JP2016168601A - Pipe expansion method of heat transfer pipe - Google Patents

Pipe expansion method of heat transfer pipe Download PDF

Info

Publication number
JP2016168601A
JP2016168601A JP2015048730A JP2015048730A JP2016168601A JP 2016168601 A JP2016168601 A JP 2016168601A JP 2015048730 A JP2015048730 A JP 2015048730A JP 2015048730 A JP2015048730 A JP 2015048730A JP 2016168601 A JP2016168601 A JP 2016168601A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
high pressure
tube
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015048730A
Other languages
Japanese (ja)
Other versions
JP6270761B2 (en
Inventor
山 光 秀 横
Mitsuhide Yokoyama
山 光 秀 横
野 克 次 内
Katsuji Uchino
野 克 次 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinwa Controls Co Ltd
Original Assignee
Shinwa Controls Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinwa Controls Co Ltd filed Critical Shinwa Controls Co Ltd
Priority to JP2015048730A priority Critical patent/JP6270761B2/en
Publication of JP2016168601A publication Critical patent/JP2016168601A/en
Application granted granted Critical
Publication of JP6270761B2 publication Critical patent/JP6270761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of firmly fixing a heat transfer pipe more than usual, when penetratingly fixing the heat transfer pipe to a hole provided in a plate-like member such as a fin.SOLUTION: The present invention is a method for expanding a heat transfer pipe by high pressure water, after successively penetrating the heat transfer pipe into a hole provided in a plurality of respective plate-like members, and comprises the steps of: successively penetrating the heat transfer pipe into the hole provided in the plurality of respective plate-like members; supplying water in the heat transfer pipe; putting the water supplied in the heat transfer pipe under predetermined high pressure; maintaining the high pressure state only for a predetermined time; and discharging the water in the heat transfer pipe. The predetermined high pressure and the predetermined time are selected so as to become higher in a pipe expansion degree of the heat transfer pipe in an adjacent area to an area of successively penetrating through the hole provided in the plurality of respective plate-like members than a pipe expansion degree of the heat transfer pipe in the area of successively penetrating through the hole provided in the plurality of respective plate-like members.SELECTED DRAWING: Figure 2

Description

本発明は、熱交換器等の製造工程において、フィンと呼ばれる板状部材に設けられた孔に伝熱管を貫通させ固定する際に、当該伝熱管を拡管する方法に関する。   The present invention relates to a method for expanding a heat transfer tube when the heat transfer tube is penetrated and fixed in a hole provided in a plate-like member called a fin in a manufacturing process of a heat exchanger or the like.

伝熱管を拡管する方法として、かつては、より大径の球形の金属ボール等を伝熱管内に挿入して移動させていく(押し込んでいく)ことが行われていた。しかしながら、そのような方法は、簡便であるとは言えず、作業者にとっての負担が大きかった。   In the past, as a method of expanding the heat transfer tube, a spherical metal ball having a larger diameter was inserted into the heat transfer tube and moved (pushed in). However, such a method cannot be said to be simple and has a heavy burden on the operator.

最近では、ボール等の固体の挿入物を用いることなく、高圧状態にした液体の水を用いて伝熱管を拡管することが行われている。この方法によれば、ボール等の固体の挿入物を用いる場合と比較して、より均等に圧力を伝熱管に与えることができるため、拡管後の伝熱管の真円度を極めて高く維持することができる。従って、拡管後の伝熱管をフィンに固定するための次の電着塗装工程が行いやすく、また、電着塗装後の密着性能を顕著に高めることができる。   Recently, heat transfer tubes have been expanded using liquid water in a high pressure state without using solid inserts such as balls. According to this method, compared with the case of using a solid insert such as a ball, the pressure can be applied to the heat transfer tube more evenly, so that the roundness of the heat transfer tube after the expansion is kept extremely high. Can do. Therefore, it is easy to perform the next electrodeposition coating process for fixing the heat transfer tube after the pipe expansion to the fin, and the adhesion performance after the electrodeposition coating can be remarkably enhanced.

特開平6−328173号公報JP-A-6-328173 特開2004−239486号公報JP 2004-239486 A

前述の通り、高圧の水を用いて伝熱管を拡管させる方法は、拡管後の伝熱管の真円度を極めて高く維持できるという利点がある。従来、この利点を十分に活かすべく、伝熱管の全領域において拡管の程度が揃うような条件で、高圧水の供給が行われてきた。   As described above, the method of expanding the heat transfer tube using high-pressure water has an advantage that the roundness of the heat transfer tube after the expansion can be maintained extremely high. Conventionally, in order to make full use of this advantage, high-pressure water has been supplied under conditions such that the degree of expansion is uniform in the entire region of the heat transfer tube.

しかしながら、本件発明者は、フィンに設けられた孔に伝熱管が十分な強度で固定されるのであれば、伝熱管の変形の程度に不揃いが存在していても、各断面における真円度は高く維持され得て、伝熱管としての性能に不利な影響は生じないことを知見した。   However, if the heat transfer tube is fixed with sufficient strength in the holes provided in the fins, the roundness in each cross section will be the same even if there is unevenness in the degree of deformation of the heat transfer tube. It was found that it can be kept high and does not adversely affect the performance as a heat transfer tube.

そして、本件発明者は、フィンに設けられた孔を順次貫通する領域での拡管の程度より、当該領域に隣接する領域における拡管の程度を高めることによって、従来よりも強固に伝熱管をフィンに固定することができることを知見した。   Then, the present inventor increases the degree of tube expansion in a region adjacent to the region from the level of tube expansion in a region that sequentially passes through the holes provided in the fin, thereby making the heat transfer tube a fin more firmly than in the past. It was found that it can be fixed.

本発明は、以上のような知見に基づいてなされたものである。本発明の目的は、フィン等の板状部材に設けられた孔に伝熱管を貫通させ固定する際に、従来よりも強固に伝熱管を固定できる方法を提供することである。   The present invention has been made based on the above findings. An object of the present invention is to provide a method capable of fixing a heat transfer tube more firmly than before when the heat transfer tube is passed through and fixed in a hole provided in a plate-like member such as a fin.

