JP2016183302A - Method for manufacturing conductive adhesive - Google Patents

Method for manufacturing conductive adhesive Download PDF

Info

Publication number
JP2016183302A
JP2016183302A JP2015065260A JP2015065260A JP2016183302A JP 2016183302 A JP2016183302 A JP 2016183302A JP 2015065260 A JP2015065260 A JP 2015065260A JP 2015065260 A JP2015065260 A JP 2015065260A JP 2016183302 A JP2016183302 A JP 2016183302A
Authority
JP
Japan
Prior art keywords
conductive particles
adhesive
conductive
conductive adhesive
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015065260A
Other languages
Japanese (ja)
Inventor
博之 熊倉
Hiroyuki Kumakura
博之 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2015065260A priority Critical patent/JP2016183302A/en
Publication of JP2016183302A publication Critical patent/JP2016183302A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To manufacture a conductive adhesive having a stably low connection resistance.SOLUTION: A container 22 arranged with conductive particles 17 exposing silver on their surface is carried into a heating tank 11 of a heating device 10, and its temperature is raised to a temperature range of 100°C or more and 180°C or less in a process gas environment containing 3.8% of hydrogen gas to reduce silver on the surface of conductive particles 17. The conductive particles 17 are not aggregated as the reduction reaction is carried out at a low temperature.SELECTED DRAWING: Figure 1

Description

本発明は、導電性が高い導電粒子を含有する導電性接着剤の製造方法に係り、特に、表面に銀が露出する導電粒子を含有する導電性接着剤の製造方法に関する。   The present invention relates to a method for producing a conductive adhesive containing conductive particles having high conductivity, and more particularly, to a method for producing a conductive adhesive containing conductive particles in which silver is exposed on the surface.

近年、電子部品の実装において、半田接続に替わる接続方法として導電性接着剤を用いた接続方法が採用されてきている。導電性接着剤による接続は、Pbを使用しないため、環境問題に対応できること、はんだフラックスを廃止できることなどのメリットがある。   In recent years, in mounting electronic components, a connection method using a conductive adhesive has been adopted as a connection method instead of solder connection. Since the connection by the conductive adhesive does not use Pb, there are merits such as being able to cope with environmental problems and abolishing the solder flux.

この導電性接着剤は、一般に接着剤である樹脂中に導電フィラーを含有させてなるものであり、この導電性接着剤を介して回路基板と電子部品の電極とを接触させた後、樹脂を硬化させることにより、導電フィラーを介した電気的接続が行われる。   This conductive adhesive is generally formed by containing a conductive filler in a resin that is an adhesive, and after contacting the circuit board and the electrode of the electronic component via this conductive adhesive, the resin is added. By curing, electrical connection through the conductive filler is performed.

導電フィラーとしてはその導電性やコスト、安定性から銀粒子が一般的であり、化学還元法、電解法、アトマイズ法などで得られた銀粒子をスタンプミル、アトライター、ボールミルなどの粉砕機を使用してフレーク化して用いるのが一般的である。ここでフレーク化工程においては銀粒子同士の凝集を防ぐ目的で脂肪酸、脂肪酸塩、高級脂肪族アルコール、高級脂肪族アルコールのエステル、高級脂肪族アミン、高級脂肪族アミド、ポリエチレンワックスなどが滑剤として使用されている。   Silver particles are generally used as conductive fillers because of their electrical conductivity, cost, and stability. Silver particles obtained by chemical reduction, electrolysis, atomization, etc. can be crushed by a mill such as a stamp mill, attritor, or ball mill. It is common to use and flake. In the flaking process, fatty acids, fatty acid salts, higher aliphatic alcohols, higher aliphatic alcohol esters, higher aliphatic amines, higher aliphatic amides, polyethylene wax, etc. are used as lubricants to prevent aggregation of silver particles. Has been.

特開2000−080409号公報JP 2000-080409 A 特開2001−303111号公報JP 2001-303111 A 特開2003−268402号公報JP 2003-268402 A

近年では、耐熱性の低い部材周辺への導電性接着剤の適用が検討されており、80℃以下でのオーブンで硬化できる低温硬化特性を有することが強く要求されている。この低温硬化特性の場合、従来の120〜220℃での高温硬化特性を有するペーストと比較して、低温硬化特性の導電性接着剤には、硬化後の抵抗値がばらつき易いという問題がある。   In recent years, application of a conductive adhesive to the periphery of a member having low heat resistance has been studied, and there is a strong demand for having low-temperature curing characteristics that can be cured in an oven at 80 ° C. or lower. In the case of this low temperature curing characteristic, there is a problem that the resistance value after curing is likely to vary in the conductive adhesive having the low temperature curing characteristic as compared with the conventional paste having the high temperature curing characteristic at 120 to 220 ° C.

