top-blown converter and depleted sedimentation furnace combined lead dross treatment method
DE102016002419A1 (en) * 2015-11-19 2017-05-24 Sms Group Gmbh Method and device for cleaning slag
RU2733803C1 (en) * 2017-06-14 2020-10-07 Чайна Энфай Инжиниринг Корпорейшн Method and system for accelerated copper smelting
CN107227410A (en) * 2017-06-14 2017-10-03 中国恩菲工程技术有限公司 Short route copper metallurgy system
CN107326195A (en) * 2017-06-14 2017-11-07 中国恩菲工程技术有限公司 Short route copper smelting method
CN108330289B (en) * 2017-12-20 2019-09-24 赤峰硕人海泰节能环保科技有限公司 A kind of processing method of copper smelting by pyrometallurgy clinker
CN108165755B (en) * 2017-12-26 2019-09-27 中国恩菲工程技术有限公司 Copper weld pool slag for comprehensive recovery method
CN108034832A (en) * 2017-12-26 2018-05-15 中国恩菲工程技术有限公司 Copper weld pool slag for comprehensive retracting device
CN109207715B (en) * 2018-10-17 2020-04-07 江西理工大学 Method for roasting, modifying and recycling iron from copper slag
CN110846511B (en) * 2019-11-18 2021-08-17 济源豫光有色冶金设计研究院有限公司 Method for co-processing zinc leaching residues and gypsum residues

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184427B1 (en) * 1999-03-19 2001-02-06 Invitri, Inc. Process and reactor for microwave cracking of plastic materials
JP4387618B2 (en) * 2000-08-29 2009-12-16 日鉱金属株式会社 Method for recovering copper from copper converter slag
JP2004011011A (en) * 2002-06-11 2004-01-15 Nippon Mining & Metals Co Ltd Method of recovering cooper from cooper converter slag
JP4525453B2 (en) * 2005-04-27 2010-08-18 住友金属鉱山株式会社 Slag fuming method
WO2007145384A1 (en) * 2006-06-14 2007-12-21 Ecomaister Co., Ltd. A method for stabilizing slag and novel materials produced thereby

Also Published As

Publication number Publication date
US20100242682A1 (en) 2010-09-30
CL2009002241A1 (en) 2010-07-23
CN101851704A (en) 2010-10-06
JP2010236069A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5049311B2 (en) Method and system for dry treatment of converter slag in copper smelting
Yusupkhodjayev et al. Methods of decreasing of Copper loss with Slag in Smelting Processes
JP2012067375A (en) Dry processing method and system for converter slag in copper smelting
US9435005B2 (en) Method for processing slags of non-ferrous metallurgy
Jones An overview of Southern African PGM smelting
JP2016191128A (en) Copper smelting slag treatment method
JP2012092417A (en) Treatment method of converter slag, and method for smelting copper
JP4936624B2 (en) Production method of crude copper in flash-smelting furnace
JP2012082505A (en) Method for treating converter slag and method for smelting copper
JP6542560B2 (en) Method of treating non-ferrous smelting slag
JP2012012707A (en) Dry-type treating method and system for converter slag in copper refining
JP4751100B2 (en) Copper recovery method by flotation
US3703366A (en) Process for producing copper and elemental sulfur
JP4525453B2 (en) Slag fuming method
JP5614056B2 (en) Method of operating copper smelting furnace and copper smelting furnace
JP2016191115A (en) Method of treating copper smelting slag
WO2023204069A1 (en) Method for melting direct-reduced iron, solid iron and method for producing solid iron, and civil engineering and construction material and method for producing civil engineering and construction material
JPS6342335A (en) Treatment of slag concentrate of copper converter
US20170183748A1 (en) Method and device for processing iron silicate rock
RU2117060C1 (en) Method for processing sulfide materials
WO2020149777A1 (en) Treatment of ferric iron based material comprising zinc and sulphur
Stanley A further decade of metallurgical progress in South Africa
Lakernik et al. Metallurgy of Copper, USSR.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5049311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250