本発明は、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、前記伝熱管内に水を供給する工程と、前記伝熱管内に供給した水を所定の高圧にする工程と、前記高圧状態を所定の時間だけ維持する工程と、前記伝熱管内の水を排出する工程と、を備え、前記所定の高圧と前記所定の時間とは、複数の板状部材の各々に設けられた孔を順次貫通する領域での前記伝熱管の拡管の程度より当該領域に隣接する領域での前記伝熱管の拡管の程度が高くなる、というように選択されることを特徴とする方法である。   The present invention is a method in which a heat transfer tube is sequentially passed through holes provided in each of a plurality of plate-like members, and then the heat transfer tubes are expanded with high-pressure water, and provided in each of the plurality of plate-like members. A step of sequentially passing the heat transfer tubes through the holes, a step of supplying water into the heat transfer tubes, a step of bringing the water supplied into the heat transfer tubes to a predetermined high pressure, and maintaining the high pressure state for a predetermined time And a step of discharging water in the heat transfer tube, wherein the predetermined high pressure and the predetermined time are in a region that sequentially passes through holes provided in each of the plurality of plate-like members. The method is characterized in that the degree of expansion of the heat transfer tube in the region adjacent to the region becomes higher than the degree of expansion of the heat transfer tube.

本発明によれば、複数の板状部材の孔を順次貫通する領域での伝熱管の拡管の程度より当該領域に隣接する領域での伝熱管の拡管の程度を敢えて高くしたことによって、従来よりも強固に管を板状部材に固定することができる。そして、例えば板状部材が熱交換器のフィンであって、管が熱交換器の伝熱管である場合でも、当該熱交換器の性能に不利な影響が生じることはない。   According to the present invention, since the degree of expansion of the heat transfer tube in the region adjacent to the region is higher than the degree of expansion of the heat transfer tube in the region that sequentially passes through the holes of the plurality of plate-like members, The tube can be firmly fixed to the plate member. For example, even when the plate member is a fin of a heat exchanger and the tube is a heat transfer tube of a heat exchanger, there is no adverse effect on the performance of the heat exchanger.

好ましくは、前記所定の高圧と前記所定の時間とは、複数の板状部材の各々に設けられた孔を順次貫通する領域での前記伝熱管の拡管の程度より当該領域に隣接する領域での前記伝熱管の拡管の程度が30%〜100%高くなる、というように選択される。このような数値範囲条件が満たされる場合に本発明の効果が顕著であることが、本件発明者によって実際に確認されている。   Preferably, the predetermined high pressure and the predetermined time are determined in a region adjacent to the region from a degree of expansion of the heat transfer tube in a region sequentially penetrating a hole provided in each of the plurality of plate-like members. The degree of expansion of the heat transfer tube is selected to be 30% to 100% higher. It has been actually confirmed by the present inventors that the effects of the present invention are remarkable when such numerical range conditions are satisfied.

前記所定の高圧と前記所定の時間とは、伝熱管の拡管前の直径及び肉厚に応じて決定される。具体的には、管径3/8インチ(9.53mm)であって肉厚0.8mmである銅合金製の伝熱管に対しては、前記所定の高圧とは、20.4〜20.8MPaであり、前記所定の時間とは、2〜3秒である。あるいは、管径1/2インチ(12.7mm)であって肉厚1.0mmである銅合金製の伝熱管に対しては、前記所定の高圧とは、17.9〜18.6MPaであり、前記所定の時間とは、2〜3秒である。あるいは、管径1/2インチ(12.7mm)であって肉厚0.8mmである銅合金製の伝熱管に対しては、前記所定の高圧とは、15.9〜17.1MPaであり、前記所定の時間とは、2〜3秒である。あるいは、管径5/8インチ(15.88mm)であって肉厚0.8mmである銅合金製の伝熱管に対しては、前記所定の高圧とは、13.0〜13.6MPaであり、前記所定の時間とは、1〜4秒である。ここで、本願明細書及び特許請求の範囲における管径(外径)の値は、±数%程度の誤差を許容するものとして理解される。同様に、本願明細書及び特許請求の範囲における肉厚の値についても、±数%程度の誤差を許容するものとして理解される。これらの伝熱管は、株式会社コベルコマテリアルから入手可能な銅合金製の伝熱管である。   The predetermined high pressure and the predetermined time are determined according to the diameter and thickness of the heat transfer tube before expansion. Specifically, for a heat transfer tube made of a copper alloy having a tube diameter of 3/8 inch (9.53 mm) and a thickness of 0.8 mm, the predetermined high pressure is 20.4-20. 8 MPa, and the predetermined time is 2 to 3 seconds. Alternatively, for a copper alloy heat transfer tube having a tube diameter of 1/2 inch (12.7 mm) and a wall thickness of 1.0 mm, the predetermined high pressure is 17.9 to 18.6 MPa. The predetermined time is 2 to 3 seconds. Alternatively, for a copper alloy heat transfer tube having a tube diameter of 1/2 inch (12.7 mm) and a wall thickness of 0.8 mm, the predetermined high pressure is 15.9 to 17.1 MPa. The predetermined time is 2 to 3 seconds. Alternatively, for a copper alloy heat transfer tube having a tube diameter of 5/8 inch (15.88 mm) and a wall thickness of 0.8 mm, the predetermined high pressure is 13.0 to 13.6 MPa. The predetermined time is 1 to 4 seconds. Here, the value of the tube diameter (outer diameter) in the present specification and claims is understood to allow an error of about ± several percent. Similarly, the thickness values in the present specification and claims are understood to allow an error of about ± several percent. These heat transfer tubes are copper alloy heat transfer tubes available from Kobelco Materials Corporation.