一般的に製造市販されている銀粒子は、その表面が部分的に酸化して酸化皮膜が形成されており、本発明の発明者等は、その酸化皮膜が、硬化した導電性接着剤の抵抗値のバラツキの原因であることを見出した。   In general, the silver particles that are produced and marketed are partially oxidized on the surface to form an oxide film. The inventors of the present invention are able to determine the resistance of the conductive adhesive that has been cured by the oxide film. It was found that this was the cause of the variation in value.

本発明は、上記知見によって成されたものであり、導電粒子を接着剤中に含有する導電性接着剤を製造する導電性接着剤の製造方法であって、表面に銀が露出する前記導電粒子を、水素ガスを含有する還元雰囲気中に配置する配置工程と、前記導電粒子を加熱して100℃以上180℃以下の温度範囲に昇温させ、銀を還元する還元工程と、前記還元された銀を有する前記導電粒子を前記接着剤中に分散させる分散工程と、を有する導電性接着剤の製造方法である。
本発明は導電性接着剤の製造方法であって、前記接着剤には、エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤と、を含有させる導電性接着剤の製造方法である。
本発明は導電性接着剤の製造方法であって、前記還元工程が行われた前記導電粒子が、酸素ガスを含有する雰囲気に接触してから2週間以内に前記分散工程で前記接着剤中に分散させる導電性接着剤の製造方法である。
The present invention has been made based on the above findings, and is a method for producing a conductive adhesive comprising a conductive adhesive containing conductive particles in the adhesive, wherein the conductive particles have silver exposed on the surface. Is placed in a reducing atmosphere containing hydrogen gas, the conductive particles are heated to a temperature range of 100 ° C. or higher and 180 ° C. or lower to reduce silver, and the reduced A dispersion step of dispersing the conductive particles having silver in the adhesive.
This invention is a manufacturing method of a conductive adhesive, Comprising: It is a manufacturing method of the conductive adhesive in which the said adhesive agent contains an epoxy resin, a latent hardening agent, and a silane coupling agent.
The present invention is a method for producing a conductive adhesive, wherein the conductive particles subjected to the reducing step are brought into the adhesive in the dispersing step within two weeks after contacting the atmosphere containing oxygen gas. This is a method for producing a conductive adhesive to be dispersed.

導電粒子の表面の銀の酸化皮膜が低温で除去されており、導電粒子は凝集せず、硬化後の抵抗値のバラツキが小さい導電性接着剤を安定して製造することができる。従って、本発明による導電性接着剤を用いれば、電気素子の端子と、基板上の端子とが低抵抗の導電性接着剤で接続された電子装置を得ることが出来る。   Since the silver oxide film on the surface of the conductive particles is removed at a low temperature, the conductive particles are not agglomerated, and a conductive adhesive having a small variation in resistance after curing can be stably produced. Therefore, by using the conductive adhesive according to the present invention, it is possible to obtain an electronic device in which the terminal of the electric element and the terminal on the substrate are connected by the low-resistance conductive adhesive.

本発明に用いる加熱装置Heating device used in the present invention 本発明の導電性接着剤を有する導電性接着剤テープConductive adhesive tape having conductive adhesive of the present invention

図1の符号10は、本発明に用いた加熱装置であり、加熱装置10の加熱槽11内の台21上に、導電粒子が入れられた容器22を配置する。容器22は、ガラスシャーレを用いた。   Reference numeral 10 in FIG. 1 denotes a heating device used in the present invention, and a container 22 in which conductive particles are placed is placed on a table 21 in a heating tank 11 of the heating device 10. As the container 22, a glass petri dish was used.