あるいは、本発明は、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、前記伝熱管内に水を供給する工程と、前記伝熱管内に供給した水を所定の高圧にする工程と、前記高圧状態を所定の時間だけ維持する工程と、前記伝熱管内の水を排出する工程と、を備え、前記伝熱管は、銅合金製であって、管径3/8インチであって、肉厚0.8mmであり、前記所定の高圧とは、20.4〜20.8MPaであり、前記所定の時間とは、2〜3秒であることを特徴とする方法である。このような条件で拡管がなされれば、板状部材の孔を順次貫通する領域での伝熱管の拡管の程度より当該領域に隣接する領域での伝熱管の拡管の程度が有意に高くなっている蓋然性が高い。すなわち、本発明は、拡管後の状態についての立証の必要を排除したものである。   Alternatively, the present invention is a method in which a heat transfer tube is sequentially passed through holes provided in each of a plurality of plate-like members, and then the heat transfer tubes are expanded with high-pressure water, and each of the plurality of plate-like members is A step of sequentially passing through the heat transfer tubes through the provided holes, a step of supplying water into the heat transfer tubes, a step of bringing the water supplied into the heat transfer tubes to a predetermined high pressure, and the high pressure state for a predetermined time And a step of discharging water in the heat transfer tube, and the heat transfer tube is made of a copper alloy and has a tube diameter of 3/8 inch and a wall thickness of 0.8 mm. The predetermined high pressure is 20.4 to 20.8 MPa, and the predetermined time is 2 to 3 seconds. If the tube is expanded under such conditions, the degree of expansion of the heat transfer tube in the region adjacent to the region becomes significantly higher than the degree of expansion of the heat transfer tube in the region that sequentially passes through the holes of the plate-like member. There is a high probability of being. In other words, the present invention eliminates the need for verification of the state after tube expansion.

同様に、本発明は、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、前記伝熱管内に水を供給する工程と、前記伝熱管内に供給した水を所定の高圧にする工程と、前記高圧状態を所定の時間だけ維持する工程と、前記伝熱管内の水を排出する工程と、を備え、前記伝熱管は、銅合金製であって、管径1/2インチであって、肉厚1.0mmであり、前記所定の高圧とは、17.9〜18.6MPaであり、前記所定の時間とは、2〜3秒であることを特徴とする方法である。このような条件で拡管がなされても、板状部材の孔を順次貫通する領域での伝熱管の拡管の程度より当該領域に隣接する領域での伝熱管の拡管の程度が有意に高くなっている蓋然性が高い。すなわち、本発明も、拡管後の状態についての立証の必要を排除したものである。   Similarly, the present invention is a method in which a heat transfer tube is sequentially passed through holes provided in each of a plurality of plate-like members, and then the heat transfer tubes are expanded with high-pressure water, each of the plurality of plate-like members. A step of sequentially passing heat transfer tubes through holes provided in the heat transfer tube, a step of supplying water into the heat transfer tubes, a step of bringing water supplied into the heat transfer tubes to a predetermined high pressure, and Maintaining the time only, and discharging the water in the heat transfer tube, and the heat transfer tube is made of a copper alloy and has a diameter of 1/2 inch and a wall thickness of 1.0 mm. The predetermined high pressure is 17.9 to 18.6 MPa, and the predetermined time is 2 to 3 seconds. Even if the tube is expanded under such conditions, the degree of expansion of the heat transfer tube in the region adjacent to the region is significantly higher than the extent of expansion of the heat transfer tube in the region that sequentially penetrates the holes of the plate-like member. There is a high probability of being. That is, the present invention also eliminates the need for proof of the state after tube expansion.

同様に、本発明は、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、前記伝熱管内に水を供給する工程と、前記伝熱管内に供給した水を所定の高圧にする工程と、前記高圧状態を所定の時間だけ維持する工程と、前記伝熱管内の水を排出する工程と、を備え、前記伝熱管は、銅合金製であって、管径1/2インチであって、肉厚0.8mmであり、前記所定の高圧とは、15.9〜17.1MPaであり、前記所定の時間とは、2〜3秒であることを特徴とする方法である。このような条件で拡管がなされても、板状部材の孔を順次貫通する領域での伝熱管の拡管の程度より当該領域に隣接する領域での伝熱管の拡管の程度が有意に高くなっている蓋然性が高い。すなわち、本発明も、拡管後の状態についての立証の必要を排除したものである。   Similarly, the present invention is a method in which a heat transfer tube is sequentially passed through holes provided in each of a plurality of plate-like members, and then the heat transfer tubes are expanded with high-pressure water, each of the plurality of plate-like members. A step of sequentially passing heat transfer tubes through holes provided in the heat transfer tube, a step of supplying water into the heat transfer tubes, a step of bringing water supplied into the heat transfer tubes to a predetermined high pressure, and Maintaining the time only, and discharging the water in the heat transfer tube, and the heat transfer tube is made of a copper alloy and has a diameter of 1/2 inch and a wall thickness of 0.8 mm. The predetermined high pressure is 15.9 to 17.1 MPa, and the predetermined time is 2 to 3 seconds. Even if the tube is expanded under such conditions, the degree of expansion of the heat transfer tube in the region adjacent to the region is significantly higher than the extent of expansion of the heat transfer tube in the region that sequentially penetrates the holes of the plate-like member. There is a high probability of being. That is, the present invention also eliminates the need for proof of the state after tube expansion.

同様に、本発明は、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、前記伝熱管内に水を供給する工程と、前記伝熱管内に供給した水を所定の高圧にする工程と、前記高圧状態を所定の時間だけ維持する工程と、前記伝熱管内の水を排出する工程と、を備え、前記伝熱管は、銅合金製であって、管径5/8インチであって、肉厚0.8mmであり、前記所定の高圧とは、13.0〜13.6MPaであり、前記所定の時間とは、2〜3秒であることを特徴とする方法である。このような条件で拡管がなされても、板状部材の孔を順次貫通する領域での伝熱管の拡管の程度より当該領域に隣接する領域での伝熱管の拡管の程度が有意に高くなっている蓋然性が高い。すなわち、本発明も、拡管後の状態についての立証の必要を排除したものである。   Similarly, the present invention is a method in which a heat transfer tube is sequentially passed through holes provided in each of a plurality of plate-like members, and then the heat transfer tubes are expanded with high-pressure water, each of the plurality of plate-like members. A step of sequentially passing heat transfer tubes through holes provided in the heat transfer tube, a step of supplying water into the heat transfer tubes, a step of bringing water supplied into the heat transfer tubes to a predetermined high pressure, and Maintaining the time only and discharging the water in the heat transfer tube, and the heat transfer tube is made of a copper alloy and has a diameter of 5/8 inch and a wall thickness of 0.8 mm. The predetermined high pressure is 13.0 to 13.6 MPa, and the predetermined time is 2 to 3 seconds. Even if the tube is expanded under such conditions, the degree of expansion of the heat transfer tube in the region adjacent to the region is significantly higher than the extent of expansion of the heat transfer tube in the region that sequentially penetrates the holes of the plate-like member. There is a high probability of being. That is, the present invention also eliminates the need for proof of the state after tube expansion.

あるいは、本発明は、前記方法発明によって製造された熱交換器である。すなわち、本発明は、各々に孔が設けられた複数のフィンと、前記複数のフィンの前記孔を順次貫通する伝熱管と、を備えた熱交換器であって、前記複数のフィンの各々に設けられた前記孔を順次貫通する領域での前記伝熱管の直径より当該領域に隣接する領域での前記伝熱管の直径の方が1.8%以上大きいことを特徴とする熱交換器である。   Or this invention is a heat exchanger manufactured by the said method invention. That is, the present invention is a heat exchanger comprising a plurality of fins each provided with a hole, and a heat transfer tube that sequentially passes through the holes of the plurality of fins. The heat exchanger is characterized in that a diameter of the heat transfer tube in a region adjacent to the region is 1.8% or more larger than a diameter of the heat transfer tube in a region that sequentially passes through the provided holes. .

本発明によれば、複数の板状部材の孔を順次貫通する領域での伝熱管の拡管の程度より当該領域に隣接する領域での伝熱管の拡管の程度を敢えて高くしたことによって、従来よりも強固に伝熱管を板状部材に固定することができる。そして、例えば板状部材が熱交換器のフィンであって、伝熱管が熱交換器の伝熱管である場合でも、当該熱交換器の性能に不利な影響が生じることはない。   According to the present invention, since the degree of expansion of the heat transfer tube in the region adjacent to the region is higher than the degree of expansion of the heat transfer tube in the region that sequentially passes through the holes of the plurality of plate-like members, In addition, the heat transfer tube can be firmly fixed to the plate member. For example, even when the plate-like member is a fin of a heat exchanger and the heat transfer tube is a heat transfer tube of the heat exchanger, there is no adverse effect on the performance of the heat exchanger.

本発明の一実施の形態の方法を実現する装置の概略図である。1 is a schematic diagram of an apparatus for realizing a method according to an embodiment of the present invention. 図1の装置で拡管された後のU字管の状態を誇張して示す概略図である。It is the schematic which exaggerates and shows the state of the U-shaped pipe after being expanded with the apparatus of FIG. 拡管率について纏めた図表である。It is a chart summarizing the tube expansion rate.

以下に、添付の図面を参照して、本発明の実施の形態を詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の一実施の形態の方法を実現する装置の概略図である。図1に示すように、本実施の形態における板状部材は、熱交換器の構成部品であるフィン10であり、本実施の形態における伝熱管は、熱交換器の構成部品である伝熱管20であり、銅合金製であって、管径3/8インチ、肉厚0.8mmである。フィン10は、図1には9枚が図示されており、それぞれに伝熱管10の貫通のための円形孔が形成されると共に、互いに平行に配置されている。そして、伝熱管20はU字状であり、フィン10の各々に形成された円形孔を順次貫通するように配置される。   FIG. 1 is a schematic diagram of an apparatus for realizing a method according to an embodiment of the present invention. As shown in FIG. 1, the plate-like member in the present embodiment is a fin 10 that is a component of a heat exchanger, and the heat transfer tube in the present embodiment is a heat transfer tube 20 that is a component of the heat exchanger. It is made of a copper alloy and has a tube diameter of 3/8 inch and a wall thickness of 0.8 mm. Nine fins 10 are illustrated in FIG. 1, and circular holes for penetrating the heat transfer tubes 10 are formed in the fins 10, respectively, and are arranged in parallel to each other. And the heat exchanger tube 20 is U-shaped, and is arrange | positioned so that the circular hole formed in each of the fin 10 may be penetrated sequentially.

図1の装置は、そのような状態の伝熱管20内に水を供給するための装置である。具体的には、市水取得部から伝熱管20の供給側(図1の上側)端部に至る供給側ラインにおいて、第1開閉バルブ31、エア供給用バルブ32及びポンプ33、第2開閉バルブ34,水圧センサ35、フレキシブルホース36、が当該順序で設けられており、伝熱管20の排出側(図1の下側)端部から市水排水部に至る排出側ラインにおいて、フレキシブルホース36、第3開閉バルブ37、供給側ラインとの導通を開閉する第4開閉バルブ39、が当該順序で設けられている。   The apparatus of FIG. 1 is an apparatus for supplying water into the heat transfer tube 20 in such a state. Specifically, in the supply side line from the city water acquisition unit to the supply side (upper side in FIG. 1) end of the heat transfer tube 20, the first on-off valve 31, the air supply valve 32, the pump 33, and the second on-off valve. 34, the water pressure sensor 35, and the flexible hose 36 are provided in this order. In the discharge side line from the discharge side (lower side in FIG. 1) end of the heat transfer tube 20 to the city water drainage unit, the flexible hose 36, A third on-off valve 37 and a fourth on-off valve 39 for opening and closing the connection with the supply side line are provided in this order.

これらの各構成要素は、制御部41に接続されていて、当該制御部41によって制御されるようになっている。また、当該制御部41には表示部42が接続されていて、装置の各状態を表示できるようになっている。   Each of these components is connected to the control unit 41 and is controlled by the control unit 41. In addition, a display unit 42 is connected to the control unit 41 so that each state of the apparatus can be displayed.