導電粒子には、銀から成る微小薄板形状のものが用いられていて、表面には銀が露出されている。銀以外の金属粒子の表面に銀薄膜が形成された導電粒子や、樹脂表面に銀薄膜が形成された導電粒子も本発明の導電粒子に含まれる。また、導電粒子は球形であってもよく、ここで用いる導電粒子の集合物は、全体の50%の個数をしめる導電粒子の平均粒径が6μm以上12μm以下の導電粒子の集合物が用いられている。   As the conductive particles, those having a shape of a small thin plate made of silver are used, and silver is exposed on the surface. Conductive particles in which a silver thin film is formed on the surface of metal particles other than silver and conductive particles in which a silver thin film is formed on the resin surface are also included in the conductive particles of the present invention. The conductive particles may be spherical, and the aggregate of conductive particles used here is an aggregate of conductive particles having an average particle size of 6 μm or more and 12 μm or less, which represents 50% of the total number. ing.

導電粒子は、容器22内で所定厚みの粒子層15を形成しており、ここでは、導電粒子は、長軸径が2μm以上20μm以下の範囲が大部分を占める薄片形形状であり、導電粒子は、粒子層15が、厚み5mm以下になる量が容器22に配置されている。粒子層15中に符号17で示す黒丸は、導電粒子を模式的に示している。   The conductive particles form a particle layer 15 having a predetermined thickness in the container 22. Here, the conductive particles have a flaky shape in which the major axis diameter is mostly in the range of 2 μm or more and 20 μm or less. The particle layer 15 is disposed in the container 22 in such an amount that the thickness becomes 5 mm or less. Black circles indicated by reference numeral 17 in the particle layer 15 schematically indicate conductive particles.

先ず、加熱槽11に接続された真空排気装置12を動作させ、加熱槽11の内部の真空排気を開始して、還元処理を開始する。
加熱槽11の内部の圧力が10hPa以下になったところで、真空排気装置12を停止させ、処理ガス源18から、加熱槽11内に処理ガスを導入し、加熱槽11の内部の大気の雰囲気を処理ガス雰囲気に置換する。
First, the evacuation apparatus 12 connected to the heating tank 11 is operated to start the evacuation inside the heating tank 11 to start the reduction process.
When the pressure inside the heating tank 11 becomes 10 hPa or less, the evacuation device 12 is stopped, a processing gas is introduced into the heating tank 11 from the processing gas source 18, and the atmosphere inside the heating tank 11 is changed to the atmospheric state. Replace with processing gas atmosphere.

処理ガスは、窒素ガス(N2ガス)や希ガス等の、非酸化性の希釈ガスと、還元性ガス(ここでは水素ガス(H2ガス))とを所定割合で含有した混合ガスであり、ここでは、希釈ガスには窒素ガスが用いられ、還元性ガスには、水素ガスが用いられている。混合ガスの体積を100%とすると、水素ガスは混合ガス中に1%以上が好ましく、後述する実施例では3.8%の体積割合で含有させている。 The processing gas is a mixed gas containing a non-oxidizing diluent gas such as nitrogen gas (N 2 gas) or a rare gas and a reducing gas (in this case, hydrogen gas (H 2 gas)) in a predetermined ratio. Here, nitrogen gas is used as the dilution gas, and hydrogen gas is used as the reducing gas. Assuming that the volume of the mixed gas is 100%, the hydrogen gas is preferably 1% or more in the mixed gas, and is contained in a volume ratio of 3.8% in the examples described later.

処理ガス源18から、3L/minの流量で、加熱槽11内に処理ガスを供給し、加熱槽11の内部の処理ガス雰囲気が大気圧になったところで、処理ガスを0.5L/minの流量で供給する。このとき、加熱槽11の内部を大気に接続し、加熱槽11の内部に処理ガスの流れを形成する。加熱槽11の内部には大気は浸入しない。   When the processing gas is supplied from the processing gas source 18 into the heating tank 11 at a flow rate of 3 L / min, and the processing gas atmosphere inside the heating tank 11 becomes atmospheric pressure, the processing gas is supplied at 0.5 L / min. Supply at flow rate. At this time, the inside of the heating tank 11 is connected to the atmosphere, and a flow of processing gas is formed inside the heating tank 11. Air does not enter the inside of the heating tank 11.

加熱槽11の内部に処理ガスが流れる状態で、加熱装置16を動作させて粒子層15を形成する導電粒子17の加熱を開始する。
処理ガスが流れる状態で、導電粒子17を昇温させ、目標温度範囲内の温度にし、導電粒子17が目標温度範囲内の温度にある状態を、予め設定された時間維持させ、容器22に配置された粒子層15を構成する導電粒子17表面の銀を還元する還元工程を行う。
この還元工程では、導電粒子17を昇温させる目標温度範囲は100℃以上180℃以下の温度範囲であり、目標温度範囲を維持させる時間は4時間である。
With the processing gas flowing inside the heating tank 11, the heating device 16 is operated to start heating the conductive particles 17 that form the particle layer 15.
With the processing gas flowing, the temperature of the conductive particles 17 is raised to a temperature within the target temperature range, and the state in which the conductive particles 17 are at the temperature within the target temperature range is maintained for a preset time and disposed in the container 22. A reduction step of reducing silver on the surface of the conductive particles 17 constituting the particle layer 15 is performed.
In this reduction step, the target temperature range for raising the temperature of the conductive particles 17 is a temperature range of 100 ° C. or higher and 180 ° C. or lower, and the time for maintaining the target temperature range is 4 hours.

還元工程が終了すると、加熱装置16の動作を停止し、処理ガスが流れる状態で導電粒子17の温度を低下させる。
導電粒子17が目標温度範囲よりも低い温度(ここでは50℃)になったところで、処理ガスの加熱槽11内への導入を停止し、容器22と容器22に配置された導電粒子17とを加熱槽11から取り出す。
When the reduction process is completed, the operation of the heating device 16 is stopped, and the temperature of the conductive particles 17 is lowered while the processing gas flows.
When the conductive particles 17 reach a temperature lower than the target temperature range (here, 50 ° C.), the introduction of the processing gas into the heating tank 11 is stopped, and the container 22 and the conductive particles 17 disposed in the container 22 are connected. Remove from the heating tank 11.

導電粒子17が加熱槽11から取り出されると、還元された導電粒子17の表面は大気と接触する。導電粒子17は、還元工程が終了し、導電粒子17が大気と接触したときから2週間以内に接着剤成分に添加して混合、分散させると、表面が酸化されていない導電粒子17を含有する導電性接着剤が得られる。この導電性接着剤は、基材フィルムの上に塗布して、導電性接着剤テープを製造することも出来る。図2の符号30は、その導電性接着剤テープであり、基材フィルム32上に、接着剤成分33に導電粒子17が分散された本発明の層状の導電性接着剤31が形成されている。   When the conductive particles 17 are taken out from the heating tank 11, the surfaces of the reduced conductive particles 17 come into contact with the atmosphere. The conductive particles 17 contain conductive particles 17 whose surfaces are not oxidized when added to the adhesive component and mixed and dispersed within two weeks after the reduction process is completed and the conductive particles 17 come into contact with the atmosphere. A conductive adhesive is obtained. This conductive adhesive can also be applied on a substrate film to produce a conductive adhesive tape. Reference numeral 30 in FIG. 2 denotes the conductive adhesive tape, and the layered conductive adhesive 31 of the present invention in which the conductive particles 17 are dispersed in the adhesive component 33 is formed on the base film 32. .

接着剤成分は、ここでは、エポキシ樹脂から成る接着成分と、潜在性硬化剤から成る硬化成分と、シランカップリング剤から成る接着補助成分と、が含まれる組成物であり、それら各成分と導電粒子17は、一緒に自転公転ミキサーARV−310(シンキー製)に投入され、均一に混合され、導電粒子17が分散された導電性接着剤を得た。   Here, the adhesive component is a composition including an adhesive component composed of an epoxy resin, a curing component composed of a latent curing agent, and an adhesion auxiliary component composed of a silane coupling agent. The particles 17 were put together into a rotation / revolution mixer ARV-310 (manufactured by Sinky) and mixed uniformly to obtain a conductive adhesive in which the conductive particles 17 were dispersed.