次に、本発明方法に従う図1の装置の作用について説明する。   Next, the operation of the apparatus of FIG. 1 according to the method of the present invention will be described.

図1に示すように、複数のフィン10の各々に設けられた円形孔にU字状の伝熱管20が順次貫通された状態で、当該伝熱管20内に水が供給される。具体的には、図1に示すように、伝熱管20と供給側ライン及び排出側ラインとがフレキシブルホース36によって接続され、第1開閉バルブ31、第2開閉バルブ34、第3開閉バルブ37の全てが開状態とされる。これにより、伝熱管20内のエア抜きがなされると同時に水が供給される。   As shown in FIG. 1, water is supplied into the heat transfer tube 20 in a state in which the U-shaped heat transfer tubes 20 are sequentially passed through the circular holes provided in each of the plurality of fins 10. Specifically, as shown in FIG. 1, the heat transfer tube 20 is connected to the supply side line and the discharge side line by a flexible hose 36, and the first on-off valve 31, the second on-off valve 34, and the third on-off valve 37 are connected. All are opened. As a result, air is released from the heat transfer tube 20 and water is supplied at the same time.

続いて、伝熱管20内に供給した水を所定の高圧、本実施の形態では20.6MPa、にする。具体的には、エア供給用バルブ32が開状態とされてポンプ33が駆動される。そして、30秒経過後に第3開閉バルブ37が閉状態とされ、管内水圧の昇圧が継続される(本実施の形態の場合、約5秒間)。この際に、水圧による拡管作用が開始される。   Subsequently, the water supplied into the heat transfer tube 20 is set to a predetermined high pressure, 20.6 MPa in the present embodiment. Specifically, the air supply valve 32 is opened and the pump 33 is driven. Then, after the elapse of 30 seconds, the third opening / closing valve 37 is closed, and the pressure increase in the pipe water pressure is continued (in the present embodiment, about 5 seconds). At this time, the pipe expanding action by water pressure is started.

水圧センサ35が所定の高圧、本実施の形態では20.6MPa、を検出すると、第2開閉バルブ34も閉状態とされて、伝熱管20内の水圧状態が当該所定の高圧に維持される。この状態が所定の時間、本実施の形態では2〜3秒間、維持される。これにより、水圧による拡管作用が完了される。一方、エア供給用バルブ32は閉状態とされて、ポンプ33の駆動は停止される。   When the water pressure sensor 35 detects a predetermined high pressure, 20.6 MPa in the present embodiment, the second opening / closing valve 34 is also closed, and the water pressure state in the heat transfer tube 20 is maintained at the predetermined high pressure. This state is maintained for a predetermined time, in this embodiment, for 2 to 3 seconds. Thereby, the pipe expansion action by water pressure is completed. On the other hand, the air supply valve 32 is closed, and the drive of the pump 33 is stopped.

その後、第3開閉バルブ37が開状態に戻されて、伝熱管20内の水が排出される。最後に、フレキシブルホース36が取り外されて、一連の工程が終了する。   Thereafter, the third open / close valve 37 is returned to the open state, and the water in the heat transfer tube 20 is discharged. Finally, the flexible hose 36 is removed, and a series of processes is completed.

以上のような方法によれば、図2に示すように、複数のフィン10の各々に設けられた円形孔を順次貫通する領域での伝熱管20の直径(図2のB)より、当該領域に隣接する領域での伝熱管20の直径(図2のA)の方が大きくなる。また、U字状の伝熱管20の9個のサンプルについての拡管後の管径(外径)及び拡管率等を図3に示す。   According to the method as described above, as shown in FIG. 2, the area of the heat transfer tube 20 in the area that sequentially passes through the circular holes provided in each of the plurality of fins 10 (B in FIG. 2). The diameter (A in FIG. 2) of the heat transfer tube 20 in the region adjacent to the region becomes larger. FIG. 3 shows the tube diameter (outer diameter), tube expansion rate, and the like after tube expansion for nine samples of the U-shaped heat transfer tube 20.

以上のように、本実施の形態によれば、複数のフィン10の孔を順次貫通する領域での伝熱管20の拡管の程度より当該領域に隣接する領域での伝熱管20の拡管の程度を敢えて高くしたことによって、従来よりも強固に伝熱管20を複数のフィン10に固定することができる一方、熱交換器としての性能に不利な影響が生じることはない。   As described above, according to the present embodiment, the extent of expansion of the heat transfer tube 20 in the region adjacent to the region is more than the extent of expansion of the heat transfer tube 20 in the region that sequentially penetrates the holes of the plurality of fins 10. By making it high, the heat transfer tube 20 can be fixed to the plurality of fins 10 more firmly than before, but there is no adverse effect on the performance as a heat exchanger.

なお、図3に示すように、複数のフィン10の孔を順次貫通する領域での伝熱管20の拡管の程度(Bの拡管率)より当該領域に隣接する領域での伝熱管20の拡管の程度(Aの拡管率)を30〜100%高くした場合について、本発明の効果が顕著であることが、本件発明者によって実際に確認された。   As shown in FIG. 3, the expansion of the heat transfer tube 20 in the region adjacent to the region is determined based on the degree of expansion of the heat transfer tube 20 in the region that sequentially penetrates the holes of the plurality of fins 10 (expansion rate of B). It has been actually confirmed by the present inventors that the effect of the present invention is remarkable when the degree (the expansion ratio of A) is increased by 30 to 100%.

また、拡管後の直径について見れば、図3に示すように、複数のフィン10の各々に設けられた孔を順次貫通する領域での伝熱管20の直径より当該領域に隣接する領域での伝熱管20の直径の方が1.8%以上大きい場合について、本発明の効果が顕著であることが、本件発明者によって実際に確認された。   Further, in terms of the diameter after the tube expansion, as shown in FIG. 3, the heat transfer in the region adjacent to the region is determined from the diameter of the heat transfer tube 20 in the region sequentially penetrating the holes provided in each of the plurality of fins 10. It was actually confirmed by the present inventors that the effect of the present invention is remarkable when the diameter of the heat tube 20 is 1.8% or more.

以上の実施の形態においては、伝熱管20が銅合金製であって、管径3/8インチ、肉厚0.8mmであった。この場合、本件発明者による鋭意の実験結果によれば、所定の高圧は、20.4〜20.8MPaであることが好ましく、20.5〜20.7MPaであることが更に好ましい。   In the above embodiment, the heat transfer tube 20 is made of a copper alloy and has a tube diameter of 3/8 inch and a wall thickness of 0.8 mm. In this case, according to the earnest experimental results by the present inventors, the predetermined high pressure is preferably 20.4 to 20.8 MPa, more preferably 20.5 to 20.7 MPa.

また、伝熱管20が銅合金製であって、管径1/2インチ(12.7mm)、肉厚1.0mmである場合には、本件発明者による鋭意の実験結果によれば、所定の高圧は、17.9〜18.6MPaであることが好ましく、18.0〜18.5MPaであることが更に好ましい。また、この場合においても、本件発明者による鋭意の実験結果によれば、所定の時間は、2〜3秒であることが好ましい。   Further, when the heat transfer tube 20 is made of a copper alloy and has a tube diameter of ½ inch (12.7 mm) and a wall thickness of 1.0 mm, according to the earnest experimental results by the present inventors, a predetermined The high pressure is preferably 17.9 to 18.6 MPa, and more preferably 18.0 to 18.5 MPa. Also in this case, according to the earnest experimental results by the present inventors, the predetermined time is preferably 2 to 3 seconds.

また、伝熱管20が銅合金製であって、管径1/2インチ(12.7mm)、肉厚0.8mmである場合には、本件発明者による鋭意の実験結果によれば、所定の高圧は、15.9〜17.1MPaであることが好ましく、16.0〜17.0MPaであることが更に好ましい。また、この場合においても、本件発明者による鋭意の実験結果によれば、所定の時間は、2〜3秒であることが好ましい。   Further, when the heat transfer tube 20 is made of a copper alloy and has a tube diameter of ½ inch (12.7 mm) and a wall thickness of 0.8 mm, according to the earnest experimental results by the present inventors, a predetermined The high pressure is preferably 15.9 to 17.1 MPa, more preferably 16.0 to 17.0 MPa. Also in this case, according to the earnest experimental results by the present inventors, the predetermined time is preferably 2 to 3 seconds.

また、伝熱管20が銅合金製であって、管径5/8インチ(15.88mm)、肉厚0.8mmである場合には、本件発明者による鋭意の実験結果によれば、所定の高圧は、13.0〜13.6MPaであることが好ましく、13.1〜13.5MPaであることが更に好ましい。また、この場合においても、本件発明者による鋭意の実験結果によれば、所定の時間は、2〜3秒であることが好ましい。   Further, when the heat transfer tube 20 is made of a copper alloy and has a tube diameter of 5/8 inch (15.88 mm) and a wall thickness of 0.8 mm, according to the earnest experiment result by the present inventors, The high pressure is preferably 13.0 to 13.6 MPa, more preferably 13.1 to 13.5 MPa. Also in this case, according to the earnest experimental results by the present inventors, the predetermined time is preferably 2 to 3 seconds.

10 フィン
20 U字状伝熱管
31 第1開閉バルブ
32 エア供給用バルブ
33 ポンプ
34 第2開閉バルブ
35 水圧センサ
36 フレキシブルホース
37 第3開閉バルブ
39 第4開閉バルブ
41 制御部
42 表示部
10 Fin 20 U-shaped Heat Transfer Tube 31 First Open / Close Valve 32 Air Supply Valve 33 Pump 34 Second Open / Close Valve 35 Water Pressure Sensor 36 Flexible Hose 37 Third Open / Close Valve 39 Fourth Open / Close Valve 41 Control Unit 42 Display Unit

Claims (11)