接着成分(エポキシ樹脂:DIC社製EXA830CRP)と、硬化成分(潜在性硬化剤:旭化成イーマテリアルズ社製HX3721)と、接着補助成分(シランカップリング剤:信越化学工業社製KBM403)の含有量と、導電粒子(銀粒子:福田金属箔粉工業:AgC-224)の還元工程の温度を100℃以上180℃以下の範囲の中で変えて、実施例1〜実施例3の導電性接着剤を作成した。また、導電粒子の還元処理を行わない導電性接着剤(比較例1)と、導電粒子を80℃で還元処理を行った導電性接着剤(比較例2)と、200℃で還元処理を行った導電性接着剤(比較例3)とを作成し、実施例1〜3と、比較例1〜3との粘度と、凝集の有無と、導通抵抗とを測定した。
測定結果は、下記表1に示す。各導電性接着剤中の銀含有量は、導電性接着剤の重量に対して、同じ値81.8重量%にした。なお、用いた各成分と銀粒子を示す品名の内容は、下記表2に示しておく。
Content of adhesive component (epoxy resin: EXA830CRP manufactured by DIC), curing component (latent curing agent: HX3721 manufactured by Asahi Kasei E-Materials Co., Ltd.) And the conductive adhesive of Examples 1 to 3 by changing the temperature of the reduction process of the conductive particles (silver particles: Fukuda Metal Foil Powder Industry: AgC-224) within a range of 100 ° C. or higher and 180 ° C. or lower. It was created. Moreover, the conductive adhesive which does not perform the reduction process of conductive particles (Comparative Example 1), the conductive adhesive which reduced the conductive particles at 80 ° C. (Comparative Example 2), and the reduction treatment at 200 ° C. A conductive adhesive (Comparative Example 3) was prepared, and the viscosity, the presence or absence of aggregation, and the conduction resistance of Examples 1 to 3 and Comparative Examples 1 to 3 were measured.
The measurement results are shown in Table 1 below. The silver content in each conductive adhesive was set to the same value of 81.8% by weight with respect to the weight of the conductive adhesive. The contents of the product names indicating the components and silver particles used are shown in Table 2 below.

Figure 2016183302
Figure 2016183302

Figure 2016183302
Figure 2016183302

粘度は、レオメーター(HAAKE社製)を用いて25℃、シアレート10(l/sec)における粘度を測定した。
凝集の有無は、導電性接着剤をスライドガラス上に厚み50μmになる様に塗布し、金属顕微鏡にて凝集の有無を観察した。
The viscosity was measured at 25 ° C. and a shear rate of 10 (l / sec) using a rheometer (manufactured by HAAKE).
For the presence or absence of aggregation, a conductive adhesive was applied on a slide glass so as to have a thickness of 50 μm, and the presence or absence of aggregation was observed with a metal microscope.

導通抵抗は、リジット基板(FR−4基材1.1mm厚/Cu配線35μm厚/表面金メッキ、0.2mmピッチ(L/S=1/1))のCu配線で形成された複数の端子間上に亘って導電性接着剤を厚み10μmになる様に塗布し、内部雰囲気を80℃に昇温させた加熱装置10に1時間放置して硬化させ、隣接する端子間の抵抗値をデジタルマルチメーターにて測定した。測定した端子間の個数Nは三個である(N=3)。   Conduction resistance is between multiple terminals formed of Cu wiring on rigid substrate (FR-4 base material 1.1 mm thickness / Cu wiring 35 μm thickness / surface gold plating, 0.2 mm pitch (L / S = 1/1)) A conductive adhesive is applied over the top so as to have a thickness of 10 μm, and is allowed to stand for 1 hour in a heating device 10 whose internal atmosphere has been heated to 80 ° C. for curing. Measured with a meter. The number N measured between the terminals is three (N = 3).

実施例1〜3と比較例1〜3から、還元処理を行った導電粒子を含有させた導電性接着剤は、未処理の導電粒子を使用した導電性接着剤と比較して、抵抗値が低く、バラツキが少ない事が判る。
また、還元処理の温度が本発明の温度範囲よりも高いと導電粒子が凝集してしまい、その導電粒子を含有する導電性接着剤の抵抗値も安定しない。
一方、還元処理の温度が低すぎると導電粒子の表面の銀の還元反応が十分に進まず、抵抗値の改善が見られない。
From Examples 1 to 3 and Comparative Examples 1 to 3, the conductive adhesive containing conductive particles subjected to reduction treatment has a resistance value as compared with the conductive adhesive using untreated conductive particles. It is low and there is little variation.
Moreover, when the temperature of the reduction treatment is higher than the temperature range of the present invention, the conductive particles are aggregated, and the resistance value of the conductive adhesive containing the conductive particles is not stable.
On the other hand, if the temperature of the reduction treatment is too low, the reduction reaction of silver on the surface of the conductive particles does not proceed sufficiently, and the resistance value is not improved.