複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、
複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、
前記伝熱管内に水を供給する工程と、
前記伝熱管内に供給した水を所定の高圧にする工程と、
前記高圧状態を所定の時間だけ維持する工程と、
前記伝熱管内の水を排出する工程と、
を備え、
前記所定の高圧と前記所定の時間とは、複数の板状部材の各々に設けられた孔を順次貫通する領域での前記伝熱管の拡管の程度より当該領域に隣接する領域での前記伝熱管の拡管の程度が高くなる、というように選択される
ことを特徴とする方法。
After sequentially passing through the heat transfer tubes through the holes provided in each of the plurality of plate-shaped members, the heat transfer tubes are expanded by high-pressure water,
A step of sequentially penetrating the heat transfer tubes through holes provided in each of the plurality of plate-like members;
Supplying water into the heat transfer tube;
Bringing the water supplied into the heat transfer tube to a predetermined high pressure;
Maintaining the high pressure state for a predetermined time;
Discharging water in the heat transfer tube;
With
The predetermined high pressure and the predetermined time are determined based on the degree of expansion of the heat transfer tube in the region that sequentially passes through the holes provided in each of the plurality of plate-like members, and the heat transfer tube in the region adjacent to the region. The method is characterized in that it is selected such that the degree of tube expansion is high.
前記所定の高圧と前記所定の時間とは、複数の板状部材の各々に設けられた孔を順次貫通する領域での前記伝熱管の拡管の程度より当該領域に隣接する領域での前記伝熱管の拡管の程度が30%〜100%高くなる、というように選択される
ことを特徴とする請求項1に記載の方法。
The predetermined high pressure and the predetermined time are determined based on the degree of expansion of the heat transfer tube in the region that sequentially passes through the holes provided in each of the plurality of plate-like members, and the heat transfer tube in the region adjacent to the region. The method according to claim 1, wherein the degree of expansion is selected to be 30% to 100% higher.
前記伝熱管は、銅合金製で、管径3/8インチであって、肉厚0.8mmであり、
前記所定の高圧とは、20.4〜20.8MPaであり、
前記所定の時間とは、2〜3秒である
ことを特徴とする請求項1または2に記載の方法。
The heat transfer tube is made of a copper alloy and has a tube diameter of 3/8 inch and a wall thickness of 0.8 mm.
The predetermined high pressure is 20.4 to 20.8 MPa,
3. The method according to claim 1, wherein the predetermined time is 2 to 3 seconds.
前記伝熱管は、銅合金製で、管径1/2インチであって、肉厚1.0mmであり、
前記所定の高圧とは、17.9〜18.6MPaであり、
前記所定の時間とは、2〜3秒である
ことを特徴とする請求項1または2に記載の方法。
The heat transfer tube is made of a copper alloy and has a tube diameter of 1/2 inch and a wall thickness of 1.0 mm.
The predetermined high pressure is 17.9 to 18.6 MPa.
3. The method according to claim 1, wherein the predetermined time is 2 to 3 seconds.
前記伝熱管は、銅合金製で、管径1/2インチであって、肉厚0.8mmであり、
前記所定の高圧とは、15.9〜17.1MPaであり、
前記所定の時間とは、2〜3秒である
ことを特徴とする請求項1または2に記載の方法。
The heat transfer tube is made of a copper alloy and has a tube diameter of 1/2 inch and a wall thickness of 0.8 mm.
The predetermined high pressure is 15.9 to 17.1 MPa,
3. The method according to claim 1, wherein the predetermined time is 2 to 3 seconds.
前記伝熱管は、銅合金製で、管径5/8インチであって、肉厚0.8mmであり、
前記所定の高圧とは、13.0〜13.6MPaであり、
前記所定の時間とは、1〜4秒である
ことを特徴とする請求項1または2に記載の方法。
The heat transfer tube is made of a copper alloy and has a tube diameter of 5/8 inch and a wall thickness of 0.8 mm.
The predetermined high pressure is 13.0 to 13.6 MPa,
3. The method according to claim 1, wherein the predetermined time is 1 to 4 seconds.
複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、
複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、
前記伝熱管内に水を供給する工程と、
前記伝熱管内に供給した水を所定の高圧にする工程と、
前記高圧状態を所定の時間だけ維持する工程と、
前記伝熱管内の水を排出する工程と、
を備え、
前記伝熱管は、銅合金製で、管径3/8インチであって、肉厚0.8mmであり、
前記所定の高圧とは、20.4〜20.8MPaであり、
前記所定の時間とは、2〜3秒である
ことを特徴とする方法。
After sequentially passing through the heat transfer tubes through the holes provided in each of the plurality of plate-shaped members, the heat transfer tubes are expanded by high-pressure water,
A step of sequentially penetrating the heat transfer tubes through holes provided in each of the plurality of plate-like members;
Supplying water into the heat transfer tube;
Bringing the water supplied into the heat transfer tube to a predetermined high pressure;
Maintaining the high pressure state for a predetermined time;
Discharging water in the heat transfer tube;
With
The heat transfer tube is made of a copper alloy and has a tube diameter of 3/8 inch and a wall thickness of 0.8 mm.
The predetermined high pressure is 20.4 to 20.8 MPa,
The predetermined time is 2 to 3 seconds.
複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、
複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、
前記伝熱管内に水を供給する工程と、
前記伝熱管内に供給した水を所定の高圧にする工程と、
前記高圧状態を所定の時間だけ維持する工程と、
前記伝熱管内の水を排出する工程と、
を備え、
前記伝熱管は、銅合金製で、管径1/2インチであって、肉厚1.0mmであり、
前記所定の高圧とは、17.9〜18.6MPaであり、
前記所定の時間とは、2〜3秒である
ことを特徴とする方法。
After sequentially passing through the heat transfer tubes through the holes provided in each of the plurality of plate-shaped members, the heat transfer tubes are expanded by high-pressure water,
A step of sequentially penetrating the heat transfer tubes through holes provided in each of the plurality of plate-like members;
Supplying water into the heat transfer tube;
Bringing the water supplied into the heat transfer tube to a predetermined high pressure;
Maintaining the high pressure state for a predetermined time;
Discharging water in the heat transfer tube;
With
The heat transfer tube is made of a copper alloy and has a tube diameter of 1/2 inch and a wall thickness of 1.0 mm.
The predetermined high pressure is 17.9 to 18.6 MPa.
The predetermined time is 2 to 3 seconds.
複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、
複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、
前記伝熱管内に水を供給する工程と、
前記伝熱管内に供給した水を所定の高圧にする工程と、
前記高圧状態を所定の時間だけ維持する工程と、
前記伝熱管内の水を排出する工程と、
を備え、
前記伝熱管は、銅合金製で、管径1/2インチであって、肉厚0.8mmであり、
前記所定の高圧とは、15.9〜17.1MPaであり、
前記所定の時間とは、2〜3秒である
ことを特徴とする方法。
After sequentially passing through the heat transfer tubes through the holes provided in each of the plurality of plate-shaped members, the heat transfer tubes are expanded by high-pressure water,
A step of sequentially penetrating the heat transfer tubes through holes provided in each of the plurality of plate-like members;
Supplying water into the heat transfer tube;
Bringing the water supplied into the heat transfer tube to a predetermined high pressure;
Maintaining the high pressure state for a predetermined time;
Discharging water in the heat transfer tube;
With
The heat transfer tube is made of a copper alloy and has a tube diameter of 1/2 inch and a wall thickness of 0.8 mm.
The predetermined high pressure is 15.9 to 17.1 MPa,
The predetermined time is 2 to 3 seconds.
複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させた後、当該伝熱管を高圧水によって拡管させる方法であって、
複数の板状部材の各々に設けられた孔に伝熱管を順次貫通させる工程と、
前記伝熱管内に水を供給する工程と、
前記伝熱管内に供給した水を所定の高圧にする工程と、
前記高圧状態を所定の時間だけ維持する工程と、
前記伝熱管内の水を排出する工程と、
を備え、
前記伝熱管は、管径5/8インチであって、肉厚0.8mmであり、
前記所定の高圧とは、13.0〜13.6MPaであり、
前記所定の時間とは、2〜3秒である
ことを特徴とする方法。
After sequentially passing through the heat transfer tubes through the holes provided in each of the plurality of plate-shaped members, the heat transfer tubes are expanded by high-pressure water,
A step of sequentially penetrating the heat transfer tubes through holes provided in each of the plurality of plate-like members;
Supplying water into the heat transfer tube;
Bringing the water supplied into the heat transfer tube to a predetermined high pressure;
Maintaining the high pressure state for a predetermined time;
Discharging water in the heat transfer tube;
With
The heat transfer tube has a tube diameter of 5/8 inch and a wall thickness of 0.8 mm.
The predetermined high pressure is 13.0 to 13.6 MPa,
The predetermined time is 2 to 3 seconds.
各々に孔が設けられた複数のフィンと、
前記複数のフィンの前記孔を順次貫通する伝熱管と、
を備えた熱交換器であって、
前記複数のフィンの各々に設けられた前記孔を順次貫通する領域での前記伝熱管の直径より当該領域に隣接する領域での前記伝熱管の直径の方が1.8%以上大きい
ことを特徴とする熱交換器。
A plurality of fins each provided with a hole;
A heat transfer tube that sequentially passes through the holes of the plurality of fins;
A heat exchanger comprising:
The diameter of the heat transfer tube in a region adjacent to the region is 1.8% or more larger than the diameter of the heat transfer tube in a region that sequentially passes through the holes provided in each of the plurality of fins. Heat exchanger.
JP2015048730A 2015-03-11 2015-03-11 Method of expanding heat transfer tube, heat exchanger, and method of manufacturing heat exchanger Active JP6270761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015048730A JP6270761B2 (en) 2015-03-11 2015-03-11 Method of expanding heat transfer tube, heat exchanger, and method of manufacturing heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015048730A JP6270761B2 (en) 2015-03-11 2015-03-11 Method of expanding heat transfer tube, heat exchanger, and method of manufacturing heat exchanger