17‥‥導電粒子
17 ... Conductive particles

Claims (3)

導電粒子を接着剤中に含有する導電性接着剤を製造する導電性接着剤の製造方法であって、
表面に銀が露出する前記導電粒子を、水素ガスを含有する還元雰囲気中に配置する配置工程と、
前記導電粒子を加熱して100℃以上180℃以下の温度範囲に昇温させ、銀を還元する還元工程と、
前記還元された銀を有する前記導電粒子を前記接着剤中に分散させる分散工程と、
を有する導電性接着剤の製造方法。
A method for producing a conductive adhesive comprising producing a conductive adhesive containing conductive particles in an adhesive,
An arrangement step of arranging the conductive particles whose silver is exposed on the surface in a reducing atmosphere containing hydrogen gas;
A reduction step in which the conductive particles are heated to a temperature range of 100 ° C. or higher and 180 ° C. or lower to reduce silver;
A dispersion step of dispersing the conductive particles having the reduced silver in the adhesive;
A method for producing a conductive adhesive having:
前記接着剤には、エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤と、を含有させる請求項1記載の導電性接着剤の製造方法。   The method for producing a conductive adhesive according to claim 1, wherein the adhesive contains an epoxy resin, a latent curing agent, and a silane coupling agent. 前記還元工程が行われた前記導電粒子が、酸素ガスを含有する雰囲気に接触してから2週間以内に前記分散工程で前記接着剤中に分散させる請求項1又は請求項2のいずれか1項記載の導電性接着剤の製造方法。   3. The method according to claim 1, wherein the conductive particles subjected to the reduction step are dispersed in the adhesive in the dispersion step within two weeks after contact with an atmosphere containing oxygen gas. The manufacturing method of the electroconductive adhesive of description.
JP2015065260A 2015-03-26 2015-03-26 Method for manufacturing conductive adhesive Pending JP2016183302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015065260A JP2016183302A (en) 2015-03-26 2015-03-26 Method for manufacturing conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065260A JP2016183302A (en) 2015-03-26 2015-03-26 Method for manufacturing conductive adhesive

Publications (1)

Publication Number Publication Date
JP2016183302A true JP2016183302A (en) 2016-10-20

Family

ID=57242595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065260A Pending JP2016183302A (en) 2015-03-26 2015-03-26 Method for manufacturing conductive adhesive

Country Status (1)

Country Link
JP (1) JP2016183302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909633A (en) * 2020-07-14 2020-11-10 江苏矽时代材料科技有限公司 Low-temperature curing conductive adhesive and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909633A (en) * 2020-07-14 2020-11-10 江苏矽时代材料科技有限公司 Low-temperature curing conductive adhesive and preparation method and application thereof
CN111909633B (en) * 2020-07-14 2022-05-27 江苏矽时代材料科技有限公司 Low-temperature curing conductive adhesive and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR102295909B1 (en) Silver-coated alloy powder, conductive paste, electronic components and electrical devices
TWI664223B (en) Resin composition for electrode formation, wafer-type electronic component, and manufacturing method thereof
JP6318137B2 (en) Conductive paste and conductive film
JPWO2008062548A1 (en) Paste-like metal particle composition and joining method
JPWO2007034833A1 (en) Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board
WO2012046666A1 (en) Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
CN108473779B (en) Resin composition, conductive copper paste, and semiconductor device
JP2010018832A (en) Material for joining metallic members, manufacturing method of the material for joining metallic members, joined product of metallic members and manufacturing method of bump for electric circuit connection
WO2012161201A1 (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
JPWO2012077548A1 (en) Conductive paste, base material with conductive film using the same, and method for producing base material with conductive film
JP2014210947A (en) Metal nanoparticle material, joint material containing the same, and semiconductor device using the same
JP3879749B2 (en) Conductive powder and method for producing the same
JP3687745B2 (en) Highly dispersible metal powder, method for producing the same, and conductive paste containing the metal powder
JP2006032165A (en) Conductive metal particles and conductive resin composition using them, and conductive adhesive
JP6970609B2 (en) Silver-coated alloy powder and its manufacturing method, conductive paste and its manufacturing method, electronic parts, and electronic equipment
JP2017141332A (en) Resin composition, conductive copper paste, and semiconductor device
JP2016183302A (en) Method for manufacturing conductive adhesive
JP2012218020A (en) Bonding method
WO2017057201A1 (en) Conductive paste and conductive film
KR20210066836A (en) conductive paste
JP2019031735A (en) Surface treatment silver-coated alloy powder, production method of powder, conductive paste, electronic component and electric device
JP6677231B2 (en) Method for joining electronic components and method for manufacturing joined body
JP2017130393A (en) Conductive paste and method for forming silver film
WO2018101471A1 (en) Electroconductive bonding material and method for manufacturing semiconductor device
WO2017179524A1 (en) Silver-coated copper powder and method for producing same