Publications (2)

Publication Number Publication Date
JP2016168601A true JP2016168601A (en) 2016-09-23
JP6270761B2 JP6270761B2 (en) 2018-01-31

Family

ID=56982849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015048730A Active JP6270761B2 (en) 2015-03-11 2015-03-11 Method of expanding heat transfer tube, heat exchanger, and method of manufacturing heat exchanger

Country Status (1)

Country Link
JP (1) JP6270761B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109821977A (en) * 2019-01-22 2019-05-31 深圳市长盈精密技术股份有限公司 The forming method of ball-type contact
CN114570841A (en) * 2022-02-28 2022-06-03 北京热力众达换热设备有限公司 Water pressure transmission expansion method and device for heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452814A (en) * 1967-02-24 1969-07-01 Gen Electric Bell-end condenser tubes
JPS57206531A (en) * 1981-06-15 1982-12-17 Daikin Ind Ltd Liquid pressure pipe expanding device
JPS59139790U (en) * 1983-03-10 1984-09-18 カルソニックカンセイ株式会社 Heat exchanger
JP2007046871A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Manufacturing method of pipe with fin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452814A (en) * 1967-02-24 1969-07-01 Gen Electric Bell-end condenser tubes
JPS57206531A (en) * 1981-06-15 1982-12-17 Daikin Ind Ltd Liquid pressure pipe expanding device
JPS59139790U (en) * 1983-03-10 1984-09-18 カルソニックカンセイ株式会社 Heat exchanger
JP2007046871A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Manufacturing method of pipe with fin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109821977A (en) * 2019-01-22 2019-05-31 深圳市长盈精密技术股份有限公司 The forming method of ball-type contact
CN109821977B (en) * 2019-01-22 2020-09-22 深圳市长盈精密技术股份有限公司 Forming method of spherical contact element
CN114570841A (en) * 2022-02-28 2022-06-03 北京热力众达换热设备有限公司 Water pressure transmission expansion method and device for heat exchanger
CN114570841B (en) * 2022-02-28 2023-08-22 北京热力众达换热设备有限公司 Hydraulic transmission expansion method for heat exchanger

Also Published As

Publication number Publication date
JP6270761B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
US9101972B2 (en) Water pipe for which hydroforming is employed, and a production method therefor
WO2008048251A3 (en) Method and apparatus for improving distribution of fluid in a heat exchanger
JP6270761B2 (en) Method of expanding heat transfer tube, heat exchanger, and method of manufacturing heat exchanger
US20170246670A1 (en) Multi-layer pipe manufacturing apparatus and method of manufacturing multi-layer pipes using the same
KR20140134356A (en) Hydroforming method of molding hydro forming
MY195134A (en) Heat Exchanger and Refrigeration System Using Same
EP2759608B1 (en) Heating medium utilizing apparatus
WO2008010427A1 (en) Pipe expanding method
RU2657253C2 (en) Rotating insert for flanging and widening metal tubes
KR100655496B1 (en) Lining method of tank inner wall
US20170018788A1 (en) Fuel supply unit
EP2136265A3 (en) Manufacturing method of heat equalizing member for fixing device and heat equalizing member for fixing device
HRP20161605T1 (en) Method for producing a gun barrel with integrally adjoining housing
US9566555B2 (en) Self-pressurization gas-liquid mixing device used for making beverage
CN210318529U (en) Special butterfly valve casting for quickly opening and closing thermal power
CN209156803U (en) A kind of frost-free refrigerator condenser pipe swan neck system
KR101621498B1 (en) A pipe for evaporator of air conditioning equipment and a manufacturing method therof
JP2014181806A5 (en)
US20130074948A1 (en) Device for sealing a delivery fluid system and method
JP2010091202A (en) Refrigerant piping joint structure
RU2014119966A (en) METHOD FOR PRODUCING BIMETALLIC PUMP AND COMPRESSOR PIPES
JP2010091177A (en) Heat exchanger
CN104482693A (en) Liquid distributor and production method thereof
KR20150089669A (en) The production method of twisted tape
JP2016207409A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170725

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6270761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250